Publications > Preprint server > Preprint Number 600
Preprint Number 600
600. Yimu Yin Additive invariants in o-minimal valued fields E-mail: Submission date: 30 June 2013. Abstract: We develop a theory of Hrushovski-Kazhdan style motivic integration for certain type of non-archimedean o-minimal fields, namely polynomial-bounded T-convex valued fields. The structure of valued fields is expressed through a two-sorted first-order language L_TRV. We establish canonical homomorphisms between the Grothendieck semirings of various categories of definable sets that are associated with the VF-sort and the RV-sort of L_TRV. The groupifications of some of these homomorphisms may be described explicitly and are understood as generalized Euler characteristics. In the end, following the Hrushovski-Loeser method, we construct topological zeta functions associated with (germs of) definable continuous functions in an arbitrary polynomial-bounded o-minimal field and show that they are rational. The overall construction is closely modeled on that of the original Hrushovski-Kazhdan construction, as reproduced in the series of papers by the present author. Mathematics Subject Classification: 03C60, 11S80, 03C98, 14B05, 14J17, 32S25, 32S55 Keywords and phrases: |
Last updated: March 23 2021 10:22 | Please send your corrections to: |