MODNET

Research Training Network in Model Theory

Publications > Preprint server > Preprint Number 350
Preprint Number 350
350. A. Ould Houcine, D. Vallino Algebraic and definable closure in free groups E-mail: Submission date: 30 August 2011. Abstract: We study algebraic closure and its relation with definable closure in free groups and more generally in torsion-free hyperbolic groups. Given a torsion-free hyperbolic group G and a nonabelian subgroup A of G, we describe G as a constructible group from the algebraic closure of A along cyclic subgroups. In particular, it follows that the algebraic closure of A is finitely generated, quasiconvex and hyperbolic. Suppose that G is free. Then the definable closure of A is a free factor of the algebraic closure of A and the rank of these groups is bounded by that of G. We prove that the algebraic closure of A coincides with the vertex group containing A in the generalized cyclic JSJ-decomposition of G relative to A. If the rank of G is bigger than 4, then G has a subgroup A such that the definable closure of A is a proper subgroup of the algebraic closure of A. This answers a question of Sela. Mathematics Subject Classification: 20B07, 20E05, 12L12, 20F65, 20E08, 20F67, 20F70 Keywords and phrases: free groups, torsion-free hyperbolic groups, algebraic closure, definable closure |

Last updated: March 23 2021 10:22 | Please send your corrections to: |