Research Training Network in Model Theory
Publications > Preprint server > Preprint Number 324

Preprint Number 324

Previous Next Preprint server

324. Ehud Hrushovski and Anand Pillay
Affine Nash groups over real closed fields

Submission date: 13 May 2011.


We prove that a semialgebraically connected affine Nash group over a real closed field R is Nash isogenous to the semialgebraically connected component of the group H(R) of R-points of some algebraic group H defined over R. In the case when R is the field of real numbers this result was claimed in the paper “Groups definable in local fields and pseudofinite fields”, Israel J. Math. 85 (1994) by the same two authors, but a mistake in the proof was recently found, and the new proof we obtained has the advantage of being valid over an arbitrary real closed field. We also extend the result to not necessarily connected affine Nash groups over arbitrary real closed fields.

Mathematics Subject Classification: 14P20, 22E15, 03C64

Keywords and phrases:

Full text arXiv 1105.2660: pdf, ps.

Last updated: March 23 2021 09:22 Please send your corrections to: