Research Training Network in Model Theory
Publications > Preprint server > Preprint Number 28

Preprint Number 28

Previous Next Preprint server

28. Moshe Kamensky
The model completion of the theory of modules over finitely generated commutative algebras

Submission date:


We find the model completion of the theory modules over $A$, where $A$ is a finitely generated commutative algebra over a field $K$. This is done in a context where the field $K$ and the module are represented by sorts in the theory, so that constructible sets associated with a module can be interpreted in this language. The language is expanded by additional sorts for the Grassmanians of all powers of $K^n$, which are necessary to achieve quantifier elimination.

The result turns out to be that the model completion is the theory of a certain class of ``big'' injective modules. In particular, it is shown that the class of injective modules is itself elementary. We also obtain an explicit description of the types in this theory.

Mathematics Subject Classification: 03C10 (Primary) 03C60 (Secondary)

Keywords and phrases:

Full text: arXiv.

Last updated: March 23 2021 09:22 Please send your corrections to: