Research Training Network in Model Theory
Publications > Preprint server > Preprint Number 1988

Preprint Number 1988

Previous Next Preprint server

1988. Vahagn Aslanyan, Jonathan Kirby, Vincenzo Mantova
A geometric approach to some systems of exponential equations

Submission date: 26 May 2021


Zilber's Exponential Algebraic Closedness conjecture (also known as Zilber's Nullstellensatz) gives conditions under which a complex algebraic variety should intersect the graph of the exponential map of a semiabelian variety. We prove the special case of the conjecture where the variety has dominant projection to the domain of the exponential map, for abelian varieties and for algebraic tori. Furthermore, in the situation where the intersection is 0-dimensional, we exhibit structure in the intersection by parametrizing the sufficiently large points as the images of the period lattice under a (multivalued) analytic map. Our approach is complex geometric, in contrast to a real analytic proof given by Brownawell and Masser just for the case of algebraic tori.

Mathematics Subject Classification: 11G10, 14K20, Secondary: 03C60, 12L12

Keywords and phrases:

Full text arXiv 2105.12679: pdf, ps.

Last updated: June 1 2021 09:48 Please send your corrections to: