MODNET

Research Training Network in Model Theory

Publications > Preprint server > Preprint Number 1988
Preprint Number 1988
1988. Vahagn Aslanyan, Jonathan Kirby, Vincenzo Mantova A geometric approach to some systems of exponential equations E-mail: Submission date: 26 May 2021 Abstract: Zilber's Exponential Algebraic Closedness conjecture (also known as Zilber's Nullstellensatz) gives conditions under which a complex algebraic variety should intersect the graph of the exponential map of a semiabelian variety. We prove the special case of the conjecture where the variety has dominant projection to the domain of the exponential map, for abelian varieties and for algebraic tori. Furthermore, in the situation where the intersection is 0-dimensional, we exhibit structure in the intersection by parametrizing the sufficiently large points as the images of the period lattice under a (multivalued) analytic map. Our approach is complex geometric, in contrast to a real analytic proof given by Brownawell and Masser just for the case of algebraic tori. Mathematics Subject Classification: 11G10, 14K20, Secondary: 03C60, 12L12 Keywords and phrases: |

Last updated: June 1 2021 09:48 | Please send your corrections to: |