Research Training Network in Model Theory
Publications > Preprint server > Preprint Number 1475

Preprint Number 1475

Previous Next Preprint server

1475. Léo Jimenez
Groupoids and Relative Internality

Submission date: 24 August 2018


In a stable theory, a stationary type q in S(A) internal to a family of partial types P over A gives rise to a type definable group, called its binding group. This group is isomorphic to the group Aut(q / P , A) of permutations of the set of realizations of q, induced by automorphisms of the monster model, fixing P ∪ A pointwise. In this paper, we investigate families of internal types varying uniformly, what we will call relative internality. We prove that the binding groups also vary uniformly, and are the isotropy groups of a natural type-definable groupoid (and even more). We then investigate how properties of this groupoid are related to properties of the type. In particular, we obtain internality criteria for certain 2-analysable types.

Mathematics Subject Classification:

Keywords and phrases:

Full text arXiv 1808.08323: pdf, ps.

Last updated: March 23 2021 10:20 Please send your corrections to: