Research Training Network in Model Theory
Publications > Preprint server > Preprint Number 1375

Preprint Number 1375

Previous Next Preprint server

1375. Elías Baro and Amador Martín-Pizarro
Open core and small groups in dense pairs of topological structures

Submission date: 26 January 2018. Revised 13 November 2019 (with new title and abstract).


Dense pairs of geometric topological fields have tame open core, that is, every definable open subset in the pair is already definable in the reduct. We fix a minor gap in the published version of van den Dries's seminal work on dense pairs of o-minimal groups, and show that every definable unary function in a dense pair of geometric topological fields agrees with a definable function in the reduct, off a small definable subset, that is, a definable set internal to the predicate.

For certain dense pairs of geometric topological fields without the independence property, whenever the underlying set of a definable group is contained in the dense-codense predicate, the group law is locally definable in the reduct as a geometric topological field. If the reduct has elimination of imaginaries, we extend this result, up to interdefinability, to all groups internal to the predicate.

Mathematics Subject Classification: 03C64, 03C45

Keywords and phrases:

Full text arXiv 1801.08744: pdf, ps.

Last updated: March 23 2021 10:20 Please send your corrections to: