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1 The finite Morley rank case

(G, . , 1 , . . .) whose theory is of finite MR.

Example 1.1

1. Algebraic groups over algebraically closed fields.

2. Zp∞ : the Prufer p-group ( ℵ1-categorical )

Cherlin Zilber conjecture : an infinite simple group of finite MR is isomorphic to an
algebraic group over an algebraically closed field.

Definition 1.2 X ⊆ G definable is said to be indecomposable if

∀H 6 G definable, |XH�H| = 1 or > ℵ0

Theorem 1.3 (Zilber’s indecomposable theorem)
Let G be a group of finite MR and (Xi)i∈I an arbitrary collection of definable indecomposable
subsets such that 1 ∈ Xi , ∀i .Then

H :=< Xi|i ∈ I >

is a definable and connected subgroup of G.
In fact, there is X1, ..., Xm, m ≤MR(G), such that

H = X1...Xm

Remark 1.4

1. 1 ∈ Xi ∀i is needed:
otherwise, as singletons are definables, any subgroup would be definable. But

(Z,+) 6 (Q,+)

and the first one is not ω-stable while the second one is of finite MR, so could not be
a definable subgroup !

2. G needs to be of finite MR :
Let G be an infinite elementary abelian group of exponant 2 (i.e. every element has
order 2, or equivalentaly G is a vector space over F2), with a predicate A for an
inifinite independant subset such that < A > is a proper subset of G. MR(G) = ω,
and every proper definable subgroup is finite. Hence every infinite definable subset is
indecomposable. So A is indecomposable but < A > is not a definable subgroup !
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Proof : (theorem)
∃Xi1 , ..., Xim

such that if B := Xi1 ...Xim
then MR(XiB) = MR(B) for all i ∈ I. Let p be

a type of maximal rank in B (i.e. “x ∈ B” is in p). H := stab(p).

Claim : ∀i ∈ I, |XiH/H| < ℵ0.
otherwise, XiB contains infinitely many translates of p, which contradicts maximality of
MR of types in XiB.

Thus Xi is in only one coset of H. But 1 ∈ Xi, so Xi ⊆ H. < Xi : i ∈ I >6 H,
hence B ⊆ H and p contains “x ∈ H”. But now we have the following :

Lemma 1.5 Let G be a group of finite MR, and p ∈ S1(G). Then p is generic iff stab(p) =
G0 �

H = stab(p) implies that p is the unique generic type of H, H = H0, B generic in H, so
H = B2. 2

Applications of Zilber’s theorem: they are endless ! for example :

1. Generation :
If G is a group of finite MR, (Hi : i ∈ I) a family of definable subgroups, then
< Hi : i ∈ I > is a definable and connected subgroup.
Indeed, for H 6def G, H is connected iff it is indecomposable.

2. Commutators :
Let H 6 G definable and connected, X ⊆ G any subset. Then [H,X] is a definable
connected subgroup.
Indeed it can be checked out that ∀x ∈ G, xH is indecomposable, so (x−1)H is
indecomposable, so (x−1)H

x is indecomposable and contains 1.

3. Simplicity :

Definition 1.6 A group is said to be definably simple if it has no proper normal
definable subgroups.

Corollary 1.7 A non abelian group G of finite MR is simple iff it is definably simple.

Proof : suppose G is definably simple, in particular G = G0. Let N be a proper
normal subgroup of G, then [G,N ] is a definable normal subgroup of G, and
[G,N ] 6 N < G, so that [G,N ] = 1. So N 6 Z(G) = 1 2

Remark 1.8 Free groups are definably simple.

4. Categoricity :

Theorem 1.9 Let < G, .,−1 , 1, ... > be an infinite simple group of finite MR. Then
G is ℵ1-categorical.

Theorem 1.10 Same for a field.
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Proof : (group case)
Equivalently, we will check that G is ω-stable with no Vaughtian pair:

• G ω-stable : ok.

• no Vaughtian pair : Take G∗ an elementary extension of G. Let A be an infinite
definable subset ofG, then A = A1

∐
...

∐
An, with Ai indecomposable. a1 ∈ A1,

a−1
1 A1, 1 ∈ a−1

1 A1. ∀g ∈ G, a−1
1 A1

g
is indecomposable and contains 1. By

Zilber’s theorem, < a−1
1 A1

g
: g ∈ G >= G (G simple) =a−1

1 A1
g1
...a−1

1 A1
gm . As

G∗ � G, G∗ = G.

2

2 Strongly minimal sets

Definition 2.1 M L-structure. D ⊆Mn infinite definable set.

• D, or the formula φ(x, a) defining it, is minimal if every definable subset Y ⊆ D is
finite or cofinite in D.

• D, or the formula φ(x, a) defining it, is strongly minimal if φ is minimal in every
elementary extension of M.

Definition 2.2 a theory T is strongly minimal if the formula x = x is strongly minimal
(i.e. every model M |= T is (strongly) minimal).

Example 2.3

1. L = {=}, theory of infinite sets.

2. Theory of vector space over a division ring :
F a division ring (i.e. a non necessarily commutative field), V an infinite vector space
over F . V is a structure in the langage L = {+, 0, λa : a ∈ F} where λa(x) = a.x for
a ∈ F and x ∈ V . Then V is a strongly minimal set (thanks to quantifier elimination
of the theory of vector spaces over F in the previous langage).

3. L = {+, 0} , theory of torsion free division abelian groups (quantifier elimination)

4. L = {+,−, ., 0, 1} , theory of algebraicly closed fields (quantifier elimination)

Remark 2.4 a set D is strongly minimal iff MR(D) = 1 and degM = 1.

Algebraic closure :

Definition 2.5 b is algebraic over A if there is a formula φ(x, a), with a ∈ A, such that
φ(M, a) is finite and |= φ(b, a).

For A ⊆ D, let aclD(A) := {b ∈ D : b is algebraic over A} .
aclM will be denoted simply acl.

Example 2.6
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• theory of infinite set : acl(A) = A.

• vector spaces : acl(A) = spam(A)

• theory of algebraicaly closed fields : acl(A) = algebraic closure of the subfield generated
by A.

Basic properties :

1. A ⊆ acl(A)

2. acl(acl(A)) = acl(A).

3. if A ⊆ B, then acl(A) ⊆ acl(B).

4. if a ∈ acl(A), then a ∈ acl(A0) for some finite A0 ⊆ A.

5. (Steinitz exchange principle)
suppose D strongly minimal, A ⊆ D, a, b ∈ D.
If a ∈ acl(A ∪ {b}) \ acl(A), then b ∈ acl(A ∪ {a})

Proof : suppose a ∈ acl(A∪{b})\acl(A). φ(a, b) where φ is a formula with parameters
in A and | {x ∈ D | φ(x, b)} |= n finite. Let ψ(y) be the formula asserting that | {x ∈
D | φ(x, y)} |= n. If ψ(y) defines a finite subset of D, then b ∈ acl(A) and a ∈ acl(A, b) ⊆
acl(acl(A)) = acl(A), contradiction.
Hence ψ(y) defines a cofinite subset of D.
If {y ∈ D | ψ(a, y) ∧ ψ(y)} is finite, then we are done because then b ∈ acl(A, a).
suppose toward a contradiction that : | D\{y ∈ D | φ(a, y)∧ψ(y)} |= l for some l < ω. Let
χ(x) be the formula asserting that | D\{y ∈ D | φ(x, y)∧ψ(y)} |= l. If χ(x) defines a finite
subset of D, then a ∈ acl(A), a contradiction. Thus χ(x) defines a cofinite subset of D. Take
a1, ..., an+1 elements of D such that |= χ(ai) . ∀i ∈ {1, ..., n} Bi := {y ∈ D | φ(ai, y)∧ψ(y)}
is cofinite. Chose b̂ in

⋂
1≤i≤n+1Bi. Then φ(ai, b̂) for each i, so | {x ∈ D | φ(x, b̂)} |> n+1,

a contradiction to ψ(b̂). 2

Definition 2.7 A ⊆ D.
A is said to be independant if a /∈ acl(A \ {a}), ∀a ∈ A. (or equivalently a /∈ aclD(A \ {a}),
∀a ∈ A)
If C ⊆ D, then A is independant over C if a /∈ acl(C ∪A \ {a}), ∀a ∈ A.

Definition 2.8 A is a basis for Y ⊆ D if A ⊆ Y is independant and acl(A) = acl(Y ).
One can easily check that basis are maximal independant subsets.

Lemma 2.9 Let A,B ⊆ D independant with A ⊆ acl(B).

1. Suppose A0 ⊆ A, B0 ⊆ B, A0 ∪ B0 basis for acl(B) and a ∈ A \ A0. Then there is
b ∈ B0 such that A0 ∪ {a} ∪ (B0 \ {b}) is a basis for acl(B).

2. |A| ≤ |B|.

3. If A and B are basis for Y ⊆ D, then |A| = |B|.

Proof :
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1. Let C ⊆ B0 of minimal cardinality such that a ∈ acl(A0 ∪ C). A is independant, so
|C| ≥ 1. Let b ∈ C. The exchange principle implies that b ∈ acl(A0 ∪{a}∪ (C \ {b})).
Thus acl(A0 ∪ {a} ∪ (C \ {b})) = acl(B). If a ∈ acl(A0 ∪ (B0 \ {b})) then b ∈
acl(A0 ∪ (B0 \ {b})), contradicting that A0 ∪B0 is a basis. Thus A0 ∪{a}∪ (B0 \ {b})
is independant.

2. suppose B inifinite.
A ⊆ ∪B0⊆Bfinite(A ∩ acl(B0)), and A ∩ acl(B0) is finite, so |A| ≤ |B|.
Suppose now B finite. We will make the proof by induction on |B|. Suppose |B| = n
and a1, ..., an+1 are distinct elements of A. The first point implies that there is b1, ..., bn
in B distincts such that {a1, ..., ai} ∪ (B \ {b1, ..., bi}) is a basis for acl(B), ∀i ≤ n.
Then acl(a1, ..., an) = acl(B). But an+1 ∈ acl(B) implies that A is not independant.

3. follows trivially from point 2.

2

Definition 2.10 Let Y ⊆ D. The dimension of Y (dim(Y )) is the cardinal number of any
basis of Y .

Theorem 2.11 (see [1] p.211) T a strongly minimal theory, M,N |= T . Then M ∼= N iff
dim(M) = dim(N).

Corollary 2.12 T a stongly minimal theory. Then T is κ-categorical for all κ ≥ ℵ1.
Moreover I(T,ℵ0) ≤ ℵ0.

Proof : κ > ℵ0 ⇒ basis of M of cardinality κ.
κ = ℵ0 ⇒ basis of M of cardinality ≤ ℵ0. 2

Back to ℵ1-categorical theories :

T ω-stable + no Vaughtian pair ⇒ T κ-categorical for all κ ≥ ℵ1.

Lemma 2.13 T ω-stable.

1. If M |= T , there is a minimal formula φ in M.

2. If M is ℵ0-saturated, then φ is strongly minimal.

Proof : See [1] p. 212. 2

More generally we have the following :

Definition 2.14 T does not have the finite cover property (fcp) if for every formula ϕ(x, y)
without parameters there exists nϕ < ω such that for all a the set defined by ϕ(x, a) is either
infinite or has at most nϕ elements (this is axiom 4 of groups of finite Morley rank).
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Lemma 2.15 A minimal formula in a theory without fcp is strongly minimal.

Corollary 2.16 T uncountably categorical ⇒ I(T,ℵ0) ≤ ℵ0.

Proof : Let M0 be a prime model of T , φ(v) a stongly minimal formula with parame-
ters from A ⊆M0 finite. M,N |= T .
dim(φ(M)/A) = dim(φ(N)/A), so M ∼= N .
Only ℵ0 possibilities for that, hence I(T,ℵ0) ≤ ℵ0. 2

Indeed : (rather easy for strongly minimal sets alone)

Theorem 2.17 (Baldwin-Lachlan)
T uncountably categorical ⇒ I(T,ℵ0) = 1 or ℵ0.

3 Geometric stability theory

Definition 3.1 X a set, cl : P(X) → P(X).
(X, cl) is a pregeometry if:

1. (closure) ∀A ⊆ X, A ⊆ cl(A) and cl(cl(A)) = cl(A).

2. (monotonicity) ∀A ⊆ B ⊆ X, cl(A) ⊆ cl(B).

3. (finite character) ∀A ⊆ X, cl(A) = ∪A0⊆Afinitecl(A0).

4. (Steinitz exchange principle) ∀A ⊆ X, ∀a, b ∈ X, if a ∈ cl(A ∪ {b}) then either
a ∈ cl(A), or b ∈ cl(A ∪ {a}).

A ⊆ X is said to be closed if A = cl(A).

Definition 3.2 (X, cl) a pregeometry.
A ⊆ X is independant if a /∈ cl(A \ {a}), ∀a ∈ A.
B is a basis for Y ⊆ X if B ⊆ Y is independant and Y ⊆ cl(B) (or equivalently cl(Y ) =
cl(B) thanks to axioms 1 and 2).

Lemma 3.3 (X, cl) a pregeometry, B1, B2 ⊆ Y ⊆ X. Suppose that B1, B2 are both bases
for Y . Then |B1| = |B2|. |Bi| := dim(Y ), the dimension of Y .

Definition 3.4 A ⊆ X. We define another closure operator by setting clA(B) = cl(A∪B).

Now the following is is easily checked :

Lemma 3.5 If (X, cl) is a pregeometry, then (X, clA) is a pregeometry.

Definition 3.6 Y ⊆ X is said to be independant over A if Y is independant in (X, clA).
Similarly, the dimension of Y over A is dim(Y/A) = dimension of Y in (X, clA).

Definition 3.7 A pregeometry (X, cl) is a geometry if cl(∅) = ∅ and cl({x}) = {x} for all
x ∈ X.
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Starting from a pregeometry (X, cl), we can always deduce a geometry (X̂, ĉl) as follows
(in the same manner one goes from a vector space to the corresponding projective space,
see example 3 below) :

First define X0 = X \ cl(∅). Then define an equivalence relation ∼ on X0 by a ∼ b iff
cl({a}) = cl({b}). By exchange principle, a ∼ b iff a ∈ cl({b}) . Let X̂ := X0/ ∼. Define on
X̂ a closure operation ĉl by ĉl(A/ ∼) = {b/ ∼: b ∈ cl(A)}. So we get :

Lemma 3.8 If (X, cl) is a pregeometry, then (X̂, ĉl) is a geometry, which is called the
canonical geometry associated to (X, cl).

Definition 3.9 Let (X, cl) be a pregeometry.

1. (X, cl) is trivial if cl(A) = ∪a∈Acl({a}), for all A ⊆ X.

2. (X, cl) is modular if for all A,B ⊆ X finite dimensional,
dim(A ∪B) = dim(A) + dim(B)− dim(A ∩B).

3. (X, cl) is locally modular if (X, cla) is modular for some a ∈ X.

Examples :

1. Pure sets :
D an infinite set with no structure. Then D is a mininal structure, and for all a ∈ D,
acl(a) = {a}, and acl(∅) = ∅. (D, acl) is a trivial geometry.

2. D |= Th(Z, s) where s is the successor function. Then acl(∅) = ∅, acl(A) = ∪a∈A{sn(a) :
n ∈ Z}, for all A ⊆ D. (D, acl) is a trivial pregeometry.

3. Projective geometry :
F a division ring (i.e. a non necessarily commutative field), V an infinite vector
space over F . We have already seen that V is a strongly minimal structure, with
acl(A) = span of A. Moreover the pregeometry is modular, but this is not a geometry
because acl(∅) = {0}.

Now consider the projective space P(V ) constructed over V : a point of this space is
a line of V throught the origin, i.e. P(V ) is the quotient of V \{O} by the equivalence
relation a ∼ b iff there is λ 6= 0 in F such that a = λ.b. Then P(V ) is a geometry if
we take for the closure of a set of lines the quotient of their linear span. Note that
this is the canonical geometry associated to V , and that as a result of a general fact
easily proven, the modularness of V passes to V̂ = P(V ). Note also that the algebraic
notion of dimension and the notion of dimension of a pregeometry coincide in the case
of the vector space, but not in the case of P(V ) ; but the translation between the two
notions of dimensions in this last case is harmless : for any closed W ⊆ P(V ), the
dinension of W as a subspace of the projective space P(V ) is equal to dim(W ) − 1.
The reason why we use in the geometrical context the first notion of dimension is just
that we expect a point to have dimension 0 and not 1 !

4. Affine geometry :
F and V as above, but V is equipped with his canonical structure of affine space
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over F . On V define cl(A) = smallest affine space containing A. Then it is easily
checked that this defines a pregeometry on V which is a geometry; also that the
notion of dimension from affine geometry and from the notion of pregeometry does
not coincide, but there is no harm because, just as in the projective case, for all
closed W ⊆ V the dimension of W as an affine subspace is equal to dim(W ) − 1.
Now take two parallel lines D1 and D2 : dim(D1) + dim(D2) = 2 + 2 = 4, and
on the other hand dim(D1 ∩ D2) + dim(D1 ∪ D2) = 0 + 3 = 3 ; so this is a not a
modular geometry, but locally modular, because pointing an affine space gives rise
to a bijection with the associated vector space, and this bijection in our case is an
isomorphism of pregeometries (i.e. a bijection which respect the closure operation).

5. Fields :
Let K be a field ; we define a closure operation by cl(X) = the algebraic closure of
the subfield generated by X (i.e. the subfield of the algbraic elements – in the sense
of field theory – over the subfield generated by X). In order to prove that this defines
a pregeometry, the only non obvious axioms to check out are that cl is idempotent
and the exchange principle.
The first one comes from a standard (but not immediatly obvious) fact from ring
theory, namely that in any ring the notion of integral closure is idempotent.
As to the exchange principle, let’s take A a subset of K, b ∈ K, < A > the subfield
generated by A, and a an algebraic element over k :=< A ∪ {b} > such that a is not
algebraic over < A >. Let Pa(X) be the minimal polynomial of a over k; then for
some c 6= 0 , some integer n, some Q ∈ Z[Y1, ..., Yn, T,X] and some α1, ..., αn we have:

c.Pa(X) = Q(α1, ..., αn, b,X),

with degX(Q) > 0. As a is not algebraic over < A >, we also have m = degT (Q) > 0.
Take such aQ with minimalm. Then consider the polynomialR(T ) ∈ Z(α1, ..., αn, a)[T ]
given by R(T ) = Q(α1, ..., αn, T, a) = d0 + d1T + ... + dmT

m. By minimality of m,
dm 6= 0, and so R 6= 0 ; but c.Pa(a) = 0 = Q(α1, ..., αn, b, a) = R(b), so that
b ∈ cl(A ∪ {a}) �
Now we want to check that the notion of independance from this pregeometry and
the notion of beeing ”algebraically independant over a subfield” from classical field
theory coincide : let us fix a subfield M ⊆ K, and a finite tuple (a1, ..., an) from K.
First suppose that (a1, ..., an) is dependant over M in the pregeometry ; then without
loss of generality an belongs to the algebraic closure of M(a1, ..., an−1) := N , and the
same argument as above (considering the minimal polynomial of an over N) shows
that Q(a1, ..., an) = 0, for some Q ∈ M [X1, ..., Xn] with Q 6= 0, so that a1, ..., an is
algebraic over M .
Conversaly suppose a1, ..., an is algebraic over M : then Q(a1, ..., an) = 0 for some
Q ∈M [X1, ..., Xn] with Q 6= 0 ; we can assume m = degXn(Q) > 0, and again choose
one such polynomial with minimal m. By minimality of m, Q(a1, ..., an−1, Xn) 6= 0,
and so an is algebraic over M(a1, ..., an−1) �
So a base of K over a subfield M is nothing more than a transcendental base of
K over M in the sense of field theory.

6. Algebraically closed fields :
What is the peculiarity of algebraically closed fields (ACF ) with respect to this notion
of pregeometry defined for fields ? essentially that thanks to quantifier elimination
for ACF in the langage of rings, we can define here the closure operation by means
of model theoretic notions : indeed we have acl(A) = the algebraic closure (in the
sense of field theory) of the subfield generated by A, i.e. cl(A) = acl(A) and so the
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two notions of closure agree in this case. Note that in a field in general we only have
cl(A) ⊆ acl(A), and moreover an unspecified field has no reason to be a minimal
structure (in the language of rings) as in the case of ACF , so that acl does not even
define a pregeometry in the general case.
The case ACF presents another peculiarity, namely that none of the localizations
at any subset is modular, and in particular neither is the pregeometry modular, nor
is it locally modular. To show that , let K be an algebraically closed field of infi-
nite transcendance degree over its prime field. We claim that (K, acl) is not locally
modular. Let k be an algebraically closed subfield of finite transcendance degree.
We will show that even localizing at k the pregeometry is not modular. Let a, b, x
be albraically independant over k. Let y = ax + b; then dim(k(x, y, a, b)/k = 3
and dim(k(x, y)/k) = dim(k(a, b)/k)02. We contradict modularity by showing that
acl(k(x, y)) ∩ acl(k(a, b)) = k. To see that, suppose for purpose of contradiction that
d ∈ (acl(k(x, y)) ∩ acl(k(a, b))) \ k; because k(x, y) has transcendance degree 2 over
k, we may without lost of generality assume that y is algebraic over k(d, x). Let
k1 = acl(k(d)). Then there is p(X,Y ) ∈ k1[X,Y ] an irreducible polynomial such that
p(x, y) = 0. By model completeness, p(X,Y ) is still irreducible over acl(k(a, b)). Thus
p(X,Y ) is α(Y − aX − b) for some α ∈ acl(k(a, b)) which is impossible as then α ∈ k1

and a, b ∈ k1.
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