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During the Fall Semester of 2010 I gave a course of lectures at the University
of Illinois at Chicago, repeated at the University of Notre Dame, to the graduate
students in Logic, and these are the notes of that course. I am extremely grateful
to David Marker and Sergei Starchenko for the invitations, and for their kind
hospitality during my visit. Many thanks also to the students for typing up
the notes, which had remained in scruffy hand written form since I first gave a
version of the course to the Logic Advanced Class in Oxford during the Trinity
Term of 1994.

My intention in these lecture notes is to present all the mathematical back-
ground required for the proof of the quantifier elimination theorem of Denef
and van den Dries for the structure Ran in a language with a function symbol
for division. Of course, I also give the proof of the theorem itself and here I
experimented with using the model theoretic embedding criterion for quantifier
elimination rather than following the original paper. However, I now feel that
any improvements are minimal and cosmetic.

The prerequisites are, I hope, just a working knowledge of undergraduate
algebra and analysis and an introductory graduate course in model theory. So
I present the theory of Noetherian rings up to the Artin-Rees Lemma and the
Krull Intersection Theorem on the algebraic side, and the basics of convergent
power series and analytic functions up to the Weierstrass Preparation Theorem
on the analytic side. The two sides come together in the proof of the deepest
mathematical result used by Denef and van den Dries, namely the flatness of
the ring of convergent power series in the ring of formal power series. (In fact,
only the linear closure (and for just one linear equation) of the former ring in
the latter is actually needed, so I do not need to mention the general notion of
flatness, and thereby avoid a discussion of tensor products.)

Given the prerequisites, the text is intended to be understood without further
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references, so I have not included any. So let me mention now that for the algebra
I have used
R. Y. Sharp, ’Steps in Commutative Algebra’, LMS Student Texts 19, CUP,
1990, and
H. Matsumura, ’Commutative Ring Theory’, Cambridge Studies in Advanced
Mathematics 8, CUP, 1986.

For the theory of convergent (and formal) power series I have (slavishly)
followed
J. M. Ruiz, ’The Basic Theory of Power Series’, Advanced Lectures in Mathe-
matics, Vieweg, 1993.

I acquired the material in the first section over many years and through
many texts and lectures. I think my very first source was
G. E. Sacks, ’Saturated Model Theory’, Mathematics Lecture Notes Series, W.A.
Benjamin, 1972.

Finally, the paper itself is
J. Denef and L. van den Dries. p-Adic and Real Subanalytic Sets, Annals of
Mathematics 128 (1988), 79-138.

1 Model Theoretic Generalities

Let L be any first-order language, and

∃0 = ∀0 := the class of quantifier free L-formulas,
∃n+1 := {ϕ | ϕ is logically equivalent to ∃x̄ ψ for some ψ ∈ ∀n} ,
∀n+1 := {ϕ | ϕ is logically equivalent to ∀x̄ ψ for some ψ ∈ ∃n} .

Each class ∃n,∀n is closed under ∧ and ∨, and ϕ ∈ ∃n (or ∀n) ⇔ ¬ϕ ∈ ∀n (or
∃n, respectively).

For A an L-structure, L(A) denotes the language obtained by adding a
constant symbol ca for each a ∈ A (i.e. a ∈ dom(A)) and A+ denotes the
natural expansion of A to an L(A)-structure.

Dn(A) =
{
ϕ
∣∣ ϕ a ∀n-sentence of L(A) such that A+ |= ϕ

}
.

If B is another L-structure, e : A→n B means that

(i) e is an embedding from A to B, and

(ii) for all ∀n (equivalently, ∃n) formulas ϕ(x̄) of L, and for all ā ∈ A,

A |= ϕ(ā)⇔ B |= ϕ(e(ā)).

Further, e : A→∞ B means e : A→n B for all n, i.e. e is elementary.
Suppose A is an L-structure and B an L(A)-structure such that B |= Dn(A).

Then the map e : dom(A)→ dom(B) sending a 7→ cBa satisfies e : A→n B � L.
Conversely, if C is an L-structure and e : A→n C, then 〈C, e(a)〉a∈A |= Dn(A).
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Definition 1.1. An L-theory T is called model complete if D0(A) ∪ T is a
complete L(A)-theory for any A |= T .

Theorem 1.2. Let T be an L-theory. The following are equivalent:

(i) T is model complete;

(ii) Whenever A,B |= T and e : A→0 B, then e : A→1 B;

(iii) Whenever A,B |= T and e : A→0 B then e : A→∞ B;

(iv) For any formula ϕ(x̄) there exists an ∃1 formula ψ(x̄) such that

T |= ∀x̄ (ϕ(x̄)↔ ψ(x̄)) .

Proof. (i)⇒(iii): Let ϕ(x̄) be an L-formula, ā ⊆ A, and e : A →0 B. Sup-
pose A |= ϕ(ā). Now A+, 〈B, e(a)〉a∈A |= D0(A) ∪ T . Hence, by (i), A+ ≡
〈B, e(a)〉a∈A. Therefore, B |= ϕ(e(ā)).

(iii)⇒(ii): Obvious.
(ii)⇒(iii): We prove by induction on n ≥ 1 that for all A,B |= T ,

e : A→0 B⇒ e : A→n B.

The case n = 1 is just (ii). Suppose true for some n ≥ 1. Suppose A,B |= T
and e : A→n B. We want to show e : A→n+1 B.

By replacing A by its image we may suppose e = idA. Hence we may consider
the L(B)-theory T ∗ = Dn+1(A)∪D0(B)∪T . Suppose T ∗ had no model. Then
Dn+1(A) ∪ T |= ¬ϕ for some ϕ ∈ D0(B). Write ϕ as ψ(cā, cb̄) where ā ⊆ A,
b̄ ⊆ B \ A, and ψ(x̄, ȳ) is an ∃0-formula of L. Then Dn+1(A) ∪ T |= ¬ψ(cā, cb̄),
so Dn+1(A) ∪ T |= ∀ȳ ¬ψ(cā, ȳ). Thus A |= ¬χ(ā) where χ(x̄) := ∃ȳ ψ(x̄, ȳ).
However, B |= χ(ā) (take ȳ = b̄), contradicting idA : A→1 B.

Therefore, T ∗ has a model, say C. Then

B
π

0
&&

A

id
0
//

n+1
44 C � L

for some π. Hence, by the induction hypothesis,

B
π

n
&&

A

id
n
//

n+1
44 C � L.

Now suppose ā ⊆ A, ϕ(x̄) is ∃n+1 and B |= ϕ(ā). Then π : B→n C � L clearly
implies C � L |= ϕ(π(ā)). So A |= ϕ(ā) since π : A→n+1 C � L, as required.

(iii)⇒(iv): Let ϕ(x̄) be any formula of L. Let

S = {ψ(x̄) | ψ(x̄) ∈ ∃1 and T |= ∀x̄ (ψ(x̄)→ ϕ(x̄))} .
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Let c̄ be new constant symbols. It suffices to show that

T ∗ = T ∪ {¬ψ(c̄) | ψ(x̄) ∈ S} ∪ {ϕ(c̄)}

is inconsistent, for then T |= ∀x̄
(

n∧
i=1

¬ψi(x̄)→ ¬ϕ(x̄)
)

for some ψ1, . . . , ψn ∈ S

and then ϕ(x̄) is equivalent to
n∨
i=1

ψi(x̄) in T .

Suppose, for a contradiction, that A′ |= T ∗. Let A = A′ � L and ā = c̄A
′
.

Then A |= ϕ(ā) and A |= ¬χ(ā) for χ(x̄) ∈ S. Let T ′ = T ∪D0(A) ∪ {¬ϕ(cā)}.
Then T ′ is consistent, for otherwise T |= ψ(cā, cb̄)→ ϕ(cā), for some ψ(cā, cb̄) ∈
D0(A) where ψ(x̄, ȳ) is an ∃0-formula of L, b̄ ⊆ A\{ā}. But then ∃ȳ ψ(x̄, ȳ) ∈ S
and A |= ∃ȳ ψ(ā, ȳ), a contradiction. Thus T ′ has a model, say C. We have
e : A→0 C � L and C � L |= ¬ϕ(e(ā)), contradicting (iii).

(iv)⇒(i): Suppose A |= T , B |= T ∪ D0(A). Let ϕ(cā) be any sentence of
L(A), where ā ⊆ A, ϕ(x̄) an L-formula. Let e : A → B � L be the natural
embedding. Since ϕ(x̄) is T -equivalent to an ∃1-formula by (iv), we have

A+ |= ϕ(cā)⇒ B+ |= ϕ(cā).

Hence Th(B) = Th(A+) for any B |= T∪D0(A), and T∪D0(A) is complete.

Remark. (iv) is the interesting property; it is often proved by showing (ii),
which can often be reduced to showing that whenever A,B |= T , A ⊆ B then
A is “algebraically closed” in B for some natural notion of algebraic closedness.

Definition 1.3. Let T be an L-theory. T is called substructure complete if
D0(A)∪T is a complete L(A)-theory for any A which is a substructure of some
model of T .

Theorem 1.4. Let T be an L-theory. The following are equivalent:

(i) T is substructure complete;

(ii) T eliminates quantifiers, i.e. for any formula ϕ(x̄) there exists an ∃0-
formula ψ(x̄) such that T |= ∀x̄ (ϕ(x̄)↔ ψ(x̄)).

Remark. If x̄ is the empty string here, i.e. if ϕ is a sentence, then we need to
assume that our language contains at least one constant symbol. Where is this
needed in the proof below?

Proof. (ii)⇒(i): Exercise. Similar to (iv)⇒(i) above.
(i)⇒(ii): Let ϕ(x̄) be any L-formula. Let

S0 = {ψ(x̄) ∈ ∃0 | T |= ∀x̄ (ψ(x̄)→ ϕ(x̄))} .

Let c̄ be new constant symbols and T0 = T ∪ {ϕ(c̄)} ∪ {¬ψ(c̄) | ψ ∈ S0}. As in
the proof of (iii)⇒(iv) above it is sufficient to show T0 is inconsistent. Suppose,
for contradiction, that A |= T0.
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Let S1 = {ψ(x̄) ∈ ∃0 | A |= ψ(c̄)}. Thus ¬ψ(x̄) ∈ S1 for each ψ(x̄) ∈ S0. We
claim that T1 = T ∪ {¬ϕ(c̄)} ∪ {ψ(c̄) | ψ(x̄) ∈ S1} has a model. For otherwise,

T |= ∀x̄
(

n∧
i=1

ψi(x̄)→ ϕ(x̄)
)

and hence
n∧
i=1

ψi(x̄) ∈ S0 for some ψ1, . . . , ψn ∈ S1.

But then
n∧
i=1

ψi and ¬
n∧
i=1

ψi are in S1, contradicting the fact that A |= ψ(c̄) for

all ψ ∈ S1.
Now if B |= T1, then c̄B and c̄A satisfy the same ∃0-formulas in B � L and

A � L respectively. Hence they generate canonically isomorphic substructures,
and so, by (i), A ≡ B. But A |= ϕ(c̄) and B |= ¬ϕ(c̄), a contradiction.

Theorem 1.5 (Practical test for elimination of quantifiers). Let T be an L-
theory. Suppose that whenever we have B1,B2 |= T and an embedding e : A→
B2 with A ⊆ B1, and B2 sufficiently saturated (relative to |A|, |L|), then for all
a ∈ B1, e extends to some e′ : A′ → B2 where A ⊆ A′ ⊆ B and a ∈ A′. Then
T eliminates quantifiers.

Proof. Let A ⊆ B |= T . Let B1,B2 be two L(A)-structures such that B1,B2 |=
T ∪D0(A). We want to show, by 1.4, that B1 ≡ B2. We may suppose B1,B2

sufficiently saturated, A ⊆ B1 � L. Define e : A→ B2, a 7→ cB2
a . One now easily

shows by induction on n, using the condition above, that if e∗ : A∗ → B2 � L
extends e (where A ⊆ A∗ ⊆ B1 � L, |A∗| ≤ |A|+ |L|+ ℵ0), then

B1 � L |= ϕ(ā)⇔ B2 � L |= ϕ(e∗(ā))

for all formulas ϕ(x̄) of L containing at most n occurrences of quantifiers and
ā ⊆ A∗. Hence B1 ≡ B2.

2 The Real Field

Throughout the rest of this paper we will let R =
〈
R; +, ·,−; 0, 1;<

〉
denote the

ordered ring of real numbers. We further let T = Th(R). We aim to prove that T
has elimination of quantifiers. (Of course, Tarski’s theorem is much stronger: let
RCF be the subtheory of T axiomatized by the axioms for ordered fields together
with {∀yn−1, . . . , y0∃x xn+yn−1x

n−1 + · · ·+y0 = 0 : n = 1, 2, . . . }. Then Tarski
showed that RCF has effective elimination of quantifiers and axiomatizes T .)

Definition 2.1. For k,K, fields with k ⊆ K, we say that k is n-closed in K
if whenever p(x) ∈ k[x] is of degree less than or equal to n and α ∈ K satisfies
p(α) = 0, then α ∈ k.

Lemma 2.2. Suppose K1,K2 |= T , k ⊆ K1, k a field, and e : k →0 K2.
Suppose further that k is n-closed (n ≥ 1) in K1 and e[k] is n-closed in K2.
Then if α ∈ K1\k has degree less than or equal to n+1 over k, ∃e1 : k[α]→0 K2

extending e.
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Proof. Let q(x) be the minimal monic polynomial of α over k. Then q(x) =
xn+1 +anx

n+ · · ·+a0 (a0, . . . , an ∈ k) is irreducible over k since α /∈ k and k is
n-closed in K1. The image of q under e is therefore irreducible over e[k]. Choose
a, b ∈ k such that a < α < b (e.g. a = −

∑n
i=1 |ai|, b =

∑n
i=1 |ai|). Now, all the

roots in K1 of q′(x) = 0 lie in k (q′(x) is the formal derivative of q), so we may
suppose that a and b are chosen so that q′(x) has no roots in (a, b). By using
sentences in T (quantify over the coefficients) it follows that q(a) and q(b) have
opposite signs. Therefore, so do qe(e(a)) and qe(e(b)) (since e : k → K2) and
hence (again by using sentences in T ) qe(x) has a root, say β in K2 such that
e(a) < β < e(b). Since q(x) is irreducible, k(α) ∼= e[k](β) as fields (via α 7→ β,
s 7→ e(s) (s ∈ k)).

We must show that this map preserves order. So, suppose that p(x) ∈ k[x] is
any polynomial. Choose s(x), r(x) ∈ k[x] such that p(x) ≡ s(x)q(x) + r(x) and
deg r ≤ n (recall that q is monic of degree n). Then pe(x) ≡ se(x)qe(x) + re(x),
p(α) = r(α), pe(β) = re(β).

Suppose that p(α) > 0. Then we want to show pe(β) > 0. We have that
re(α) > 0, so it is sufficient to show that re(β) > 0.

Now all roots in K1 of r(x) lie in k. Similarly for K2, re(x), and e[k].
Now choose some a′ ≥ a and b′ ≤ b (in k) such that α ∈ (a′, b′) and (a′, b′)
contains no roots of r(x). Then (e(a′), e(b′)) contains no roots of re(x) (consider
e−1 to see that this is true). Now, r(α) > 0, therefore r(a

′+b′

2 ) > 0. Thus,
re( e(a

′)+e(b′)
2 ) > 0, and hence, re(x) > 0 for all x ∈ (e(a′), e(b′)). Now, with this

information, we see that it is sufficient to show that β ∈ (e(a′), e(b′)).
Now, q is monotonic on (a′, b′), and has a root therein. Hence, q(a′) and q(b′)

have opposite signs. Thus, qe(e(a′)) and qe(e(b′)) have different signs, which
implies that qe has some root in (e(a′), e(b′)). Suppose it is not β. Then qe

has at least two distinct roots in (e(a), e(b)) and so q′e has a root in (e(a), e(b)).
Since deg qe ≤ n, this root lies in e[k], and hence (via e−1) q′ has a root in
(a, b)-contradiction.

Lemma 2.3. Suppose K1,K2 |= T , ki is a subfield of Ki (i = 1, 2), and
e : k1 → k2 is an isomorphism. Then there exist k∗i (subfield of Ki) such that
ki ⊆ k∗i ⊆ Ki (i = 1, 2) and an isomorphism e∗ : k∗1 → k∗2 extending e such that
k∗i is n-closed in Ki for all n.

Proof. Just let

S = {< k′1, k
′
2, e
′ >: ki ⊆ k′i ⊆ Ki, k

′
i a subfield of Ki and e′extends e}.

Now, order S by extension. Then S satisfies the hypotheses of Zorn’s lemma.
Hence, S has a maximal element, 〈k∗1 , k∗2 , e∗〉, say. Then k∗i is certainly 1-closed
in Ki (since k∗i is a field). Then, 2.2 tells us that if k∗i is n-closed in Ki, then it
is n+ 1-closed.

Lemma 2.4. Suppose that K1,K2 |= T , k a subring of K1 and e : k →0 K2.
Suppose further that K2 is sufficiently saturated (with respect to |k|). Then
∀α ∈ K1, we can extend e to e′ : k[α]→0 K2.
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Proof. We may clearly extend e to the subfield of K1 generated by k, so we
may as well suppose that k is a subfield of K1. Now, apply 2.3 with k1 = k and
k2 = e[k] to get e∗ : k∗1 → k∗2 , extending e, an isomorphism with k∗i n-closed
in Ki (i.e. algebraically closed) for all n and i = 1, 2. If α ∈ k∗1 , we’re already
done (let e′ = e∗ � k[α]). Otherwise, α is transcendental over k∗1 . Without loss
of generality, we may assume that α > 0. Now suppose p1(x), . . . , pn(x) ∈ k[x].
Let S = ∪ni=1{roots of pi in K1}.

Then S ⊆ k∗1 . Let a = sup({0} ∪ {β ∈ S : β < α}). If α > β for all
β ∈ S, then pi(a+ 1) and pi(α) have the same sign for i = 1, . . . , n. Otherwise,
let b = inf(β ∈ S : α < β). Then pi(a+b

2 ) and pi(α) have the same sign for
i = 1, . . . , n. In either case, there is some c ∈ k∗1 such that signpi(c) =signpi(α)
for i = 1, . . . , n. Therefore, sign(pei (e

∗(c))) =signpi(α) for i = 1, . . . , n.
Hence,

{pe(x) > 0 ∧ qe(x) < 0 : p(x), q(x) ∈ k[x],K1 |= p(α) > 0 ∧ q(α) < 0}

is finitely satisfiable in K2 and therefore satisfiable, by saturation, by γ ∈ K2,
say. Clearly, extending e by α 7→ γ gives the required embedding e′ : k[α] →0

K2.

Theorem 2.5. T eliminates quantifiers.

Proof. Apply 2.4 and 1.5.

3 Preliminary Remarks on Rings and Modules

We will take as convention, ‘ring’ to always mean a commutative ring with
identity. Ring homomorphisms preserve 1, and scalar multiplication by 1 is the
identity map on any module. Let R be a ring. An R-module is finite if it is
finitely generated (as an R-module). Recall that R is Noetherian if every ideal
of R is finitely generated, i.e. if any submodule of the R-module R is finite.

An R-module M is called Noetherian if every submodule of M is finite. If
R is Noetherian then any finite R-module is as well. For if M is a finite R-
module containing a non-finite submodule then by Zorn’s lemma, there exists
a maximal such, N say. Since M is finite, pick m ∈ M \ N and let N ′ be the
submodule of M generated by N and m. Then N ′ is finite (by maximality of N),
so it is generated by m and m1, . . . ,mn ∈ N . (Remark: if something is finitely
generated then any generating set contains a finite subset which is generating.)
Let J = {b ∈ R : bm ∈ N}. Then J is an ideal of R, so it is finitely generated,
say by b1, . . . , bs. I claim that the finite subset {m1, . . . ,mn, b1m, . . . , bsm} of
N generates all of N - contradiction. For suppose that m′ ∈ N . Then certainly
m′ ∈ N ′, so a1m1 + · · ·+anmn+bm = m′. for some a1, . . . , an, b ∈ R. It follows
that b ∈ J , so b = r1b1 + · · ·+ rsbs for some r1, . . . , rs ∈ R. We now have

a1m1 + · · ·+ anmn + r1(b1m) + · · ·+ rs(bsm) = m′,

as required. The same proof seems to prove a totally different theorem, I.S.
Cohen’s lemma:
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Lemma 3.1. A ring R is Noetherian if and only if every prime ideal of R is
finitely generated.

Proof. As above, if R contains a non-finitely generated ideal it contains a max-
imal such, call it I. We show I is prime. Suppose not, say αβ ∈ I, for
α, β ∈ R \ I. Then the ideal generated by β and I is finitely generated and
also {b ∈ R : bβ ∈ I} is an ideal of R containing I and α. This ideal is finitely
generated. Now proceed as above.

We use this to deduce the famous Hilbert Basis Theorem.

Theorem 3.2. Let R be a Noetherian ring. Then the ring R[x] of polynomials
in the variable x over R is also Noetherian.

Proof. Every f(x) ∈ R[x] may be written in the form f(0) + xg(x) for some
g(x) ∈ R[x] (with deg g < deg f).

Let P be a prime ideal of R[x]. If x ∈ P then it follows that whenever
f(x) ∈ P then f(0) ∈ P , so P is generated by {f(0) : f(x) ∈ P} ∪ {x}. But
{f(0) : f(x) ∈ P} is an ideal of R, so is finitely generated. Thus P is finitely
generated as an ideal of R[x].

So, suppose that x /∈ P . If P is not finitely generated, the following process
may be continued indefinitely:

f1(x) = a polynomial of minimal degree in P ,

fn+1(x) = a polynomial of minimal degree in P not in the ideal generated
by {f1(x), . . . , fn(x)}.

Clearly, fn(x) ∈ P for all n and i ≤ j implies that deg fi ≤ deg fj . Now
the ideal of R generated by {fn(0) : n = 1, 2, . . . } is finitely generated by
f1(0), . . . , fN (0), say. So there exists a1, . . . , aN ∈ R such that

a1f1(0) + · · ·+ aNfN (0)− fN+1(0) = 0.

Therefore,
a1f1(x) + · · ·+ aNfN (x)− fN+1(x) = xg(x)

for some g(x) ∈ R[x]. Now, deg g < deg fN+1, and xg(x) ∈ P . Hence g(x) ∈ P
since x /∈ P and P is prime. It follows that g(x) is in the ideal generated by
f1(x), . . . , fN (x) (otherwise we could have chosen fN+1(x) of smaller degree)
and hence fN+1(x) is also in this ideal. This is a contradiction.

Corollary 3.3. Let R,S be rings with R ⊆ S and let S be finitely generated
(as a ring) over R. Suppose further that R is Noetherian. Then S is also
Noetherian.

Proof. Suppose that s1, . . . , sn generates S over R. By 3.2, and induction, the
polynomial ring R[x1, . . . , xn] in the variables x1, . . . , xn is Noetherian. There
exists an surjective homomorphism R[x1, . . . , xn]→ S sending r 7→ r for r ∈ R
and xi 7→ si. But clearly, a homomorphic image of a Noetherian ring is also
Noetherian.

8



4 Formal Power Series Rings

Definition 4.1. Let R be a ring. The ring R[[x]] of formal power series in the
variable x consists of, by definition, all series of the form

f(x) =
∞∑
i=0

aix
i (ai ∈ R, i = 0, 1 . . . )

with addition defined by
∞∑
i=0

aix
i +

∞∑
i=0

bix
i =

∞∑
i=0

(ai + bi)xi

and multiplication by( ∞∑
n=0

anx
n
)
·
( ∞∑
n=0

bnx
n
)

=
∞∑
n=0

( ∑
i+j=n

aibj
)
xn.

One readily checks that R[[x]] is a ring and we identify R with the subring
of R[[x]] consisting of the f ’s having 0 = a1 = a2 = . . . . Write f(0) for a0 (f(r)
has no meaning for any other r ∈ R).

Theorem 4.2. Suppose that R is Noetherian. Then so is R[[x]].

Proof. Every f(x) ∈ R[[x]] may be written as f(0)+xg(x) for some g(x) ∈ R[[x]],
so if we let P be a prime ideal of R[[x]], then as in 3.2, if x ∈ P , then P is
finitely generated. Suppose x /∈ P . Then the ideal {f(0) : f(x) ∈ P} of R is
finitely generated by f1(0), . . . , fn(0), say. I claim that f1(x), . . . , fn(x) gener-
ates P . Let g(x) ∈ P , and suppose that for some l > 0, we have polynomials
p

(l)
1 (x), p(l)

2 (x), . . . , p(l)
n (x) ∈ R[[x]] of degree ≤ l such that

(∗)l :
n∑
i=1

p
(l)
i (x)fi(x)− g(x) = xl+1hl(x)

for some hl(x) ∈ R[[x]]. We set p(−1)
i (x) ≡ 0 for i = 1, . . . , n. Then certainly

xl+1hl(x) ∈ P so hl(x) ∈ P since x /∈ P and P is prime. Hence there exist
r1, . . . , rn ∈ R such that

∑n
i=0 rifi(0) = hl(0). Then

n∑
i=1

(p(l)
i (x)− rixl+1)fi(x)− g(x) = xl+1(hl(x)−

n∑
i=1

rifi(x)︸ ︷︷ ︸
s(x)

).

But s(0) = 0 so s(x) = xhl+1(x) for some hl+1(x) ∈ R[[x]] and we’ve
“extended” the p(l)

i ’s to obtain (∗)l+1.
Let φi(x) be the unique element of R[[x]] extending all of the p(l)

i ’s for i =
1, . . . , n. Then clearly the coefficients of xl in

∑n
i=1 φi(x)fi(x) − g(x) is the

same as the coefficient of xl in
∑n
i=1 p

(l)
i (x)fi(x)− g(x), i.e. 0, for all l. Hence

g(x) =
∑n
i=1 φi(x)fi(x), and we are done.
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Theorem 4.3. f(x) is a unit in R[[x]] if and only if f(0) is a unit in R.

Proof. First, suppose that f(x) is a unit in R[[x]]. Then, f(x)g(x) = 1 implies
that f(0)g(0) = 1, so f(0) is a unit in R.

For the converse, let

f(x) =
∞∑
n=0

anx
n

with a0 a unit in R. Define b0 = a−1
0 and

bn+1 = −a−1
0 (a1bn + a2bn−1 + · · ·+ an+1b0).

Then we have ∑
i+j=0

aibj = 1,
∑
i+j=n

aibj = 0 for n ≥ 1.

Hence
∑∞
n=0 anx

n ·
∑∞
n=0 bnx

n = 1.

Theorem 4.4. For an ideal I of R, let Î be the ideal of R[[x]] generated by
I and x. Then I 7→ Î is a bijection from the maximal ideals of R to those of
R[[x]].

Proof. Proof left as exercise for the reader.

5 Adically Normed Rings

Begin by fixing a ring R.

Definition 5.1. A function || · || : R→ R is called a norm (or rather, an adic
norm) on R if for all a and b in R, we have:

1. 0 ≤ ||a|| ≤ 1 with ||a|| = 0↔ a = 0;

2. ||ab|| ≤ ||a|| ||b||;

3. ||a+ b|| ≤ max{||a||, ||b||}.

Now, fix an adic norm || · || on R.

Lemma 5.2. Let u, a ∈ R, with u a unit. Then ||u|| = 1 and ||ua|| = ||a||.

Proof. 0 < ||1|| = ||1 · 1|| ≤ ||1|| · ||1|| ≤ 1. Hence, ||1|| = 1. Then, 1 = ||1|| =
||u · u−1|| ≤ ||u|| · ||u−1|| ≤ 1. Thus, ||u|| = ||u−1|| = 1.

Finally, ||ua|| ≤ ||u|| ||a|| = ||a|| = ||u−1ua|| ≤ ||u−1|| ||ua|| = ||ua||. Thus,
||ua|| = ||a||.

Definition 5.3. R is complete with respect to ||·|| if
〈
R, d

〉
is a complete metric

space, where d(a, b) = ||a− b|| for a, b ∈ R. Note that d(a, b) = d(b, a) by 5.2.
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Remark. Note the following facts.

• Suppose that a ∈ R, ||a|| < 1 and that R is complete with respect to || · ||.
Then 1 + a is a unit in R.

• Define || · ||0 : R[[x]]→ R by

||
∞∑
i=0

aix
i|| = sup{||ai|| : i = 0, 1, . . . }.

Then, || · ||0 is an adic norm on R[[x]] and R[[x]] is complete with respect
to || · ||0 if R is complete with respect to || · ||.

Proof. Proof left as exercise for the reader.

Definition 5.4. Let p ∈ N, and Φ(x) ∈ R[[x]]. Then Φ(x) is called regular of
order p (with respect to || · ||) if Φ(x) =

∑p−1
i=0 aix

i+u(x)xp where a0, . . . , ap−1 ∈
R satisfy ||ai|| < 1 for i = 0, . . . , p− 1 and u(x) is a unit of R[[x]].

Theorem 5.5 (Contraction Mapping Theorem). Let 〈Y, d〉 be a complete metric
space, c ∈ R, 0 ≤ c < 1, and T : Y → Y a function such that d(T (a), T (b)) ≤
c · d(a, b) ∀a, b ∈ Y . Then ∃!α ∈ Y such that T (α) = α.

Proof. Proof left as exercise for the reader.

Theorem 5.6 (Division Theorem for R[[x]]). Assume 〈R, || · ||〉 is a complete
normed ring, p ∈ N, and Φ(x) ∈ R[[x]] is regular of order p. Then for any
f(x) ∈ R[[x]], there exist unique Q(x) ∈ R[[x]] and S(x) ∈ R[x] with deg S(x) <
p such that f(x) = Q(x) · Φ(x) + S(x).

Proof. Define || · ||0 on R[[x]] as in the remark above. Say Φ(x) =
p−1∑
i=0

aix
i +

u(x)xp as in 5.4. Let φ(x) =
∑p−1
i=0 aix

i so that ||φ(x)||0 = max{||ai|| : i =
0, . . . , p− 1} = c, say where 0 ≤ c < 1.

For any Q(x) ∈ R[[x]] consider f(x) − φ(x)Q(x) ∈ R[[x]]. Then ∃T ∗Q(x) ∈
R[[x]] such that f(x)− φ(x)Q(x) = SQ(x) + xpT ∗Q(x), uniquely where SQ(x) ∈
R[x] and has degree < p. We want a Q(x) such that T ∗Q(x) = Q(x)u(x).

Define T : R[[x]] → R[[x]] by T (Q(x)) = u(x)−1T ∗Q(x). We need a Q(x) ∈
R[[x]] such that TQ(x) = Q(x).

Now ||T (Q1(x))− T (Q2(x))||0 = ||T ∗Q1
(x)− T ∗Q2

(x)||0 (by lemma 5.2)
= ||xp(T ∗Q1

(x)− T ∗Q2
(x))||0 (by the definition of || · ||0)

≤ ||SQ1(x)− SQ2(x) + xp(T ∗Q1
(x)− T ∗Q2

(x))||0
= ||φ(x)(Q2(x)−Q1(x))||0 (from the definitions of SQi(x), T ∗Qi

(x))
≤ ||φ(x)||0||Q1(x)−Q2(x)||0
= c||Q1(x)−Q2(x)||0.
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Hence, by the Contraction Mapping Theorem, ∃!Q(x) ∈ R[[x]] such that
T (Q(x)) = Q(x). Then T ∗Q(x) = u(x)q(x), so f(x) − φ(x)Q(x) = SQ(x) +
xpu(x)Q(x).

Therefore, f(x) = (φ(x) + u(x)xp)Q(x) + SQ(x) = Φ(x)Q(x) + SQ(x), as
required.

Corollary 5.7. If Φ(x) ∈ R[[x]], with 〈R, || · ||〉 complete, is regular of order

p, then ∃b0, . . . , bp−1 ∈ R with ||bi|| < 1 such that Φ(x) = v(x)(xp +
p−1∑
i=0

bix
i)

where v(x) is a unit of R[[x]].

Proof. Take f(x) = xp in theorem 5.6. Then xp − S(x) = Q(x)Φ(x) (as in the
conclusion of 5.6).

That is, for suitable b0, . . . , bp−1 ∈ R,

xp +
p−1∑
i=0

bix
i = Q(x)Φ(x)

= Q(x)(
p−1∑
i=0

aix
i+u(x)xp) = (

∞∑
i=0

qix
i)(

p−1∑
i=0

aix
i+u(x)xp) (with the qi ∈ R).

Equating the coefficients of 1, x, . . . , xp−1 shows that ||bi|| < 1 for i =
0, . . . , p − 1. Equating the coefficients of xp shows that q0u(0) = 1 + a for
some a ∈ R with ||a|| < 1.

By theorem 4.3, u(0) is a unit of R and hence Q(x) is a unit of R[[x]], as
required.

6 Formal Power Series in Many Variables

Let R be a ring. Define F0(R) = R and Fn+1(R) = Fn(R)[[xn+1]]. Here,
x1, x2, . . . , xn+1, . . . are independent variables. Fn(R) is also written asR[[x1, . . . xn]].
The multi-index notation will be useful for us. For v ∈ Nn, say v = 〈v1, . . . , vn〉,
write X for x1, . . . , xn and Xv for xv11 · · ·xvn

n (similarly for an n−tuple of ele-
ments of R). Also, |v| := v1 + · · ·+ vn.

Exercise 6.1. We may write the elements of Fn(R) uniquely in the form∑
v∈Nn

avX
v (av ∈ R) so that

∑
v

anX
v +

∑
v

bnX
n =

∑
v

(an + bn)Xn and∑
v

anX
v ·
∑
v

bnX
n =

∑
v

(
∑

λ+µ=v

aλ · bµ)Xv where addition of multi-indices

is co-ordinatewise.

For f ∈ Fn(R), f(0, . . . , 0) := a0,...,0. Let J be the ideal of Fn(R) generated
by X1, . . . , Xn. Define a function ord : Fn(R)→ N ∪ {∞} by

ord(f) =

{
the largest m such that f ∈ Jm if such exists,
∞ otherwise

(So if f 6∈ J , ord(f) = 0 (J0 = Fn(R)).)
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Exercise 6.2. ordn(f) =∞ iff f = 0 and ordn(f) = the smallest m such that,
writing f(x) =

∑
v avX

v, we have av 6= 0 for some v with |v| = m. Further,
ordn(f + g) ≥ min(ordn(f), ordn(g)) and ordn(f · g) ≥ ordn(f) + ordn(g).
It follows that || · ||n is a norm on Fn(R) where ||f ||n = 2−ordn(f) (we set
2−∞ := 0). Further || · ||n is discrete on R (i.e. ||a||n = 1 for a ∈ R\{0}), and
||f ||n < 1⇔ f ∈ J ⇔ f(0, . . . , 0) = 0.

Exercise 6.3. 〈Fn(R), || · ||n〉 is complete. ({fj} being a Cauchy sequence just
means that the fj become more in agreement as j →∞).

Now consider f ∈ Fn(R) = Fn−1(R)[[xn]].
Then f being regular of order p with respect to || · ||n−1 according to 5.4

means

f(x1, . . . , xn) =
∑p−1
i=0 ai(x1, . . . , xn−1)xin + u(xi, . . . , xn)xpn

where a1, . . . , ap−1 ∈ Fn−1(R) and ai(0, . . . , 0) = 0 (for i = 0, . . . , p − 1) and
where u(x1, . . . , xn) is a unit of Fn(R). By 4.3 and induction, the latter is
equivalent to u(0, . . . , 0) being a unit in R which, if R is a field, just means that
u(0, . . . , 0) 6= 0. This in turn is equivalent to ap(0, . . . , 0) 6= 0.

Hence, we obtain from 5.7 :

Theorem 6.4 (Weierstrass Preparation Theorem for Fn(R)). Suppose R is a
field and n ≥ 1. Let Φ(x1, . . . , xn) ∈ Fn(R) with

Φ(x1, . . . , xn) =
∞∑
i=0

ai(x1, . . . , xn−1)xin.

Suppose Φ is regular in xn of order p. Then there exists a unique unit
v(x1, . . . , xn) ∈ Fn(R) and unique b0(x1, . . . , xn−1), . . . , bp−1(x1, . . . , xn−1) ∈
Fn−1(R), all 0 at (0, . . . , 0), such that Φ(x1, . . . , xn) = v(x1, . . . , xn)(xpn +
bp−1(x1, . . . , xn−1)xp−1

n + · · ·+ b0(x1, . . . , xn−1)).

Remark 6.5. Obviously there is a corresponding version of the division theorem
for Fn(R), R a field.

Theorem 6.6 (The Formal Denef-van den Dries Preparation Theorem). Let R
be any Noetherian ring and let Φ(X) be any element of Fn(R), n ≥ 1. Then
there are a positive integer d, elements av of R, and units uv(X) of Fn(R) for
v ∈ Nn with |v| < d such that Φ(X) =

∑
|v|<d

avX
n · uv(X).

Proof. Case n = 1.

So X = x1 and F1(R) = R[[X]]. Say Φ(X) =
∞∑
i=0

aiX
i (the ai being in R).

Consider the ideal of R generated by {a0, a1, . . . }. Since R is Noetherian, it is
generated by ai for i < d, for some positive integer d.

Therefore, for each j ∈ N, we may choose bi,j ∈ R for i < d such that

13



ad+j =
∑
i<d

bi,jai.

Hence, we have

Φ(X) = (
∑
i<d

aiX
i) +

∞∑
j=0

(
∑
i<d

bi,jai)Xd+j

= (
∑
i<d

aiX
i) +Xd

∑
i<d

ai(
∞∑
j=0

bi,jX
j)

=
∑
i<d

aiX
i(1 +Xd−i

∞∑
j=0

bi,jX
j).

Hence, we are done with ui(x) = 1 + Xd−i(
∞∑
j=0

bi,jX
j) (= 1 at the origin, so

this is a unit).
Now if Φ(X) = Φ(x1, . . . , xn+1) ∈ Fn+1(R) = Fn(R)[[xn+1]], we apply the

case n = 1 to the variable xn+1 and the Noetherian (by 4.2 and induction) ring
Fn(R). So

Φ(X) =
∑
i<d

aiX
i
n+1ui(X) with all a′is in Fn(R). Now apply the induction

hypothesis to the ai.

Substitution 6.7. Let R be an arbitrary ring. Jn := ideal of Fn(R) generated
by x1, . . . , xn.

Note that for any m ≥ 0, Jmn consists (by definition) of all elements of the
form h(g1, . . . , gr) for r ∈ N, h(ζ1, . . . , ζr) ∈ R[ζ1, . . . , ζr] homogeneous of degree
m, and g1, . . . , gr ∈ Jn.

Now fix r and consider some f ∈ Fr(R) and g1, . . . , gr ∈ Jn. Write

f(x1, . . . , xr) =
∞∑
i=0

hi(x1, . . . , xr), where hi is a homogeneous polynomial in

R[x1, . . . , xn] of degree i. Then ∀N,M

(
N+M∑
i=0

hi(g1, . . . , gr)−
N∑
i=0

hi(g1, . . . , gr)) ∈ JN+1
n ,

and hence this element of Fn(R) has || · ||n−norm ≤ 2−(N+1).

Thus, {
N∑
i=0

hi(g1, . . . , gr)}N∈N is a Cauchy sequence in Fn(R) and hence

converges by 6.3. We denote its limit by f(g1, . . . , gr).
Thus, for fixed g1, . . . , gr ∈ Jn, we have a map Fr(R) → Fn(R) given by :

f 7→ f(g1, . . . , gr).
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Exercise 6.8. Check that this map is continuous (for || · ||r, || · ||n) and a
homomorphism. Show further that if p1, . . . , pn ∈ J1 (EF1(R)), then

f(g1, . . . , gr)(p1, . . . , pn) = f(g1(p1, . . . , pn), . . . , gr(p1, . . . , pn)).

Now suppose f ∈ Fn(R), f 6= 0, and ord(f) = p. Then by 6.2, we can write

f(x1, . . . , xn) =
∑
|v|≥p

avX
v (av ∈ R)

=
∞∑
i=p

hi(x1, . . . , xn),

where the hi are homogeneous polynomials of degree i and hp 6≡ 0.
Consider x1 + c1xn, . . . , xn−1 + cn−1xn, xn, where c1, . . . , cn−1 ∈ R. These

are in Jn.
Substitute :

f(x1 + c1xn, . . . , xn−1 + cn−1xn, xn) =
∞∑
i=p

hi(x1 + c1xn, . . . , xn−1 + cn−1xn, xn)

=
∞∑
i=0

bi(x1, . . . , xn−1)xin, say.

Using 6.8, set x1, . . . , xn−1 to zero. We have
∞∑
i=0

bi(0, . . . , 0)xin =
∞∑
i=p

hi(c1, . . . , cn−1, 1)xin.

So bi(0, . . . , 0) =

{
0 for i < p

hi(c1, . . . , cn−1) for i ≥ p.
IfR is an infinite field, we can choose c1, . . . , cn−1 so that hp(c1, . . . , cn−1, 1) 6=

0. Hence we have proved the following :

Lemma 6.9. Suppose R is an infinite field, f ∈ Fn(R), f 6= 0, ord(f) = p
(<∞). Then after an invertible linear change of co-ordinates, f becomes regular
in xn of order p.

7 Convergent Power Series

In this section R = R or C. Write K for R and Fn for Fn(K). Recall that
for α = 〈α1, · · · , αn〉 ∈ Kn, and ν = 〈ν1, . . . , νn〉 ∈ Nn, αν denotes αν11 · · ·ανn

n .
Also | · | denotes the usual modulus on K.

Definition. For f = f(X) ∈ Fn, with n ≥ 1, X = (X1, . . . , Xn), say f(X) =∑
ν aνX

ν with aν ∈ K for all ν, let dom(f) be the interior of the set of all
points α ∈ Kn such that the set {|aναν | : ν ∈ Nn} is bounded. We say that f
is convergent iff dom(f) 6= ∅. The set {f ∈ Fn : f is convergent} is denoted On.
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Example. Let f(X1, X2) =
∑∞
i=0X

i
1X

i
2. We have |1 · αi1αi2| is bounded iff

|α1α2| ≤ 1. Thus dom(f) = {〈α1, α2〉 ∈ R2 : |α1α2| < 1}.

Lemma 7.1. Suppose f ∈ Fn is convergent. Then (with f(X) =
∑
ν aνX

ν)

1. dom(f) is a non-empty, open subset of Kn;

2. whenever α ∈ dom(f), there is a c ∈ Rn with 0 < ci < 1 (c = 〈c1, . . . , cn〉)
and M ∈ R such that |aν · αν | ≤Mcν for all ν ∈ Nn;

3. whenever α ∈ dom(f), β ∈ Kn and |βi| ≤ |αi| for i = 1, . . . , n then
β ∈ dom(f);

4. dom(f) is a connected subset of Kn;

5. for α ∈ dom(f), Σνaναν is absolutely convergent.

Proof. (1) Immediate.
(2) Suppose α ∈ dom(f). Then t · α = 〈t1α1, . . . , tnαn〉 ∈ dom(f) for some

t = 〈t1, . . . , tn〉 ∈ Rn with t1, . . . , tn > 1 by part (1). Then there is some M
such that |aν(t · α)ν | ≤M for all ν ∈ Nn. . Hence the result with ci = t−1

i .
(3) By (1) we may suppose |βi| < |αi| for i = 1, . . . , n. Then |γi| ≤ |αi| for

all γ = 〈γ1, . . . , γn〉 close to β. Then if |aναν | ≤M we have |aνγν | ≤M for all
for all ν ∈ Nn and γ close to β.

(4) By (3) and the fact that dom(f) 6= ∅ we have that 0 ∈ dom(f), and also
that if α ∈ dom(f) then the ray from 0 to α is included in dom(f).

(5) This follows from the following calculation :-∑
|ν|≤N

|aναν | ≤M
∑
|ν|≤N

cν (from (2))

≤M
n∏
i=1

 N∑
j=0

cji


≤ M

(1− c1) · · · (1− cn)

For f ∈ Fn convergent and α ∈ dom(f) let f̃(α) be the sum of the series∑
ν aνα

ν , where f =
∑
aνX

ν . So f̃ : dom(f)→ K, dom(f) being a connected,
open subset of Kn containing 0.

Lemma 7.2. Suppose f, g ∈ Fn are convergent. Then so are f±g, f ·g . Indeed
we have dom(f ∗ g) ⊇ dom(f) ∩ dom(g) and f̃ ∗ g = f̃ ∗ g̃, where ∗ ∈ {±, ·}.
Thus On is a subring of Fn.
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Proof. We just do the multiplication case. So suppose that f(X) =
∑
ν aνX

ν ,
and g(X) =

∑
ν bνX

ν . Then

f · g =
∑
ν

 ∑
λ+µ=ν

aλbµ

Xν .

Let α ∈ dom(f) ∩ dom(g). By 7.1(2) we may choose c ∈ Rn where c =
〈c1, . . . , cn〉 with 0 < ci < 1 for i = 1, . . . , n, and an M ∈ R such that
|aναν |, |bναν | ≤Mcν for all ν. Then for ν ∈ Nn∣∣∣∣∣∣

 ∑
λ+µ=ν

aλbµ

αν

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑

λ+µ=ν

aλα
λbµα

µ

∣∣∣∣∣∣ ≤M2cν(ν1 + 1) · · · (νn + 1)

which approaches 0 as |ν| → ∞, and hence is bounded.

Lemma 7.3. Suppose f ∈ Or and g1, . . . , gr ∈ On ∩ Jn. Then f(g1, . . . , gr) ∈
On and

˜f(g1, . . . , gr) = f̃(g̃1, . . . , g̃r)

sufficiently close to zero.

Proof. For a formal power series h let |h| be the formal series obtained by
“modding” the coefficients. Clearly dom(|h|) = dom(h). Also, the coefficients
of f(g1, . . . , gr) are bounded in absolute value by those of |f |(|g1|, . . . , |gr|).
Now |̃gi|(0) = 0 for i = 1, . . . , r and hence, by continuity, there is an open
(box) neighborhood U of zero in Kn such that U ⊆ ∩ri=1 dom(gi), and such
that 〈|̃g1|(α), . . . , |̃gr|(α)〉 ∈ dom(f) for all α ∈ U .

Now fix α ∈ U . We want to show that α ∈ dom(f(g1, . . . , gr)). It is
clearly sufficient to show α ∈ dom(|f |(|g1|, . . . , |gr|)). Fix some ν ∈ Nn and
choose a polynomial truncation |f |ν , say, of |f | such that |f |(|g1|, . . . , |gr|) and
|f |ν(|g1|, . . . , |gr|) have the same coefficient of Xν . Now, by 7.2

˜|f |ν(|g1|, . . . , |gr|)(|α|) = |̃f |ν(β1, . . . , βr)

≤ |̃f |(β1, . . . , βr)

where |α| = 〈|α1|, . . . , |αn|〉 and βi = |gi|(|α|) for i = 1, . . . , r. Note that every-
thing in sight is non-negative, and α ∈ U implies |α| ∈ U . Let |f |(|g1|, . . . , |gr|) =∑
ν aνX

ν . Hence, from the equation above, |aναν | = |aν | · |α|ν ≤ |̃f |(β1, . . . , βr)
since the middle term is one of the terms in |̃f |ν(β1, . . . , βr).

Thus |aναν | is bounded independently of ν, and so, since α is an arbitrary
member of the open set U , α ∈ dom(|f |(|g1|, . . . , |gr|)) as required.

The second part follows easily, again using approximation to f (and 7.2)

Corollary 7.4. Suppose f ∈ On is a unit in Fn (i.e. f(0) = f̃(0) 6= 0). Then f
is a unit in On. Hence the ideal generated by X1, . . . , Xn is the unique maximal
ideal of On.
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Proof. Suppose f(0) 6= 0. Then f = a+ g where g ∈ On, g(0) = 0 and a ∈ K∗.
We may suppose a = 1 (consider a−1f). Let h(X1) =

∑∞
i=0X

i
1. Then h ∈ O1

and (1−X1)h(X1) = 1. Apply the map F1 → Fn given by j 7→ j(−g). We get
(1 + g)h(−g) = 1 (i.e. f · h(−g) = 1).

By 7.3 h(−g) ∈ On since h ∈ O1 and −g ∈ On ∩ Jn.

Exercise 7.5. Suppose f ∈ On, then f ∈ Fn = Fn−1[[Xn]]. Hence

f(X1, . . . , Xn) =
∞∑
i=0

fi(X1, . . . , Xn−1)Xi
n

uniquely with the fi’s in Fn−1.
Then each fi is convergent and π(dom(f)) ⊂ dom(fi) for each i, where

π : (t1, . . . , tn) 7→ (t1, . . . , tn−1) is the projection onto the first n−1 coordinates.

Theorem 7.6 (Division Theorem for On). Suppose Φ ∈ On is regular of order
p with respect to Xn. Then for every f ∈ On there exists an unique Q ∈ On
and S ∈ On−1[Xn] of degree < p such that f = QΦ + S.

Proof. For α = 〈α1, . . . , αn〉 ∈ Rn with αi > 0 for i = 1, . . . , n, let

Oαn = {f ∈ On : |f |(x̄) converges at α}.

Then (exercise) 〈Oαn , || · ||〉 is a complete normed space with ||
∑
ν aνX

ν || =∑
ν |aν |αν . Now we have

Φ(X1, . . . , Xn) =
p−1∑
i=0

fi(X1, . . . , Xn−1)Xi
n + u(X1, . . . , Xn)Xp

n (1)

where fi ∈ Fn−1 for i = 0 . . . , p − 1 and u is a unit of Fn. But Φ ∈ On so
fi ∈ On−1 by 7.5 and then, clearly, u ∈ On and u is a unit of On by 7.4.
Further, by hypothesis,

fi(0) = f̃i(0) = 0

for i = 0, . . . , p − 1. Let U be an open box in Kn centered at 0 and contained
in the domain of all the series appearing in 1 and such that U ⊆ dom(f) and
such that for some M ≥ 1

||̃u−1|(α)| < M

for all α ∈ U . Say

U = {〈β1, . . . , βn〉 ∈ Kn | |βi| < ε, i = 1, . . . , n} .

Now set αn = ε/2 and choose 0 < α1, . . . , αn−1 < ε such that

p−1∑
i=0

|̃fi|(α1, . . . , αn−1) · αin <
αpn
2M

.
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This is possible since |̃fi| is continuous on U and |̃fi|(0) = 0. Let || · || be the
norm described above on Oαn . Let φ(X1, . . . , Xn) =

∑p−1
i=0 fi(X1, . . . , Xn−1)Xi

n.
Then f,Φ, f1, . . . , fp−1, φ, u, u

−1 ∈ Oαn and ||φ|| < αpn/2M , ||u−1|| < M .
Now for Q ∈ Oαn define T ∗Q ∈ Oαn by f − φQ = SQ + Xp

nT
∗
Q (where SQ ∈

Fn−1[Xn] is of degree < p in Xn and T ∗Q ∈ Fn). It is immediate that SQ, T ∗Q ∈
Oαn and u−1T ∗Q ∈ Oαn .

Define T : Oαn → Oαn by
T (Q) = u−1T ∗Q.

Let Q1, Q2 ∈ Oαn . Then

||T (Q1)− T (Q2)|| < M · ||T ∗Q1
− T ∗Q2

||

=
M

αpn
· ||Xp

n(T ∗Q1
− T ∗Q2

)||

≤ M

αpn
· ||(SQ1 − SQ2) +Xp

n(T ∗Q1
− T ∗Q2

)||

=
M

αpn
· ||φ(Q2 −Q1)||

≤ M

αpn
· ||φ|| · ||Q2 −Q1||

≤ 1
2
· ||Q2 −Q1||

=
1
2
· ||Q1 −Q2||

Hence T is contractive and we finish the proof as in 5.6.

Corollary 7.7 (Weierstrass Preparation Theorem for On). Suppose Φ ∈ On is
regular of order p (in Xn). Then there exists a (unique) unit u ∈ On and

f0, . . . , fp−1 ∈ On−1

with fi(0) = 0 such that

Φ(X1, . . . , Xn) = u(X1, . . . , Xn) ·

(
Xp
n +

p−1∑
i=0

fi(X1, . . . , Xn−1)Xi
n

)
.

(Of course we have the same equality for the corresponding functions).

Proof. Same way as 5.7 is deduced from 5.6.

Corollary 7.8. On is a Noetherian ring.

Proof. By induction on n.
If n = 0, trivial. (O0 = K is a field.)
Suppose n ≥ 1 and I E On. Suppose I contains some element Φ which is

regular in Xn of some order p ∈ N. Let J be the ideal of On generated by
Φ. Then J ⊆ I. Now every element of On, because of the division theorem,
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is equivalent (mod J) to an element of the form
∑p−1
i=0 fiX

i
n where fi ∈ On−1.

Hence On/J is generated as an On−1-module by 1, Xn, . . . , X
p−1
n and hence

is Noetherian since On−1 is Noetherian by the induction hypothesis. (See the
remarks at the beginning of Section 2). Hence the sub-On−1-module I/J of
On/J is finitely generated by, say, Θ1/J, . . . ,Θm/J , (Θ1, . . . ,Θm ∈ I). But
then, every element of I is of the form F1Θ1 + · · · + FmΘm + GΦ for some
F1, . . . , Fm ∈ On−1(⊆ On) and G ∈ On. So Θ1, . . . ,Θm, G generate I as an
On-module (i.e. as an ideal of On).

Now, in general, if I 6= 0 let Φ ∈ I be non-zero. By 6.9 there are c1, . . . , cn−1 ∈
K such that the map

τ : f(X1, . . . , Xn) 7→ f(X1 + c1Xn, . . . , Xn−1 + cn−1Xn, Xn)

is a homomorphism from Fn to Fn mapping Φ onto an element regular of some
order p (in Xn). This map has an inverse

f(X1, . . . , Xn) 7→ f(X1 − c1Xn, . . . , Xn−1 − cn−1Xn, Xn)

and is therefore a ring automorphism of Fn. By 7.3 it restricts to an automor-
phism of On, whence the result by the first case.

We now turn to the Denef-van den Dries Preparation Theorem for On. The
proof requires the following deep algebraic result, the proof of which is postponed
to the next section.

Proposition 7.9. Let f1, . . . , fs, f ∈ On ⊆ Fn and suppose that the linear
equation

f1y1 + · · ·+ fsys = f

is solvable in Fn. Then it is solvable in On.

Proof. Next Section.

Theorem 7.10 (Denef–van den Dries Preparation Theorem for On). Let

Φ(X1, . . . , Xm+n) ∈ Om+n.

Then there exists a positive integer d, elements aν(X1, . . . , Xm) ∈ Om and units
uν(X1, . . . , Xm+n) ∈ Om+n for each ν ∈ Nn with |ν| < d, such that

(†) Φ(X1, . . . , Xm+n) =
∑

ν∈Nn,|ν|<d

aν(X1, . . . , Xm)Xν
∗uν(X1, . . . , Xm+n)

where X∗ = (Xm+1, . . . , Xm+n)

Proof. Let R = Om in 6.6 (allowed by 7.8). Then by 6.6 we can solve (†) with
aν ’s in Om but with uν ’s in Om[[Xm+1, . . . , Xm+n]](⊆ Fm+n).

We may write

(∗) uν(X1, . . . , Xm+n) = βν +X1u
(1)
ν + · · ·+Xm+nu

(m+n)
ν
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with the u(i)
ν ’s in Fm+n and βν ’s in K \ {0} (cf. 6.2). Substituting (*) into (†)

for each ν with |ν| < d, we arrive at an equation of the form in 7.9 where we
regard the u(i)

ν ’s as “variables”. But we can (and have already managed to)
solve this equation in Fm+n. Hence by 7.9 we can solve it in Om+n. Now define
the required units in Om+n by the equation (*) (for u(i)

ν the new convergent
solutions).

8 More on adically normed rings and modules

The purpose of this section is to develop further the theory of Noetherian rings
up to the point that Proposition 7.9 may be easily deduced.

Let R be a ring and J any ideal of R. For a ∈ R define

ordJ(a) =

{
the largest m such that a ∈ Jm if such exists,
∞ otherwise.

Set ‖a‖J = 2− ordJ (a) (= 0 if ordJ(a) = ∞). Then it is easy to show that for
all a, b ∈ R, 0 ≤ ‖a‖J ≤ 1, ‖a+ b‖J ≤ max(‖a‖J , ‖b‖J) and ‖a b‖J ≤ ‖a‖J‖b‖J .
Hence ‖ · ‖J is a norm on R provided a = 0 whenever ‖a‖J = 0, i.e. provided
that

⋂
m∈N J

m = {0}. Now one can easily derive a necessary condition for this
to occur. For if ‖ · ‖J is a norm, then whenever ‖a‖J < 1 (i.e. a ∈ J) it
cannot be the case that 1 + a is a zero divisor in R. For if b(1 + a) = 0, then
‖b‖J = ‖ − b a‖J ≤ ‖ − b‖J ‖a‖J < ‖b‖J . For R Noetherian this turns out to
be sufficient, as we shall show in 8.4 below.

Lemma 8.1 (Artin-Rees Lemma). Let R be a Noetherian ring and M a finitely
generated R-module. Suppose that N,N ′ are submodules of M and J is an ideal
of R. Then there exists a natural number r0 such that for all n > r0

JnN ∩N ′ = Jn−r0 (Jr0N ∩N ′) .

Remark. For any ideal I and submodules N0, N1 of an R-module, we always
have I(N0 ∩N1) ⊆ I N0 ∩ I N1.

Proof. The ⊇ containment follows immediately from the remark. For the con-
verse, we first treat the case M = R, i.e. when M,N ′ are ideals of R. Let
a1, . . . , am generate J . For each n, set

Sn = {f(x1, . . . , xm) ∈ R[x1, . . . , xm] : f homogeneous of degree n,
f(a1, . . . , am) ∈ Jn ∩N ′}.

Let S =
⋃∞
n=1 Sn and let S̃ be the ideal of R[x1, . . . , xm] generated by S.

By the Hilbert Basis Theorem we may choose f1, . . . , fs ∈ S generating S̃.
Say fi is homogeneous of degree di, so that fi ∈ Sdi

(for i = 1, . . . , s). Let
r0 = max{d1, . . . , ds}. Suppose n > r0 and a ∈ JnN∩N ′. Then certainly a ∈ Jn
so a = f(a1, . . . , am) for some f(x1, . . . , xm) ∈ R[x1, . . . , xm] homogeneous of
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degree n (easy exercise). Since a ∈ JnN ∩N ′ we have f ∈ Sn ⊆ S̃, so we have
an identity

f(x1, . . . , xm) =
s∑
i=1

fi(x1, . . . , xm) gi(x1, . . . , xm)

for some g1, . . . , gs ∈ R[x1, . . . , xm]. Since f is homogeneous of degree n we
may set the coefficient of each monomial in gi not of degree n − di to zero
(for i = 1, . . . , s) and retain the identity. Hence we may suppose that gi is
homogeneous of degree n − di, and therefore gi(a1, . . . , am) ∈ Jn−di . Thus we
have

gi(a1, . . . , am) · fi(a1, . . . , am) ∈ Jn−di(Jdi ∩N ′) (since fi ∈ Sdi
)

⊆ Jn−di−(r0−di)(Jr0−diJdiN ∩ Jr0−diN ′) (by remark)

⊆ Jn−r0(Jr0N ∩N ′).

Thus a = f(a1, . . . , am) ∈ Jn−r0(Jr0N ∩N ′) as required.
Let M now be an arbitrary finitely generated R-module. Consider the ad-

ditive abelian group R×M and define multiplication by

〈r1,m1〉 ◦ 〈r2,m2〉 = 〈r1r2, r1m2 + r2m1〉.

Then one easily checks that R ⊕M := 〈R×M,+, ◦, 〈0, 0〉, 〈1, 0〉〉 is a commu-
tative ring with 1. Further, identifying R with {〈r, 0〉 : r ∈ R} and M with
{〈0,m〉 : m ∈M} we see that R⊕M is finitely generated over R, so Noetherian
(by 3.3), and any R-submodule of M is an ideal of R ⊕M . The general result
for R,N,N ′ now easily follows by the above result for ideals of R⊕M .

Corollary 8.2. Suppose R is a Noetherian ring, M a finitely generated R-
module, J an ideal of R. Set N =

⋂∞
n=0 J

nM . Then J N = N .

Proof. By 8.1 choose r0 so that (setting n = r0 + 1 in 8.1) Jr0+1M ∩ N =
J(Jr0 ∩N). Since N ⊆ Jr0+1M , this gives N = J N .

Exercise 8.3. Let A be s× s matrix over a ring R. Then it is well known that
A is an invertible matrix if and only if det(A) is a unit in R. The proof shows
the following: suppose further that M is an R-module, t1, . . . , ts ∈M , and

A

t1...
ts

 =

0
...
0

 .

Then det(A) ti = 0 for i = 1, . . . , s.

Theorem 8.4 (Krull Intersection Theorem). Suppose R is a Noetherian ring,
M a finitely generated R-module, J an ideal of R. Then

⋂∞
n=0 J

nM = {0} if
and only if for all a ∈ J and for all m ∈M \ {0}, (1 + a)m 6= 0.
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Proof. (⇒) If a ∈ J , m ∈M and (1 + a)m = 0 then for all odd n we have

(1 + an)m = (1− a+ a2 − · · ·+ an−1)(1 + a)m = 0.

Hence m ∈ JnM for all n. Therefore m = 0.
(⇐) Let N = ∩∞n=0J

nM and let t1, . . . , ts generate N (note: M is Noetherian
— see section 3). Since J N = N by the above corollary, we have t1, . . . , ts ∈ J N
so

t1 = a11t1 + · · ·+ a1sts

...
ts = as1t1 + · · ·+ assts

for some aij ∈ J . Hence
a11 − 1 a12 · · · a1s

a21 a22 − 1 · · · a2s

...
...

. . .
...

as1 as2 · · · ass − 1



t1
t2
...
ts

 = 0.

But the determinant of this matrix clearly has the form ±(1+a) for some a ∈ J .
By 8.3, (1+a)ti = 0 for i, . . . , s. Hence ti = 0 by hypothesis, and so N = 0.

Corollary 8.5. Let R be a Noetherian ring and I, J ideals of R not equal to
R. Suppose that 1 + a is a unit in R for all a ∈ J . Then

⋂∞
n=0(I + Jn) = I.

Proof. Let R′ = R/I. Then R′ is a Noetherian ring. Let h : R → R′ be
the natural homomorphism and J ′ = h[J ]. Then J ′ is an ideal of R′ and if
a′ ∈ J ′, say h(a) = a′ for some a ∈ J , then (1 + a)b = 1 for some b ∈ R
by the hypothesis. So (1 + a′)h(b) = 1, so 1 + a′ is a unit in R′. Hence,
applying 8.4 we have

⋂∞
n=0 J

′n = {0}. But h[I + Jn] ⊆ J ′
n for all n, hence

h [
⋂∞
n=0(I + Jn)] = {0}. So

⋂∞
n=0(I+Jn) ⊆ ker(h) = I. The opposite inclusion

is immediate.

Theorem 8.6. Let n ≥ 1. Let I be an ideal of On and let Î be the ideal of Fn
generated by I. Then Î ∩ On = I.

Proof. The ⊇ inclusion is obvious. For ⊆ let J be the maximal ideal of On,
i.e. the ideal generated by x1, . . . , xn. Suppose g1, . . . , gs generates I. Let f ∈
Î ∩ On. Then f = f1g1 + · · · + fsgs for some f1, . . . , fs ∈ Fn. Let r ∈ N and
write fi as pi + hi, where pi is a polynomial in x1, . . . , xn of degree less than r
and hi ∈ Ĵr. Then f =

∑n
i=1 pigi +H where H ∈ Ĵr. But f −

∑n
i=1 pigi ∈ On,

so H ∈ On. It is easy to show that the theorem holds for Ĵr, i.e. On ∩ Ĵr = Jr

(and Ĵr = Ĵr), hence H ∈ Jr. Thus f ∈ I + Jr. Since this holds for all r ∈ N,
we have, by 8.5 (and 7.4), f ∈ I as required.

Proposition 7.9 is now immediate by applying the previous theorem to the
ideal of On generated by f1, . . . , fs.
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9 The Denef–van den Dries paper

For r ∈ R, r > 0, n ∈ N, n > 0, let Bnr (respectively Bnr ) denote the set

{〈x1, . . . , xn〉 ∈ R : |xi| < r (respectively ≤) for i = 1, . . . , n}.

The language Lan consists of +, ·,−, < together with a constant symbol for each
real number and a function symbol for each n ∈ N, n > 0, r ∈ R, r > 0 and
f ∈ On with Bnr ⊆ dom(f). The structure Ran interprets the former symbols
naturally and the function symbols of the latter kind as the functions Rn → R,

x̄ 7→

{
f̃(x̄) if x̄ ∈ Bnr
0 otherwise

.

(Recall that f̃ denotes the function determined by the convergent power
series f .)

LDan denotes the language Lan together with an additional binary function
symbol D, and then RDan denotes the expansion of Ran obtained by interpreting
D as

〈x, y〉 7→

{
x
y if y 6= 0
0 otherwise

.

Clearly RDan and Ran have the same definable sets. Let TDan and Tan denote the
complete theories of these structures.

Theorem 9.1. Tan is model complete; TDan eliminates quantifiers.

Exercise 9.2. Deduce the first statement of the previous theorem from the sec-
ond one.

Example 9.3 (Osgood 1910). Tan does not eliminate quantifiers.

Let

e(x) =

{
ex for |x| ≤ 1,
0 otherwise.

Let ϕ(a, b, c)⇔ ∃x∃y(a = x ∧ b = x y ∧ c = x e(y) ∧ |x|, |y| ≤ 1). Then ϕ is not
equivalent to any quantifier-free Lan-formula. For if it were then it is not too
hard to see (using a little analysis) that there would have to be an f ∈ O3 such
that for all x, y sufficiently close to 0 we have f̃(x, x y, x e(y)) = 0, but f 6≡ 0.
Writing f(x1, x2, x3) =

∑∞
i=0 hi(x1, x2, x3) where hi is homogeneous of degree i

we have

0 ≡
∞∑
i=0

hi(x, x y, x e(y)) =
∞∑
i=0

xi hi(1, y, e(y))

close to 0. Thus for all y, the series in x is 0. Hence hi(1, y, e(y)) = 0 for
all i and y, with y close to 0. But y and ey are algebraically independent
functions (over R) — exercise. Hence hi(1, x2, x3) ≡ 0, from which it follows
that hi(x1, x2, x3) ≡ 0 and so f ≡ 0, a contradiction.
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Of course, ϕ(a, b, c) is equivalent to the quantifier-free LDan-formula

(a = b = c = 0) ∨ (a 6= 0 ∧D(c, a) = e(D(b, a)) ∧ |a| ≤ 1 ∧ |D(b, a)| ≤ 1).

Remark (Original work in the 60’s by Gabrielov and  Lojasiewicz).  Lojasiewicz
extended the notion of semi-algebraic set 1 to the analytic category. The right
definition is as follows: A subset X ⊆ Rn is called semi-analytic if for all
ā ∈ Rn there exists an open neighborhood Uā of ā in Rn such that X ∩ Uā can
be expressed as a Boolean combination of sets of the form

{x̄ ∈ Uā : f̃(ā− x̄) > 0}

for f ∈ On with ā− Uā ⊆ dom(f).

Exercise 9.4. A subset X ⊆ Rn is semi-analytic if and only if Bnr ∩ X is
quantifier-free definable in Ran for all r ∈ R.

One wanted to show that the semi-analytic sets had good properties (similar
to the class of semi-algebraic sets). Unfortunately, 9.3 shows that the class of
semi-analytic sets is not closed under projections. Gabrielov then defined a
subset X ⊆ Rn to be sub-analytic if for all ā ∈ Rn there exists a neighborhood
Uā of a, m ∈ N and a bounded semi-analytic Y ⊆ Rn+m such that π[Y ] = Uā∩X.
He showed that the complement of a sub-analytic set is sub-analytic.

Exercise 9.5. Using 9.1 show (from the definition above) that a subset X ⊆ Rn
is sub-analytic if and only if Bnr ∩ X is quantifier-free definable in RDan for all
r ∈ R. Deduce Gabrielov’s theorem.

I also mention here the following important result. One can use it to prove
that all RDan-definable unary functions have Puiseax expansions at ∞.

Theorem 9.6 ( Lojasiewicz). A sub-analytic subset of R2 is semi-analytic,
i.e. (by above) any Ran (or RDan)-definable subset of R2 is quantifier-free Ran-
definable.

9.1 Definable subsets of R in Ran

Lemma 9.7. For all f ∈ O1 \ {0} there exist r ∈ N, g ∈ O1, g a unit with
dom(g) = dom(f), such that for all x ∈ dom(g), f̃(x) = xr g̃(x). Hence f̃ has
constant non-zero sign on (0, ε) for some ε > 0.

Proof. Obvious.

Lemma 9.8. For all terms t(x) of LDan there exists ε > 0 such that either

(1) t(x) = 0 for all x ∈ (0, ε), or

(2) t(x) = xn f̃(x) for all x ∈ (0, ε), for some unique (possibly negative) n ∈ Z
and unit f ∈ O1 with (−ε, ε) ⊆ dom(f).

1i.e. quantifier-free definable set in R = 〈R; 0, 1, +, ·,−, <〉
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(We also use t to denote the function it defines in RDan.)

Proof. This is obvious if t(x) = x or a constant. Also, if it is true for some
t1(x), t2(x) then it is true for t1(x) ± t2(x) and t1(x) · t2(x) (using 9.7). Also,
if (1) holds for t1 or t2 then (1) holds for D(t1, t2). If (2) holds for t1 and t2
we may choose (using 9.7) some ε small enough so that t2(x) 6= 0 on (0, ε). It
easily follows that (2) holds for D(t1, t2) (since the ratio of units is a unit).

Now suppose that the result holds for t1, . . . , tn and f ∈ On, α ∈ R, α > 0
and Bnα ⊆ dom(f). We must consider{

f̃(t1(x), . . . , tn(x)) if |ti(x)| < α for all i = 1, . . . , n
0 otherwise

.

Now if (1) holds for some ti we can reduce n. So we can choose ε small enough,
units f1, . . . , fn ∈ O1 and m1, . . . ,mn ∈ Z such that ti(x) = xmi f̃i(x) for all
x ∈ (0, ε). If mi < 0 for some i then (since f̃i(x) is bounded away from 0)
we may suppose |ti(x)| > α for all x ∈ (0, ε) so (1) holds for the composite
term. Hence we may suppose that mi ≥ 0 for i = 1, . . . , n. Now by 9.7
α+ ti(x) and ti(x)−α have constant sign on (0, ε). If the former is nonpositive
or the latter nonnegative then (1) holds for the composite term. Otherwise
−α < ti(x) < α for all x ∈ (0, ε) and for i = 1, . . . , n. Let ai = (xmi f̃i(x))x=0.
Then −α ≤ ai ≤ α. So 〈a1, . . . , an〉 ∈ Bnα ⊆ dom(f). So it follows that the
composite term is equal to g̃(x) for all x ∈ (0, ε) for some g ∈ O1. Hence (2)
holds for the composite term with m ≥ 0 (using 9.7).

Corollary 9.9. Let t(x) be a term of LDan. Then there exists a partition of R
into finitely many open intervals and points such that t(x) has constant sign on
each such interval.

Proof. By 9.8 (and 9.7), if a ∈ R then there exists εa > 0 such that t(x) has
constant sign on (a, a + εa) and (a − εa, a) (consider the terms t(a + x) and
t(a− x)). Also there exists η > 0 such that t(x) has constant sign on (1/η,∞)
and (−∞,−1/η) (consider the terms t(D(1, x)) and t(−D(1, x))). The result
follows by the compactness of the closed interval [−1/η, 1/η].

Theorem 9.10 (Assuming 9.1). Every subset of R definable in RDan is a finite
union of open intervals and points. So TDan is o-minimal.

Proof. Immediate from 9.1 and 9.9.

9.2 The proof that TD
an eliminates quantifiers

Let M1,M2 |= TDan. Suppose that K is a (LDan-) substructure of M1, that e :
K → M2 is an embedding, and that M2 is sufficiently saturated. By 1.5. we
must consider a ∈M1 and extend e to e′ : K〈a〉 →M2 where K〈a〉 denotes the
LDan-substructure of M1 generated by K and a.

Note that we may suppose RDan ⊆LD
an
K (since we have all r ∈ R as a constant

symbol of LDan), and we may suppose e is the identity on RDan.
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Let
µ = {α ∈M1 : |α| < r for all r ∈ R, r > 0}.

Now for n ∈ N, f ∈ On, and r ∈ R>0, with Bnr ⊆ dom(f) (which we abbreviate
by saying that (n, r, f) is acceptable), let us denote by fr the interpretation
of the corresponding function symbol in M1 and M2. Certainly for any such
suitable r, fr defines a natural, untruncated function µn →M1.

Lemma 9.11. With the above notation, suppose that there exists a map e′′ :
K〈a〉∩µ→M2 extending e � K ∩µ such that for all n ∈ N, for all α1, . . . , αn ∈
K〈a〉 ∩ µ and for all f, r as above,

M1 |= fr(α1, . . . , αn) > 0⇒M2 |= fr(e′′(α1), . . . , e′′(αn)) > 0
M1 |= fr(α1, . . . , αn) = 0⇒M2 |= fr(e′′(α1), . . . , e′′(αn)) = 0.

Then e′′ extends to an LDan-embedding e′ : K〈a〉 →M2 (which also extends e).

Proof. If b ∈ K〈a〉, then either s + b ∈ µ for some (unique) s ∈ R, and we
set e′(b) = e′′(s + b) − s; or b is infinite and 1/b ∈ µ, in which case we set
e′(b) = 1/e′′(1/b). It is easy to check that e′ is an ordered field embedding
K〈a〉 → M2 extending e. (Note that the On’s include all polynomials.) In
particular e′ preserves D.

Suppose f, r as above. Let α1, . . . , αn ∈ K〈a〉. If |αi| ≥ r for some i,
then fr(α1, . . . , αn) = 0. But |e′(αi)| ≥ e′(r) = r (since e′ is an ordered field
embedding extending e), therefore fr(e′(α1), . . . , e′(αn)) = 0. If |αi| < r for
i = 1, . . . , n, let αn+1 = fr(α1, . . . , αn) and write αi = βi−si for i = 1, . . . , n+1,
where βi ∈ µ, si ∈ R. Note that |si| ≤ r for i = 1, . . . , n, and βn+1, sn+1 exists
because fr is bounded and hence αn+1 is finite.

Define k : Rn+1 → R by k(x1, . . . , xn+1) = f̃(x1 − s1, . . . , xn − sn) −
xn+1 + sn+1. Then k = g̃ for some g ∈ On+1 since B

n

r ⊆ dom(f) and so
〈s1, . . . , sn〉 ∈ dom(f) . Now choose ε ∈ R, ε > 0, such that B

n1

ε ⊆ dom(g) and
B
n

r+ε ⊆ dom(f). Then 0 = gε(β1, . . . , βn+1), so 0 = gε(e′′(β1), . . . , e′′(βn+1))
(by hypothesis). But

TDan |= ∀x1, . . . , xn+1(max |xi| < ε→ gε(x1, . . . , xn+1) = fr+ε(x1−s1, . . . , xn−sn)−xn+1+sn+1).

Hence

0 = fr+ε(e′′(β1)− s1, . . . , e
′′(βn)− sn)− e′′(βn+1) + sn+1

= fr+ε(e′(α1), . . . , e′(αn))− e′(αn+1)
= fr(e′(α1), . . . , e′(αn))− e′(αn+1)

(The second equality follows from the definition of e′, while the third holds since
|e′(αi)| < r for i = 1, . . . , n as e′ is an ordered field embedding.) Hence in all
cases, e′(fr(α1, . . . αn)) = fr(e′(α1), . . . , e′(αn)). So e′ is an LDan-embedding as
required.
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Exercise 9.12. Suppose M1,M2 |= TDan with K ⊆ M1, e : K → M2 as above.
Then for all acceptable (m+ n, r, f) and c1, . . . , cm ∈ K ∩ µ we have

M1 |= ∀ȳ ∈ µ fr(c̄, ȳ) = 0⇒M1 |= ∀ȳ fr(c̄, ȳ) = 0
⇒M2 |= ∀ȳ fr(e(c̄), ȳ) = 0.

To prove 9.1 it is clearly sufficient, in view of 9.11 and the saturation of M2,
to establish the following:

Lemma 9.13. Let ϕ(x̄, ȳ) = ϕ(x1, . . . , xm, y1, . . . , yn) be a conjunction of for-
mulas of the form fr(x̄, ȳ) > 0 or fr(x̄, ȳ) = 0, where (m + n, r, f) is accept-
able. Suppose c1, . . . , cm ∈ µ ∩ K, α1, . . . , αn ∈ µ, and M1 |= ϕ[c̄, ᾱ]. Then
∃β1, . . . , βn ∈M2 such that M2 |= ϕ[e(c̄), β̄].

Proof. By induction on n. The case n = 0 is trivial, but we do the case n = 1.
We may clearly suppose that all those r’s for which fr occurs in ϕ are the same,
say r.

Let S be the set of f ∈ On+1 such that fr occurs in ϕ. Let c1, . . . , cm ∈ µ∩K,
α1 ∈ µ be such that M1 |= ϕ[c1, . . . , cn, α1]. Let f ∈ S.

By 7.10, there exist α ∈ N, d > 0, ai(x̄) ∈ Om, and units ui(x̄, y1) ∈ Om+1

(∀i < d) such that in Om+1 we have the identity:

f(x̄, y1) =
∑
i<d

ai(x̄)yi1ui(x̄, y1).

Clearly we may suppose that it is the same d for all f ∈ S.
Let ε ∈ R, ε > 0 be small enough so that all F ∈ ON considered in this

proof are such that (N, ε, F ) is acceptable.
Now work in M1. We have for all y1 ∈M1, |y1| < ε implies

fε(c̄, y1) =
∑
i<d

ai,ε(c̄)yi1ui,ε(c̄, y1). (2)

If ai(c̄) = 0 for all i < d, then also ai(e(c̄)) = 0 for all i < d and we may omit
all atomic formulas involving f from ϕ.

Otherwise, choose i0 < d such that 0 6= |ai0,ε(c̄)| ≥ |ai,ε(c̄)| for all i < d. Let

k′i =
ai,ε(c̄)
|ai0,ε(c̄)|

(3)

for all i < d. Since K is a field, k′i ∈ K for i < d. Furthermore, |k′i| ≤ 1 for all
i < d and k′i0 = ±1. Define ki’s by:

k′i = ki + si where ki ∈ µ ∩K and si ∈ R for all i < d. (4)

Note that ki0 = 0 and si0 = ±1.
Define g ∈ Om+1+(d−1), with z̄ = {zi | i < d, i 6= i0} the new variables, by

g(x̄, y1, z̄) = si0ui0(x̄, y1)yi01 +
∑

i<d,i6=i0

ui(x̄, y1)(zi + si)yi1. (5)
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Then for all y1 ∈M1, |y1| < ε, we have (from (2)-(5))

fε(c̄, y1) = |ai0,ε(c̄)|g(c̄, y1, k̄). (6)

Now choose p ∈ N minimal such that sp 6= 0. Obviously p exists and p ≤ i0.
Now clearly g is regular in y1 of order p, hence (by 7.7) (in Om+1+(d−1)):

g(x̄, y1, z̄) = (yp1 + h1(x̄, z̄)yp−1
1 + . . .+ hp(x̄, z̄))Q(x̄, y1, z̄) (7)

for some hi ∈ Om+d−1 and a unit Q ∈ Om+1+(d−1).
By (6), for all y1 ∈M1, |y1| < ε implies

fε(c̄, y1) = |ai0,ε(c̄)|Qε(c̄, y1, k̄)(yp1 + . . .+ hp(c̄, k̄)). (8)

Now we may suppose ε has been chosen small enough so that

TDan ` ∀x̄, z̄, y1 ∈ Bε (|Qε(x̄, y1, z̄)−Qε(0̄, 0, 0̄)| < 1
2
|Qε(0̄, 0, 0̄)|). (9)

By the exercise, (8) also holds in M2 upon applying e to the parameters—note
they all lie in µ ∩K.

By (8), (9), ϕ(c̄, y1) is equivalent in M1 to some ψ(hε(c̄, k̄), y1) for some
(quantifier-free) formula ψ(t1, . . . , tq, y1) of L (where q =

∑
f∈S p) and ϕ(e(c̄), y1)

is equivalent in M2 to ψ(hε(e(c̄), e(k̄)), y1), for all y1 ∈M2 with |y1| < ε.
Now M1 |= ∃y1 (|y1| < ε ∧ ϕ(c̄, y1)) (namely y1 = α1), so

M1 |= ∃y1

(
|y1| < ε ∧ ψ

(
hε
(
c̄, k̄
)
, y1

))
.

But ∃y1 (|y1| < ε ∧ ψ(t̄, y1)) is equivalent in M1 and M2 to a quantifier free
formula of L̄ (since M1 � L̄,M2 � L̄ ≡ R̄), so:

M2 |= ∃y1

(
|y1| < ε ∧ ψ

(
e
(
hε(c̄, k̄)

)
, y1

))
(since e is certainly an L̄-embedding), and then

M2 |= ∃y1

(
|y1| < ε ∧ ψ

(
hε(e(c̄), e(k̄)), y1

))
(since e is an Lan-embedding), and finally M2 |= ∃y1 ϕ(e(c̄), y1) by the previous
paragraph.

For the inductive step we proceed exactly as above to arrive at (5):

g(x̄, ȳ, z̄) = sν0uν0(x̄, ȳ)yν
0

+
∑

ν∈Nn+1

|ν|<d
ν 6=v0

uν(x̄, ȳ)(zν + sν)ȳν

where now ȳ = y1, . . . , yn+1.
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We want to write g in the form (7), but it might not be regular in any of
the ȳ-variables. To resolve this difficulty we define

Λ(ȳ) = 〈y1 + yd
n

n+1, y2 + yd
n−1

n+1 , . . . , yn + ydn+1, yn+1〉.

This is a bijection from µn+1 → µn+1 with inverse

Ω(ȳ) = 〈y1 − yd
n

n+1, . . . , yn − ydn+1, yn+1〉.

Now

g(0̄,Λ(0, . . . , 0, yn+1), 0̄) =
∑

v∈Nn+1

|v|<d

uv(0̄,Λ(0̄, yn+1))svy
v1d

n+v2d
n−1+...+vnd+vn+1

n+1 .

Since the exponents of yn+1 here are all distinct it follows that if v is lex-
icographically minimal such that sv 6= 0 (v exists since sv0 6= 0) and p =
v1d

n + . . . + vn+1 (where v = 〈v1, . . . , vn+1〉). Then g(x̄,Λ(y1, . . . , yn+1), z̄) is
regular in yn+1 of order p.

Now, as above, we have (8) in the form

∀y1, . . . , yn+1 ∈M1, |y1|, . . . , |yn+1| < ε⇒

fε(c̄,Λ(y1, . . . , yn+1)) = |av0,ε(c̄)|Qε(c̄, y1, . . . , yn+1, k̄)(ypn+1+. . .+hp,ε(c̄, k̄, y1, . . . , yn)).
(10)

Notice that the transformation Λ does not depend on f ∈ S.
Now, writing “∃εu...” for the quantifier “∃u(|u| < ε ∧ ...”, we have that

∃εy1, . . . , yn+1 ϕ(c̄, y1, . . . , yn+1) is equivalent to ∃εy1, . . . , yn+1 ϕ(c̄,Λ(y1, . . . , yn+1)),
and the latter is equivalent to some ∃εy1, . . . , yn+1 ψ(c̄, k̄, y1, . . . , yn+1) where
yn+1 only occurs polynomially. This, by Tarski, is equivalent to ∃εy1, . . . , yn ψ(c̄, k̄, y1, . . . , yn)
for some quantifier free formula ψ of Lan. Moreover, as above, these equivalences
hold in M2 with e applied to parameters (using exercise 9.12 on (10)). The result
follows by induction on n.
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