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1 Introduction

Groups definable in o-minimal structures have been studied for the last
twenty years. The starting point of all the development is Pillay’s theorem
that a definable group is a definable group manifold (see Section 2). This
implies that when the group has the order type of the reals, we have a real
Lie group. The main lines of research in the subject so far have been the
following;:

(1) Interpretability, motivated by an o-minimal version of Cherlin’s con-
jecture on groups of finite Morley rank (see Sections 4 and 3).

(2) The study of the Euler characteristic and the torsion, motivated by
a question of Y.Peterzil and C.Steinhorn and results of A.Strzebonski (see
Sections 6 and 5).

(3) Pillay’s conjectures (see Sections 8 and 7).
On interpretability, we have a clear view, with final results in Theorems
4.1 and 4.3 below. Lines of research (2) and (3) can be seen as a way of
comparing definable groups with real Lie groups (see Section 2). The best
results on the Euler characteristic are those of Theorems 6.3 and 6.5. The
study of the torsion begins the study of the algebraic properties of definable
groups, and the best result about the algebraic structure of the torsion
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subgroups is Theorem 5.9. On the other hand, the cases in which Pillay’s
conjectures are proved are stated in Theorems 8.3 and 8.8. In my opinion,
what is most beautiful about the proofs of the conjectures is that they make
an essential use of most of the results obtained for definable groups; they
also bring into the game properties of o-minimal structures, such as NIP
and properties of Keisler measures, which have not been used so far, for
the study of definable groups; and they introduce the notion of compact
domination which opens a new line of research.

For the rest of the paper, I fiz an o-minimal structure M and ‘definable’
means ‘definable in M’. Any other assumption on M is stated either at the
beginning of a section or within the statements of the results. (See Section
2 for more conventions.)

A group G is definable if both the set and the graph of the group op-
eration are sets definable (with parameters) in M. Here there are some
examples of definable groups when M is an o-minimal expansion of a real
closed field: the additive group of M; the multiplicative group of M; the
algebraic subgroups of GL(n, M) and H (M), the M-rational points of an
(abstract) algebraic group H defined over the field M. Since every compact
Lie group is isomorphic, as a Lie group, to a (linear) real algebraic group
(see [9]), compact Lie groups are also examples of groups definable over the
ordered real field. In [47] A. Strzebonski gives a good list of examples of
semialgebraic groups. More examples can be found in [40] (see comments
after Theorem 5.2 below). In [35] Peterzil, Pillay and Starchenko give exam-
ples of definable subgroups of GL(n, M) — for certain o-minimal expansions
M of the real field — which are not definably isomorphic to semialgebraic
groups (compare with Theorem 4.6 below).

When the order type of M is (R, <), Theorem 2.1 (see below) implies
that a definable group G is a Lie group. It is because of this last fact that
Lie groups have been a good source for the study of definable groups. Much
research in the field have been done comparing both situations: Lie and
definable. I refer the reader to [8] and [9] for results about Lie groups. Prop-
erties of definable groups which correspond to analogous properties of Lie
groups can be found below (e.g., Theorems 2.1, 4.8, 5.9 and 6.7). Sometimes
definable groups behave better than Lie groups (e.g., definable subgroups
are closed), but some others existence results in Lie groups (e.g., the ex-
istence of subgroups or isomorphisms) cannot be ensured in the definable
context. Other sources for the study of definable groups have been groups
of finite Morley rank or groups definable in a strongly minimal structures.
We can find good examples of such results in Sections 3 and 4.



If M is the ordered real field then a definable group G is a Nash group.
That is, G is equipped with a semialgebraic manifold structure in which
the maps involved in the manifold structure are Nash (real-analytic and
semialgebraic), and multiplication and inversion are also Nash maps. E.
Hrushovski and A. Pillay study in [19] groups definable in local fields and
they prove that if G is a (Nash) group definable in the real field, then there
is an algebraic group H defined over R, and a Nash isomorphism between
neighbourhoods of the identity of G and H(R) (see Theorem A in [19]). This
local isomorphism is the best possible because it is not always possible to
lift a local Nash isomorphism to a global one. In affine groups they avoid
this obstacle (note that the embedding obtained by Robson’s theorem — see
Section 2 — does not need to be a Nash map). More precisely, they prove that
if G is a connected Nash group over R, for which there is a Nash embedding
of G into some R!, then there is a a Nash surjective homomorphism with
finite kernel between GG and the real connected component of the set of real
points of an algebraic group defined over R (see Theorem B in [19]). The
proofs of these two results make use of the study of geometric structures
over the reals, also developed in [19].

I have written this paper as a collection of known results on definable
groups with hopefully precise references, and there are also some open prob-
lems scattered through the text. I have tried to give the taste of the proofs
or at least to give some information about what one can expect to find if
going to the original papers. For basic properties of o-minimal structures I
refer the reader to [10] and [45].

I started working on this paper during my visit to Cambridge within
the Programme Model Theory and Applications to Algebra and Analysis in
the spring 2005. I would like to thank both the Newton Institute for their
hospitality, and Sergei Starchenko for many instructive comments on some
of the results stated here. I also thank Alessandro Berarducci for helpful
conversations.

2 The manifold structure and basic properties

I begin by stating the following essential result on definable groups due to
A Pillay.

Theorem 2.1. Let G be a definable group. Then, G can be equipped with a
definable manifold structure making G a topological group.



This is Proposition2.5 in [42]. For a detailed description of the manifold
structure see Section 1.1 in [33]. The ingredients of the proof are the follow-
ing. Firstly, Pillay proves that the (model theoretic) dimension of a definable
set coincides with its geometrical dimension (via cells) — Lemma 1.4 in [42].
Then, he proves the following key lemma.

Lemma 2.2. Let G be a definable group. Let X be a large subset of G.
Then finitely many translates of X cover G.

This is Lemma 2.4 in [42], where X large means that dim(G \ X) < dimG.
For the rest of the proof of the theorem, A.Pillay adapts to the o-minimal
context a proof by E.Hrushovski of Weil’s theorem that an algebraic group
over an algebraic closed field can be defined from birational data.

It is easy to see that the topology of our definable group G C M", say,
obtained in Theorem 2.1 does not coincide in general with the topology
induced by the ambient space M™: take for instance [0,1) C R and let the
operation be addition mod 1 (with the definable manifold topology 1 — x
tends to 0 when x tends to 0). However, as G is a topological group it is a
(Hausdorff) regular manifold (regular as a topological space) and when M
is an expansion of a real closed field, G can be embedded (as a manifold)
in some M!; this is due to Robson’s theorem (see Theorem 1.8 in Section 10
in [10]). Therefore, the following convention can be used for the rest of the

paper:

When M is an expansion of a real closed field all the topological concepts
about definable groups refer to the topology induced by the ambient space.
Otherwise, the concepts mentioned refer to the manifold topology.

In particular, the notion of definable compactness, introduced by Y. Pe-
terzil and C. Steinhorn — Definition 1.1 in [40] - is equivalent to that of being
closed and bounded, when we work over an expansion of a real closed field.
This is because in Theorem 2.1 in [40], they prove that both concepts coin-
cide when the topology is the one induced by the ambient space. Note also
that when M is an expansion of a real closed field the usual definition of
derivative makes sense and we can speak of CP—maps for p > 0. In this case,
the same proof of Theorem 2.1 (which is the case p = 0) gives that a defin-
able group carries on a definable CP—manifold structure. See Section 1.1 and
1.2 in [33] for details. Also in [33], Y.Peterzil, A.Pillay and S.Starchenko
adapt the proof of Theorem 2.1 above to prove — Theorem 2.12 there — the
following result.



Theorem 2.3. Let p > 0 and let M be an expansion of a real closed field
if p > 0. Let G be a definable group, A a definable set and o a definable
transitive action of G on A. Then, A can be equipped with a definable CP-
manifold structure making o a definable CP-action.

Note that when M is an expansion of a real closed field and N is a defin-
able normal subgroup of a definable group G, we have three topologies on
G/N: the topology as a definable group (from Theorem 2.1), the quotient
topology (where G gets the topology from Theorem 2.1) and the topology
obtained via Theorem 2.3 (for the action of G on G/N by left multiplica-
tion); A.Beraducci proves in Theorem4.3 in [2] — using the trivialization
theorem — that the three topologies indeed coincide.

Next I state some corollaries of Theorem 2.1.

Corollary 2.4. Let G be a definable group, and let H be a definable subgroup
of G. Then,

(i) H is closed;

(ii) if G is infinite then it has an infinite definable abelian sugbroup;

(iii) the following three are equivalent: H open, H has finite index, and
dim H = dim G;

(iv) the definably connected component of the identity in G, G°, is the
smallest subgroup of finite index and moreover it is normal in G, and

(v) G has the descending chain condition on definable subgroups.

Once we have an explicitely defined topology on G, (i) and (ii) are proved by
A. Pillay in [41] (Propositions 2.7 and 5.6 respectively, noting that the group
topology makes G topologically totally transcendental); (iii) is Lemma 2.11
in [42] and (iv) and (v) can be easily obtained from (iii). S.Strzebonski gave
a different proof of (iv) and (v) — Theorem 2.6 in [47] — provided M is an
expansion of a group. For more on descending chain conditions see Theorem
8.3 below.

Corollary 2.5. Let G be a definable group, G = (G,-) and A an abelian
subgroup of G (definable or not). Then, the centre of the centralizer Cg(A)
is a G-definable abelian subgroup containing A, which is normal if A is
normal.

This follows from (v) above (see e.g. Cor.1.17 in [33]). It is because of this
last corollary (and thinking of linear algebraic groups) that we say that a
definable group is semisimple if it has no infinite abelian normal definable
subgroup.



In several papers on definable groups in (general) o-minimal structures
the extra assumption of having definable choice is added just to be able to
speak about definable quotient groups or having a definable set of represen-
tatives of the cosets. The following result due to M.Edmundo — Theorem 7.2
in [13] — allow us to eliminate this extra assumption.

Theorem 2.6. Let G be a definable group and let {T'(z) : x € X} be
a definable family of non-empty definable subsets of G. Then, there is a
definable function t: X — G such that for x,y € X we have t(z) € T(X)
and if T(X) =T(Y) then t(x) = t(y).

3 Small dimension

In this section I consider definable groups of dimension less than or equal to
three. I begin with dimension one and the work of V. Razenj in [46].

Proposition 3.1. Let G be a definably connected 1-dimensional group.
Then,

(i) G is abelian;

(ii) G does not have bounded exponent, and

(11i) either, G is definably compact and the torsion subgroups G[m] are
isomorphic to Z/mZ (for each m > 0), or G is torsion—free.

Corollary 2.4(ii) above gives (i). For (ii) see Proposition1, and for (iii)
Proposition 3 and 4, all of them in [46].

Razenj makes use of Theorem 2.1 and adapts the classical classification of
1-dimensional topological Hausdorff manifolds to obtain that G \ {pt.} has
either, one definably connected component (S!'-type), or two components
(R-type). Then, using the Reineke classification of strongly minimal groups
(note that G as a pure group is strongly minimal, see Remark 6.5 in [41]),
he obtains the following (see Theorem p.272 in [46]).

Theorem 3.2. Let G be a definably connected 1-dimensional group. Then,
(as an abstract group) G is isomorphic to either @, Zy-&@PsQ or BsQ,
6> 0.

For more on 1-dimensional groups definable in an arbitrary o-minimal
structure see Theorem 8.1 below. When M is the real field our definable
group is a Nash group (see Section 1), and J.Madden and C.Stanton classify
in [24] (see also [25]) the 1-dimensional Nash groups, up to Nash isomor-
phism. When M is an expansion of a real closed field, Strzebonski proves



in Theorem p.204 in [48] that a definably connected 1-dimesional group is
definably isomorphic to either an abelian group on either the set (0,1) or the
set [0,1). On the other hand, when M is an o-minimal expansion of a real
closed field, there are two natural torsion-free 1-dimensional definably con-
nected groups: M, (the additive group of M) and M,, (the multiplicative
group of the positive elements of M). C.Miller and S. Starchenko prove —
Theorem C in [26] — the following result as a consequence of their Growth
Dichotomy Theorem (Theorem A in [26]) and a result in [29].

Theorem 3.3. Let M be a polynomially bounded expansion of a real closed
field. Up to definable isomorphism, there are exactly two definably connected
torsion-free 1-dimensional groups: M, and M,,.

Miller and Starchenko posed in [26] the following question.

Question 3.4. Let M be an expansion of a real closed field. Is every defin-
ably connected torsion-free definable 1-dimensional group definably isomor-
phic to M, or M,,?

Definable groups of dimension two and three are analysed by A.Nesin,
A Pillay and V. Razenj in [28]. Their work is a continuation of that of
V.Razenj above.

Theorem 3.5. Let G be a definably connected 2-dimensional group. Then,
G is solvable. Moreover, either G is abelian, or Z(G) = 1 and G is definably
isomorphic to a semidirect product of R, and R,,, where R is a definable

real closed field.

This is Theorem 2.6 in [28], noting that firstly, by Theorem 2.6 we can
eliminate the assumption on strong elimination of imaginaries, and secondly,
by J. Johns Theorem in [20], the open mapping theorem holds in any o-
minimal structure.

The situation is not so clear for abelian definable 2-dimensional groups.
Peterzil and Steinhorn give in [40] examples of definably compact 2-dimen-
sional abelian groups definable in an o-minimal expansion of a real closed
field which are not a direct sum of definable 1-dimensional subgroups (see
the comments after Theorem 5.2 below). On the other hand, by Corollary
6.6 below, a torsion-free group G definable in an o-minimal expansion of
a real closed field cannot be definably compact, so by Theorem 5.2 G has
a definable torsion-free 1-dimensional subgroup H which must be divisible.
If G is commutative, H abstractly has a complement, but we do not know



what happens in the definable context. The following question was posed in
[40] and in [38].

Question 3.6. Let M be an expansion of a real closed field. Is every abelian
torsion-free 2-dimensional group a direct sum of definable 1-dimensional sub-
groups?

I end this section with a result of Nesin, Pillay and Razenj in [28].

Theorem 3.7. Let G be a definably connected nonsolvable 3-dimensional
group. Then, G/Z(G) is definably isomorphic to either PSLy(R) or SO3(R),
for some definable real closed field R.

The existence of two types depends on whether a 2-dimensional subgroup
of G exists (PSLa(R)), or not (see Propositions 3.5 and 3.1 in [28], noting
that again as above we can remove the extra assumptions). The proof in the
first case is done in the spirit of both Cherlin’s analysis of groups of Morley
rank 3 and [27]. This result also proves an o-minimal version of Cherlin’s
conjecture for nonsolvable 3-dimensional groups (see Section 4 below).

4 Interpretability and linear groups

Classical results tell us that in a compact simple Lie group, the Lie structure
is implicitly defined from the abstract group structure, that is, any group
automorphism is an (analytic) homeomorphism; see Corollary 3.7 in [43] for
a model-theoretic version of this fact. A. Nesin and A. Pillay prove in [27]
that this Lie structure is actually (explicitely) definable from the abstract
group structure. Namely, if G = (G, ) is a simple (centreless) compact Lie
group (definable in the real field) then, there is an isomorphic copy K of
the real field interpretable in G, and there is also a G-definable isomorphism
between G and a Nash group over K (see Theorem0.1 in [27]). This last
result and Theorems 3.5 and 3.7 above, give us examples of definable groups
in which a field is interpretable. Y.Peterzil, A.Pillay and S.Starchenko prove
in [33] and [34] (see also [32] for a survey), that an infinite definably simple
group G = (G, -) interprets a field R and G is G—definably isomorphic to a
linear group over R. The full strength of their analysis of definably simple
groups is the following result, which is also a strong version of an o-minimal
analogue to Cherlin’s conjecture. I recall that an algebraic group defined
over a field k is said to be k-simple if it has no nontrivial normal algebraic
subgroups defined over k.



Theorem 4.1. Let G = (G,-) be an infinite definably simple (centreless)
group. Then, there is a real closed field k such that one and only one of the
following holds:

(1) G and the field k[\/—1] are bi-interpretable, and G is G-definably
isomorphic to H(k[\/—1]), where H is a linear algebraic group defined over

(2) G and the field k are bi-interpretable, and G is G-definably isomor-
phic to the semialgebraic connected component of a group H(k), where H is
a k-simple algebraic group defined over k.

This is Theorem 1.1 in [34]. Note that it also proves Cherlin’s conjecture for
groups of finite Morley rank which happen to be definable in an o-minimal
structure. The proof is divided in two main parts. Firstly, given G as in
the hypothesis of the theorem they find a real closed field R definable in M,
such that G is definably isomorphic to a semialgebraic subgroup of some
GL(n, R) (this is carried out in [33]). To find a field they make use of the
Trichotomy theorem (proved by Y. Peterzil and S. Starchenko in [36]) to
prove that a definably connected centreless group G is a direct product of
(unidimensional) groups, each one defined over a definable real closed field
(actually, they get that each one of the groups — in the direct product — is a
linear group over the corresponding field). See Theorems 3.1 and 3.2 in [33].
Once we have a field, we may suppose that our o-minimal structure is an
expansion of a real closed field, and in this situation any definable centreless
group is definably isomorphic to a subgroup of GL(n, M) (see below in this
Section). If moreover the group is semisimple we have the following result.

Theorem 4.2. Let M be an expansion of a real closed field. Let G be
a definably connected centreless semisimple group. Then, G is definably
isomorphic to a semialgebraic linear group over M.

This is Theorem 2.37 in [33]. For its proof Peterzil, Pillay and Starchenko
develop Lie algebra machinery, and they study the Lie algebra of G and
the adjoint representation. A key result there is that the dimension of a
semisimple Lie algebra coincides with the dimension of its automorphism
group. The latter is obtained by transfer from the reals.

Then, for the rest (and second part) of the proof of Theorem 4.1 above,
we may suppose that our G is a semialgebraic subgroup of some GL(n, R)
where R is a definable (in M) real closed field (this second part is carried
out in [34]). The first goal is to find a field K interpretable in G. The latter
is first proved in the solvable not nilpotent case (see Theorem 2.12 in [34])



through an o-minimal version of a theorem by Zil’ber (see Theorem 2.6 in
[34]). Now, going back to G in our general hypothesis, the last part of the
proof is based on the study of the geometric structures partly developed in
[19].

Y.Peterzil and S.Starchenko make use of the above results to give the
following characterization of definable groups which interpret a field.

Theorem 4.3. Let G = (G,-) be a definable infinite group. Then, G inter-
prets an infinite field if and only if G is not abelian-by-finite.

This is Corollary 5.1 in [37] noting that by Theorem 2.6 the quotient groups
are definable (see also Corollary 6.3 in [13]). Firstly, note that to avoid local
modularity, for G to interpret a field, we need G not to be abelian-by-finite.
They prove that this condition is also sufficient. By the results in [33] and
[34], stated above, they reduce to the case in which G is not semisimple.
Then, they obtain an infinite definable family of homomorphisms between
two abelian definable groups (either subgroups or quotients of subgroups of
G). In this situation they have already proved — Theorem 4.4 in [37] — that
a field is interpretable in G (the field is actually defined in a quotient of
subgroups of GG). In turn, the proof of Theorem 4.4 in [37] is based on the
study of \/-definable groups. (For more on \/-definable groups see section
2.1 in [34] and also [15] by M.Edmundo.)

The following theorem on definable permutation groups is proved by D.
Macpherson, A. Mosley and K.Tent (Theorem 1.1 in [23]), and in particular
gives one more example of how to find a field via a definable group. They
consider definable groups G equipped with a definable faithful transitive
action on a set ). Such a permutation group (G,<) is definably primitive
if there is no proper nontrivial definable G-invariant equivalence relation on
Q. A transitive action on £ is said to be regular if the stabilizer of a point
is the identity.

Theorem 4.4. Let (G,Q) be a definably primitive permutation group. In
the case when G has a mon-trivial abelian normal subgroup, assume also
that G is definably connected and not regular. Then, (G,Q) is definably
isomorphic to a semialgebraic permutation group over a definable real closed
field.

Firstly, note that the extra assumption when G has a nontrivial abelian
normal subgroup is needed. The proof of Theorem 4.4 is based on a fine
structure theorem for definably primitive permutation groups (Theorem 1.2
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in [23]) which is an analogue of the O’Nan-Scott theorem for finite primitive
permutation groups. Macpherson, Mosley and Tent apply Theorem 4.4 to
give a description of definable permutation groups (G, ) where dim Q =1
— Theorem 1.5 in [23]. They propose as an application of their results the
following problem (for more problems on definable permutation groups see
p.669 in [23]).

Problem 4.5. Classify definably primitive permutation groups (G,) such
that G has finitely many orbits on Q2.

In [49] K. Tent classifies sharply n-transitive infinite definable permuta-
tion groups for n = 2,3 (there are no infinite 4-transitive groups definable
in an o-minimal structure), where sharply n-transitive means that the stabi-
lizer of n distinct points is trivial. Note that Problem 4.5 is a generalization
of this last result.

By the above results on (semi)simple groups, the study of definable linear
groups can be seen as a continuation of them. On the other hand, any
definably connected centreless group defined over an expansion of a real
closed field is definably isomorphic to a linear group (see Corollary 3.3 in
[29], proved by Y.Peterzil, A.Pillay and myself). Y. Peterzil, A. Pillay and
S. Starchenko study in [35] linear groups defined over an expansion of a real
closed field. They obtain the following results.

Theorem 4.6. Let M an expansion of a real closed field. Let G be a
definably connected subgroup of some GL(n, M). Then G is semialgebraic,
provided it is either nilpotent, semisimple or definably compact. If G is
not semialgebraic then there are definable funcions f1,..., fi such that G s
defined over (M, +,-, f1,..., fr) and either k =1 and f is some exponential
function or the f;’s are power functions.

The nilpotent case is Proposition3.10 in [35]. The rest of the cases are
treated in Theorems4.3 and 4.6 and Corollary 4.2 in [35]. Their proofs are
based on Lie algebra machinery, together with Theorem 4.7 below. The
latter — Theorem4.1 in [35] — also makes use of results on Lie algebras,
especially of the classical fact that the commutator of a Lie subalgebra of
the general Lie algebra (over an algebraic closed field) is an algebraic Lie
algebra.

Theorem 4.7. Let M an expansion of a real closed field. Let G be a
definably connected subgroup of some GL(n,M). Then, there are semial-
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gebraic groups G1,Go of GL(n, M) such that Go < G < Gy with Gy nor-
mal in G1 and G1/Gy abelian (i.e. G is an extension of a definable sub-
group of a abelian semialgebraic group by a semialgebraic group). Moreover,
there are abelian definably connected subgroups A1,...,Ax of G such that

G=GCy-Ap - Ay

Peterzil, Pillay and Starchenko prove — Theorem 5.1 in [35] — the follow-
ing result. They make use of their results in this section — in particular of
Theorem 4.1- and the classification of the simple Lie algebras over R.

Theorem 4.8. Let G be a definably simple (centreless) group. Then,

(i) (G,-) is elementary equivalent to (H,-) for some simple Lie group H,
and

(ii) G is definably isomorphic to some semialgebraic linear group, defined
over Rqyg (= the real algebraic numbers).

5 Algebraic aspects

In this section I collect various properties of different nature which give
some information about the algebraic structure of definable groups (see also
Section 6 below). However, most of the time the hypotheses on the definable
group are not algebraic.

Theorem 5.1. Let G be an infinite definable group. Then,

(i) G does not have bounded exponent, and

(it) if G is abelian then the torsion subgroup G[m] is finite, for each
m > 0.

In dimension one we get the result by Proposition 3.1. The general case
is proved by A.Strzebonski in Proposition6.1 in [47] (once we remove the
extra assumption via Theorem 2.6). Clearly (ii) is obtain from (i), and (i) is
reduced to the abelian case via Corollary 2.4 (2). For (i) in the abelian case
Strzebonski makes use of his results on Euler characteristic (see Section 6).

Theorem 5.2. Let G be a definable not definably compact group. Then,
there is a 1-dimensional torsion-free definable subgroup of G.

This result is proved by Y.Peterzil and C.Steinhorn (Theorem 1.2 in [40]).
The assumption on G ensures the existence of a noncompletable curve in
G. This allows them to equip G with an equivalence relation based on in-
finitesimal neighbourhoods and tangency at infinity (inspired on a concept
of tangency due to Zil’ber). See Definition3.2 in [40]. They prove that
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the equivalence class of the identity element of G is the required subgroup.
Peterzil and Steinhorn also give examples of both (a) a definably compact
abelian group with no definable infinite subgroups, and () a definable group
which is not definably compact and which has no definably compact sub-
group; both are over the real field (see Examples5.2 and 5.6 in [40], based
on some examples in [47]). Example (a) indicates that the assumption on G
in Theorem 5.2 cannot be avoided. On the other hand, any connected Lie
group is homeomorphic to K x R!, where K is a maximal compact subgroup.
Example (b) tell us that we cannot hope for this in the definable context.

The analysis of definably (semi)simple groups and linear groups in Sec-
tion 4 gives the following results.

Theorem 5.3. Let G be a definably connected semisimple centreless group.
Then, G is definably isomorphic to a direct product of definably connected
definably simple groups.

This is Theorem 4.1 in [33], observing (as is done in Remark 4.2 there) that
by the results on linear groups (Theorem 5.1 in [35]), the factor groups are
definably connected and hence definably simple.

Theorem 5.4. Let M be an expansion of a real closed field. Let G be
a definably connected subgroup of some GL(n,M). Then G is an almost
semidirect product of a normal solvable definable subgroup N and a semial-
gebraic semisimple subgroup H (i.e., G = NH where N N H is finite).

This is Theorem 4.5 in [35]. The ingredients of the proof are: the analysis
of the associated Lie algebra and Levi’s decomposition theorem of real Lie
algebras.

Question 5.5. Can we eliminate the assumption: “G < GL(n,M)” in
Theorem 5.47

Theorem 5.6. Let G be a definably compact group. Then, either G is
abelian-by-finite or G/Z(G) is semisimple. In particular, if G is solvable
then it is abelian-by-finite.

This is Corollary 5.4 in [37], observing, as usual, that we can remove the
extra hypothesis via Theorem 2.6. For the proof, Peterzil and Starchenko
consider two cases depending on whether Z(G) is finite or not. The proof
follows the lines of the proof of Theorem 4.3 noting (as observed in [40])
that an infinite field cannot be definably compact.

In [13] M.Edmundo studies group extensions and solvable groups. He
proves the following results.
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Theorem 5.7. Let G be a definable group and let N be a definable normal
subgroup of G. Then there is a definable extension 1 - N — G — H — 1,
with definable section s: H — G.

Theorem 5.8. Let G be a definably connected solvable group. Then, there is
a definable normal subgroup N of G such that G/N is definably compact and
N is K x H, where K is the definably connected definably compact maximal
dimensional subgroup of G, and H is a direct product of subgroups, each of
which is defined over either a definable semibounded o-minimal expansion of
a group or a definable real closed field, where ‘semibounded’ means generated
by sets which are bounded together with sets which are linear.

Theorem 5.7 is Corollary 3.11 in [13] and it is a special case of Theorem
2.6. The ingredients of this case are the Trichotomy Theorem from [36] and
non-orthogonality as in [33]. The proof of the description of the definable
solvable groups in Theorem 5.8 (see Theorem 5.8 in [13]) is based on the
study of definable extensions also developed in [13] and also make use of
Theorem 4.2 in [12] and Theorem 5.2.

Continuing with the resemblance between definable groups and Lie groups,
one could expect that a definably compact definably connected abelian group
should resemble a torus of M. Even though we know, by examples in [40]
(see example (a), above in this section), that such a group cannot be a direct
product of SO(2, M)’s, one could expect that the structure of the torsion is
that of a real torus. That this is the case is proved in [16] by M. Edmundo
and myself. However the result does not give information of how the torsion
points lie within the group (see Question 7.4).

Theorem 5.9. Let M be an expansion of a real closed field. Let G be a
definably compact definably connected abelian n-dimensional group. Then,
the torsion subgroups Gm] = (Z/mZ)"™, for each m > 0.

This is Theorem 1.1(b) in [16]; the 1-dimensional case is Proposition 3.1(iii).
Here are the ingredients of the proof: Firstly, we obtain some properties of
definable covering maps and making use of Corollary 2.10 in [4] (proved by A.
Berarducci and myself), we prove that if H is a definably connected abelian
group then, there is an s > 0 such that both the o-minimal fundamental
group of H is Z°, and the torsion subgroups H[m] are (Z/mZ)*, for each
m > 0. Hence it remains to prove that if H is definably compact (as is
G) then s = dim H. This is done developing some o-minimal cohomology
machinery — Theorem 6.7 below — based on o-minimal homology (developed
by A.Woerheide in [50]), and making use of Theorem 5.2 in [5], the latter
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proved by A. Berarducci and myself. Along the way, we prove that both
the o-minimal fundamental group and the o-minimal cohomology Q-algebra
of G are isomorphic to the (classical) fundamental group and cohomology
Q-algebra of a real torus with Lie dimension n.

We have the following corollary to the proof of Theorem 5.9.

Corollary 5.10. Let M be an expansion of a real closed field. Let G be a
definably connected abelian group. Then,
(i) G is torsion-free if and only if G is definably simply-connected, and
(i1) if there is a k > 1 for which there is a g € G of order k, then for
every k > 1 there is g € G of order k.

I finish this section with two recent results on algebraic properties of
definably compact groups which again are o-minimal versions of results on
Lie groups.

Theorem 5.11. Let G be a definably compact definably connected group.
Then,

(i) there is a definably connected abelian subgroup T of G such that G =
Ugec T, and

(ii) G is divisible (i.e. the map x — x™ on G is surjective for each
m>0).

Firstly, note that (ii) follows from (i) and the fact that any definably con-
nected abelian group is divisible — divisibility is obtained by Theorem 5.1(ii)
(see e.g. Proof of Theorem 2.1 p.170 in [16]). When M is an expansion of a
real closed field (i) is proved by A. Berarducci in Theorem 6.12 in [2] making
use of Theorem3.3 in [5]. The general case is proved by M.Edmundo in
Proposition 1.2 in [14]. His proof is based on Theorem 5.6 and transfer from
the reals together with Theorem 4.2. Note that the definable compactness
assumption is needed because of examples such as SLy(R). Both proofs of
the divisibility — via (i) — simplily an unpublished proof by myself.

6 Euler characteristic and torsion

In an o-minimal structure, besides the dimension we have another defin-
able invariant: the o-minimal Euler characteristic (E). If X is definable
E(X): = Y cep(=1)%™mC where D is a cell decomposition of X. The
map F is well defined, invariant under definable bijections and F(X xY') =
E(X)E(Y), for X and Y definable; see Chapter 4.2 in [10]. When M is an
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expansion of a real closed field, we can triangulate X and, if X is definably
compact, F(X) = x(X(R)) where x is the classical Euler characteristic and
X (R) denotes the realization over R of a (closed) simplicial complex deter-
mined by X; the definable compactness asssumption is essential because,
even over the real field, £((0,1)) = —1 # 1 = x((0, 1)), where (0, 1) denotes
the unit interval.

A .Strzebonski in [47] makes use of the o-minimal Euler characteristic to
study groups definable in o-minimal structures. (He has the extra assump-
tion of M having definable choice. However, he uses this to have definable
quotients — in this case we can avoid it via Theorem 2.6 — and to give
another proof of the descending chain condition on definable subgroups.)
Strzebonski develops the nice idea of making the Euler characteristic play
the role (in definable groups) that cardinality plays in finite groups. Of
course, F(G) = card(G) if G is finite, so his results are generalizations of
(basic) results on finite groups. For p a prime or zero and G a definable
group, he defines G to be a p-group if for any proper definable subgroup H
of G we have E(G/H) = 0(modp) (with equality if p is zero), where G/H
denotes a definable choice of representatives for left cosets of H in G. Note
that, in general, both E(G/H) and E(H) divide E(G), for any definable sub-
group H of GG. Strzebonski proves the three Sylow theorems, with p-Sylow
subgroups as maximal definable p-subgroups. As a basis case, he has the
following generalization of Cauchy’s theorem on finite groups, which links
the o-minimal Euler characteristic with the torsion of a definable group.

Theorem 6.1. Let G be a definable group and p a prime number. If p
divides E(G) then G has an element of order p. In particular, if E(G) =0
then G has nontrivial torsion for each prime p.

This is Lemma 2.5 in [47]. He considers the usual action of Z/pZ on the
set {(g1,.--,9p) € Gx---x G| g1---gp = 1} and works with the Euler
characteristic instead of cardinality.

For the proof of the following result see Propositions 4.1 and 4.2, both
in [47].

Proposition 6.2. Let G be a definable group. Then,

(1) if E(G) = £1, then G is uniquely divisible (i.e., the map x — x™ is
a bijection for each m > 0), and

(i1) if G is abelian and definably connected then E(G) = 0,+1.

The most interesting cases of p-groups are the O-groups. Note that if G
is a p-group and E(G) # 0 then G is finite (see Remark 2.15 in [47]). On
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the other hand, Strzebonski proves — Corollary 5.17 in [47] — that 0-groups
are abelian. (See [2], by A.Berarducci, for more on 0-groups.)

A .Strzebonski conjectured — first section in [47] — that we do not need G
to be abelian in Proposition 6.2 (ii). In [33] (see the end of the introduction
therein) it is observed that the results in [33] prove this conjecture.

Theorem 6.3. Let G be a definably connected group. Then E(G) = 0,=+1.
Moreover, if G is semisimple then E(G) = 0.

I thank Sergei Starchenko for giving the following details to me. We work by
induction on the dimension of GG. Either, there is an abelian normal defin-
able subgroup N of G with dim(G/N) < dim G, or G is semisimple. In the
first case, since E(G) = E(G/N)E(N), the result follows by induction and
Proposition 6.2(ii). For the semisimple case, we will show that E(G) = 0.
We may clearly suppose that Z(G) = 1. Now, by Theorem 3.1 in [33] (see
the comments after Theorem 4.1, above) we may also suppose G is unidi-
mensional and hence, by Theorem 3.2 in [33], that M is an expansion of a
real closed field. Then, our semisimple centreless definably connected group
is the definably connected component of Aut(g), the automorphism group
of the Lie algebra g of G (see proof of Theorem 2.37 in [33]). Again, it suf-
fices to prove that E(Aut(g)) = 0, but now Aut(g) is an algebraic subgroup
of a GL(n,M). For M = R, the automorphism group of a semisimple Lie
algebra has elements of order p for each p, and transfering this to M, we get
E(Aut(g)) = 0.

As a corollary of Proposition 6.2 and Theorem 6.3 we have the following
result.

Corollary 6.4. Let G be a definably connected group. If G is torsion-free
then it is uniquely divisible.

In connection with Theorem 5.2 above, Y.Peterzil and C.Steinhorn ask
in [40] the question if every definably compact group has at least nontrivial
torsion (see Question 5.8 there, and a survey by Y.Peterzil on this torsion
problem in [30]). By Theorem 6.1 above, one way of giving an affirmative
answer to the above question is proving that the Euler characteristic of such
a group is zero. In March 2000 M.Edmundo announced the following result.

Theorem 6.5. Let M be an expansion of a real closed field. Let G be an
infinite definably compact group. Then E(G) =0
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Corollary 6.6. Let M be an expansion of a real closed field. Let G be
definable group. Suppose there is a definable normal subgroup H of G such
that G/H s an infinite definably compact group (in particular this holds if
G is definably compact). Then G has an element of order p, for each prime

p

Edmundo’s nice idea was to consider o-minimal cohomology (dualizing o-
minimal homology developed by Woerheide in [50]), and then follow a clas-
sical proof. Once we have proved that the relevant cohomology algebra is
not trivial, the classical proof is just a bit of linear algebra. I give the in-
gredients. The basic properties of the o-minimal cohomology are developed
in section 3 in [16] by M. Edmundo and myself. In particular we prove the
following result.

Theorem 6.7. Let M be an expansion of a real closed field. Let G be
an infinite definably connected n-dimensional group. Then, the o-minimal
cohomology Q-vector space H*(G;Q) = @, _oH™(G;Q) can be equipped
with a structure of graded Q-algebra generated by yi,...,y, (r > 0) such
that

(i) H(G;Q) = Q (1 say, generates H*(G; Q) as Q-vector space);

(it) each y; € H™i(G; Q) with degy; =m;j odd (1 <j <r), and

(111) B = {yj,---yj,: 1 < ji1 < --- < gy <r} together with 1 (from (i))
form a basis of the Q-vector space H*(G;Q) (for a monomial x = yj, - - - yj,
we say lenx =1).

This is Theorem 3.4 and its corollaries in [16]. The ingredients of the proof
are the following. Dualizing the results in [50] we get that H*(G;Q) is a
graded Q-vector space, H™(G;Q) = 0 for each m > n and (i) (the latter
because G is definably connected); the Q-algebra structure is obtained via
a Hopf-algebra structure and a classical classification of Hopf algebras.

We now go back to the proof of Theorem 6.5. We may suppose G is
definably connected. Since G is definably compact, the top homology group
is nontrivial (this is proved in [5] Theorem 5.2, and also independently by
M.Edmundo); dualizing we get H*(G; Q) % Q and hence r > 0, in Theorem
6.7. On the other hand, by the triangulation theorem and after dualizing,
the results in [50] (linking simplicial and singular o-minimal homology) give
E(G) =3 _o(=1)"dim H™(G;Q). Form > 0, dim H™(G; Q) = card{z €
B:degz = m}, hence E(G) =1+, 5(—1)%7. Now, by (ii) in Theorem
6.7 above, the graded Q-algebra product makes deg x = len x (mod 2) for any
monomial x € B, so we can substitute degx by lenx in the last equality.
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Finally, note that there are (?) monomials of length [ in B, hence E(G) =
Yo (’;) (—1)!, which is 0, since r > 0.

There are other proofs of Theorem 6.5. In [5] A.Berarducci and myself
proved the result (see the proof of Corollary 3.4 there) via a Lefschetz fixed
point theorem for o-minimal expansions of real closed fields, which in turn is
proved by transfer from the reals; the transfering can be done after we prove
that the top homology group of a definably compact definably connected
group is Z (see Theorem 5.2 in [5]). Using a differential topology approach,
in [3], we define the Lefschetz number of idg, =(G), as a self intersection
number of the diagonal in G x G (see Definition 9.11, there) and we prove in
Theorem 11.4 also there, that Z(G) = 0; our hope was — as in the classical
case and as we conjectured — that Z(G) = E(G). This conjecture has
recently been proved by Y.Peterzil and S.Starchenko in [39]; they also give
there — Corollary 4.6 — another proof of Theorem 6.5. They extend further
the results in [3] introducing definable Morse functions and prove that E(G)
is the degree of a map, a degree that they have shown is 0. To finish with
the different proofs of Theorem 6.5, let me note that we can also get one
via the structure of the torsion — Theorem 5.9 — which gives E(G) = 0,
for G abelian, and then make use of either Theorem 6.3 and Theorem 5.6,
or the existence of an infinite abelian subgroup — Corollary 2.4(ii). If we
think only of the torsion, the best result is via Theorem 5.9 and Corollary
2.4(ii), which gives an element of order m for each m > 0. Another proof of
the existence of torsion is in [18] (Remark 2 after Corollary 8.4); this one is
based on the facts (see Section 8, below) that a definable group has DCC
for type-definable subgroups of bounded index, that a definably compact
group has fsg (see Definiton 8.5 below) and also on the classical fact that a
compact Lie group has torsion.

Question 6.8. Can we eliminate the assumption: “M is an expansion of
a real closed field” in Theorem 6.5 or in Corollary 6.67

Y .Peterzil and S.Starchenko have recently been studying (see [38]) torsion-
free groups definable in o-minimal expansions of real closed fields. Note that
by Corollary 6.6 such a group cannot be definably compact, and by Theorem
6.1, it must have o-minimal Euler characteristic £1; moreover, it must also
be solvable (see Claim 2.11 in [38]). They develop in [38] definable group
extensions and prove in Corollary 5.8 the following result.
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Theorem 6.9. Let M be an o-minimal expansion of a real closed field. Let
G be a torsion-free n-dimensional definable group. Then E(G) = (—1)".
Moreover, G is definably diffeomorphic to M™.

When M is Ry, (or any polynomially bounded o-minimal expansion of a
real closed field in which any definable function f: M — M has a definable
Puiseux-like expansion at infinity ) Peterzil and Starchenko get the following
structure theorem (see Theorem 4.14 together with Theorem 4.9 in [38]).

Theorem 6.10. Let G be a connected abelian torsion-free group definable
in Ray. Then, G is definably isomorphic to a direct sum of (R,+)* and
(R>0, )™ for some k,m > 0.

7 Genericity and measure

In this section M is a sufficiently saturated o-minimal expansion of a real
closed field, small or bounded means small with respect to the degree of
saturation of M and model means elementary substructure of M.

The motivation for considering measures and generic sets in the o-minimal
context was Pillay’s conjecture (see Section 8). A definable subset X of a
definable group H is left (resp. right) generic (in H) if finitely many left
(resp. right) translates of X cover H. And, X is generic (in H) if it is
both left and right generic. A first result on generic sets already appeared
in Lemma 2.4 in [42], where A. Pillay proves that large sets are generic (see
Lemma 2.2 above). Since X generic in H implies dim X = dim H, generic
sets lie between large and having the same dimension. Note also that if p is
a complete type in H and X is (left) generic in H, then a (resp. left) trans-
late of X must be in p. If a definable group H is not definably compact,
then the complement of a nongeneric set does not need to be generic (take
G = (M,+) and X = (0,400)). However, this is the only obstruction in the
abelian case:

Theorem 7.1. Let G be an abelian definably compact group. If X C G is
definable and not generic then G\ X is generic.

This is proved when G is a torus — Proposition 5.6 of [6] by A. Berarducci
and myself — using the existence of a measure on definable sets (see below
in this section). The general case is proved by Y.Peterzil and A.Pillay —
Corollary 3.9 in [31] — as a corollary of the following result of A. Dolich in
[11] (see also Appendix in [31]).
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Theorem 7.2. Let X be a definably compact set and Mgy a small model.
Then the following are equivalent:

(a) the set of Mo-conjugates of X is finitely satisfiable, and

(b) X has a point in M.

We have the following corollary to Theorem 7.1, see Lemma3.12 and
Corollary 3.10 in [31].

Corollary 7.3. Let G be an abelian definably compact group. Then,

(i) the set T = {X C G: X is definable and not generic} is an ideal of
Def(G) (= the Boolean algebra of definable subsets of G);

(ii) for every X C G definable and left-generic, the stabilizer Stabz(X) =
{9 € G: gXAX € I} is a type-definable subgroup of G (A = symmetric
difference), and

(i11) there is a complete generic type (= every formula in the type defines
a generic set) in G.

In Section 8 the commutativity assumption — in both Theorem 7.1 and
Corollary 7.3 — will be substituted by fsg (see Definition 8.5). An answer
to the following question will give us some information about how the tor-
sion points lie in a definably compact group (see the comments just before
Theorem 5.9).

Question 7.4. Let G be a definably connected definably compact group. Let
X be a generic subset of G. Does X contain a torsion point of G ¢

We do not know the answer even if we assume M an expansion of a real
closed field and hence the positive solution to Pillay’s conjectures (see The-
orem 8.8 below) or if we assume G commutative. We have the same open
questions for X large in G.

A Keisler measure i on a definable set X is a finitely additive probability
measure on Def(X); hence p: Def(X) — [0, 1], where [0, 1] is the unit real
interval. For instance, a type is a 0-1 valued measure on any definable set.
Keisler measures were introduced by Keisler in [21]. If p is a Keisler measure
on X, we have the following equivalence relation: Y ~, Z if u(YAZ) =0,
for Y,Z C X definable. The following result was obtained in [18] as a
corollary of Keisler’s work in [21].

Theorem 7.5. Let X be definable and p a Keisler measure on X. Then,
there are bounded many ~-classes. In particular, there is a small model
My such that every definable subset Y of X is ~-equivalent to some My-

definable subset of X.
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For a proof see Corollary 3.4 in [18] noting that by Corollary 3.10 in [45], the
theory of an o-minimal structure has NIP.

Observe that if u is a left-invariant Keisler measure on a definably com-
pact group H, then any left generic subset of H must have positive measure.
Over the reals, there exist (nondefinable) subsets of the two-dimensional
torus with positive measure and empty interior (hence, non-generic). We
will see below that, in the definable context, generics are the only subsets of
a definably compact group with positive Keisler measure (see Corollary 8.9).
With the results we have so far we can use the existence of a measure to
prove the following property of stabilizers (defined in Corollary 7.3 above).

Corollary 7.6. Let G be a definably compact abelian group. Then, for every
X C G definable and generic, Stabz(X) is a type-definable subgroup of G of
bounded index.

This is Proposition 6.3(ii) in [18]. By the fact that every abelian group is
amenable (i.e., it has a (left)-invariant finitely additive measure over all
subsets), G — being abelian — has in particular an invariant Keisler measure
p. By Theorem 7.5 there are bounded many ~,-classes. Since generic
subsets of G have positive measure, the type-definable subgroup Stabz(X)
must have bounded index.

8 Pillay’s conjectures

The fact that we have a definable manifold topology (Theorem 2.1), the
results on definably simple groups (Theorems 4.2 and 4.8) and the structure
of the torsion of definably compact abelian groups (Theorem 5.9) induce
us to think that a definably compact group must be a nonstandard version
of a real Lie group; that is, if we quotient out by the right subgroup of
infinitesimals (see e.g., Proposition 3.8 in [43]), a definably compact group
becomes a Lie group. The definable compactness assumption is needed
(see below) to ensure that we do not collapse the group when we take the
quotient. More formally, the following conjectures were formulated by A.
Pillay around 1998, and formally stated during the Problem Session of the
ECMTA in honour of A.J. Macintyre. See Problem 19 p.464 in [1], and
Conjecture 1.1 in [44].

Pillay’s conjectures. Let M be sufficiently saturated and let G be a de-
finably connected group. Then,
(C1) G has a smallest type-definable subgroup of bounded index, G;
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(C2) G/G™ is a compact connected Lie group, when equipped with the
logic topology;

(C3) if moreover, G is definably compact then the Lie dimension of
G/G™ is equal to the (o-minimal) dimension of G, and

(C4) if moreover, G is definably compact and abelian, then G is divis-
ible and torsion-free.
A type-definable equivalence relation @ on a definable set is bounded if X/Q
is small. The logic topology was introduced by D. Lascar and A. Pillay in
[22]. With X and @ as above, we say that C' C X/Q is closed if its preimage
under the natural projection is type-definable in X (see Definition 3.1 in [22]
or Definition 2.3 in [44]).

In the rest of this section I fix a sufficiently saturated o-minimal structure
M and ‘small’ means small with respect to the degree of saturation of M.

If H is any type-definable normal subgroup of bounded index of a de-
finable group G, then G/H with the logic topology is a compact Hausdorff
topological group (see Lemma3.3 in [22] and Lemmas 2.5, 2.6 and 2.10 in
[44]). This, in particular also means that the projection map from G to
G/H is definable over some small model, in the sense of Definition 2.1 in
[18].

The rest of this section is dedicated to stating the cases in which the
conjectures are proved to be true and to giving the ingredients of the proofs.

Theorem 8.1. Conjectures C1-C4 are true when G has dimension one.

This is Proposition 3.5 of [44]. The proof is based in Razenj’s analysis of 1-
dimensional definable groups (see Section 3). In the definably compact case
Pillay makes use of the torsion subgroup of G which is abstractly isomorphic
to the torsion subgroup of the circle group of S! (see Proposition 3.1(iii)),
to define G°, and then he proves that G/G% is S'. In the non-definably
compact case he gets G = G.

Theorem 8.2. Conjectures C1-C4 are true when G is definably simple
(centreless).

This is Proposition 3.6 in [44] and its proof is obtained using the properties
of definably simple groups. By Theorem 4.8 we can assume that G is a
semi-algebraic subgroup of GL(n, R), where R is a saturated real closed
field (containing the reals) and G is defined over R. Then making use of
some properties of Lie groups, Pillay proves that the Kernel of the standard
part map St: G — G(R) is G% and the logic topology in G/ Ker(st) coincide
with the standard topology on G(R).
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Theorem 8.3. Conjectures C1 and C2 are true. Moreover, if G is abelian
then G is divisible.

See Theorem 1.1 in [7] by A.Berarducci, Y.Peterzil, A.Pillay and myself.
Firstly, we make use of Proposition 2.12 in [44] in which Pillay establishes
the equivalence between (@) C1 and C2 are true for G, and (b) G has the
DCC (descending chain condition on type-definable subgroups of bounded
index). With the aim of proving (b) note first that if NV is a normal definable
subgroup of G, and N and G/N have DCC, then so does G — Lemma1.10
in [7]; making use of the latter, we can reduce the situation to the abelian
and the semisimple cases. The semisimple case reduces to the simple case
via Theorem 5.3 — in which we know that C1 and C2 are true. It hence
remains to prove (b) in the abelian case. Associated to a type-definable set
we have a concept of definably connected (= intersection of a small directed
family of definable connected sets; see Definition 2.1 and Lemma 2.2 in [7]),
and any type-definable set is a disjoint union of a small number of maximal
definably connected type-definable subsets — Theorem 2.3 in [7]. Now we
argue by contradiction. If there were a descending chain of type-definable
subgroups of G then this would also happen in a countable language with
everything defined over a countable model Mj. Since Mg is small, there
is a smallest My-type-definable subgroup of G of bounded index H, say.
This H must be normal and definably connected, and also divisible (see
Claim 3 in p.311 in [7], a proof which also yields that G is divisible, once
we have proved it exists). This implies that the compact group G/H is
connected and locally connected — Lemma 2.6 and Theorem 3.9 in [7] — and
has finite m-torsion, for each m > 0. These facts together with a classical
characterization of abelian compact Lie groups makes G/H a compact Lie
group. But now the descending chain of subgroups of G induces a descending
chain of closed subgroups in G/H, a contradiction.

Note that conjectures C1 and C2 do not ensure G # G. In fact, for
G not definably compact we have already encountered the case G = G
in dimension one, and in general if G is commutative and torsion-free then
G = G (Corollary 1.2 in [7]). When M is a saturated model of any o-
minimal structure the rest of the conjectures are still unproved, and we
do not even know if G° # G. Recently, the rest of the conjectures have
been proved by E. Hrushovski, Y. Peterzil and A. Pillay in [18] provided M
is an expansion of a real closed field, and even more recently when M is
an ordered vector space in [17] by P.Eleftherion and S.Starchenko. I will
give the ingredients of the proof in [18]. The key idea in their proof comes
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with the property fsg (see Definition 8.5, below). Hrushovski, Peterzil and
Pillay prove the abelian case by nicely putting together some previous results
and then reducing to the abelian and semisimple cases using the fact that
definably compact groups have fsg. The ingredients follow.

Theorem 8.4. Conjectures C3 and C4 are true if both M is an expansion
of a real closed field, and G is abelian.

This is in Lemma8.2 in [18]. By Theorem 8.3 we know that G exists and is
divisible. By the hypothesis on M we can apply the results from Section 7.
By Corollary 7.6, for every definable X C G (generic), Stabz(X) is a type-
definable subgroup of G of bounded index, and hence it contains G?. By
Proposition 3.13 in [31], for each m > 0, there is a definable generic subset
X of G such that Stabz(X)NG[m] = 0g. Therefore, the divisible group G
is also torsion-free (and hence, C4 is true) and so (G/G%)[m] = G[m)], for
each m > 0. But G/G® is an abelian compact Lie group, hence a torus and
so (G/G"[m] = (Z/mZ)!, where [ is the Lie dimension of G/G%. On the
other hand, again because we are over an expansion of a real closed field, we
can apply Theorem 5.9, and get G[m] = (Z/mZ)"™ where n is the dimension
of G. From these three isomorphisms, we obtain that C3 is also true.

For the next results (in [18]) we need the following.

Definition 8.5. Let G be a definable group. We say that G has fsg (finitely
satisfiable generics) if there is some global type p(x) in G and some small
model My such that every left translate gp = {p(x): p(g~') € p} of p with
g € G, is finitely satisfiable in M.

Proposition 8.6. Let G have fsg, witnessed by p and My, and let X be a
definable subset of G. Then,

(a) If X is left (resp. right) generic then X is generic, and

(b) Conditions (i), (ii) and (iii) of Corollary 7.3 hold for G. Moreover,
in (iii), the generic type can be taken to be p.

Theorem 8.7. Let M be an expansion of a real closed field. Let G be a
definable group and N be a definable normal subgroup of G. Then,

(1) if N and G/N have fsg, then so does G, and

(2) if G is definably compact then G has fsg.

See Proposition 4.2 in [18] for Proposition 8.6. Theorem 8.7 (1) is Proposi-
tion 4.5 in [18]; the proof of (2) in the commutative case is based on Theorem
7.5 and Theorem 7.2 (see Lemma 8.2 in [18]); the proof of (2) in the general
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case is reduced — by (1) and (2) in the commutative case — to the semisimple
case, and this in turn is reduced to the simple case via Theorem 5.3; the
simple case is solved via Theorem 4.8 in Proposition 4.6 of [31], the latter is
based on Theorem 4.6 in [6] (see Theorem 8.1(i) in [18]).

Finally, we can state the following.

Theorem 8.8. Conjectures C1-C4 are true when M is an expansion of a
real closed field.

This is Theorem 8.1(ii) in [18] (taking into account the comments after Re-
mark 2.3 there). By Theorems 8.3 and 8.4, it remains to prove conjecture
C3, and this is done by induction on dim G(> 0). Either G is semisimple or
there is a normal definable abelian subgroup N of G with dim G/N < dim G.
The semisimple case is reduced — via Theorem 5.3 — to the definably simple
case, for which we know — Theorem 8.2 — the conjecture is true. On the
other hand — by Theorem 8.4 — C3 is true for N, and by induction for G/N.
Knowing the latter, we still have to prove C3 for GG, but now we also know
— Theorem 8.7(2) — that G has fsg. For the rest of the proof one makes use
of Proposition 8.6 and the fact that NV has finite n-torsion for each n > 0.

We have the following result which is partly a corollary to the proof of
the conjectures.

Corollary 8.9. Let M be an expansion of a real closed field. Let G be a
definably compact definably connected group. Then, there is a left invariant

Keisler measure p on G. Moreover, for any definable X C G, X is generic
if and only if p(X) > 0.

This is Proposition 6.2 in [18] (including its proof) noting that by Corol-
lary 3.10 in [45] the theory of an o-minimal structure has NIP, and by the
proof of Theorem 8.8 G has fsg.
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