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Abstract : These are notes of a series of talks by Rahim Moosa given in
Berlin, September 2007, during a MODNET training workshop on the
Model Theory of Fields.

1 The Mordell-Lang Conjecture

One is interested in finding the rational solutions to the equation P(x, y) = 0
where P € Q[X, Y]. For example, starting with the polynomial xy—y®+x*>+2 = 0,
we pass to the homogeneous variables x, y, z, and consider the projective curve
C c P2 over Q given by xyz — y® + x?z + 22° = 0.

What does the set of rational points C(Q) look like? The principle is there
should be only finitely many such rational points on C unless there is a good
reason.

Examples of good reasons.
. if C = P! (the genus of C is 0), then C(Q) is infinite.

. there may be a concrete way to produce new rational points from a given one. For
example if there is a group law + : C X C — C given by a rational morphism
over Q. (elliptic curves of genus 1)

In fact, Mordell’s Conjecture says that these are the only possible good
reasons :

Mordell’s Conjecture (MC). If C is a projective curve over Q with Genus(C) > 1,
then C(Q) is finite.

It was proved by Faltings in 1983, not just for Q but for any finite extension
K over Q. Let us work towards a reformulation of this theorem in such a way
as to allow generalization in higher dimensions.

Fact. Every projective curve C of genus strictly greater than 0 embedds in an abelian
variety |(C) called the Jacobian of C.

Definition. An abelian variety is a connected algebraic group (i.e. a projective variety
V together with a group operation + : V XV — V given by polynomials) whose
underlying variety is projective.

Note.

. these groups are abelian (fact)

. the dimension of the Jacobian is the genus of the curve (an elliptic curve is a one
dimensional abelian variety)

. if Cis over K, then Jac(C) is over K.



We can always view our curves as embedded in their Jacobians (by curve,
we mean a smooth projective curve). So if C is a curve over a number field K,
then

C(K) = C(Q) N Jac(C)(K)

(geometric object N arithmetic object)

Mordell’s Conjecture says that if Genus(C) > 2, then this intersection is finite.

Reformulated Mordell’s Conjecture (RMC). Suppose A is an abelian variety over
a number field K and C C A is a curve over K. Then C(Q) N A(K) is a finite union of
translates of subgroups of A(K).

This is equivalent to the Mordell Conjecture, but let us just see why
Proposition 1. RMC implies MC.

Proof. Assume that C is irreducible, and suppose that C(K) is infinite. Then it

is a Zariski dense set, and C(K) = C. RMC says C(K) is a finite union (Ja; + G;
with G; < A(K). Then C = C(K) = a; + G; for some i.

Fact. The Zariski closure in A of a subgroup is an algebraic subgroup.

So C has an algebraic group structure, and Genus(C) = 1. o
Natural generalizations.
. Replace C with any subvariety of A. (generalize the geometric object)

. Generalize the arithmetic object (Mordell-Weil : A(K) is a finitely gen-
erated group) Can we replace A(K) with any finitely generated subgroup
of A(C)? Or even finite rank subgroup of A(C)? Given A < A(C),
set div(A) = {g € AC) : ng € A forsome n > 0}. A has fi-
nite rank if A < div(A’) for some finitely generated A’.  Example :
Tor(A) = {g € A(C) : ng = 0 for some n} = div(0) is of finite rank but is not
finitely generated.

. We can also generalize the ambiant algebraic group. Chevalley’s theorem : Let
S be a connected algebraic subgroup over C. Then there is a unique maximal
normal linear algebraic subgroup L < S such that S/L is an abelian variety.

Definition. An algebraic group S admitting an exact sequence 0 - L — S —
A — O where A is an abelian variety and L = (G.)! (a power of the multiplicative
group) is called a semiabelian variety.

Fact. Semiabelian varieties are commutative.

Replace A by a semiabelian variety.

Absolute Mordell-Lang Conjecture in characteristic zero. Let S be a semi-
abelian variety over C, X C S a subvariety, and I’ < S(C) some finite rank subgroup.
Then X(C) N T is a finite union of translates of subgroups of I.



Interpretation. The trace of the ambient geometry on I is not very rich.

Proposition 2. This is false in characteristic p > 0.

alg
p
and C any curve over F, of genus ¢ > 1. Take t € C(F)\ C(leg ), and set K = F(t),
A = Jac(C). It has been shown by Lang-Néron that A(K) is a finitely generated
group. Mordell would say that C(K) = C(F) N A(K) is finite. But t € C(K), and,
for all n > 0, Fr"(t) € C(K), where Fr : F — F, x — x* (Since A and C are over
F,, Fracts on A and C). Since t ¢ C(Ff,lg ), these points are all distinct. So C(K) is
infinite. O

Proof. Let F be an algebraically closed field of characteristic p > 0 with F # F

The point is that in characteristic p > 0, there is another good reason for
having infinitely many points.

Let S be a semiabelian variety over an algebraically closed field F (in any
characteristic). Let k C F be an algebraically closed subfield, X C S a subvariety
over F. Xis k—special if X = c+h™1(Xp) where h : §’ — S is a surjective rational
homomorphism between an albegraic subgroup S’ < S and a semiabelian
variety Sp over k, Xy C Sy is a subvariety over k, c € S(F).

Example. Any translate of an algebraic subgroup of S over F.

Relative Mordell Lang Conjecture (RML). Let S be a semiabelian variety over an
algebraically closed field F, X C S a subvariety over F, I’ < S(F) a finitely generated
group, I' < div,(I'), where divy(T') = div(T') and div,(T') = {g € S(F) : ng € I with n &
p}ifp > 0. Then X(F) NT = U'_, Xi(F) N T, where X; C X are F*$—special, and F is
the prime field of F.

Remarks.

. Conclusion is weaker than conclusion of the absolute Mordell Lang Conjecture
in characteristic zero. If the X;’s are translates of an algebraic subgroup, then
Xi(F) N T will be a finite union of translates of subgroups of T.

. Consider the special case where S has F*'8—trace 0 : no algebraic subgroups have
infinite homomorphic image defined over F*'S. Then F*'8—special means translate
of an algebraic subgroup of S. So in this case, RML is exactly the same statement
as AML but in all characteristic.

. Consider the opposite special case, where S is over F*'S. Then F*'8—special means
translate of a subvariety over F*'8. In this case the theorem doesn’t tell much
except that we may assume X is over F*% as well.

2 The Dichotomy in Hasse closed fields

We write HCF for the model completion of Hasse fields, HCF if the char-
acteristic is 0 (it is a complete theory) and HCF, if the characteristic is p > 0
(complete theory ; note that if L | HCF,, then L is separably closed, and we
write Coo = (), L7 = L the set af absolute constants). We will work in a
sufficiently saturated model of HCF. Note that in characteristic 0, HCF is just
DCFy,and C, = {x € L : dx = 0}.



Definition. A type-definable set X is a subset of L*", for some n > O defined by a
partial type over strictly less than card(L) parameters.

Definition. A definable set of a type definable set X is a set of the form X N D where
D c L*" is definable (with parameters).

Definition. A minimal set is a type-definable set all of whose definable subsets are
finite or co-finite.

Equivalently, X is minimal over A if for any B O A, X has a unique
non-algebraic type over B, the generic extension. If X is minimal, for all
AcBcCandae€ X, we havea\LB C & aeaclC)\acl(B).

Constants

Set k = C, the set of absolute constants. (in characteristic0,k = {x € L : dx =
0}, in characteristic p > 0, k = (), LV" = L"),

Fact. . k is a type-definable set.
. k is an algebraically closed field.

. k is a stably embedded pure algebraicaly closed field, ie every definable subset of
kX" for all n > 0 is definable in (k, %, +,0, 1).

. In particular, it is a minimal set.

Definition. Let X be a type-definable set over parameters A C L. X is one-based if for
all a € dcl(C U A) and any set B > A with acl(B) = B, Cb(a/B) C acl(aA).

Example. k is not one-based. For minimal sets, one has one-based <= locally
modular < linear.

Definition. Given type-definable sets X,Y, we say that X is fully orthogonal to Y if
forany ae X, b € Y and parameters A over which X and Y are defined, a | , b. This is
denoted X LY.

Exercises.

. X 1Y & foranyset A = acl(A) over which X, Y are defined, and any a € X,
beY,tp(a/A) Utp(b/A) + tp(ab/A).

DIfX LY, then X L Y*" forall n > 0.

Dichotomy theorem (for HCF). Every minimal set is either one-based or not fully
orthogonal to k.

AMC in char. 0 is true ; there is no model theoretical proof.

RMC in char. 0 is true (weaker than AMCy). There is a model th. proof.
AMC in char. p > 0 s false.

RMC in char. p > 0 is true. There is only a model theoretical proof.



3 The case where X is not fully orthogonal to k

Let X be a minimal set. Recall that X not fully orthogonal to k means there is
some B over which X is defined, a € X, c € k such thata | 5C As X is minimal,
this implies a € acl(Bc) \ acl(B).

Lemma 3. Let X be a minimal set. If X is not fully orthogonal to k, there exists B over
which X is defined and a B—definable function with finite fibres f : X \ acl(B) — kK*".

Proof. Let be B over which X is defined, a € X, ¢ € k, a € acl(Bc) \ acl(B), and
p(x) = tp(a/B). Let O(x, y) be such that O is over B, = 6(a,c), and | O(x,c) <] € N.
(y € k)N O(a, y) defines a type definable subset C, C k over Ba. So C, is definable
in (k,+,%,0,1), and by elimination of imaginaries in (k, +,%,0,1), there is a
code ¢ € K" such that a() = ¢ & a(C,) = C, for any automorphism «a, so
¢ € dcl(Ba).

Claim. a € acl(B¢).

proof of Claim. assume ay, ..., a; = tp(a/Bc). So we have automorphisms a;(a) = a;
fixing Be. So C,, = Cyye) = a(C,s) = C,. Butc € Gy, 50 ¢ € Gy, E O(aj, c) for all i
and a; = a; for some i # j. ]

So there is a definable function with finite fibres f over B such that f(a) =
C. [}

Lemma 4. Let H be a minimal type-definable group. If H is not fully orthogonal
to k, then there exists a group G definable in (k,+,%,0,1) and a definable surjective
homomorphism h : H — G with finite kernel.

Proof. Let B such that H is over B, f : H \ acl(B) — k*" B—definable with finite
fibres.

stepl: f extendstoallof H. D :=dom(f) N\H=H Cc H. f: D — L* with
f(D\acl(B)) c k*". D C H is cofinite so we can extend f : H — L*" such that f
is B—definable with finite fibres and f(H \ acl(B)) c k*".

step2: get image of f a group. Set
N = {h € H: for some (eq. for all) a € H \ acl(Bh), f(a +h) = f(a)}

Claim. N is a finite subgroup of H.

proof of Claim. h,h’ € N. Choose a € H\ acl(Bhh') thena +h’ ¢ acl(Bh). f(a+h +
h)y=fa+h) = f(a);alsoa ¢ ac(BU{h+H'}),soh+h € N. N is finite since if
hi, ...l € N, choose a € H\acl(Bh;...h;). Wehave f(a+h) = f(a+hy) = ... = f(a),
so the a + h;’s are in the same fibre of f, which is finite. m]

Fix ag,a1,a, independant generic elements of H. Set f :H — (LS, h

(f(h +ao), f(h + m), f(h + a)).
Claim. h, € H. If f(h) = f(I), then h— i’ € N.

proof of Claim. choose some a; ¢ acl(Bhh'). So a; + h ¢ acl(B U {I — h}), and
fl@i+h)+ MW —h)=f(ai+1).So flai+h) = f(a; + 1), and ' —h € N. ]



Define g on H by ¢(h) = Cb({f(h +d) : d € N}). ¢ : H — L*" is definable over
Bao, ajay.

Claim. g(h) = g() = h—K €N

ginduces a definable bijection between g(H) = G; and H/N (g(h) + hmod N).
g H — G is a surjective Bapaa,—definable homomorphism.

Claim. Ifa € Gy \ acl(Bay, a1,ay), then a € K"
Set B’ = Bapaia,.

Claim. G = (G1\acl(B"))x(G1\acl(B’))/R where (x, y)R(x', y') & x+y=x"+y".
Then G is definable in (k, +, %, 0, 1), and there is a bijection G; — G.

4 Non full orthogonality to k in semiabelian vari-
eties

Let S be a semiabelian variety over L. Let H < S(L) a minimal, type-definable
subgroup. One has H < S(L) < S(L“8). Let H be the Zariski closure of H in
S(L"$) : H is an algebraic subgroup of S over L.

Proposition 5. If H L k, then there exists a semiabelian variety Sy over k and a
bijective rational homomorphism ¢ : H — Sy over L, such that gl : H — So(k) is a
bijection.

Proof. From lemma 4, let h : H - G be a surjective group homomorphism,
where G is a group definable in (k, +, X, 0, 1); /1 is definable and has finite kernel.
Set f : G = H, as follows. Given x € G, choose y € H, s.t. h(y) = x, and
put f(x) = ny, where n = #§Ker(h). h is well defined : if also h(y’) = x, then
h(y") = h(y), so y' — y € Ker(h) and ny = ny'.

Fact. For all m, there is only finitely many m-torsion points in any semiabelian variety.

So f : G — H has finite kernel. f is surjective, as n : H — H is surjective
since it has a finite kernel by the fact and H is minimal (f : G - H) : this
induces a definable bijection f; : G/Ker(f) — H, where Gy := G/Ker(f) is a
group definable in (k, +,%,0,1). So up to definable isomorphism, G; = T(k),
where T is an algebraic group over k. The map f; : T(k) — H is a bijective
p-rational homomorphism. It extends to

Ty —L s H

Ts Ts
T —Lo H

(one can extend f; to the Zariski closure of T(k), which is T(L"$) because T is
definable over k). f; is p-rational, surjective; f, is a homomorphism (exercise)
since it is so on a Zariski dense set. Note that Ker(f,)(k) = Ker(f1)(k).

Claim. Ker(f,) is defined over k.



proof of Claim. We use the following fact.

Fact. Every commutative algebraic group over k has a smallest algebraic subgroup
such that the quotient is a semiabelian variety. This algebraic subgroup is definable
over k.

Take M < T be such for T. H is a semiabelian variety so M < Ker(f>), hence
M(k) < Ker(f2)(k) = 0, from where we get M = 0 (as M is over k and so its
k-points are dense). This shows that T is a semiabelian variety.

Fact. Every algebraic subgroup of a semiabelian variety over k is itself over k.

From this fact we get that Ker(f>) is over k. |

Since Ker(f2)(k) = 0, Ker(f) =0and fo : T — His a bijective p-rational
homomorphism, so we have

— f*l _ f71
H—=—T H—=-T
X‘ TF,,—H X l/FrYI
T®" Tw"

as g is a bijective rational homomorphism over L, and T#" is still in k. Let Sp =
T#") : one has g(H) = Fr" f;1(H) = Fr'(f;*(H)) = Fr'(T(k)) = T#") = Sy(k). o

Definition. A type-definable set Y is semiminimal if there exists some finite set F and
some minimal set X such that' Y C acl(F U X). In this case, RM(Y) is finite.

Proposition 6. Let S be a semiabelian variety over L, H < S(L) a connected semi-

minimal type-definable subgroup, and H the Zariski closure oh H. If H L k, then
there exists a semiabelian variety Sy over k and a bijective rational homomorphism

g : H — Sg such that g(H) = So(k).

Corollary 7. (Mordell-Lang for non one-based semiminimal groups) Let S be a semia-
belian variety over L, and H < S(L) a connected semiminimal type-definable subgroup.
IfH L k, then for every subvariety X C S over L, X(L) N H = UL, Xi(L) N H, where
the X; are k-special subvarieties of X.

proof. We make some reductions :

. Replacing X by the Zariski closure of X(L) N H, we may assume that
X(LynH =X.

. Replacing X by an irreducible component, we may assume that X is
irreducible.

Now we will prove that X itself is k-special. By Proposition 6, we have g : H —
So/k and g(H) = So(k). Let Xy := g(X(L) N H). Since g(X(k) N H) C So(k), Xo is
over k. Furthermore, X(L)NH C ¢7'(Xo) and then X = X(L) N H C ¢'(Xy). As g
is bijective, ¢(X) D X, therefore ¢(X) = Xpand g~ 1(Xo) = X, so Xisk-special. O



5 The Relative Mordell-Lang Conjecture for semi-
pluriminimal subgroups of semiabelian varieties

Definition. A type-definable set Y is semipluriminimal if there exists a finite set F and
minimal sets X1, ..., X; such that Y C acl(F U X3 U ... U X)). Such a set is of finite
Morely rank as a set of solutions.

Fact. If H is a connected semipluriminimal type-definable group, then H = Hy + Hp +
... + H; where the h; are connected semiminimal definable subgroups pairwise fully
orthogonal : H; L Hj, i # j.

Fact. If H is a one-based group, type-definable over A = acl(A) and if p(x) € S(B) is a
complete type in H over B = acl(B) D A, recall stab(p) = {h € H : h + p = p} (where
p is the unique global non forking extension of p to L). Then this stab(p) is itself a
type-definable subgroup of H over A, and p is the generic type of a B-definable translate

of stab(p).

Remark. This is used to prove that in a one-based group, every definable subset of H*"
is a finite boolean combination of translates of definable subgroups; in fact of A-definable
subgroups. This characterizes one-based groups.

Theorem 8. (Mordell-Lang for semipluriminimal subgroups) Let S be a semiabelian
variety over L, H < S(L) a connected semipluriminimal type-definable subgroup and
X C S a subvariety, definable over L. Then X(L) N H = ngl Xi(L) N H, where
X1,..., X are k-special.

proof. As before, we may assume that X is irreducible and X(L) " H = X. We
have to show that X is k-special. For the reduction, let stab(X) = {a € S :
a + X = X}, an algebraic subgroup. Working modulo stab(X)), we may assume
stab(X) = 0 (exercise).

Exercise : there exists a complete type p in X(L) N H whose set of solutions
is Zariski dense in X (by irreducibility of X and X(L)NH = X). Choose a
complete type p over some A = acl(A) over which S, X, H are defined, such that
Y = pL is Zariski dense in X and Y has minimal (RM, dM) with this property.
Y c X(L)NH.

Claim. stab(p)=0.

proof of Claim. Leth € stab(p): Y and h+Y have a common nonforking extension,
so RM((h+Y)NY) = RM(Y), hence RM((h + X(L) N H) N Y) = RM(Y), therefore
(RM, dM)(Y — (h + X(L) N H)) < (RM,dM)(Y) and Y — (h + X(L) N H) cannot be
Zariski dense in X. By minimal choiceof Y, YN (h+ X(L)NH) =X, h+ X =X,
and h € stab(X) = 0, whereby stab(p) = 0. O

Note. H is not one-based : if it were, then p would be the generic type of a translate

of stab(p) (if p was algebraic, then as Y = X, X would be a point and then X would be
k-special, so assuming p is not algebraic implies that H is not one-based).

By the fact one has H = Hj + ... + H;, where the H; are minimal and H; L H;
forall i # j. If H; and H; are not one-based, then by the dichotomy they are
not fully orthogonal to k, so by lemma 4 each one is definably isomorphic to a
group definablein (k, +, X, 0, 1), hence H; £ H;, and theni = j, so there is at most



one H; that is not one-based (Exercise : the sum of fully orthogonal one-based
subgroups is one-based). Thus exactly one of the H;’s is not one-based (since H
isnot based), say the last one, H;. Let B := H; +...H|_;. Bis one-based, H; is not.
Since H = B+H;and B L HI, Y = p(x)} = U+V where U C B, V C H, are solution
sets to complete types q1 € B, q» € H; (exercise : follows from the definition of
1 :if p(x) = tp(b + h/A) then q1 = tp(b/A), g2 = tp(h/A)). As B is one-based, g; is
the generic type of a translate of stab(q:) C stab(p) so U is a singleton and then Y
is a translate of V. Translating the situation, we may assume Y = V C H; (being

k-special is preserved under translation). We have Y = Xso X(L)NH, = X,
but H, L k, so by corollary 7, X(L) N H; = UJj_; Xi(L) N H; where Xj,..., X;
are special subvarieties of X. Taking Zariski closures of both sides, one gets
X c UL, X; € X, hence X = |J5_; X;, so X = X; (as X is irreducible), which is
k-special. ]

Now we replace “semipluriminimality” by “finite Morley-rankedness”.

Theorem 9. (Mordell-Lang for subgroups of finite Morley rank) Let S be a semiabelian
variety over L, H a finite Morley rank type-definable subgroup of S(L) and X C S a
subvariety, definable over L. Then X(L) N H = U5:1 Xi(L) N H, where X, ...,X; are
k-special.

proof. This theorem is a big step and the point is that semipluriminimality
implies arbitrary finite rankedness. O

Now we turn to the proof of the Relative Mordell-Lang Conjecture in char-
acteristicp > 0.

Theorem 10. Let F be an algebraically closed field of characteristic p > 0, S a semi-
abelian variety over F, A < S(F) a finitely generated subgroup, I' < div,(A) :=
{s € S(F) : ns € A, for some n prime to p} and X C S a subvariety over F. Then
X(F)NT = UL, Xi(F) N T where Xy, ..., X, C T are F,-special.

proof. We make standard reductions, supposing X is irreducible and X(F)NI =
X, k= Fp”lg , K/k is a finitely generated extension over which X, S are defined,
and the generators of A are in S(K). Let L | HCF, be an extension of K such

that LF™ = k. We may assume F = L8, which implies that S, X are over L and
A < S(L).

Claim. T < S(L).
proof of Claim. We have indeed div,(A) < S(L). We use the

Fact. Letn : S — S be the multiplication by n, prime top, s € S(L)and t € S(LU8)striet,
such that nt = s. Then t € S(L*F) = S(L).

O

Thus one has X(F) N T = X(L)NT = X.

Claim. We may assume that L is saturated.



proof of Claim. In exercise. Hint :

Lﬂlg =F (L*)alg
L < Lstar sat
leg =K = LPN K = (Lstar)p""
Show that (k, F) < (k*, (L*)™%). 0

Note. k # F,"8, k=1/".

Theorem 11. Let L be a saturated model of HCF, or HCF,, p > 0. Let k be the
constant field, S a semiabelian variety over L, H < S(L) a type-definable finite Morely
rank subgroup, and X C S a subvariety over L. Then X(L) N H = |\, Xi(L) N H,
where X3, ..., X; C X are k-special.

Claim. T'[p"T is finite for any n > 0.

proof of Claim. First A is a finitely generated Z-module. A/p"A is a finitely
generated Z/p"Z-module, so is finite. A < div,(A) induces a map A/p"A —
div,(A)/p"div,(A). Exercise : this is a bijection (use p { n). Then I'/p"T is
finite. ]

As X(L) N T = X and X is irreducible, X must have a Zariski-dense intersec-
tion with some coset of p"I’, for each n > 0. Let p*T" := (", p"T.
Exercise : X has a Zariski dense intersection with some translate of p*T (This is
essentially due to saturation).
From I' < S(L), we get that p™I" < p*S(L) (the Manin kernel) is a type definable
subgroup of S(L). p*S(L) has finite Morley rank and X(L) N p*S(L) = X, so by
theorem 11, X(L) N p®S(L) = U;_; Xi(L) N p®S(L), where X, ..., X; C X and are
k-special. Taking Zariski closures, we have X c [ Ji_; X; € X, s0 X = Ui_; X;. As
X is irreducible, it means that X = X; for some i, i.e. that X is k-special. |
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