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Abstract : These are notes of a series of talks by Rahim Moosa given in
Berlin, September 2007, during a MODNET training workshop on the
Model Theory of Fields.

1 The Mordell-Lang Conjecture

One is interested in finding the rational solutions to the equation P(x, y) = 0
where P ∈ Q[X,Y]. For example, starting with the polynomial xy−y3+x2+2 = 0,
we pass to the homogeneous variables x, y, z, and consider the projective curve
C ⊂ P2 over Q given by xyz − y3 + x2z + 2z3 = 0.

What does the set of rational points C(Q) look like? The principle is there
should be only finitely many such rational points on C unless there is a good
reason.

Examples of good reasons.

. if C = P1 (the genus of C is 0), then C(Q) is infinite.

. there may be a concrete way to produce new rational points from a given one. For
example if there is a group law + : C × C −→ C given by a rational morphism
over Q. (elliptic curves of genus 1)

In fact, Mordell’s Conjecture says that these are the only possible good
reasons :

Mordell’s Conjecture (MC). If C is a projective curve over Q with Genus(C) ≥ 1,
then C(Q) is finite.

It was proved by Faltings in 1983, not just for Q but for any finite extension
K over Q. Let us work towards a reformulation of this theorem in such a way
as to allow generalization in higher dimensions.

Fact. Every projective curve C of genus strictly greater than 0 embedds in an abelian
variety J(C) called the Jacobian of C.

Definition. An abelian variety is a connected algebraic group (i.e. a projective variety
V together with a group operation + : V × V −→ V given by polynomials) whose
underlying variety is projective.

Note.

. these groups are abelian (fact)

. the dimension of the Jacobian is the genus of the curve (an elliptic curve is a one
dimensional abelian variety)

. if C is over K, then Jac(C) is over K.
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We can always view our curves as embedded in their Jacobians (by curve,
we mean a smooth projective curve). So if C is a curve over a number field K,
then

C(K) = C(Q) ∩ Jac(C)(K)

(geometric object ∩ arithmetic object)

Mordell’s Conjecture says that if Genus(C) ≥ 2, then this intersection is finite.

Reformulated Mordell’s Conjecture (RMC). Suppose A is an abelian variety over
a number field K and C ⊂ A is a curve over K. Then C(Q) ∩ A(K) is a finite union of
translates of subgroups of A(K).

This is equivalent to the Mordell Conjecture, but let us just see why

Proposition 1. RMC implies MC.

Proof. Assume that C is irreducible, and suppose that C(K) is infinite. Then it
is a Zariski dense set, and C(K) = C. RMC says C(K) is a finite union

⋃
ai + Gi

with Gi ≤ A(K). Then C = C(K) = ai + Gi for some i.

Fact. The Zariski closure in A of a subgroup is an algebraic subgroup.

So C has an algebraic group structure, and Genus(C) = 1. �

Natural generalizations.

. Replace C with any subvariety of A. (generalize the geometric object)

. Generalize the arithmetic object (Mordell-Weil : A(K) is a finitely gen-
erated group) Can we replace A(K) with any finitely generated subgroup
of A(C)? Or even finite rank subgroup of A(C)? Given Λ ≤ A(C),
set div(Λ) = {g ∈ A(C) : ng ∈ Λ for some n > 0}. Λ has fi-
nite rank if Λ ≤ div(Λ′) for some finitely generated Λ′. Example :
Tor(A) = {g ∈ A(C) : ng = 0 for some n} = div(0) is of finite rank but is not
finitely generated.

. We can also generalize the ambiant algebraic group. Chevalley’s theorem : Let
S be a connected algebraic subgroup over C. Then there is a unique maximal
normal linear algebraic subgroup L ≤ S such that S/L is an abelian variety.

Definition. An algebraic group S admitting an exact sequence 0→ L→ S→
A→ 0 where A is an abelian variety and L = (G×m)l (a power of the multiplicative
group) is called a semiabelian variety.

Fact. Semiabelian varieties are commutative.

Replace A by a semiabelian variety.

Absolute Mordell-Lang Conjecture in characteristic zero. Let S be a semi-
abelian variety over C, X ⊂ S a subvariety, and Γ ≤ S(C) some finite rank subgroup.
Then X(C) ∩ Γ is a finite union of translates of subgroups of Γ.
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Interpretation. The trace of the ambient geometry on Γ is not very rich.

Proposition 2. This is false in characteristic p > 0.

Proof. Let F be an algebraically closed field of characteristic p > 0 with F , Falg
p ,

and C any curve over Fp of genus g > 1. Take t ∈ C(F)\C(Falg
p ), and set K = Fp(t),

A = Jac(C). It has been shown by Lang-Néron that A(K) is a finitely generated
group. Mordell would say that C(K) = C(F) ∩ A(K) is finite. But t ∈ C(K), and,
for all n ≥ 0, Frn(t) ∈ C(K), where Fr : F −→ F, x 7→ xp (Since A and C are over
Fp, Fr acts on A and C). Since t < C(Falg

p ), these points are all distinct. So C(K) is
infinite. �

The point is that in characteristic p > 0, there is another good reason for
having infinitely many points.

Let S be a semiabelian variety over an algebraically closed field F (in any
characteristic). Let k ⊂ F be an algebraically closed subfield, X ⊂ S a subvariety
over F. X is k−special if X = c+h−1(X0) where h : S′ → S0 is a surjective rational
homomorphism between an albegraic subgroup S′ ≤ S and a semiabelian
variety S0 over k, X0 ⊂ S0 is a subvariety over k, c ∈ S(F).

Example. Any translate of an algebraic subgroup of S over F.

Relative Mordell Lang Conjecture (RML). Let S be a semiabelian variety over an
algebraically closed field F, X ⊂ S a subvariety over F, Γ′ ≤ S(F) a finitely generated
group, Γ ≤ divp(Γ), where div0(Γ) = div(Γ) and divp(Γ) = {g ∈ S(F) : ng ∈ Γ with n -
p} if p > 0. Then X(F) ∩ Γ =

⋃l
i=1 Xi(F) ∩ Γ, where Xi ⊂ X are Falg

−special, and F is
the prime field of F.

Remarks.

. Conclusion is weaker than conclusion of the absolute Mordell Lang Conjecture
in characteristic zero. If the Xi’s are translates of an algebraic subgroup, then
Xi(F) ∩ Γ will be a finite union of translates of subgroups of Γ.

. Consider the special case where S has Falg
−trace 0 : no algebraic subgroups have

infinite homomorphic image defined over Falg. Then Falg
−special means translate

of an algebraic subgroup of S. So in this case, RML is exactly the same statement
as AML but in all characteristic.

. Consider the opposite special case, where S is over Falg. Then Falg
−special means

translate of a subvariety over Falg. In this case the theorem doesn’t tell much
except that we may assume X is over Falg as well.

2 The Dichotomy in Hasse closed fields

We write HCF for the model completion of Hasse fields, HCF0 if the char-
acteristic is 0 (it is a complete theory) and HCFp if the characteristic is p > 0
(complete theory ; note that if L |= HCFp, then L is separably closed, and we
write C∞ =

⋂
n Lpn

= Lp∞ the set af absolute constants). We will work in a
sufficiently saturated model of HCF. Note that in characteristic 0, HCF0 is just
DCF0, and C∞ = {x ∈ L : ∂x = 0}.
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Definition. A type-definable set X is a subset of L×n, for some n ≥ 0 defined by a
partial type over strictly less than card(L) parameters.

Definition. A definable set of a type definable set X is a set of the form X ∩ D where
D ⊂ L×n is definable (with parameters).

Definition. A minimal set is a type-definable set all of whose definable subsets are
finite or co-finite.

Equivalently, X is minimal over A if for any B ⊃ A, X has a unique
non-algebraic type over B, the generic extension. If X is minimal, for all
A ⊂ B ⊂ C and a ∈ X, we have a |_B

C ⇐⇒ a ∈ acl(C) \ acl(B).

Constants

Set k = C∞ the set of absolute constants. (in characteristic 0, k = {x ∈ L : ∂x =
0}, in characteristic p > 0, k =

⋂
n Lpn

= Lp∞ ).

Fact. . k is a type-definable set.

. k is an algebraically closed field.

. k is a stably embedded pure algebraicaly closed field, ie every definable subset of
k×n for all n ≥ 0 is definable in (k,×,+, 0, 1).

. In particular, it is a minimal set.

Definition. Let X be a type-definable set over parameters A ⊂ L. X is one-based if for
all a ∈ dcl(C ∪ A) and any set B ⊃ A with acl(B) = B, Cb(a/B) ⊂ acl(aA).

Example. k is not one-based. For minimal sets, one has one-based ⇐⇒ locally
modular⇐⇒ linear.

Definition. Given type-definable sets X,Y, we say that X is fully orthogonal to Y if
for any a∈ X, b ∈ Y and parameters A over which X and Y are defined, a |_A

b. This is
denoted X ⊥ Y.

Exercises.

. X ⊥ Y ⇐⇒ for any set A = acl(A) over which X,Y are defined, and any a ∈ X,
b ∈ Y, tp(a/A) ∪ tp(b/A) ` tp(ab/A).

. if X ⊥ Y, then X ⊥ Y×n for all n > 0.

Dichotomy theorem (for HCF). Every minimal set is either one-based or not fully
orthogonal to k.

AMC in char. 0 is true ; there is no model theoretical proof.
RMC in char. 0 is true (weaker than AMC0). There is a model th. proof.
AMC in char. p > 0 is false.
RMC in char. p > 0 is true. There is only a model theoretical proof.
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3 The case where X is not fully orthogonal to k

Let X be a minimal set. Recall that X not fully orthogonal to k means there is
some B over which X is defined, a ∈ X, c ∈ k such that a 6 |_B

c. As X is minimal,
this implies a ∈ acl(Bc) \ acl(B).

Lemma 3. Let X be a minimal set. If X is not fully orthogonal to k, there exists B over
which X is defined and a B−definable function with finite fibres f : X \ acl(B) −→ k×n.

Proof. Let be B over which X is defined, a ∈ X, c ∈ k, a ∈ acl(Bc) \ acl(B), and
p(x) = tp(a/B). Let θ(x, y) be such that θ is over B, |= θ(a, c), and | θ(x, c) |≤ l ∈N.
(y ∈ k)∩θ(a, y) defines a type definable subset Ca ⊂ k over Ba. So Ca is definable
in (k,+,×, 0, 1), and by elimination of imaginaries in (k,+,×, 0, 1), there is a
code c̄ ∈ k×n such that α(c̄) = c̄ ⇐⇒ α(Ca) = Ca for any automorphism α, so
c̄ ∈ dcl(Ba).

Claim. a ∈ acl(Bc̄).

proof of Claim. assume a0, ..., al |= tp(a/Bc̄). So we have automorphisms αi(a) = ai
fixing Bc̄. So Cai = Cαi(a) = α(Ca) = Ca. But c ∈ Ca, so c ∈ Cai , |= θ(ai, c) for all i
and ai = a j for some i , j. �

So there is a definable function with finite fibres f over B such that f (a) =
c̄. �

Lemma 4. Let H be a minimal type-definable group. If H is not fully orthogonal
to k, then there exists a group G definable in (k,+,×, 0, 1) and a definable surjective
homomorphism h : H −→ G with finite kernel.

Proof. Let B such that H is over B, f : H \ acl(B) → k×n B−definable with finite
fibres.

step1: f extends to all of H. D := dom( f ) ∩ H = H ⊂ H. f : D → L×n with
f (D \ acl(B)) ⊂ k×n. D ⊂ H is cofinite so we can extend f : H −→ L×n such that f
is B−definable with finite fibres and f (H \ acl(B)) ⊂ k×n.

step2: get image of f a group. Set

N = {h ∈ H : for some (eq. for all) a ∈ H \ acl(Bh), f (a + h) = f (a)}

Claim. N is a finite subgroup of H.

proof of Claim. h, h′ ∈ N. Choose a ∈ H \ acl(Bhh′) then a+ h′ < acl(Bh). f (a+ h′ +
h) = f (a + h′) = f (a) ; also a < acl(B ∪ {h + h′}), so h + h′ ∈ N. N is finite since if
h1, ..., hl ∈ N, choose a ∈ H\acl(Bh1...hl). We have f (a+h1) = f (a+h2) = ... = f (a),
so the a + hi’s are in the same fibre of f , which is finite. �

Fix a0, a1, a2 independant generic elements of H. Set f̄ : H → (L×n)×3, h 7→
( f (h + a0), f (h + a1), f (h + a2)).

Claim. h, h′ ∈ H. If f̄ (h) = f̄ (h′), then h − h′ ∈ N.

proof of Claim. choose some ai < acl(Bhh′). So ai + h < acl(B ∪ {h′ − h}), and
f ((ai + h) + (h′ − h)) = f (ai + h′). So f (ai + h) = f (ai + h′), and h′ − h ∈ N. �
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Define g on H by g(h) = Cb({ f̄ (h + d) : d ∈ N}). g : H→ L×n is definable over
Ba0, a1a2.

Claim. g(h) = g(h′) ⇐⇒ h − h′ ∈ N

g induces a definable bijection between g(H) = G1 and H/N (g(h) 7→ h mod N).
g : H→ G1 is a surjective Ba0a1a2−definable homomorphism.

Claim. If a ∈ G1 \ acl(Ba0, a1, a2), then a ∈ k×n

Set B′ = Ba0a1a2.

Claim. G = (G1\acl(B′))×(G1\acl(B′))/R where (x, y)R(x′, y′) ⇐⇒ x+y = x′+y′.
Then G is definable in (k,+,×, 0, 1), and there is a bijection G1 → G.

�

4 Non full orthogonality to k in semiabelian vari-
eties

Let S be a semiabelian variety over L. Let H ≤ S(L) a minimal, type-definable
subgroup. One has H ≤ S(L) ≤ S(Lalg). Let H be the Zariski closure of H in
S(Lalg) : H is an algebraic subgroup of S over L.

Proposition 5. If H 6⊥ k, then there exists a semiabelian variety S0 over k and a
bijective rational homomorphism g : H → S0 over L, such that g|H : H → S0(k) is a
bijection.

Proof. From lemma 4, let h : H � G be a surjective group homomorphism,
where G is a group definable in (k,+,×, 0, 1); h is definable and has finite kernel.
Set f : G → H, as follows. Given x ∈ G, choose y ∈ H, s.t. h(y) = x, and
put f (x) = ny, where n = ]Ker(h). h is well defined : if also h(y′) = x, then
h(y′) = h(y), so y′ − y ∈ Ker(h) and ny = ny′.

Fact. For all m, there is only finitely many m-torsion points in any semiabelian variety.

So f : G → H has finite kernel. f is surjective, as n : H → H is surjective
since it has a finite kernel by the fact and H is minimal ( f : G � H) : this
induces a definable bijection f1 : G/Ker( f ) → H, where G1 := G/Ker( f ) is a
group definable in (k,+,×, 0, 1). So up to definable isomorphism, G1 = T(k),
where T is an algebraic group over k. The map f1 : T(k) → H is a bijective
p-rational homomorphism. It extends to

T(Lalg)
f2

−−−−−→ Hx≤ x≤
T(k)

f1
−−−−−→ H

(one can extend f1 to the Zariski closure of T(k), which is T(Lalg) because T is
definable over k). f2 is p-rational, surjective; f2 is a homomorphism (exercise)
since it is so on a Zariski dense set. Note that Ker( f2)(k) = Ker( f1)(k).

Claim. Ker( f2) is defined over k.
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proof of Claim. We use the following fact.

Fact. Every commutative algebraic group over k has a smallest algebraic subgroup
such that the quotient is a semiabelian variety. This algebraic subgroup is definable
over k.

Take M ≤ T be such for T. H is a semiabelian variety so M ≤ Ker( f2), hence
M(k) ≤ Ker( f2)(k) = 0, from where we get M = 0 (as M is over k and so its
k-points are dense). This shows that T is a semiabelian variety.

Fact. Every algebraic subgroup of a semiabelian variety over k is itself over k.

From this fact we get that Ker( f2) is over k. �

Since Ker( f2)(k) = 0, Ker( f2) = 0 and f2 : T → H is a bijective p-rational
homomorphism, so we have

H
f−1
2 > T H

f−1
2 > T

T(pn)

Fr−n

∧

g >

T(pn)

Frn

∨g >

as g is a bijective rational homomorphism over L, and T(pn) is still in k. Let S0 =
T(pn) : one has g(H) = Frn f−1

2 (H) = Frn( f−1
1 (H)) = Frn(T(k)) = T(pn) = S0(k). �

Definition. A type-definable set Y is semiminimal if there exists some finite set F and
some minimal set X such that Y ⊂ acl(F ∪ X). In this case, RM(Y) is finite.

Proposition 6. Let S be a semiabelian variety over L, H ≤ S(L) a connected semi-
minimal type-definable subgroup, and H the Zariski closure oh H. If H 6⊥ k, then
there exists a semiabelian variety S0 over k and a bijective rational homomorphism
g : H→ S0 such that g(H) = S0(k).

Corollary 7. (Mordell-Lang for non one-based semiminimal groups) Let S be a semia-
belian variety over L, and H ≤ S(L) a connected semiminimal type-definable subgroup.
If H 6⊥ k, then for every subvariety X ⊂ S over L, X(L) ∩H =

⋃n
i=1 Xi(L) ∩H, where

the Xi are k-special subvarieties of X.

proof. We make some reductions :

. Replacing X by the Zariski closure of X(L) ∩ H, we may assume that
X(L) ∩H = X.

. Replacing X by an irreducible component, we may assume that X is
irreducible.

Now we will prove that X itself is k-special. By Proposition 6, we have g : H→
S0/k and g(H) = S0(k). Let X0 := g(X(L) ∩H). Since g(X(k) ∩ H) ⊂ S0(k), X0 is
over k. Furthermore, X(L)∩H ⊂ g−1(X0) and then X = X(L) ∩H ⊂ g−1(X0). As g
is bijective, g(X) ⊃ X0, therefore g(X) = X0 and g−1(X0) = X, so X is k-special. �
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5 The Relative Mordell-Lang Conjecture for semi-
pluriminimal subgroups of semiabelian varieties

Definition. A type-definable set Y is semipluriminimal if there exists a finite set F and
minimal sets X1, . . . ,Xl such that Y ⊂ acl(F ∪ X1 ∪ . . . ∪ Xl). Such a set is of finite
Morely rank as a set of solutions.

Fact. If H is a connected semipluriminimal type-definable group, then H = H1+H2+
. . . + Hl where the hi are connected semiminimal definable subgroups pairwise fully
orthogonal : Hi ⊥ H j, i , j.

Fact. If H is a one-based group, type-definable over A = acl(A) and if p(x) ∈ S(B) is a
complete type in H over B = acl(B) ⊃ A, recall stab(p) = {h ∈ H : h + p = p} (where
p is the unique global non forking extension of p to L). Then this stab(p) is itself a
type-definable subgroup of H over A, and p is the generic type of a B-definable translate
of stab(p).

Remark. This is used to prove that in a one-based group, every definable subset of H×n

is a finite boolean combination of translates of definable subgroups; in fact of A-definable
subgroups. This characterizes one-based groups.

Theorem 8. (Mordell-Lang for semipluriminimal subgroups) Let S be a semiabelian
variety over L, H ≤ S(L) a connected semipluriminimal type-definable subgroup and
X ⊂ S a subvariety, definable over L. Then X(L) ∩ H =

⋃l
i=1 Xi(L) ∩ H, where

X1, . . . ,Xl are k-special.

proof. As before, we may assume that X is irreducible and X(L) ∩H = X. We
have to show that X is k-special. For the reduction, let stab(X) = {a ∈ S :
a + X = X}, an algebraic subgroup. Working modulo stab(X)), we may assume
stab(X) = 0 (exercise).
Exercise : there exists a complete type p in X(L) ∩ H whose set of solutions
is Zariski dense in X (by irreducibility of X and X(L) ∩H = X). Choose a
complete type p over some A = acl(A) over which S,X,H are defined, such that
Y = pL is Zariski dense in X and Y has minimal (RM, dM) with this property.
Y ⊂ X(L) ∩H.

Claim. stab(p)=0.

proof of Claim. Let h ∈ stab(p) : Y and h+Y have a common nonforking extension,
so RM((h + Y) ∩ Y) = RM(Y), hence RM((h +X(L) ∩H) ∩ Y) = RM(Y), therefore
(RM, dM)(Y − (h + X(L) ∩ H)) < (RM, dM)(Y) and Y − (h + X(L) ∩ H) cannot be
Zariski dense in X. By minimal choice of Y, Y ∩ (h + X(L) ∩H) = X, h + X = X,
and h ∈ stab(X) = 0, whereby stab(p) = 0. �

Note. H is not one-based : if it were, then p would be the generic type of a translate
of stab(p) (if p was algebraic, then as Y = X, X would be a point and then X would be
k-special, so assuming p is not algebraic implies that H is not one-based).

By the fact one has H = H1 + . . .+Hl, where the Hi are minimal and Hi ⊥ H j
for all i , j. If Hi and H j are not one-based, then by the dichotomy they are
not fully orthogonal to k, so by lemma 4 each one is definably isomorphic to a
group definable in (k,+,×, 0, 1), hence Hi 6⊥ H j, and then i = j, so there is at most
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one Hi that is not one-based (Exercise : the sum of fully orthogonal one-based
subgroups is one-based). Thus exactly one of the Hi’s is not one-based (since H
is not based), say the last one, Hl. Let B := H1+ . . .Hl−1. B is one-based, Hl is not.
Since H = B+Hl and B ⊥ Hl, Y = p(x)L = U+V where U ⊂ B, V ⊂ Hl are solution
sets to complete types q1 ∈ B, q2 ∈ Hl (exercise : follows from the definition of
⊥ : if p(x) = tp(b + h/A) then q1 = tp(b/A), q2 = tp(h/A)). As B is one-based, q1 is
the generic type of a translate of stab(q1) ⊂ stab(p) so U is a singleton and then Y
is a translate of V. Translating the situation, we may assume Y = V ⊂ Hl (being
k-special is preserved under translation). We have Y = X so X(L) ∩Hl = X,
but Hl 6⊥ k, so by corollary 7, X(L) ∩ Hl =

⋃s
i=1 Xi(L) ∩ Hl where X1, . . . ,Xs

are special subvarieties of X. Taking Zariski closures of both sides, one gets
X ⊂

⋃s
i=1 Xi ⊂ X, hence X =

⋃s
i=1 Xi, so X = Xi (as X is irreducible), which is

k-special. �

Now we replace “semipluriminimality” by “finite Morley-rankedness”.

Theorem 9. (Mordell-Lang for subgroups of finite Morley rank) Let S be a semiabelian
variety over L, H a finite Morley rank type-definable subgroup of S(L) and X ⊂ S a
subvariety, definable over L. Then X(L) ∩ H =

⋃l
i=1 Xi(L) ∩ H, where X1, . . . ,Xl are

k-special.

proof. This theorem is a big step and the point is that semipluriminimality
implies arbitrary finite rankedness. �

Now we turn to the proof of the Relative Mordell-Lang Conjecture in char-
acteristic p > 0.

Theorem 10. Let F be an algebraically closed field of characteristic p > 0, S a semi-
abelian variety over F, Λ ≤ S(F) a finitely generated subgroup, Γ ≤ divp(Λ) :=
{s ∈ S(F) : ns ∈ Λ, for some n prime to p} and X ⊂ S a subvariety over F. Then
X(F) ∩ Γ =

⋃n
i=1 Xi(F) ∩ Γ where X1, . . . ,Xn ⊂ Γ are Fp-special.

proof. We make standard reductions, supposing X is irreducible and X(F)∩Γ =
X, k := Fp

alg, K/k is a finitely generated extension over which X,S are defined,
and the generators of Λ are in S(K). Let L |= HCFp be an extension of K such
that Lp∞ = k. We may assume F = Lalg, which implies that S,X are over L and
Λ ≤ S(L).

Claim. Γ ≤ S(L).

proof of Claim. We have indeed divp(Λ) ≤ S(L). We use the

Fact. Let n : S→ S be the multiplication by n, prime to p, s ∈ S(L) and t ∈ S(Lalg)strict,
such that nt = s. Then t ∈ S(Lsep) = S(L).

�

Thus one has X(F) ∩ Γ = X(L) ∩ Γ = X.

Claim. We may assume that L is saturated.
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proof of Claim. In exercise. Hint :
Lalg = F (L?)alg

L
∪

∧

� Lstar sat
∪

∧

Falg
p = K = Lp∞

∪

∧

k? = (Lstar)p∞
∪

∧

Show that (k,F) � (k?, (L?)alg). �

Note. k , Fp
alg, k = Lp∞ .

Theorem 11. Let L be a saturated model of HCF0 or HCFp, p > 0. Let k be the
constant field, S a semiabelian variety over L, H ≤ S(L) a type-definable finite Morely
rank subgroup, and X ⊂ S a subvariety over L. Then X(L) ∩ H =

⋃l
i=1 Xi(L) ∩ H,

where X1, . . . ,Xl ⊂ X are k-special.

Claim. Γ/pnΓ is finite for any n ≥ 0.

proof of Claim. First Λ is a finitely generated Z-module. Λ/pnΛ is a finitely
generated Z/pnZ-module, so is finite. Λ ≤ divp(Λ) induces a map Λ/pnΛ →
divp(Λ)/pndivp(Λ). Exercise : this is a bijection (use p - n). Then Γ/pnΓ is
finite. �

As X(L) ∩ Γ = X and X is irreducible, X must have a Zariski-dense intersec-
tion with some coset of pnΓ, for each n ≥ 0. Let p∞Γ :=

⋂
n pnΓ.

Exercise : X has a Zariski dense intersection with some translate of p∞Γ (This is
essentially due to saturation).
From Γ ≤ S(L), we get that p∞Γ ≤ p∞S(L) (the Manin kernel) is a type definable
subgroup of S(L). p∞S(L) has finite Morley rank and X(L) ∩ p∞S(L) = X, so by
theorem 11, X(L) ∩ p∞S(L) =

⋃s
i=1 Xi(L) ∩ p∞S(L), where X1, . . . ,Xl ⊂ X and are

k-special. Taking Zariski closures, we have X ⊂
⋃s

i=1 Xi ⊂ X, so X =
⋃s

i=1 Xi. As
X is irreducible, it means that X = Xi for some i, i.e. that X is k-special. �
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