MORDELL-LANG CONJECTURE

C. Berthet, C. Milliet

Abstract: These are notes of a series of talks by Rahim Moosa given in Berlin, September 2007, during a MODNET training workshop on the Model Theory of Fields.

1 The Mordell-Lang Conjecture

One is interested in finding the rational solutions to the equation P(x, y) = 0 where $P \in \mathbf{Q}[X, Y]$. For example, starting with the polynomial $xy - y^3 + x^2 + 2 = 0$, we pass to the homogeneous variables $\underline{x}, \underline{y}, \underline{z}$, and consider the projective curve $C \subset \mathbf{P}^2$ over \mathbf{Q} given by $\underline{x}y\underline{z} - y^3 + \underline{x}^2\underline{z} + 2\underline{z}^3 = 0$.

What does the set of rational points $C(\mathbf{Q})$ look like? The principle is there should be only finitely many such rational points on C unless there is a good reason.

Examples of good reasons.

- . if $C = \mathbf{P}^1$ (the genus of C is 0), then $C(\mathbf{Q})$ is infinite.
- . there may be a concrete way to produce new rational points from a given one. For example if there is a group law $+: C \times C \longrightarrow C$ given by a rational morphism over \mathbf{Q} . (elliptic curves of genus 1)

In fact, Mordell's Conjecture says that these are the only possible good reasons :

Mordell's Conjecture (MC**).** *If* C *is a projective curve over* \mathbf{Q} *with* $Genus(C) \geq 1$ *, then* $C(\mathbf{Q})$ *is finite.*

It was proved by Faltings in 1983, not just for **Q** but for any finite extension *K* over **Q**. Let us work towards a reformulation of this theorem in such a way as to allow generalization in higher dimensions.

Fact. Every projective curve C of genus strictly greater than 0 embedds in an abelian variety J(C) called the Jacobian of C.

Definition. An abelian variety is a connected algebraic group (i.e. a projective variety V together with a group operation $+: V \times V \longrightarrow V$ given by polynomials) whose underlying variety is projective.

Note.

- . these groups are abelian (fact)
- . the dimension of the Jacobian is the genus of the curve (an elliptic curve is a one dimensional abelian variety)
- . if C is over K, then Jac(C) is over K.

We can always view our curves as embedded in their Jacobians (by curve, we mean a smooth projective curve). So if *C* is a curve over a number field *K*, then

$$C(K) = C(\mathbf{Q}) \cap Jac(C)(K)$$

(geometric object \cap arithmetic object)

Mordell's Conjecture says that if $Genus(C) \ge 2$, then this intersection is finite.

Reformulated Mordell's Conjecture (*RMC***).** *Suppose A is an abelian variety over a number field K and C* \subset *A is a curve over K. Then C*(**Q**) \cap *A*(*K*) *is a finite union of translates of subgroups of A*(*K*).

This is equivalent to the Mordell Conjecture, but let us just see why

Proposition 1. RMC implies MC.

Proof. Assume that C is irreducible, and suppose that C(K) is infinite. Then it is a Zariski dense set, and $\overline{C(K)} = C$. RMC says C(K) is a finite union $\bigcup a_i + G_i$ with $G_i \le A(K)$. Then $C = \overline{C(K)} = a_i + \overline{G_i}$ for some i.

Fact. The Zariski closure in A of a subgroup is an algebraic subgroup.

So C has an algebraic group structure, and Genus(C) = 1.

Natural generalizations.

- . Replace C with any subvariety of A. (generalize the geometric object)
- . Generalize the arithmetic object (Mordell-Weil : A(K) is a finitely generated group) Can we replace A(K) with any finitely generated subgroup of A(C)? Or even finite rank subgroup of A(C)? Given $\Lambda \leq A(C)$, set $div(\Lambda) = \{g \in A(C) : ng \in \Lambda \text{ for some } n > 0\}$. Λ has finite rank if $\Lambda \leq div(\Lambda')$ for some finitely generated Λ' . Example : $Tor(A) = \{g \in A(C) : ng = 0 \text{ for some } n\} = div(0)$ is of finite rank but is not finitely generated.

. We can also generalize the ambiant algebraic group. Chevalley's theorem: Let S be a connected algebraic subgroup over C. Then there is a unique maximal normal linear algebraic subgroup $L \leq S$ such that S/L is an abelian variety.

Definition. An algebraic group S admitting an exact sequence $0 \to L \to S \to A \to 0$ where A is an abelian variety and $L = (G_m^\times)^l$ (a power of the multiplicative group) is called a semiabelian variety.

Fact. Semiabelian varieties are commutative.

Replace A by a semiabelian variety.

Absolute Mordell-Lang Conjecture in characteristic zero. *Let* S *be a semi-abelian variety over* C, $X \subset S$ *a subvariety, and* $\Gamma \leq S(C)$ *some finite rank subgroup. Then* $X(C) \cap \Gamma$ *is a finite union of translates of subgroups of* Γ .

Interpretation. *The trace of the ambient geometry on* Γ *is not very rich.*

Proposition 2. This is false in characteristic p > 0.

Proof. Let *F* be an algebraically closed field of characteristic p > 0 with $F \neq \mathbf{F}_p^{alg}$, and *C* any curve over \mathbf{F}_p of genus g > 1. Take $t \in C(F) \setminus C(\mathbf{F}_p^{alg})$, and set $K = \mathbf{F}_p(t)$, A = Jac(C). It has been shown by Lang-Néron that A(K) is a finitely generated group. Mordell would say that $C(K) = C(F) \cap A(K)$ is finite. But $t \in C(K)$, and, for all $n \geq 0$, $Fr^n(t) \in C(K)$, where $Fr : F \longrightarrow F$, $x \mapsto x^p$ (Since A and C are over \mathbf{F}_p , Fr acts on A and C). Since $t \notin C(\mathbf{F}_p^{alg})$, these points are all distinct. So C(K) is infinite. □

The point is that in characteristic p > 0, there is another good reason for having infinitely many points.

Let S be a semiabelian variety over an algebraically closed field F (in any characteristic). Let $k \subset F$ be an algebraically closed subfield, $X \subset S$ a subvariety over F. X is k-special if $X = c + h^{-1}(X_0)$ where $h : S' \to S_0$ is a surjective rational homomorphism between an albegraic subgroup $S' \leq S$ and a semiabelian variety S_0 over k, $X_0 \subset S_0$ is a subvariety over k, $c \in S(F)$.

Example. Any translate of an algebraic subgroup of S over F.

Relative Mordell Lang Conjecture (RML). Let S be a semiabelian variety over an algebraically closed field F, $X \subset S$ a subvariety over F, $\Gamma' \leq S(F)$ a finitely generated group, $\Gamma \leq div_p(\Gamma)$, where $div_0(\Gamma) = div(\Gamma)$ and $div_p(\Gamma) = \{g \in S(F) : ng \in \Gamma \text{ with } n \nmid p\}$ if p > 0. Then $X(F) \cap \Gamma = \bigcup_{i=1}^l X_i(F) \cap \Gamma$, where $X_i \subset X$ are \mathbf{F}^{alg} —special, and \mathbf{F} is the prime field of F.

Remarks.

- . Conclusion is weaker than conclusion of the absolute Mordell Lang Conjecture in characteristic zero. If the X_i 's are translates of an algebraic subgroup, then $X_i(F) \cap \Gamma$ will be a finite union of translates of subgroups of Γ .
- . Consider the special case where S has \mathbf{F}^{alg} —trace 0 : no algebraic subgroups have infinite homomorphic image defined over \mathbf{F}^{alg} . Then \mathbf{F}^{alg} —special means translate of an algebraic subgroup of S. So in this case, RML is exactly the same statement as AML but in all characteristic.
- . Consider the opposite special case, where S is over \mathbf{F}^{alg} . Then \mathbf{F}^{alg} —special means translate of a subvariety over \mathbf{F}^{alg} . In this case the theorem doesn't tell much except that we may assume X is over \mathbf{F}^{alg} as well.

2 The Dichotomy in Hasse closed fields

We write HCF for the model completion of Hasse fields, HCF_0 if the characteristic is 0 (it is a complete theory) and HCF_p if the characteristic is p > 0 (complete theory; note that if $L \models HCF_p$, then L is separably closed, and we write $C_{\infty} = \bigcap_n L^{p^n} = L^{p^{\infty}}$ the set af absolute constants). We will work in a sufficiently saturated model of HCF. Note that in characteristic 0, HCF_0 is just DCF_0 , and $C_{\infty} = \{x \in L : \partial x = 0\}$.

Definition. A type-definable set X is a subset of $L^{\times n}$, for some $n \ge 0$ defined by a partial type over strictly less than card(L) parameters.

Definition. A definable set of a type definable set X is a set of the form $X \cap D$ where $D \subset L^{\times n}$ is definable (with parameters).

Definition. A minimal set is a type-definable set all of whose definable subsets are finite or co-finite.

Equivalently, X is minimal over A if for any $B \supset A$, X has a unique non-algebraic type over B, the generic extension. If X is minimal, for all $A \subset B \subset C$ and $a \in X$, we have $a \bigcup_B C \iff a \in acl(C) \setminus acl(B)$.

Constants

Set $k = C_{\infty}$ the set of absolute constants. (in characteristic 0, $k = \{x \in L : \partial x = 0\}$, in characteristic p > 0, $k = \bigcap_n L^{p^n} = L^{p^{\infty}}$).

Fact. . *k* is a type-definable set.

- . k is an algebraically closed field.
- . k is a stably embedded pure algebraicaly closed field, ie every definable subset of $k^{\times n}$ for all $n \ge 0$ is definable in $(k, \times, +, 0, 1)$.
- . In particular, it is a minimal set.

Definition. Let X be a type-definable set over parameters $A \subset L$. X is one-based if for all $a \in dcl(C \cup A)$ and any set $B \supset A$ with acl(B) = B, $Cb(a/B) \subset acl(aA)$.

Example. k is not one-based. For minimal sets, one has one-based \iff locally modular \iff linear.

Definition. Given type-definable sets X, Y, we say that X is fully orthogonal to Y if for any $a \in X$, $b \in Y$ and parameters A over which X and Y are defined, $a \bigcup_A b$. This is denoted $X \perp Y$.

Exercises.

- . $X \perp Y \iff$ for any set A = acl(A) over which X, Y are defined, and any $a \in X$, $b \in Y$, $tp(a/A) \cup tp(b/A) \vdash tp(ab/A)$.
- . if $X \perp Y$, then $X \perp Y^{\times n}$ for all n > 0.

Dichotomy theorem (for HCF). *Every minimal set is either one-based or not fully orthogonal to k.*

AMC in char. 0 is true; there is no model theoretical proof.

RMC in char. 0 is true (weaker than AMC_0). There is a model th. proof.

AMC in char. p > 0 is false.

RMC in char. p > 0 is true. There is only a model theoretical proof.

3 The case where X is not fully orthogonal to k

Let *X* be a minimal set. Recall that *X* not fully orthogonal to *k* means there is some *B* over which *X* is defined, $a \in X$, $c \in k$ such that $a \not \!\!\!\! \int_B c$. As *X* is minimal, this implies $a \in acl(Bc) \setminus acl(B)$.

Lemma 3. Let X be a minimal set. If X is not fully orthogonal to k, there exists B over which X is defined and a B-definable function with finite fibres $f: X \setminus acl(B) \longrightarrow k^{\times n}$.

Proof. Let be *B* over which *X* is defined, $a \in X$, $c \in k$, $a \in acl(Bc) \setminus acl(B)$, and p(x) = tp(a/B). Let $\theta(x, y)$ be such that θ is over $B \models \theta(a, c)$, and $|\theta(x, c)| \le l \in \mathbb{N}$. $(y \in k) \cap \theta(a, y)$ defines a type definable subset $C_a \subset k$ over Ba. So C_a is definable in $(k, +, \times, 0, 1)$, and by elimination of imaginaries in $(k, +, \times, 0, 1)$, there is a code $\bar{c} \in k^{\times n}$ such that $\alpha(\bar{c}) = \bar{c} \iff \alpha(C_a) = C_a$ for any automorphism α , so $\bar{c} \in dcl(Ba)$.

Claim. $a \in acl(B\bar{c})$.

proof of Claim. assume $a_0, ..., a_l \models tp(a/B\bar{c})$. So we have automorphisms $\alpha_i(a) = a_i$ fixing $B\bar{c}$. So $C_{a_i} = C_{\alpha_i(a)} = \alpha(C_a) = C_a$. But $c \in C_a$, so $c \in C_{a_i}$, $\models \theta(a_i, c)$ for all i and $a_i = a_i$ for some $i \neq j$.

So there is a definable function with finite fibres f over B such that $f(a) = \bar{c}$.

Lemma 4. Let H be a minimal type-definable group. If H is not fully orthogonal to k, then there exists a group G definable in $(k, +, \times, 0, 1)$ and a definable surjective homomorphism $h: H \longrightarrow G$ with finite kernel.

Proof. Let *B* such that *H* is over *B*, $f: H \setminus acl(B) \to k^{\times n}$ *B*-definable with finite fibres.

step1: f extends to all of H. $D := dom(f) \cap H = H \subset H$. $f: D \to L^{\times n}$ with $f(D \setminus acl(B)) \subset k^{\times n}$. $D \subset H$ is cofinite so we can extend $f: H \longrightarrow L^{\times n}$ such that f is B-definable with finite fibres and $f(H \setminus acl(B)) \subset k^{\times n}$.

step2: get image of f a group. Set

 $N = \{h \in H : \text{ for some (eq. for all) } a \in H \setminus acl(Bh), \ f(a+h) = f(a)\}$

Claim. N is a finite subgroup of H.

proof of Claim. $h,h' \in N$. Choose $a \in H \setminus acl(Bhh')$ then $a + h' \notin acl(Bh)$. f(a + h' + h) = f(a + h') = f(a); also $a \notin acl(B \cup \{h + h'\})$, so $h + h' \in N$. N is finite since if $h_1, ..., h_l \in N$, choose $a \in H \setminus acl(Bh_1...h_l)$. We have $f(a + h_1) = f(a + h_2) = ... = f(a)$, so the $a + h_i$'s are in the same fibre of f, which is finite. □

Fix a_0, a_1, a_2 independant generic elements of H. Set $\bar{f}: H \to (L^{\times n})^{\times 3}, h \mapsto (f(h+a_0), f(h+a_1), f(h+a_2))$.

Claim. $h, h' \in H$. If $\bar{f}(h) = \bar{f}(h')$, then $h - h' \in N$.

proof of Claim. choose some $a_i \notin acl(Bhh')$. So $a_i + h \notin acl(B \cup \{h' - h\})$, and $f((a_i + h) + (h' - h)) = f(a_i + h')$. So $f(a_i + h) = f(a_i + h')$, and $h' - h \in N$. □

Define g on H by $g(h) = Cb(\{\bar{f}(h+d) : d \in N\})$. $g : H \to L^{\times n}$ is definable over Ba_0, a_1a_2 .

Claim.
$$g(h) = g(h') \iff h - h' \in N$$

g induces a definable bijection between $g(H) = G_1$ and H/N ($g(h) \mapsto h \mod N$). $g: H \to G_1$ is a surjective $Ba_0a_1a_2$ —definable homomorphism.

Claim. If $a \in G_1 \setminus acl(Ba_0, a_1, a_2)$, then $a \in k^{\times n}$

Set $B' = Ba_0a_1a_2$.

Claim. $G = (G_1 \setminus acl(B')) \times (G_1 \setminus acl(B')) / R$ where $(x, y)R(x', y') \iff x + y = x' + y'$. Then G is definable in $(k, +, \times, 0, 1)$, and there is a bijection $G_1 \to G$.

4 Non full orthogonality to k in semiabelian varieties

Let S be a semiabelian variety over L. Let $H \leq S(L)$ a minimal, type-definable subgroup. One has $H \leq S(L) \leq S(L^{alg})$. Let \overline{H} be the Zariski closure of H in $S(L^{alg}) : \overline{H}$ is an algebraic subgroup of S over L.

Proposition 5. If $H \not\perp k$, then there exists a semiabelian variety S_0 over k and a bijective rational homomorphism $g: \overline{H} \to S_0$ over L, such that $g|_H: H \to S_0(k)$ is a bijection.

Proof. From lemma 4, let h: H G be a surjective group homomorphism, where G is a group definable in $(k, +, \times, 0, 1)$; h is definable and has finite kernel. Set f: G H, as follows. Given $x \in G$, choose $y \in H$, s.t. h(y) = x, and put f(x) = ny, where $n = \sharp Ker(h)$. h is well defined: if also h(y') = x, then h(y') = h(y), so $y' - y \in Ker(h)$ and ny = ny'.

Fact. For all m, there is only finitely many m-torsion points in any semiabelian variety.

So $f: G \to H$ has finite kernel. \underline{f} is surjective, as $n: H \to H$ is surjective since it has a finite kernel by the fact and H is minimal $(f: G \twoheadrightarrow H)$: this induces a definable bijection $f_1: G/Ker(f) \to H$, where $G_1:= G/Ker(f)$ is a group definable in $(k, +, \times, 0, 1)$. So up to definable isomorphism, $G_1 = T(k)$, where T is an algebraic group over k. The map $f_1: T(k) \to H$ is a bijective p-rational homomorphism. It extends to

$$T(L^{alg}) \xrightarrow{f_2} \overline{H}$$

$$\uparrow \leq \qquad \uparrow \leq$$

$$T(k) \xrightarrow{f_1} H$$

(one can extend f_1 to the Zariski closure of T(k), which is $T(L^{alg})$ because T is definable over k). f_2 is p-rational, surjective; f_2 is a homomorphism (exercise) since it is so on a Zariski dense set. Note that $Ker(f_2)(k) = Ker(f_1)(k)$.

Claim. $Ker(f_2)$ is defined over k.

proof of Claim. We use the following fact.

Fact. Every commutative algebraic group over k has a smallest algebraic subgroup such that the quotient is a semiabelian variety. This algebraic subgroup is definable over k.

Take $M \le T$ be such for T. \overline{H} is a semiabelian variety so $M \le Ker(f_2)$, hence $M(k) \le Ker(f_2)(k) = 0$, from where we get M = 0 (as M is over k and so its k-points are dense). This shows that T is a semiabelian variety.

Fact. Every algebraic subgroup of a semiabelian variety over k is itself over k.

From this fact we get that $Ker(f_2)$ is over k.

Since $Ker(f_2)(k) = 0$, $Ker(f_2) = 0$ and $f_2 : T \to \overline{H}$ is a bijective *p*-rational homomorphism, so we have

as g is a bijective rational homomorphism over L, and $T^{(p^n)}$ is still in k. Let $S_0 = T^{(p^n)}$: one has $g(H) = Fr^n f_2^{-1}(H) = Fr^n (f_1^{-1}(H)) = Fr^n (T(k)) = T^{(p^n)} = S_0(k)$.

Definition. A type-definable set Y is semiminimal if there exists some finite set F and some minimal set X such that $Y \subset acl(F \cup X)$. In this case, RM(Y) is finite.

Proposition 6. Let S be a semiabelian variety over L, $H \leq S(L)$ a connected semiminimal type-definable subgroup, and \overline{H} the Zariski closure on H. If $H \not\perp k$, then there exists a semiabelian variety S_0 over k and a bijective rational homomorphism $g: \overline{H} \to S_0$ such that $g(H) = S_0(k)$.

Corollary 7. (Mordell-Lang for non one-based semiminimal groups) Let S be a semiabelian variety over L, and $H \leq S(L)$ a connected semiminimal type-definable subgroup. If $H \not\perp k$, then for every subvariety $X \subset S$ over L, $X(L) \cap H = \bigcup_{i=1}^{n} X_i(L) \cap H$, where the X_i are k-special subvarieties of X.

proof. We make some reductions:

- . Replacing *X* by the Zariski closure of $X(L) \cap H$, we may assume that $X(L) \cap H = X$.
- . Replacing X by an irreducible component, we may assume that X is irreducible.

Now we will prove that X itself is k-special. By Proposition 6, we have $g : \overline{H} \to S_0/k$ and $g(H) = S_0(k)$. Let $X_0 := \overline{g(X(L) \cap H)}$. Since $g(X(k) \cap H) \subset S_0(k)$, X_0 is over k. Furthermore, $X(L) \cap H \subset g^{-1}(X_0)$ and then $X = \overline{X(L) \cap H} \subset g^{-1}(X_0)$. As g is bijective, $g(X) \supset X_0$, therefore $g(X) = X_0$ and $g^{-1}(X_0) = X$, so X is k-special. \square

5 The Relative Mordell-Lang Conjecture for semipluriminimal subgroups of semiabelian varieties

Definition. A type-definable set Y is semipluriminimal if there exists a finite set F and minimal sets $X_1, ..., X_l$ such that $Y \subset acl(F \cup X_1 \cup ... \cup X_l)$. Such a set is of finite Morely rank as a set of solutions.

Fact. If H is a connected semipluriminimal type-definable group, then $H = H_1 + H_2 + \dots + H_l$ where the h_i are connected semiminimal definable subgroups pairwise fully orthogonal: $H_i \perp H_j$, $i \neq j$.

Fact. If H is a one-based group, type-definable over A = acl(A) and if $p(x) \in S(B)$ is a complete type in H over $B = acl(B) \supset A$, recall $stab(p) = \{h \in H : h + p = p\}$ (where p is the unique global non forking extension of p to L). Then this stab(p) is itself a type-definable subgroup of H over A, and p is the generic type of a B-definable translate of stab(p).

Remark. This is used to prove that in a one-based group, every definable subset of $H^{\times n}$ is a finite boolean combination of translates of definable subgroups; in fact of A-definable subgroups. This characterizes one-based groups.

Theorem 8. (Mordell-Lang for semipluriminimal subgroups) Let S be a semiabelian variety over L, $H \leq S(L)$ a connected semipluriminimal type-definable subgroup and $X \subset S$ a subvariety, definable over L. Then $X(L) \cap H = \bigcup_{i=1}^{l} X_i(L) \cap H$, where X_1, \ldots, X_l are k-special.

proof. As before, we may assume that X is irreducible and $X(L) \cap H = X$. We have to show that X is k-special. For the reduction, let $stab(X) = \{a \in S : a + X = X\}$, an algebraic subgroup. Working modulo stab(X)), we may assume stab(X) = 0 (exercise).

Exercise : there exists a complete type p in $X(L) \cap H$ whose set of solutions is Zariski dense in X (by irreducibility of X and $\overline{X(L) \cap H} = X$). Choose a complete type p over some A = acl(A) over which S, X, H are defined, such that $Y = p^L$ is Zariski dense in X and Y has minimal (RM, dM) with this property. $Y \subset X(L) \cap H$.

Claim. stab(p)=0.

proof of Claim. Let $h \in stab(p)$: Y and h+Y have a common nonforking extension, so $RM((h+Y)\cap Y)=RM(Y)$, hence $RM((h+X(L)\cap H)\cap Y)=RM(Y)$, therefore $(RM,dM)(Y-(h+X(L)\cap H))<(RM,dM)(Y)$ and $Y-(h+X(L)\cap H)$ cannot be Zariski dense in X. By minimal choice of Y, $\overline{Y}\cap (h+X(L)\cap H)=X$, h+X=X, and $h \in stab(X)=0$, whereby stab(p)=0. □

Note. H is not one-based: if it were, then p would be the generic type of a translate of stab(p) (if p was algebraic, then as $\overline{Y} = X$, X would be a point and then X would be k-special, so assuming p is not algebraic implies that H is not one-based).

By the fact one has $H = H_1 + ... + H_l$, where the H_i are minimal and $H_i \perp H_j$ for all $i \neq j$. If H_i and H_j are not one-based, then by the dichotomy they are not fully orthogonal to k, so by lemma 4 each one is definably isomorphic to a group definable in $(k, +, \times, 0, 1)$, hence $H_i \perp H_j$, and then i = j, so there is at most

Now we replace "semipluriminimality" by "finite Morley-rankedness".

Theorem 9. (Mordell-Lang for subgroups of finite Morley rank) Let S be a semiabelian variety over L, H a finite Morley rank type-definable subgroup of S(L) and $X \subset S$ a subvariety, definable over L. Then $X(L) \cap H = \bigcup_{i=1}^{l} X_i(L) \cap H$, where X_1, \ldots, X_l are k-special.

proof. This theorem is a big step and the point is that semipluriminimality implies arbitrary finite rankedness. \Box

Now we turn to the proof of the Relative Mordell-Lang Conjecture in characteristic p > 0.

Theorem 10. Let F be an algebraically closed field of characteristic p > 0, S a semi-abelian variety over F, $\Lambda \leq S(F)$ a finitely generated subgroup, $\Gamma \leq div_p(\Lambda) := \{s \in S(F) : ns \in \Lambda, \text{ for some } n \text{ prime to } p\}$ and $X \subset S$ a subvariety over F. Then $X(F) \cap \Gamma = \bigcup_{i=1}^n X_i(F) \cap \Gamma$ where $X_1, \ldots, X_n \subset \Gamma$ are F_p -special.

proof. We make standard reductions, supposing X is irreducible and $X(F) \cap \Gamma = X$, $k := \mathbb{F}_p^{alg}$, K/k is a finitely generated extension over which X, S are defined, and the generators of Λ are in S(K). Let $L \models HCF_p$ be an extension of K such that $L^{p^{\infty}} = k$. We may assume $F = L^{alg}$, which implies that S, X are over S and S and S are over S are over S and S are over S and S are over S and S are over S are over S and S are over S and S are over S are over S and S are over S and S are over S are over S and S are over S are over S and S are over S are over S are over S and S are over S and S are over S and S are over S and S are over S are over S and S a

Claim. $\Gamma \leq S(L)$.

proof of Claim. We have indeed $div_p(\Lambda) \leq S(L)$. We use the

Fact. Let $n: S \to S$ be the multiplication by n, prime to $p, s \in S(L)$ and $t \in S(L^{alg})^{strict}$, such that nt = s. Then $t \in S(L^{sep}) = S(L)$.

Thus one has $\overline{X(F) \cap \Gamma} = \overline{X(L) \cap \Gamma} = X$.

Claim. We may assume that L is saturated.

proof of Claim. In exercise. Hint:

Note. $k \neq \mathbf{F_p}^{alg}, k = L^{p^{\infty}}.$

Theorem 11. Let L be a saturated model of HCF_0 or HCF_p , p > 0. Let k be the constant field, S a semiabelian variety over L, $H \le S(L)$ a type-definable finite Morely rank subgroup, and $X \subset S$ a subvariety over L. Then $X(L) \cap H = \bigcup_{i=1}^{l} X_i(L) \cap H$, where $X_1, \ldots, X_l \subset X$ are k-special.

Claim. $\Gamma/p^n\Gamma$ is finite for any $n \ge 0$.

proof of Claim. First Λ is a finitely generated **Z**-module. $\Lambda/p^n\Lambda$ is a finitely generated $\mathbf{Z}/p^n\mathbf{Z}$ -module, so is finite. $\Lambda \leq div_p(\Lambda)$ induces a map $\Lambda/p^n\Lambda \to div_p(\Lambda)/p^ndiv_p(\Lambda)$. Exercise : this is a bijection (use $p \nmid n$). Then $\Gamma/p^n\Gamma$ is finite.

As $\overline{X(L) \cap \Gamma} = X$ and X is irreducible, X must have a Zariski-dense intersection with some coset of $p^n\Gamma$, for each $n \ge 0$. Let $p^\infty\Gamma := \bigcap_n p^n\Gamma$.

Exercise : X has a Zariski dense intersection with some translate of $p^{\infty}\Gamma$ (This is essentially due to saturation).

From $\Gamma \leq S(L)$, we get that $p^{\infty}\Gamma \leq p^{\infty}S(L)$ (the Manin kernel) is a type definable subgroup of S(L). $p^{\infty}S(L)$ has finite Morley rank and $\overline{X(L)} \cap p^{\infty}S(L) = X$, so by theorem 11, $X(L) \cap p^{\infty}S(L) = \bigcup_{i=1}^{s} X_i(L) \cap p^{\infty}S(L)$, where $X_1, \ldots, X_l \subset X$ and are k-special. Taking Zariski closures, we have $X \subset \bigcup_{i=1}^{s} X_i \subset X$, so $X = \bigcup_{i=1}^{s} X_i$. As X is irreducible, it means that $X = X_i$ for some i, i.e. that X is k-special. \square