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PANORAMA OF P-ADIC MODEL THEORY

Luc BELAIR

RESUME. Nous donnons un apercu des développements de la théorie des modeles
des nombres p-adiques depuis les travaux de Denef sur la rationalité de séries de Poin-
caré, par une revue de la bibliographie.

ABSTRACT. We survey the literature in the model theory of p-adic numbers since
Denef’s work on the rationality of Poincaré series.

«Je serai trop récompensé de mon travail, si je puis me flatter de contribuer aux progres des
jeunes Géometres. La gloire des inventeurs est plus brillante sans doute ; mais serait-on Citoyen,
si I’on ne préférait la satisfaction d’étre utile & ’honneur d’€tre admiré ?»  Bougainville, Traité
du calcul intégral, 1754.

1. Introduction

Macintyre [164] described vividly the first twenty years of the model-theoretical
study of the field of p-adic numbers since the breakthroughs by Ax-Kochen and Ershov
around 1964. In this paper I will survey the literature of p-adic model theory since
Denef’s work [9] on the rationality of Poincaré series. I will try to start roughly where
Macintyre’s survey paper left off (which is more or less [9]), and not intersect with it.

In writing this paper, there was the issue of delimiting the subject matter. I have
interpreted “p-adic” in a somewhat narrow sense : I have tried to restrict to results
which touched on directly and/or specifically the classical p-adic field Q,,.

The bibliography is fairly extensive, without being exhaustive, even though we feel
most of the literature would be covered through cross-references. After some reflexion,
it seemed of interest to collect references up to 1984, which (almost) corresponds to the
time period covered by Macintyre’s paper, and again we do not claim to be exhaustive.
We have listed that time period separately, taking 1984 as a somewhat arbitrary dividing
point, even though it coincides with Denef’s famous paper.

We will recall some basic facts and fundamental results, as they will be useful to
enlighten some of our later remarks.

I think it is fair to say that Denef’s 1984 paper is probably the most influential work
during the time period under study, and is a landmark in the coming of age of model

Recu le xxxxx et, sous forme définitive, le xXxxx.
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theory in its relation with the rest of mathematics in the intervening years. And the work
which grew out of that paper is still a main influence.

The mainstrean of model theory now flows through geometrical stability theory.
The field Q, is certainly not a stable structure, but it retains nevertheless (like R) a
property of stable structures : a set definable with parameters taken from an elementary
extension is already definable with parameters from @Q,, [84]. It seems that the deve-
lopment of a finer analysis of forking has brought many unstable structures within the
reach of its methods, e.g. structures without the independence property, to which the
field Q, belongs. These ideas have already emerged into a deeper analysis of the model
theory of algebraically closed valued fields (see [133]), and had an impact on Q, (see
[138]). No doubt there is more to come for QQ, in this direction.

We now summarize the organization of the paper. In section 2 we recall some basic
facts about the p-adic numbers. In section 3 we recall the fundamental results for the
model theory of QQ,, namely the axiomatization of its first-order theory, Macintyre’s
quantifier elimination and Denef’s cell decomposition. In section 4, we review some
key features in the definability theory : angular components, the independence property,
imaginaries, p-minimality, and definable groups. Section 5 is devoted to p-adic and
motivic integration, section 6 to geometry in a broad sense and section 7 to algorithmics.
We have gathered in section 8 a certain number of other topics.

We will use boldface notation for tuples, e.g. x = (z1,...,x,). We will denote
a valued field by a couple (K, v) where K is the underlying field and v the valuation
map, we denote its value group by v K, its valuation ring by O and its residue field by
K. The natural residue map from O to K is denoted by ~, so the residue of x is Z.

Experience has shown that multisorted languages allow to bring out the basic in-
tuition that a valued field is somewhat an extension of the residue field by the valued
group, through many precise forms of elimination (of quantifiers, or else) of the base
field sort relative to other sorts. The simplest case is relative to the residue field and
value group. We will denote by L the basic language of rings (+, —, -, 0, 1), and by L, ¢
the basic 2-sorted language of valued fields, with a sort for the base field (construed as
aring), a sort for the value group (construed as an ordered group), and a symbol for the
valuation map. Let Lo be the language obtained from L by adding a unary predicate O
for the valuation ring, and let L p;,, be the language obtained from L by adding a binary
predicate Div for a “ divisibility relation”, interpreted as Div(z,y) < v(x) < v(y).
Let L, be the 3-sorted language with a sort for the base field, a sort for the value group
and a sort for the residue field, and a symbol for the valuation map and the residue map.

For model theory we refer to the books of Marker [167] and Poizat [183]. For
valuations we refer to Engler and Prestel’s book [110]. For various basic properties of
Qp we refer to [187].

2. The p-adic numbers

2.1. Hensel’s numbers
Let p be a prime number. The p-adic numbers were introduced by Kurt Hensel at
the end of the 19th century, with the aim of transposing to number theory the methods
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of power series expansions used in the theory of functions of a complex variable (see
[193], [210]). The p-adic numbers form a field, usually denoted by Q,, and can be
described in many ways. Fix p and consider the ring formed by infinite sums of the
form ag + a1p+ ...+ app” + ..., witha; € Z,0 < a; < p, and where addition and
multiplication are performed in base p in the natural way. It turns out to be an integral
domain of characteristic 0. It is the ring of p-adic integers, denoted by Z,. Note that
any positive integer 1,2, 3, ... can be written as such a finite sum ; in contrast we have
-1=@(@E-D+@E-p+...4+(p—1)p" + .... One checks that e.g. 1 — p is
invertible in Z,, namely (1 —p)™! = 1+ p+p* +p> + ... +p" + .... The field
Qy is the field of fractions of Z,. One sees that for any positive integer n the quotient
ring Z,/p"Z,, is canonically isomorphic to Z/p"Z, the ring of integers modulo p". In
particular Z,, /pZ, is canonically isomorphic to the finite field F,, with p elements, so
the principal ideal pZ, is maximal. In fact, as in the power series ring over a field, a
p-adic integer ag + a1p + ... + a,p" + ... is invertible in Z, if and only if ag # 0.
In other words pZ,, coincides with the noninvertible elements ! In particular note that
any nonzero p-adic integer a can be expressed as a = p*u where k € N and u € Ly is
invertible, so that any p-adic number z € Q, can expressed as © = pNu with N € Z
and u € Z, as above, in other words x = aNpN+aN+1pN+1 +...,an # 0. We define
the map vy, : Q, \ {0} — Z as follows, for z = anp™ + anppNt . L an #0,
we set vp(z) = N. For a € Z, vp(a) is the exponent of the highest power of p which
divides a. The (valuation) map v, has the following properties : v, (1) = 0, v,(zy) =
vp(z) + vp(y), vp(x + y) > min(vy(x), vp(y)). It can be used to define a norm | |,
on Qp, namely |z|, = p~*(®)_ It is a key feature that this norm is nonarchimedean :
(@ + )l < max(|al, [yl,).

One checks that (Qp,| [,) is the Cauchy completion of Q with respect to this
norm, and that Z, is the projective limit of the system of natural projections Z/p"7Z —
Z)p"™ L, x + p"Z — x + p™Z, when n > m,n, m € N. We get a topological normed
field. The unit ball is Zj,,, which is not only closed but also open. This makes Q,, totally
disconnected. It is also the case that the | |, topology is the same as the topology
inherited from the discrete topology on the Z/p™ via the projective limit, which makes
Zy, compact. So (Qp,| |[p) is locally compact. It is one of the classical local fields, the
others being the finite extensions of the Q,,’s with the induced norm, R and C with their
standard norm, and the Laurent series F((7")), with I a finite field, with the order at 0
norm.

Example 2.1. Let p = 3, then 23" is a Cauchy sequence and it converges to —1.
In general for 0 < j < p — 1,5 € N, 57" is a Cauchy sequence and it converges to a
(p — 1)-th root of 1.

It turns out that to solve polynomial equations in the p-adic numbers, Newton’s
tangent method can be used systematically. This takes the form of the famous "Hen-
sel’s lemma", of which we state the following form : let f(X) € Z,[X] and a € Z,
such that v,(f(a)) > 2v(f’(a)), then there exists © € Z, such that f(z) = 0 and
vp(x —a) > vp(f'(a)). For example, fix any positive integer n > 2 and let b € Q,, such

1. And hence is the only maximal ideal, so Z,, is a so called local ring.
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that v,,(b) = 0 and consider the equation X" — b = 0. By Hensel’s lemma, this equa-
tion has a solution if and only if it has a solution in the residue ring Z,/ pQUP(”)HZP =
7/ p2r(M+17, - A simple calculation insures that this is enough to see that the multipli-
cative group of n-th powers has finite index in Q.*, with a set of representatives among
the (ordinary) integers.

It is instructive to note that Hensel’s lemma makes Z,, algebraically definable in
Qp, as follows * :

(1) Zp={y€Q,:3tecQ,t?=1+p’y*}

Interestingly, uniform V3 or 3V algebraic definitions of Z, in Q, and F,[[T] in
F,((T")) which work for any p and the ring of integral elements in any finite extensions
are now known (see [69]).

Let U, be the group of units in Z,, and let Q5 = Q, \ {0}. Then Q) /U, is
isomorphic to the group p%, which is order-isomorphic to the additive group of the
integers, and the map v, is essentially given by the quotient map Q; — Q,/U),. The
subring Z,, of Q, has the property that for any z € Q,, x € Z, or e Ly, 3, which
is enough to ensure that the divisibility relation in Z;, makes the quotient group Q' /U,
into an ordered abelian group, whose order is in fact the same as above. By the formula
(1) above, any elementary extension of @, or elementary equivalent field, will carry
a definable subring mimicking these features of Z,, which will make it a field with a
valuation, i.e. a valued field.

2.2. Analogy with other classical local fields

One of the main driving force in studying Q,, is the pursuit of analogies with the
other classical local fields. This is the main theme in [164], to which we refer. In the
case of analogies with the Laurent series [F,,((7")), maybe the most fruitful model-
theoretically is the search for uniformity in p, which takes the form of passing to
nonprincipal ultraproducts of the Q, over the prime numbers p. We know from the
Ax-Kochen-Ershov analysis that they are elementary equivalent as valued fields to the
corresponding ultraproducts of the F,,((7")). The analogies with the real numbers R are
multifaceted. For example, any infinite subset of (@, definable in the ring language has
non-empty interior. In the period under study, one might say that the analogy with C
has emerged, through the analysis of imaginaries in algebraically closed valued fields.

3. Basic fundamental results

3.1. Axioms, p-adically closed fields

A valued field is called p-adically closed if it satisfies the following axioms : it is of
characteristic zero with v(p) the least positive element in the value group, henselian 4
with residue field the prime field of characteristic p, and with value group a Z-group.
Recall that Z-groups are axiomatized as abelian ordered groups with a smallest posi-
tive element 1 (here 1 = valuation of the prime p) and satisfying the axiom scheme

2. This formula has the elegance of working for all p. E.g., for p odd, 3t(t* = 1 + py?) would do.
3. Le. itis a valuation ring.
4. Le. it satisfies Hensel’s lemma, the valuation ring replacing Z,,.
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Vz3y Vo<r<n (x = n.y + r.1). We know from the work of Ax-Kochen and Ershov
that the first-order theory of the structure (Qy, v,) is axiomatized by these axioms. The
axioms of p-adically closed fields are therefore complete, and decidable.

We will denote by pC'F this set of axioms >, without fixing the exact language of
valued fields. The appropriate language should be made precise by context in further
discussions.

In a remarkable paper, Koenigsmann ([147]), and independently for odd p Efrat
[105] and Pop (see [147]), characterized the first-order L-theory of @, by its absolute
Galois group % : a field is elementary equivalent to Qp if and only if its absolute Galois
group is isomorphic to that of Q.. This is still another, beautiful, analogy with R. It was
used in [149].

Note that a field elementary equivalent to a finite extension of @, is not necessarily
a finite extension of a p-adically closed field [47].

3.2. Macintyre’s elimination of quantifiers

We recall that elimination of quantifiers was already considered and proved in Ax
and Kochen’s third paper, using a cross-section map. This is (indeed) a section of the
valuation map, from the value group to the multiplicative group, which materializes in
QpasZ = vQp, — Qp,m — p™. It does not look definable in Lo, and indeed it is
not ([22]) ’. Macintyre found the key definabe expansion of Lo (or L) for elimination
of quantifiers.

Definition 3.1. A semi-algebraic formula is a boolean combination of formulas
©(x) of the form p(x) : Jy(f(x) = y™), where f(x) € Z[X], and n € N,n > 2.

Definition 3.2. Let K be a p-adically closed field. A subset of K™ is called semi-
algebraic (with parameters) if it is the solution set of some semi-algebraic formula (with
parameters).

Theorem 3.3 (Macintyre’s theorem). Let K be a p-adically closed field. Let S be
a semi-algebraic subset of K™, then the set {x € K™ : Jy € K s.t. (x,y) € S} is
semi-algebraic.

It follows from this theorem that if we add to the language of valued fields Lo new
unary predicates P, for each positive integer n > 2 with the interpretation P, (z) <=
Jy(x = y™), then we get quantifier elimination, in fact uniformly in p-adically closed
fields. Let Lo (P,) denote this new language.

Theorem 3.4 (Macintyre’s elimination of quantifiers). The theory pC'F admits
elimination of quantifiers in the language Lo (P,,).

Note that in pC'F', as we observed (formula (1)), the valuation ring is defined by the
purely algebraic atomic formula P (1 4 p3z*). Note also that in the discussion above
we can replace Lo by Lp;,, and get elimination in L p;,, (P,).

5. Note that the universal part of pC'F’, (pC'F)y, was axiomatized in [40], [190].

6. Le. the Galois group of its algebraic closure over itself. Note that in this case, it is topologically
finitely generated.

7. This follows from the fact already mentioned that any infinite L-definable subset of Q, has non
empty interior.
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We recall the analogy of Macintyre’s theorem with Chevalley’s theorem in alge-
braic geometry, taking algebraically closed instead of p-adically closed, and construc-
tible instead of semi-algebraic (see e.g. [41]). The parallel between Chevalley’s theorem
and Tarski’s elimination of quantifiers in algebraically closed fields is by now very well
known. Joyal [141] might have been the first occurence in the literature to point it out.

Recently Denef [88] gave a purely algebraic geometric proof of Macintyre’s theo-
rem (for Q,), based on monomialization of morphisms.

3.3. Denef’s cell decomposition

At the heart of the Denef’s school of p-adic integration, is the method of cell de-
composition. Denef explained very well that he was inspired by Cohen’s procedure to
eliminate quantifiers [7] 8. The original cell decomposition has now been refined, gene-
ralized and applied in ever increasing sophisticated context, up to motivic integration.

Cell decomposition is a finer analysis of definable sets, in terms of well behaved
definable functions. Definable sets partition into cells. On can view a cell as a set where
one should be able to perform integration through iterated integrals (Fubini’s), more or
less like in calculus ®. Cells have good geometrical properties.

We give two basic precise statements, which we take from the lucid [87].

3.3.1. Cells and cell decomposition. The following semi-algebraically commensu-
rable is not standard terminology '°, but we find it somewhat convenient.

Definition 3.5. Let K be a p-adically closed field. A function f : K™ — K is
called semi-algebraically commensurable (with parameters) if for every semi-algebraic
subset S C K x K" (with parameters) the set

{(x,y) e K™ (f(x),y) € S}

is semi-algebraic (with parameters). In other words, the pullback function (f x 1x+)*
sends semi-algebraic sets to semi-algebraic sets, for every identity map 1gr : K" —
K.

A semi-algebraically commensurable function f is always semi-algebraic, i.e. its
graph 'y is semi-algebraic. Indeed, I'; can be expressed as

Ip=(fx1k)"(Ag2)
where A g is the diagonal A2 = {(z,y) € K% : z = y}. It follows from Macintyre’s

theorem that a semi-algebraic function is semi-algebraically commensurable, for if I'¢
and S C K x K" are semi-algebraic sets, then so is

S1 = {(X,y,Z) € KA Yy = f(X) & (y,Z) S S}
and
(f x 1gr)*(8) = {(x,2) € K™ : 3y € K s.t. (x,y,2) € S1}

But it will be necessary to temporarily distinguish the two when we deduce Macintyre’s
theorem from cell decomposition. So we temporarily stick to the two names.

8. It might be worthwhile to recall that Cohen was a trained analyst.
9. In the context of o-minimality, this remark is literally true.
10. In his paper [87], Denef uses (ephemerally, so to speak (cf. further below)) “semi-algebraic func-
tion" for what we call here “semi-algebraically commensurable".
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Definition 3.6. Let K be a p-adically closed field. A cell in K™ x K is a set of the
form

{(x,t) e K" x K :x € C, andv(ai(x)) 01 v(t — c(x)) Oz v(az(x))}
where a1 (x), az(x), ¢(x), hi(x) are semi-algebraically commensurable functions of x,

C is a semi-algebraic subset of K™, v; € N and each of [y, [y denotes either <, < or
no condition. The function ¢(x) is called a center of the cell.

Theorem 3.7 (Cell decomposition theorem I). Lett be a variable andx = (1, ..., Zy,).
Let f(x,t) be a polynomial in t with coefficients which are semi-algebraically com-
mensurable functions of x. Then there exists a finite partition of K™ x K into cells A,
such that each such cell A has a center ¢(x) such that the following holds :

if we write f(x,t) as a polynomial int — ¢(x)
Fx,t) = ao(x) + a1 (x)(t = e(x) + - + ai(x)(t = e(x)" + -
then ,
v(f(x,t)) — minv(a;(x)(t — c(x)")
(2
is bounded on A.

Theorem 3.8 (Cell decomposition theorem II). Let ¢ be a variable and x =
(x1,...,om). Let fi(x,t),i = 1,...,r be polynomials in t with coefficients which
are semi-algebraically commensurable functions of x. Let n € N,n > 0, be fixed.
Then there exists a finite partition of K™ x K into cells A, such that each such cell A
has a center c(x) such that for all (x,t) € A we have

filx,t) = ui(x,8)"hi(x)(t — e(x))", fori=1,...,r

with v(u;(x,t)) = 0,h;(x) a semi-algebraically commensurable function of x, and
v; € N.

3.3.2. Quantifier elimination from cell decomposition. In order to have a glimpse
at the power of cell decomposition, we will deduce quantifier elimination from it. We
roughly reproduce the proof from [87], where the above cell decompositions are proved
directly without Macintyre’s theorem. So as we mentioned, the proof uses the distinc-
tion between semi-algebraically commensurable functions and functions with semi-
algebraic graphs, and after the fact, implies that the two coincide.

Theorem 3.9 (Macintyre’s theorem). Let S be a semi-algebraic subset of K1,
then the set {x € K™ : Jy € K s.t. (x,y) € S} is semi-algebraic.
Proof. We may suppose that S is the set of all (x,t) € K™ x K satisfying
fi(x,t) is (is not) an n;-th power ,i = 1,..., k.
where the f; are polynomials over K, and n; € N, n; > 2. Let n be a common multiple

of the n;. By the Cell decomposition theorem II, we get that .S is a disjunction of sets
of the form

v(ai(x)) Oy v(t — e(x)) Oy v(az(x)), andx € C' and
hi(x)(t — ¢(x))" is (is not) an n;-th power, i = 1,... k.

where a1 (x), az(x), ¢(x), hi(x) are semi-algebraically commensurable functions of x,
C is a semi-algebraic subset of K™, v; € N and each of [y, [y denotes either <, < or
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no condition. By making a disjunction over all possible n-th power residues for h;(x)
and ¢ — ¢(x), we obtain that S is a disjunction of sets of the form

v(ai(x)) Oy v(t — e(x)) Oz v(az(x)), andx € C' and

(t — ¢(x)) = p - (nonzero n-th power)

where p € K. Hence, we may assume that .S is of the form
v(a1(x)) < o(t — c(x)) < wv(az(x)), and

(t — ¢(x)) = p - (nonzero n-th power)

where p # 0. Then, the set to be proven semi-algebraic is that of all x € K™ such that
€ Z,v(a1(x)) <€ <wv(az(x)) and I = v(p)mod n.

This condition is equivalent to

(*)%GZ’Méﬁgw‘

If v(ai(x)p~1) = 0 mod n, then (*) is equivalent to
v(ar(x)p™) < vlaz(x)p ")
If v(ai(x)p~1) = mod n, with 0 < y < n, then (x) is equivalent to
v(a®)p) +n -5 < v(as(x)p )
But these last two conditions are semi-algebraic, and we are done. [

4. Definability

4.1. The angular component formalism
Another key function in Q, is the so called angular component map,

ac: Q) — F), ac(x) = zp—vr(@)
as well as its higher order versions for each positive integer n > 1,
acy : Qp — (Zp/p"HZp)X, acp(z) = resn(xpfvp(x))
They are group homomorphisms and ac,,(u) = u mod p" T, if v,(u) = 0.

We should readily emphasize that these maps are definable in L, ; ([87]), essentially
because the residue rings Z,/p™Z,, are finite. So they are really part of the theory pC'F.
Note that for non zero € Q,, P, (z) holds iff v,(x) is divisible by n and ac,,(z) is
an n-th power for m = 2v,(n).

But it took a while before the importance of these functions emerged in the defina-
bility theory of Q, "1 Their importance emerged in the Denef school. The map ac first
occurs in Denef’s work in his paper [87] where he proves Macintyre’s elimination of
quantifiers from cell decomposition. It plays a crucial role in the study of uniformity
in p by Pas [173, 174], and the language of quantifer elimination they yield is often
referred to as Pas’s language (or Denef-Pas).

11. And other valued fields.
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Van den Dries (e.g. [96]) showed the technical flexibility of these functions in mo-
del theoretical methods and he used them in [97] in a context of analytic functions. They
are axiomatized in a valued field (K, v) as homomorphisms ac; : K* — (Og/I)*,
where I is an ideal of O, such that ac;(x) = x mod I when v(z) = 0. They are
also called angular component map modulo I. Taking I the maximal ideal of Ok we
get what is usually called an angular component map.

Let L, 4. be the language of valued fields obtained from L, by adding a function
symbol for an angular component map, and let L, 4., be the similar language obtai-
ned by adding function symbols ac,, and appropriate sorts and transition maps for the
projective systems of higher order angular component maps for the ideals p"T'O.
Pas (ibid.) proved the following relative quantifier elimination results : (1) the theory
of henselian valued fields of residual characteristic 0 admits elimination of base field
quantifiers in the language L, ¢ 4., (2) the theory of henselian valued fields of charac-
teristic 0 with v(p) the least positive element in the value group, admits elimination of
base field quantifiers in the language L qc,, -

The key feature is that not only elimination of base field quantifiers is relative '>

to the value group and residue rings, but also that the interplay between variables of
different sorts seems minimal, whence often optimal. In Pas’s work, it allows to control
the dependence on p and on the residue fields. A simpler example (but see also the next
section 4.2) is that it allows to axiomatize types and count coheirs in a clearcut way
in the general cases ([46]), rendering transparent the initial analysis of Delon [8] (see
also [85]) of the independence property, and allowing the similar analysis in the mixed
characteristic case ([45]).

One sees that a cross-section 7 yields an angular component map just as in the
p-adic case, z — z7(v(z))~!, but angular components are strictly weaker than cross-
sections. For example, in the p-adic case, Scowcroft [200] has constructed p-adically
closed fields without sections of the p-adic valuation map. The situation is somewhat
enlightened by the observation that an angular component map corresponds in a natural
way to a splitting of the lower exact sequence in the following commutative diagram :

1 - Ugx — KX 5 0K — 0
! ! |

1 - K* —- K*/1+mg — oK — 0

where Uy is the group of units of Ok, mg the ideal of nonunits of O, and 1 + mg
the subgroup of Ug of elements 1 + =,z € my. Neither of these exact sequences
need split : it is well known there are valued fields without cross-sections, and for
angular component maps see [175]. Since Uk is a pure subgroup of K> we see that
an angular component (resp. cross-section) map exists as soon as K * (resp. K*) is
pure-injective, and it follows that every valued field has an elementary extension with
an angular component map (see ibid.).

12. A phenomenon already emphasized by Cohen [7]. It would be taken up and studied in [31, 32], [37]
and many more since then.
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The exact sequence that we linked to angular component maps, or rather the group
K> /14mp, is a classical object in number theory (see e.g. the multiplicative congruences
in [135], chap. 15-§.1, chap. 23-§.2.). It is also the underlying structure of Krasner’s
corpoide ([151]). It appears implicitely in the work around the Ax-Kochen-Ershov ana-
lysis up to Delon’s thesis. Poizat ' had already observed in the 1970’s the relevance of
this structure for the model theory of valued fields. Later Basarab [37] made the same
observation in a broad context and obtained an elimination of base field quantifiers rela-
tive to that structure and its higher order versions, in particular for pCF'. This analysis
was made more precise in [38] and [152]. This structure appeared more recently in
diffferent contexts where it is often called RV-structure, e.g. with some finer analysis in
[119], or in motivic integration [136].

4.2. The independence property

Matthews [169] showed that p-adically closed fields do not have the independence
property ', In contrast, we now know that the field of Laurent series F,,((7')) does have
the independence property ([144]).

Karpinski and Macintyre [145] have computed some bounds related to the absence
of the independence property in Q,,, in connection with Vapnik-Chervonenkis dimen-
sion. There is recent work along these lines by Aschenbrenner et al. [36].

The development of a finer analysis of forking in geometric stability theory has trig-
gered a renewed interest in theories without the independence property (see e.g. [35]),
also called NIP theories '°. They are now somewhat considered as “tame" settings. This
should shed some new lights on Q,. We first mention Shelah’s result that p-adicaly clo-
sed fields are « strongly dependent » [202]. A theory 7' is strongly dependent if there are
no M |= T, formulas ¢;(x, y) fori € w, and elements a] € M so that for each function
1w — wthe type {¢i(x,a]) 14,5 € w,n(i) = jHU{~di(x,a]) 14,5 € w,n(i) # j}
is consistent. Berenstein, Dolich and Onshuus showed in [51] that the theory of dense
pairs of p-adically closed fields is also « strongly dependent », in particular it does not
have the independence property (see also [55]). The activity around NIP theories is still
flourishing (see [140]).

This reassessment has produced simpler arguments for NIP for valued fields, which
we will sketch here for the p-adics (see e.g. [202], or [204]). It is based on some simple
observations about indiscernible sequences and exploits relative quantifier elimination
with angular components. The first observation is that in a total order, an indiscernible
sequence is either strictly monotone, or constant. In particular, in a Z-group, because
indiscernibles will be congruent mod n for all n, an indiscernible sequence (7;) is
either strictly monotone and moreover |y; — ~;+1] is infinite, or it is constant. A second
observation is about angular component maps acy, : if v(x) < v(y) and |v(z) —v(y)| is
infinite, then ac, (x +vy) = acy(z), and if v(z +y) = v(z) = v(y), then ac,(x +y) =
acy () + acy(y).

13. Unpublished notes.

14. In most theories of valued fields which satisfy classical Ax-Kochen-Ershov theorems, the indepen-
dence property is reduced to that of the residue field (see [45]).

15. Now often called “dependent theories”, a quite unfortunate choice of terminology.
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Lemma 4.1. Let K be p-adically closed and f(X) = > a;X* € K[X]. Let
(zn)nen a sequence of indiscernible elements from K, and f € K[X]| and m € N.
Then there exists a sequence of indiscernibles from vK, (ay)nen, and a sequence
of indiscernibles from O /(p™*1), (by)nen, depending only on (z,,)nen, and there
exist no,¢ € N,y € vK,g € Og/(p™)[X], such that for all n > ng, we have

U(f(l’n)) = lay, + v and acm(f(xn)) = g(bn)

Proof. If the sequence v(z;) is strictly monotone, the desired conclusion follows
directly from the preceding observations. In case the sequence v(x;) is constant, consi-
der the polynomial R(y) such that f(z + y) = f(x) + R(y). Let y; = x; — xq, so
for all i, f(x;) = f(zo) + R(y;). If the sequence v(y;) is strictly monotone, we can
conclude again using the polynomial f(xo) + R(y) and the sequence (y;). We are left
with the case v(y;) is also constant, say v(y;) = vp. Since the z; are indiscernibles
we have v(y; — y;) = v(x; — x;) = v, for all ¢ # j. By the preceding observa-
tions, ac(y; — yj) = ac(y;) — ac(y;), and since ac never takes the value 0 we have
ac(y;) # ac(y;), for i # j, but this is impossible in the finite residue field F,,. So we
are done. 0O

Recall that it suffices to check for the independence property for formulas of the
form ¢ (z, y). Recall also the characterization through indiscernible sequences : a for-
mula ¢(x,y) has the independence property iff there exists an indiscernible sequence
(ai)ien and some b in some model 91 such that M |= ¢(azi, b) A ~p(azi+1,b), for all

1.

By quantifier elimination in the Pas language and the fact that formulas without the
independence property are closed under boolean combinations, it suffices to check for
formulas of the following form :

(1) f(x,y) =0, f apolynomial over the base p-adically closed K ;
(2) o(z, 7(y)),  a formula over Z/(p™*1), T suitable terms ;
(3) ®(x,7(y)), ¢ a formula in the theory of Z-groups, T suitable terms ;

@) p(acm(fi(z,y1)), - acm((fa(z,91)), y2), ¢ aformulaover Z/(p™ ), f1, ..

polynomials over K, y = (y1,Ys) ;

5) 2(v(fi(z,y1)),- .- v((fu(z,y;)),ys), P aformula in the theory of Z-groups,
f1,- - fn polynomials over K, y = (y,Y5).

Now, case (1) can be checked directly not to have the independence property ; in case (2)
one can remark that a finite structure can not have the independence property ; in case
(3) it is known that the theory of Z-groups does not have the independence property ' ;
case (4) and (5) reduces respectively to case (2) and (3) by the preceding lemma.

4.3. Imaginaries

Recall that a complete theory (of rings) has elimination of imaginaries if for every
definable equivalence relation E(x,y) on n-tuples there exists a definable function f
such that F(x,y) < f(x) = f(y) holds. The equivalence relation of having the same
valuation is already problematic in the language Lo, for no such definable function
can exist as any definable subset of Q" is either finite or uncountable 17 The relation

16. As any theory of ordered abelian groups [122].
17. For m = 1, follows from nonemptiness of interior of infinite subsets of Q.

~fn
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x >~y < v(x —y) > 01is also problematic for the same reason. Adding a sort for the
value group and the valuation map directly remedies the former, but even also adding a
sort for the quotient set of ~ is not enough (see [201]).

The analysis of imaginaries turns out to be quite complicated. Elimination of imagi-
naries for p-adically closed fields in a definable expansion is due to Hrushovski-Martin
[138]. They deduced it from the fundamental result on algebraically closed valued fields
[132], where one goes through a careful look at the behavior of types. Besides the basic
imaginary sorts of the value group (K /U) and residue field (O / max Ok), one has
to consider translates of free Ox-modules in affine space. For each n € N, let S,, be
the additional sort defined by the quotient set S,,(K) = GL,(K)/GL,(Ok). Note
that, the value group can be identified with Sy, our good friend K* /1 + my can be
px

0
field can be identified with the fiber above 1 of the natural map K*/1 + mg — 5.
Then pC'F eliminates imaginaries in the language of rings L augmented with the sorts
Sh.

Scowcroft [201] '8 has a small language eliminating “one variable” imaginaries, i.e.
coming from an equivalence relation on the underlying base field ; see also [119] in this
vein. See [166] for the dismal situation in languages including a cross-section and dea-
ling with the above ~ by adding the new function 7'(} . < x @np™) = D n<p<p @nD"-

identified with the image in S5 of the matrices [ :f } ,x € K*, and the residue

4.4. Some p-minimality

Time has shown the spectacular success of the concept of o-minimality for the field
of real numbers (see e.g. [211]). It was natural to look for analogues in the context
of the p-adic and other valued fields. Haskell and Macpherson [134] introduced a rea-
sonably natural notion for the p-adics which any analogue should encompass. Let L’/
be a language expanding the elimination language Lp;,(P,), and & = (K, v,...) an
L'-structure which is a valued field, then £ is said to be P-minimal 194f K is of charac-
teristic zero with v(p) the least positive element in the value group, with residue field
the prime field of characteristic p, and with value group a Z-group, and if for every 90t
elementary equivalent to £, every definable subset of M is quantifier-free definable by
a formula in L p;,, (P,,). The authors prove some basic results showing how the analogy
goes through, or not. For example, there is a good theory of dimension, but no readily
available cell decomposition nor a good “monotonicity theorem” for unary definable
functions. They give (shown in [98]) the example of an expansion of @, by some ana-
lytic functions, namely essentially the structure studied in [89] (see section 6 below).
In [171] Mourgues show a cell decomposition theorem for P-minimal structures which
have definable Skolem functions. There are some limitations on the expansion of the
value group (see [58], and [57] for some further questions).

This notion is used in [98] to show that if S C ZZ‘H is a subanalytic set (see section

6 below), then there is a semialgebraic set S” C Z;”/H such that for each z € Z" there

sz € Z;”/ such that we get equality of the fibers S, = S7,. This generalizes a result
of [89] saying that p-adic subanalytic subsets of Z,, are semialgebraic.

18. See the conclusion of the paper.
19. The P is meant to refer to the P, predicates.
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The bounds of [145] related to the absence of the independence property of Q,
in connection with Vapnik-Chervonenkis dimension, are proved in the context of P-
minimal theories.

Cluckers and Loeser [73] have introduced the very general framework of b-minimality
covering the above P-minimality in the presence of definable Skolem functions. It takes
a form of cell decomposition as an axiom, but the underlying structure need not be a
field, and the notion also covers o-minimality. See [52] for an example with a nonstan-
dard analytic structure on the p-adically closed field of power series Q,((T'?)).

Recently, Cluckers and Leenknegt [69] point out a minimal language for “p-adic
minimality” which would parallel the plain order language in o-minimality. The only
predicates in this language, call it Ly, are the ternary R, ,,, for each positive integers
n,m, and defined in Q, as follows : Ry, (7, y, 2) iff y — 2 = 2p?™(1 + p™h) for some
J € Z and some h € Z,. They show that subanalytic subsets of Q, are L,-definable,
in particular semi-algebraic subsets. By going to the definable expansion of L,, by the
predicates Dy (z,y, z) iff 2 # y Avy(x —y) < vp(z —y) + k, for each k € Z, one has
quantifier elimination in Q.

4.5. Definable groups

Definable groups in @, have been analyzed or studied in [181], [182], [139]. The
analysis in general p-adically closed fields is still lacking (perhaps [178] would be help-
ful). Definable groups in QQ, can be equipped definably with the structure of a p-adic
Lie group [181]. The analysis was pushed further in [139], where it is shown that for
each such group G, there is an algebraic group H and a Nash isomorphism between
neighborhoods of the identity of G and H(Q,). A Nash function is a definable analytic
function from an open definable subset of Q) into @,. So even though multiplication
on G is given by a Nash function, locally G is definably isomorphic to a group where
multiplication is given by a rational function.

Definable fields in Q,, are just its finite extensions ([181]).

There is a standing conjecture on groups definable in saturated P-minimal expan-
sions of p-adically closed fields [172], which is a p-adic analogue of a (now established)
conjecture about o-minimal groups related to “standard part maps”. We roughly state
half of the conjecture. In a saturated expansion M of a p-adically closed field, for a
definable group GG, G° denotes the intersection of all definable subgroups of G of finite
index, and G°° the intersection of all type-definable subgroups of G of index smaller
than the cardinality of M, and G°° C G°. The conjecture states that if G is a group
definable in a saturated P-minimal expansion of a p-adically closed field, then there
is an open definable subgroup H of G such that H/H equipped with the logic to-
pology is a compact p-adic Lie group whose dimension as a p-adic manifold equals
the P-minimal dimension of H (and G). The full conjecture implies that G°° = G°.
Here is a sample from the paper. Suppose G is semi-algebraic, defined over Q, and
such that G(Q)) is a compact p-adic Lie group, we then have the “standard part map”
st : G — G(Qp), and the authors show that the group G°° coincides with ker(st), and
st induces a homeomorphism between G/G°° (with its logic topology) and the p-adic
Lie group G(Qy). The following was raised 20in [182] : is any open (not necessarily

20. To our knowledge, still open.
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compact) subgroup of a semialgebraic p-adic Lie group semialgebraic ?

5. Integration

Denef’s paper “The rationality of the Poincaré series...” showed how one could ex-
ploit the flexibility of the notion of definable sets and functions with appropriate quan-
tifier elimination, coupled with a finer analysis of these (through cell decomposition),
in order to evaluate p-adic integrals and obtain some precise information on the result.
Denef pointed out in [86] that the interest of his method is not only its “elementary”
nature (compared with resolution of singularities), but that it gives more information on
the result : “This method has the advantage that one can easily control the dependence
on parameters (see paragraph 3) which I don’t know how to do with the resolution of
singularities method.” (ibid., p. 31).

Let (x) be a L-formula anf for each n € N let Nnm be the cardinal of the set {a €
(Z/p"Z)™ : p(a)istruein Z/p"Z} and Ny, the cardinal of the set {a mod p" :
a € Z; and p(a)istrueinZ,} and set P,yp(T) = 3% NuoT", P,,(T) =
Y o2 o Nn,oT™. Denef proved that both power series P, ,(T"), P,,(T') are in fact ra-
tional functions?!. For ¢(x) a polynomial system, the rationality of P, ,(T) was a
question of Serre and Oesterlé, and that of P%I)(T) was a result of Igusa.

The rationality of the power series reduces to showing the rationality of related
p-adic integrals. Here is a sample result.

Theorem 5.1 (Denef). Let S be a L-definable subset of @g‘ , which is contained
in a compact subset. Let h(x) be a definable function from Q} to Q,, such that |h(x)|,
is bounded on S. Suppose that v,(h(x)) € Z U {oo}, for all x € S. Then Zg(s) =
Js |h(x)[5dx, (s € R,s > 0) is a rational function of p~°.

We will not go into the details of Denef’s method, but refer to his very lucid [86].

The key step in Denef’s method is cell decomposition. It allows separation of va-
riables and integration one variable at a time. We already mentioned the control it allows
on the dependence on certain parameters.

Denef’s method was extended by himself and van den Dries to the larger definable
category of subanalytic sets and functions in [89], where they prove similar rationality
results (see section 6).

The study of the dependence on p and under unramified extensions of Denef’s
integrals, using cell decomposition, was taken up successfully by Pas [173, 174] and
Macintyre [165] independently. E. g. writing Zs(T', p) for the above Zg(s) as a func-
tion of 7' = p~* and to stress the dependence on p, they show that there is a polynomial
Q(X,T) € Z[X,T] and a natural number d so that for all sufficiently large primes p,
we have Zg(T',p) = R,(T)/Q(p,T) where R, is a polynomial of degree d. It is in this
work of Pas (see also [176]) that the importance of angular component maps emerged

21. It might be worthwhile to recall that a formal power series is a rational function iff the sequence of
its coefficients satisfy a linear recurrence relation.
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distinctly. He proves a version of cell decomposition for (unramified) henselian valued
fields of characteristic zero with angular components, yielding the quantifier elimina-
tion theorems we mentioned in section 4.1.

Cluckers and Denef [63] applied the method to orbital integrals.

Now, p-adic methods and integrals are used in other contexts. Denef’s method was
used (early on) to study subgroup growth, and for this we refer to the book of Lubotzky
and Segal [161] (see also [138]). For a group G, e.g. finitely generated, one is inter-
ested in the sequences of integers a, (G) and s,,(G) giving respectively the number of
subgroups of index n, or of index at most n.

In [90], Denef and Loeser introduced motivic integration in the context of definable
sets in henselian discretely valued fields. This work was developed further since by
them and others. In particular in [91] they developed “arithmetic” motivic integration,
which enabled them to make a precise connection to p-adic integration.

In the remainder of this section we will try to give some insights into this vast and
deep subject, which is not yet familiar to many model theorists. We will try to focus
on the idea of “enhancing uniformity”. For more appropriate introductions, we refer to
the surveys and introductory accounts by Denef-Loeser themselves [92], Gordon-Yaffe
[121], Hales [128], Yin [212] and the lectures by T. Scanlon [196] aimed at model
theorists.

According to Deligne [82], motives were first introduced by Grothendieck in an at-
tempt to find an explanation for the “family likeness” > of the étale I-adic cohomology
groups of an algebraic variety over a field of nonzero characteristic p, when [ varies
over the primes | # p. In characteristic zero, for a an algebraic variety X over a sub-
field k£ of C, an explanation would be given by comparison isomorphisms between the
(“usual”) integer valued topological cohomology groups H*(X (C),Z) and the f-adic
étale cohomology groups HY,(X,Z;) :

HY(X(C),Z) ® 7y = H.(X,Z))

The theory of motives would be an attempt to find a substitute for the H(X(C),Z)
(nonexistent in characteristic p).

Kontsevich initially introduced motivic integration as an analogue of p-adic inte-
gration over K[[T']]-rational points of algebraic variety and taking values in a ring (of
motives) constructed from the category of varieties. Let k be a field of characteristic
zero and denote by M the Grothendieck ring of algebraic varieties over k. It is the ring
generated by symbols [S], for S an algebraic variety over k, with the relations [S] = [5]
if S is isomorphic to S’, [S] = [S\ §'] 4 [97] if S” is closed in S and [S x S'] = [S][S].
Note that, for S an algebraic variety over k, the mapping S” +— [S’] from the set of
closed subvarieties of S extends uniquely to a mapping W — [W] from the set of
constructible subsets of .S to M, satisfying [W U W'| = [W] + [W'] — [W N W']. Let
L = [A}] and My, = M[L™. Let T be an indeterminate and denote by M 17, the
subring of M.[[T]] generated by M;,.[T] and the series (1 — L4T°)~! witha € Z
and b € N\ {0}. Let X be an algebraic variety over k. For each n € N there is a
scheme £,,(X) such that for any k-algebra R the set of R-rational points of £,,(X) can

22. “Air de famille”, ibid.
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be canonically identified with the set of R[t]/¢""!R[t]-rational points of X. One gets
the scheme £(X) defined as the projective limit £(X) = lim £, (X). As above, the
R-rational points of £(X) can be identified with the R[[t]]-rational points of X. Let
7+ L(X) — L£,(X) denote the projection in this limit, which corresponds to trun-
cation at the level of the rational points above. Kontsevich introduced the completion
M of M, with respect to the filtration F"" M., where F"* M, is the subgroup of
M, generated by {[S]L~% : i — dim S > m}, and defined, for smooth X, a motivic
integration on £(X') with values into M.

Denef and Loeser proved in [90] that the power series
o0
P(T) = 3 I (L(X))]T™
n=0
considered as an element of M,.[[T]], is rational and belongs to M [T ";s. This is an
analogue to Denef’s rationality of p-adic Poincaré series P, ,(T") described before, and
the proof goes, very crudely, along similar lines using (Pas) cell decomposition, some
desingularization, and a suitable extension of Kontsevitch motivic integration.

In their paper [91], Denef and Loeser develop another version of motivic integra-
tion, “arithmetic” motivic integration, and succeed in proving a similar rationality re-
sult, but which specializes for almost all p to the rationality of the p-adic P, ,(T") ! This
refines, in a spectacular way, the previous uniformity result of Pas/Macintyre.

As we mentioned, p-adic methods and integrals are used in many contexts, and
the new motivic integration(s) offered new opportunities. See [194] for applications to
some infinite dimensional Lie algebras. Hales [127] proposed to investigate the repre-
sentation of groups and orbital integrals. One can see e.g. [94] as an example of the
issue of certain objects falling into the definable category.

In [74], Cluckers and Loeser give a new version of motivic integration, now subsu-
ming the two previous theories of Denef and Loeser, and they apply it to p-adic integrals
to extend the classical transfer principle of Ax-Kochen-Ershov between the fields of p-
adic numbers Q, and power series over prime finite fields F,,((¢)). We refer to their
previous [72] for an overview, but we will give a basic illustration from section 2 of
that paper. Assume ¢ is a formula with m free variables. For a field K let h,(K) be the
set of points (z1,...,zy) in K™ such that ¢ is true. When m = 0, ¢ is a sentence and
h,(K) is either the one point set if ¢ is true, or the empty set if ¢ is false. Denef and
Loeser showed that given ¢, there exists a virtual motive M, canonically attached to ¢
such that for almost all prime p, the volume of h,(Q),) is finite if and only if the volume
of hy,(Fp((t))) is finite, and in such a case they are both equal to the number of points of
M, in IF),. In particular, when m = 0, the validity of ¢ is controlled by M. Originally,
M, lies in a certain completion of a subring of the Grothendieck ring of Chow motives
with rational coefficients tensored by the rationals. Call R this tensored subring. The
new motivic foundations allow one to avoid the completion, and to choose M, from the
localization of R obtained by inverting the Lefschetz motive L and 1 —L™", for n > 0.
The authors get similar results for more general integrals than measures. Amazingly,
their transfer theorems allow the transfer to p-adic fields of the “fundamental lemma”
from Langland’s program, see [65]. For more motivic integration a la Cluckers-Loeser
see [71], [75], [76]. Hrushovski and Kazhdan [136] have a theory of integration with
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a similar scope, but on different foundations (see also the expository [212]) : e.g. the
main thrust is a geometric approach “a la Weil” concerning the base field, the basic
formalism for valued fields is the RV-structure (see section 4.1), dimension relies on
the framework from [133] and the residue field and value group are orthogonal ([133]
again), which has an effect at the level of definable subsets of the valued base field.

6. Geometry

It does not seem to be clear yet what is meant exactly by “p-adic geometry”, in
contrast with say “real algebraic geometry” or “real analytic geometry”. “P-adic geo-
metry” usually takes place in the completion of the algebraic closure of (@, and is often
called “rigid geometry” (sometimes “rigid analytic’). We will stick here to the conven-
tion of this paper and stay inside Q,,.

E. Robinson [189] has introduced a close p-adic analogue to the real spectrum of
real (semi-) algebraic geometry (see also [53, 39], but in particular [53] or [41] for
a hands-on treatment). But it did not have the success of its real analogue. As a to-
pological space, the p-adic spectrum pSpec(Qp[X]) of the polynomial ring Q,[X] =
Qp[X1,. .., Xy] can be viewed as the space of n-types of pC'F in the language Lo (P,)
but with the topology generated by the formulas defining open semi-algebraic sets
(in the valuation topology). It is a spectral space >’ and there is a dense embedding
Qp — pSpec(Qy[X]). It produces a good notion of dimension for semi-algebraic sets
through chains of specializations, which coincides with the notion introduced by van
den Dries and Scowcroft [99] through a version of cell decomposition and projections
on affine spaces, and with the general setting of van den Dries for dimension of defi-
nable sets in henselian valued fields of characteristic zero [95] (see e.g. [44] or [206]
for the equivalence of these dimensions). In the end, the dimension of a semi-algebraic
set coincides with the dimension of its Zariski closure in algebraic geometry. Scow-
croft [199] has pointed out that there is also a reasonable dimension in the presence of a
cross-section. The p-adic spectrum is used in [49] to study the continuous dependence
on parameters in Kochen’s p-adic analogue of Hilbert’s seventeenth problem. It appears
alsoin [43, 44], and implicitly in [180], to study rings of definable continuous functions.
It is used in [143] to get an analytic version of the p-adic analogue of Hilbert’s seven-
teenth problem. In the nonarchimedean context (of algebraically closed valued fields),
it seems that the idea of compactifying varieties by appropriate points has succeeded
through “Berkovich spaces” (see [101]), which can be closely related to suitable spaces
of types coming from geometrical stability theory (see [137]).

Cluckers [56] has proved the remarkable fact that given two semi-algebraic sets,
there is a definable bijection between them if and only if they have the same dimension
(as above). This insight has been used in [68] to give an alternative proof of Denef’s
results on the rationality of Poincaré series, which uses a minimum of integration.

Euler characteristics and Grothendieck rings of a first-order structure were introdu-
ced to investigate such questions as how much of finite combinatorics carries over in

23. Le. it is Tp, quasicompact with a basis of compact-open sets closed under intersection, and every
closed irreducible set is the closure of a unique point; or equivalently, homeomorphic to the prime spec-
trum of a commutative ring.
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a definable setting, see [150]. For example, the Grothendick ring of the field C is the
Grothendieck ring of varieties M described in section 5, extended to constructible sets.
We now know [67] that the Grothendieck ring of Q,, is trivial, which is an indication
of limitations in the above question, e.g. they give a definable bijection between Z,
and Z,\ {0}, in constrast with say the intervals [0, 1] and (0, 1] in R where there is no
such bijection. This is closely related to the previous result of Cluckers. Cluckers and
Edmundo have a «relative » version of these notions [64] where the problem for Q,, is
not yet settled.

Darniere has some work on the lattice of closed semi-algebraic sets in n-space [80].

Though not definable, the genus of an algebraic p-adic function field over Q, is
first-order elementary in the class of such function fields [48]. It is known that a p-
adically closed field K is existentially definable in a function field 7'/ K [203] (see also
[148]). In fact, we now know that one can code Hilbert’s tenth problem in the existential
theory of those function fields, see section 7 below.

In his famous paper [9], Denef answered a question posed by Serre and Oesterlé
about the rationality of Poincaré series associated to p-adic algebraic varieties. Serre
and Oesterlé had posed similar questions about closed analytic subsets of Z,". In still
another remarkable paper [89], Denef this time with van den Dries, transposed his me-
thods to the setting of p-adic analytic functions. But to carry out their program, they had
to first lay the foundations and develop a p-adic analogue of the theory of real semi-
and subanalytic sets, and of the appropriate first-order elimination theory. At the same
time this new model-theoretical outlook also feed back into real analytic geometry, e.g.
with shorter proofs or more explicit versions of known results.

Roughly, the analytic elimination theory is based on the idea of using a Weierstrass
factorization theorem for analytic functions to reduce to the semi-algebraic context. The
key first-order language L2 consists of the following : (i) unary predicates P,,n > 1to
denote the set of n-th powers ; (ii) a binary function symbol D to denote « truncated di-

vision », i.e. D(x,y) = x/y, if y # 0 and v(z) > v(y), and D(z,y) = 0 otherwise >*;

(iii) a m-ary function symbol for each formal power series in Z,[[ X1, ..., X,,]] with
coefficients converging to 0. They show that the first-order theory of Z, admits quanti-
fier elimination in this language. The setting of the geometric theory is p-adic analytic
manifolds, but we will stick to affine space to give a rough idea. A subset S C Qj is
called semi-analytic at the point x € Qj if x has an open neighborhood U such that

U N S is a finite union of sets of the form

{yeU:f(y)=0,q1(y) € Q)" ...,gx(y) € Q) "}
where f,g1,...,gr are analytic functions on U, and ngy,...,n; are positive integers
and Q, """ denote the nonzero n;-th powers. The set S is called semi-analytic if it is
semi-analytic at each point of QQj;. The set .S is called subanalytic at the point x € Q)
if there is an open neihborhood U of x and a semi-analytic subset S” C U X Zév for
some N, such that U N S = 7(S’), where 77 : U X Z}],V — U is the projection map.
The set S is called subanalytic if it is subanalytic at each point of Q). The set S is

24. The function D is reminescent of some artefacts when blowing up points in algebraic geometry.
A relationship between desingularization and model theory is pointed out by the paper of Denef and
Schoutens [93] on the existential theory of the field F,, ((7')).
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called closed analytic if it is closed and each x € S has an open neighborhood U with
UNS ={y € U: f(y) = 0} for some analytic function f on U. Sample results :

subanalytic subsets of Z]]DV[ coincide with the L2 -definable ones ; subanalytic subsets

of Zf, are semi-analytic. They show that if S C ZZ],W is subanalytic and V,, g, forn € N,

denote the number of elements in the set {x mod p" : x € S}, then the Poincaré series
Ps(T) =5, _oNnsT" is rational.

Interestingly, this work has consequences on the complexity of solutions to polyno-
mial systems. Consider a polynomial system F;(z1,...,z,) = 0,7 = 1,..., k, where
F; involves only m; monomials with nonzero coefficients and ZZ m; = M. A result
of Khovanskii says that over R there is a bound b(n, M) such that if such a system has
finitely many solutions in R™ then it has at most b(n, M) such solutions. Denef and
van den Dries show that for each prime p there is a bound 3, (n, M) such that if such a
system has finitely many solutions in Z; satisfying z; # 0 mod p then it has at most
Bp(n, M) such solutions. Lipshitz [157] has shown that the bound (3,(n, M) can be
taken independent of p. For further similar results see [192], [208].

The paper of Denef and van den Dries has been influential and triggered work in
the same vein on non-archimedean analytic functions (see e.g [158]). See [160], [191],
[59], [61], [62], [66], [70] for further work on p-adic analytic and subanalytic sets and
functions. In particular [70] covers many redutcs of @, betwen the semi-algebraic and
the subanalytic structures, and [62] deals with finer geometrical properties.

The paper of Denef and van den Dries is set up for analytic functions on the p-
adic integers, the natural domain for the p-adic exponential function. For x € Q,, the
usual exponential series e = Y o | La™ converges only if v,(z) > 1. Note that,
(1 + p)* makes perfect (usual) sense when x € N, so that one gets by continuity a
bona fide function E,(x) = (1 + p)* : Z, — Z,, such that £,(0) = 1, E,(x +
y) = E,(z)E,(y), and in fact E,(z) = ¢*°8(1P)_In parallel with the work motivated
by Tarski’s problem on the real exponential function and which would culminate in
Wilkie’s proof of model-completeness and o-minimality, there was some work on the
natural p-adic exponential £, initiated by Macintyre [23, 163]. It follows from [98] that
the structure of the exponential ring (Qp, Z,, E},) is P-minimal. Macintyre has some
unpublished notes on (effective) model-completeness for (Z,, E,) .

The tree-like structure of p-adic numbers has not been scrutinized much by model
theorists. Halupczok’s paper [129] seems to be a first step. A tree is associated to a
semi-algebraic set as follows. Suppose that X is a semi-algebraic subset of Q) and
for each integer £ > 0, let X, be the image of X N Z; under the projection Z; —
(Z/p*Z)". The disjoint union T'(X) = Uy Xy carries a tree structure defined by the
projections (Z/p*T1Z)" — (Z/p*Z)™. The main conjecture is that there are prescribed
combinatorial restrictions on 7'(X) related to the p-adic dimension of X (“T'(X) is a
tree of level dim X7).

7. Algorithmics

Algorithmics is an aspect of the p-adics where some basic questions are stil unans-
wered.
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The precise complexity of the decision problem for pC'F' is still unknown. In par-
ticular, it is still not known if pCF' has an elementary recursive decision procedure.
In that direction, [108] is still the most precise analysis. We recall that because of the
value group, the complexity is at least that of the theory of Z-groups (Presburger arith-
metic) which is known to be doubly exponential. There are results for the restricted
class of linear L p;,-formulas, i.e. where no multiplication occurs, giving (roughly) a
singly exponential procedure, see [207].

Any finite subtheory of pC'F’ is undecidable [34].

Hodgson observed in [15] that the additive group of Q, (or Zj), as well as the
multiplicative group, is decidable by finite automaton. But there seems to be no hope to
get to the ring structure in this way (see [188]).

The decidability of the ring of p-adic algebraic integers is treated in [186], [77],
and [113] (see also [78]), and there is related work in [197]. The decidability of the ring
of totally p-adic algebraic integers is treated in [113] and [79]. This is in contradistinc-
tion with the result of Julia Robinson that the ring of totally real algebraic integers is
undecidable.

For a fixed p, the decidability of the first-order theory of all finite extensions of ),
is an open problem.

We know from [170] and [109] that the existential theory of a p-adic function field
of an algebraic variety over Q, is undecidable, when p is odd. Kim and Roush ([146])
had proven the case of the field of rational functions @, (X) when p is odd. Degroote
and Demeyer [81] have recently given a new and shorter proof, for all p, of the case of
Qp(X), by relying more on the theory of quadratic forms. It is still open if any of the
above hold for p-adically closed base fields with a non-archimedean value group, even
for the full elementary theory. It would be interesting to have for Q,(X), a proof of
undecidability somewhat closer to the situation over R, where one can rely on strong
representation theorems by sums of squares (see [179]). If possible, a similar proof
over the p-adics, even for the full elementary theory, would probably require some new
insight, e.g. perhaps on bounds in Kochen’s analogue of Hilbert’s 17th problem (on this
see [185]).

Scowcroft has observed that definable Skolem functions are effective [198].

For fixed n > 1, it is not known if the ring of continuous definable functions
J + Qp — Qp is decidable or not. Note that in the case of R, it is known 2 to be
undecidable for n > 1, but the case n = 1 is still open. It is known that the ring of all
continuous functions f : Q) — Qp is undecidable [6].

The interest for computer packages 2° to perform calculations in Qp has triggered
interest in effective algebraic methods in Q,,, see for example [120]. In this vein, some
hands-on methods of Krasner have found a new life in [177]. Such methods are often
related to definability issues and would probably be worth looking into.

25. By transposing the arguments in [162].
26. E.g. PARI, MAPLE PADIC, MAGMA, SAGE, ....
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A somewhat simple @, analogue of Sturm’s algorithm to determine the number of
roots of a real polynomial in a given interval was spelled out by T. Sturm and Weisp-
fenning in [208]. They provide algorithms for counting and isolating all p-adic roots
of monic polynomials over the rationals by appropriate p-adic balls. The method is po-
lynomial space in all input data including the prime p. But one is still puzzled by the
disarming simplicity of Sturm’s algorithm in the reals, and its strong consequences on
complexity of the decision problem (see [108]).

8. Other topics

Some constructive aspects of @, in the sense of intuitionistic logic, have been
studied in [131].

There is some work covering pairs of p-adically closed fields [83, 155, 156], and
the already mentioned [51] showing the absence of the independence property for dense
pairs of p-adically closed fields.

There is a well developed p-adic (as well as real) analogue of pseudo-algebraically
closed fields (PAC), for this see [106, 102, 103, 104, 153, 154, 111, 112, 114, 115,
116, 184, 130]. This is also related to the above decidability results for rings of p-adic
algebraic integers.

There is some work on additive reducts of the ring structure on Q,, [168], [159], but
the situation is far less clear than for R.

The papers [209], [126] make a connection with differential fields, but where the
derivative(s) have little interaction with the valuation.

What we could call p-adic algebra is rather less known and developed than real
algebra and seems more intricate. There are papers going in various directions, e.g.
[25], [43, 44], [49], [123, 124], [118], [205]. There is some interesting ongoing work
by Guzy and Tressl to work out a p-adic analogue of the real closed rings of N. Schwartz
(see [125]).

Scanlon [195] has some results, using model theory, on the dynamics of analytic
maps on the unit disc in a complete discretely valued field.

The function 6,(x) = %(m — zP) is a plain polynomial function, which appears

indirectly in Kochen’s p-adic analogue of Hilbert’s 17th problem inside his y-function :

v(x) = % @ _xi';)‘;ﬁ_l =% 51?{’:5)96))2_1. But in view of the role of §,, in the fundamentals of

the p-adic numbers viewed as Witt vectors over IF), ([142], see also [50]), and the fact
that this is the restriction of the p-derivation used in the work of Buium (see [54]), one
wonders if it could shed some new light on the model theory of Q,,.
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