
RETURNING TO SEMI-BOUNDED SETSYA'ACOV PETERZILAbstra
t. An o-minimal expansion of an ordered ve
tor spa
eby bounded predi
ates is 
alled a semi-bounded stru
ture. It isshown that every suÆ
iently saturated su
h stru
ture is either lin-ear (hen
e a redu
t of an ordered ve
tor spa
e) or, after a modi�-
ation of the language, it has an elementary substru
ture in whi
hevery interval admits a de�nable real 
losed �eld.As a result 
ertain questions about de�nably 
ompa
t groups
an be redu
ed to either ordered ve
tor spa
es or expansions ofreal 
losed �elds. Using the known results in these two settings,the number of torsion points in de�nably 
ompa
t abelian groupsin expansions of ordered groups is given. Pillay's Conje
ture forsu
h groups follows. 1. Introdu
tionAn expansion of an ordered abelian group or an ordered ve
tor spa
eby bounded predi
ates is sometimes 
alled a semi-bounded stru
ture (a
ombination of semi-linear and bounded). The de�nable sets in su
h astru
ture are 
alled semi-bounded sets. Stru
tural results about semi-bounded sets 
an be found in [21℄, [17℄, [22℄,[13℄, [5℄ (in the o-minimalsetting) and [1℄ (in arbitrary ordered abelian groups). Some results in[15℄ apply as well.In this paper I return to the semi-bounded setting, in order to redu
ea question about the torsion points of a de�nably 
ompa
t groups ino-minimal expansions of ordered groups to similar results in expansionsof real 
losed �elds, [9℄, and in ordered ve
tor spa
es, [11℄.The idea is as follows: Let M = hM;<;+; � � �i be a semi-boundedstru
ture whi
h is assumed to be not linear (see [13℄). By the Tri-
hotomy Theorem, [19℄, a real 
losed �eld is de�ned on some open�xed interval I � M . An interval J � M will be 
alled short if it isin de�nable bije
tion with I; otherwise it is 
alled long. The stru
tureM will be 
alled short is every bounded interval in M is short.As will be observed, every de�nably 
ompa
t group in a short modelis 
ontained in the 
artesian produ
t of some bounded interval andDate: A preliminary version, O
tober 31, 2007.1



2 PETERZILtherefore de�nable in an o-minimal expansion of a real 
losed �eld.Hen
e, all results about de�nably 
ompa
t groups in expansions of real
losed �elds hold when the model is short.Given a suÆ
iently saturated arbitrary semi-bounded nonlinear stru
-ture M, let D be the 
olle
tion of all short elements in M (those ele-ments a su
h that (0; jaj) is short). One 
an modify the stru
ture Mto a new o-minimal stru
ture 
M, with the same universe, basi
ally byextending all partial 0-de�nable linear maps de�ned on long intervalsto global linear maps, and at the same time restri
ting d
l(;), su
h thatevery de�nable set in the original M is still de�nable in 
M. Havingdone that, the set D be
omes an elementary substru
ture of 
M.Now, every M-de�nable group is de�nable in 
M and be
ause 
Mhas a short elementary substru
ture D, one 
an transfer the Edumndo-Otero result, [9℄, about the torsion points of de�nable groups in expan-sions of real 
losed �elds to groups de�nable in 
M.Together with the result of Eleftheriou and Star
henko, [11℄, on de-�nable groups in ordered ve
tor spa
es, one obtains (see Theorem 7.6below):Theorem 1.1. If G is a de�nably 
onne
ted, de�nably 
ompa
t abeliangroup in an o-minimal expansion of an ordered group then for every k,Tork(G) = (Z=kZ)n:Sin
e this is the only missing ingredient for proving Pillay's Conje
-ture for de�nable groups in o-minimal expansions of groups, one may
on
lude the 
onje
ture in this setting as well (see Se
tion 8).Remark 1.2. The treatment of semi-bounded sets suggested here doesnot make use of the known stru
ture theorems for de�nable sets insemi-bounded stru
tures (see [17℄ and [5℄), where the analysis is givenin terms of bounded sets an unbounded intervals. Instead, boundedsets are repla
ed by those bounded sets that are 
ontained in Dn andunbounded intervals are repla
ed by long intervals. At the end of thepaper several 
onje
tures are made about possible stru
ture theoremsfor de�nable sets and groups semi0-bounded stru
tures.Notation The lettersM;N ;D are used for stru
tures whose universe,respe
tively, is M;N;D.A
knowledgments I returned to the semi-bounded setting after sev-eral questions from Alessandro Berardu

i about the impli
ations that



RETURNING TO SEMI-BOUNDED SETS 3the Tri
hotomy Theorem might have on topologi
al properties of o-minimal expansions of ordered groups (questions whi
h I was not ableto answer). 2. The basi
 definition and propertiesAs is shown by Edmundo in [5℄, semi-boundedness has several equiv-alent de�nitions. Here I use the following:De�nition 2.1. A semi-bounded stru
ture M = hM;<;+; � � �i is ano-minimal expansion of an ordered group without poles. Namely, thereis no de�nable bije
tion between a bounded interval and an unboundedinterval. Note that this is a property whi
h is preserved in elementarilyequivalent stru
tures.Example 2.2. (1) Every ordered ve
tor spa
e is semi-bounded.(2) The expansion Rbdd of the ordered group of real numbers by re-stri
ted multipli
ation is a semi-bounded stru
ture in whi
h every in-terval is short. In fa
t, very bounded semi-algebrai
 set is de�nable inRbdd .(3) Any elementary extension of Rbdd is still semi-bounded, but onlyintervals of �nite size are in de�nable bije
tion with (0; 1), hen
e (see3.3 below) only those intervals admit a real 
losed �eld stru
ture.2.1. Expansions of ordered groups. GivenM an o-minimal expan-sion of an ordered group, there are three possibilities for the stru
tureon M:(a) M is linear whi
h, by [13℄, is equivalent to saying that M is aredu
t of an ordered ve
tor spa
e over an ordered division ring.(b) M is nonlinear and therefore, by the Tri
hotomy Theorem, [19℄,a real 
losed �eld whose ordering agrees with that of M, is de�nableon some interval (�a; a). There are two sub-
ases to 
onsider:(b1) M is semi-bounded.(b2) M is not semi-bounded. In this 
ase, one 
an endow thewhole stru
ture M with a de�nable real 
losed �eld R (but + mightnot be the addition of the �eld). Indeed, this is 
laimed in [19℄, butthe referen
e there is not pre
ise, so I spell out the argument: Assumethat � : (b1; b2)! (
;+1) is a de�nable map with limt!b2 �(t) = +1.Without loss of generality, b2 � b1 < a.Using translation, it 
an be assumed that b1 = 0 and b2 < a. How-ever, being inside a real 
losed �eld, the intervals (0; a) and (0; b2) are



4 PETERZILin de�nable bije
tion, so (
;1) (and therefore also (0;1)) is isomor-phi
 to the positive elements of R. This is 
learly enough to get a real
losed �eld on the whole of M.2.2. Model theoreti
 preliminaries. Assume now that M is an o-minimal expansion of an ordered group, whi
h is semi-bounded.An immediate 
orollary of this assumption is: If f : (a; b) ! M isa de�nable fun
tion on a bounded interval then f is bounded on (a; b)and therefore the limit of f(t) as t tends to either a or b exists in M .Proposition 2.3. If M � N and M1 is the 
onvex hull of M in Nthen M1 � N .Proof. Without loss of generality, the language 
ontains a 
onstantfor every element of M . It is suÆ
ient to see that d
lN (M1) = M1.Equivalently, for every M -de�nable fun
tion F (�x) in N , and every �afrom M1, F (�a) 2M1. Use indu
tion of the number of variables in F .Assume that F ( �w; y) is of n+1 variables, n � 0, and �a and b are fromM1 su
h that (�a; b) 2 domF . Let f �w(y) = F ( �w; y). By partitioningthe graph of F , we may also assume that for every �w, the domain off �w is either empty, or it is an open (bounded or unbounded) interval.Also, without loss of generality, every f �w is monotonely in
reasing (thede
reasing 
ase is handled similarly).Assume �rst that domf�a = M . In this 
ase, Sin
e b is in the 
onvexhull of M , there are b1 < b < b2, b1; b2 2 M , and hen
e f�a(b1) �f�a(b) � f�a(b2): Sin
e f�a(b1); f�a(b2) 2 d
lN (�a) one may use indu
tion to
on
lude that they are in M1, so by 
onvexity so is f�a(b).If domf�a = (
;+1), for 
 2M then 
 is in d
lN (�a) hen
e, by indu
-tion it is in M1. One 
an now �nd b2 2 M su
h that 
 < b < b2 andpro
eed as before. The remaining 
ase is handled similarly. �Re
all that for ordered stru
turesM� N ,M is said to be Dedekind
omplete in N if for every element n 2 N , if m1 < n < m2 for somem1; m2 2 M then n has a standard part in M . Namely, there existsm 2 M with no element of M stri
tly between n and m. Note thatif M1 is 
onvex in N then it is 
learly Dedekind 
omplete in it. Thefollowing powerful theorem of Marker and Steinhorn [14℄ will be usedbelow:Theorem 2.4. If M is an elementary substru
ture of N whi
h ismoreover Dedekind 
omplete in N then for every N-de�nable set X �Nk, the set X \Mk is de�nable in M.Corollary 2.5. Assume that F : S � (a; b) ! M is a de�nable mapsu
h that for every s 2 S, the map fs(x) = F (s; x) is a bije
tion between



RETURNING TO SEMI-BOUNDED SETS 5the bounded interval (a; b) and (0; ds) for some d > 0. Then there isan m 2M su
h that for every s 2 S, ds < m.Proof. If not, then in an elementary extension N of M, there existn 2 N whi
h is greater than all elements ofM, and s 2 S su
h that fsis a de�nable bije
tion between (a; b) and (0; n). LetM1 be the 
onvexhull ofM. Then by Proposition 2.3,M1 is an elementary substru
tureof N , whi
h is obviously Dedekind 
omplete in N .Let � be the interse
tion of the graph of fs with M1 � M1. ByTheorem 2.4, � is de�nable inM1 and it is still the graph of a de�nablefun
tion. Moreover, be
ause fs was a bije
tion, for every y > 0 inM1 there exists x 2 (a; b) � M1 su
h that fs(x) = y. Thereforethere exists in M1 a surje
tive map between a sub-interval of (a; b)and the interval (0;+1). This is impossible be
ause M1 and M areelementarily equivalent. �3. Short and long intervalsHere M is assumed to be semi-bounded and in addition nonlinear.Fix an element, 
all it 1 > 0, su
h that a real 
losed �eld, whoseuniverse is (0; 1) and whose ordering agrees with the M-ordering, isde�nable in M. Assume from now on that 1 2 d
l(;).De�nition 3.1. Two open intervals (a; b) and (
; d) are 
alled equiva-lent if there exists a de�nable bije
tion between them.An element a 2M is 
alled short if either a = 0 or (0; jaj) and (0; 1)are equivalent; otherwise it is 
alled tall. An interval (a; b) is 
alledshort if b� a is small, otherwise it is 
alled long.The following lemma 
an be proved using standard o-minimal ar-guments, together with the fa
t that every de�nable fun
tion on abounded interval has a limit at the endpoints of the interval.Lemma 3.2. If (a; b) and (
; d) are equivalent intervals then there ex-ists a de�nable and 
ontinuous, stri
tly monotone bije
tion betweenthem (if the intervals are bounded one 
an always 
hoose the bije
tionto be in
reasing).Corollary 3.3. For any interval I � M , I is short if and only if Iadmits a de�nable real 
losed �eld whose ordering agrees with that ofM.Proof. If I is short then, by the last lemma it has a de�nable orderedpreserving bije
tion with (0; 1) so admits a de�nable real 
losed �eld.For the 
onverse, if I admits a real 
losed �eld stru
ture, then aftertranslation one may assume that either (0; 1) � I or I � (0; 1). In



6 PETERZILboth 
ases one gets an interval inside another real 
losed �eld so thetwo are in de�nable bije
tions. (A
tually, by [16℄, the �elds on (0; 1)and I and are also de�nably isomorphi
 but this will not be requiredhere). �Lemma 3.4. (1) If I is a short interval then it is de�nably bije
tivewith any subinterval of I. In parti
ular, if a is short and 0 <jbj < jaj then b is short.(2) If (a; b) and (b; 
) are short interval then so is (a; 
).(3) If a and b are short elements then so are a + b and �a.Proof. (1) By the last lemma, I admits a reals 
losed �eld stru
turewhose ordering agrees with the M-ordering. In real 
losed �eld anytwo 1-dimensional open intervals are de�nably bije
tive.(2) Sin
e (a; b) is in bije
tion with (0; 1) is it also in bije
tion with(0; 1=2), and similarly, (b; 
) is in bije
tion with (1=2; 1).(3) This is immediate from (2). �Lemma 3.5. Assume that f : X ! M is a de�nable fun
tion whosedomain X is a de�nably 
onne
ted set, 
ontained in a 
artesian produ
tof short intervals. Then f(X) is 
ontained in a short interval.Proof. If not, then by de�nable 
hoi
e there is a de�nable 
urve in Xwhi
h is in bije
tion with a long interval in M . Using proje
tions onegets a bije
tion between short and long intervals. Contradi
tion. �Proposition 3.6. If M is jT j+-saturated then the set D of all shortelements in M is a proper 
onvex subgroup of M . In parti
ular, it isnot de�nable.Proof. By 3.4, it is left to see that D 6= M , and here saturation isimportant sin
e without it this might fail (
onsider the reals with re-stri
ted multipli
ation). Assume towards 
ontradi
tion that D = M .Consider the type p(x) whi
h says, for every uniformly de�nablefamily of inje
tions from (0; 1) into M , that none of these maps is abije
tion between (0; 1) and (0; x). By our assumptions, this type isin
onsistent, hen
e there are �nitely many de�nable families of inje
-tions from (0; 1) into M su
h that for every x 2 M , one su
h inje
tiongives a bije
tion between (0; 1) and (0; x). In parti
ular, there existsan a 2 M and a de�nable family of bije
tions fs : (0; 1) ! (0; s), forall s > a. This 
ontradi
ts Corollary 2.5. �An immediate 
orollary of the non-de�nability of D is:Lemma 3.7. Let fIs : s 2 Sg be a uniformly de�nable family of inter-vals in a jT j+-saturated M. If all intervals are short then there existsa short a 2 M su
h that the length of every Is is at most a. If all



RETURNING TO SEMI-BOUNDED SETS 7intervals are long then there exists a tall b 2M su
h that the length ofevery Is is not less than b.4. Affine and linear fun
tionsHere M is a semi-bounded non-linear stru
ture.Some of the results in this se
tion, su
h as 4.3 and 4.7, were provedin [15℄ for unbounded intervals instead of long ones.De�nition 4.1. A fun
tion f : (a; b) ! M is 
alled linear on (a; b) iffor every x; y 2 (a; b), if x+y 2 (a; b) then f(x)+f(y) = f(x+y): Thefun
tion is aÆne if for some (all) 
 2 (a; b), the fun
tion f(
+x)�f(
)is linear on (a� 
; b� 
).f : (a; b) ! M is 
alled lo
ally linear (aÆne) if for every x 2 (a; b)there exists a neighborhood on whi
h f is linear (aÆne).The following is standard:Lemma 4.2. If f : (a; b) ! M is de�nable and lo
ally linear (aÆne)then f is linear (aÆne) on (a; b).Lemma 4.3. If (a; b) is an interval in M (a; b 2 M [ f�1g) andf : (a; b) ! M is 0-de�nable then there are a = a0 < � � � < an = b ind
l(;) su
h that whenever I = (ai; ai+1) is long the restri
tion of f toI is aÆne.Proof. The fun
tion f 
an be assumed to be 
ontinuous and stri
tly in-
reasing. The set of all x su
h that f lo
ally aÆne near x is de�nable,and therefore there is a 0-de�nable partition a = a0 < � � � < an = bsu
h that on ea
h (ai; ai+1) either f is lo
ally aÆne (hen
e aÆne on thewhole interval) or f is nowhere aÆne. It is suÆ
ient to see that when-ever the latter o

urs then the interval must be short. Assume towardsa 
ontradi
tion that f is nowhere aÆne on (ai; ai+1) and that the in-terval is long. Noti
e that the interval remains long in any elementaryextension hen
e one may assume that M is suÆ
iently saturated.Consider the map g(x) = f(x+1)�f(x), de�ned on the long intervalJ = (ai; ai+1�1). The fun
tion g is 
ontinuous and, by our assumptionon f , it is positive everywhere. The interval J 
an be partitioned into�nitely many sub-intervals su
h that g is either 
onstant or stri
tlymonotone on ea
h sub-interval.The following is again obtained by a standard o-minimal argument.Claim 4.4. If g is 
onstant on a sub-interval J 0 then f is aÆne on J 0.Be
ause f is assumed to be nowhere aÆne, it follows that g is stri
tlymonotone on ea
h sub-interval of J and by 3.4, at least one of theseintervals, whi
h is denoted by J again, is long.



8 PETERZILClaim 4.5. There is d 2 D su
h that for every x 2 J , g(x) < d.Proof. Indeed, 
onsider the family of maps, hx : (0; 1) ! M , x 2J , given by hx(t) = f(x + t) � f(x). This is a de�nable family ofstri
tly in
reasing 
ontinuous bije
tions between (0; 1) and the interval(0; g(x)), hen
e (
learly, all intervals (0; g(x)) are short) by Lemma3.7, there exists a bound d 2 D su
h that g(x) < d for all x 2 J , thusproving the 
laim.It now follows that the map g, whi
h is inje
tive on J , sends J intothe interval (0; d). This is impossible be
ause J is long while (0; d) isshort. �Two aÆne fun
tions f1 : I ! M and f2 : J ! M are said tobe equivalent if the asso
iated linear fun
tions f1(a + x) � f1(a) andf2(b + x)� f(b), a 2 I, b 2 J , have the same germ at 0.Remark 4.6. Note that two linear fun
tions, de�ned on the same openinterval I are equivalent if and only if they agree one at least onenonzero element in their 
ommon domain (see for example Proposi-tion 4.1 in [13℄).As in the 
ase for unbounded intervals, one 
an prove that there isno in�nite de�nable family of non-equivalent linear fun
tions on longintervals:Lemma 4.7. If ffs : s 2 Sg is a 0-de�nable family of linear fun
tions,fs : (0; as) ! M then there are �nitely many 0-de�nable linear fun
-tions �1; : : : ; �k, and a short b 2M , su
h that for every s 2 S,(i) Either jIsj < b, or(ii) For some i = 1; : : : ; k, the fun
tion fs is the restri
tion of �i to Is(in parti
ular, Is is 
ontained in dom(�i)).Proof. The equivalen
e relation on linear fun
tions indu
es a de�nableequivalen
e relation � on S and by de�nable 
hoi
e there exists ade�nable set of representatives S1 � S for the �-
lasses.For every r 2 S1, let Jr = Ss�r Is, and let �r = Ss�r fs (this makessense be
ause of the equivalen
e). Our goal is to show that there is a�nite set F � S1 su
h that for all r 2 S1 n F , the interval Jr is short.Indeed, if that is proved then, by 3.7 there is an upper bound b on thelength of all Jr, r 2 S1nF , and therefore jIsj < b for all s � r 2 (S1nF ).Assume towards 
ontradi
tion that there are in�nitely many r 2 S1for whi
h Ir is long. By 
ontinuity arguments (applied to the end-points of Js) one may �nd an in�nite de�nable S2 � S1 and a tall `su
h that for every r 2 S2, (0; `) � Jr. Sin
e the equivalen
e 
lass of alinear fun
tion is determined by its value at a single non-zero element,



RETURNING TO SEMI-BOUNDED SETS 9it is possible to re-parameterize the family f�r : r 2 S2g by �r(`) andso assume that S2 is an open interval in M .Fixing a generi
 r0 2 S2 then, by 
ontinuity, for r suÆ
iently 
loseto r0 the element a = �r(`) � �r0(`) is a short element. The fun
tion�r(t)��s0(t) is now a linear fun
tion (hen
e 
ontinuous and monotone)sending the long interval (0; `) onto the short interval (0; a). Contra-di
tion.It was therefore shown that for all but �nitely many r 2 S1, the do-main of �r is a short interval, whose length is bounded by some shortb 2 D. It is left to see that this �nite set of r's is 0-de�nable. This 
anbe done by 
onsidering the 0-de�nable set of intervals fJr : r 2 S1g. Ifall Jr's are short there is nothing to do. Otherwise, what was shownso far implies that there are only �nitely many Jr's of maximal length(possibly in�nite). This set is 
learly 0-de�nable so 
an be omitted,
onsider the remaining Jr's and repeat the pro
ess, until there are noremaining long Jr's in the family. �Remark 4.8. In the notation of the last proof, it is possible that S1will be in�nite, namely that there will be an in�nite family of nonequiv-alent linear maps, all de�ned on short intervals. This will imply thede�nability of lo
al multipli
ation over the group hM;+i but does not
ontradi
t semi-boundedness.The following lemma will not be used in the subsequent arguments.It is in
luded here for a possible future use.Lemma 4.9. Assume that C �Mn+1 is an open 
ell, C1 the proje
tionof C on the �rst n 
oordinates. If F : C !M is a 0-de�nable fun
tionthen there are �nitely many 0-de�nable linear fun
tions �1; : : : ; �k, ea
hde�ned on a long interval, and for every x 2 C1, there is a partition ofthe interval Cx as follows: a0(x) < a1(x) < � � � < ar(x) (r dependingon x), and for every i, either(i) The interval (ai(x); ai+1(x)) is short, or(ii) The fun
tion fx(y) = F (x; y) is aÆne on (ai(x); ai+1(x)) and themap t 7! fx(ai(x) + t)� fx(ai(x)) is the restri
tion of one of the �0js.Proof. The initial partition of every Cx is given by Lemma 4.3. Forevery x, 
onsider all intervals in the partition of Cx on whi
h fx isnowhere aÆne. This is a de�nable family of short intervals, hen
e by3.7, there is a short upper bound b on the length of all of these intervals.The remaining intervals in Cx are those on whi
h fx is aÆne andnow 
onsider the family of all fx, restri
ted to these intervals, as xvaries in C1 (namely, for every x 2 C1 there might be �nitely many



10 PETERZILsu
h fun
tions). By translation, one may assume that ea
h su
h fun
-tion is linear. Applying 4.7 one obtains �nitely many de�nable linearfun
tions �1; : : : ; �k and a short element b, su
h that every interval inthis family is either of length less than b or is a restri
tion of some �i,i = 1; : : : ; k. This implies the lemma. �5. Changing the languageAssume now that M is semi-bounded, non-linear and jT j+-saturated.Let � be the 
olle
tion of all 0-de�nable linear fun
tions whose do-main is a long interval of the form (0; a�). For every 0-de�nableX � Dnin M, let RX be an n-pla
e predi
ate symbol and let LD be the 
ol-le
tion of all those predi
ates.Let eL = f<;+; 1g [ LD [ f� : � 2 �g;where ea
h � is a unary fun
tion symbol. Let fM be the 
orrespondingeL-stru
ture whose universe is M and all other symbols in the languageinterpreted naturally (with � taken to be 0 outside (0; a�)).Obviously, every 0-de�nable set in fM is 0-de�nable in M. The
onverse is almost true, in the following sense:Theorem 5.1. Let fMC be the expansion of fM by a new 
onstantsymbol for every element in d
lM(;). Then, every 0-de�nable set inthe stru
ture M is de�nable in fMC.Proof. This will be done by indu
tion in a usual o-minimal method. Itis suÆ
ient to show that every 0-de�nable f : U ! M , where U is anopen 
ell Mn, is de�nable in fMC .De�nition 5.2. Let U � Mn be an open set, f : U ! M a de�nablefun
tion. For S � f1; : : : :ng, the fun
tion f is S-bounded if if forall i 2 S there exists d 2 D su
h that �i(U) � [�d; d℄ (where �iis the proje
tion onto the i-th 
oordinate). In parti
ular, every f is;-bounded.Note that if S = f1; : : : ; ng and f is 0-de�nable inM and S-boundedthen its domain is 
ontained in Dn and by 3.5, its image is 
ontainedin a short interval, so after translation by an element of d
lM(;), thefun
tion is fMC-de�nable. Using this notion it is suÆ
ient to prove thefollowing 
laim:



RETURNING TO SEMI-BOUNDED SETS 11Claim 5.3. For every 0-de�nable fun
tion f : U ! M . If f is S-bounded, for some S ( f1; : : : ; ng and i =2 S then f 
an be de�nedusing �nitely many fMC-de�nable sets, together with �nitely many 0-de�nable fun
tions in M whi
h are S [ fig-bounded.On
e the 
laim is proved, then by pro
eeding to handle the S [ fig-bounded fun
tions one 
an eventually rea
h f1; : : : ; ng-bounded fun
-tions, thus proving the theorem.Proof of Claim 5.3.: Use indu
tion on n:For n = 1: As usual, domf 
an be assumed to be either M or aninterval (a; b) with b 2 M [ f+1g (in 
ase domf = (�1; b) f 
anbe repla
ed by f(�x)). The fun
tion f 
an also be assumed to beweakly monotone, and either nowhere aÆne on its domain or aÆne onits whole domain.First, repla
e f by ef(t) = f(a1+ t)�f(a1), with a = 0 if domf = Mand a1 = a if domf = (a; b) (note that \f(a1)" makes sense be
ause fextends 
ontinuously to a1). Hen
e, dom ef is either M , or (0; b�a). Ineither 
ase, ef is 0-de�nable in M and ef(0) = 0.If domf is short then f is 1-bounded, whi
h implies that it is fM-de�nable. If domf is long then, by 4.3, ef(x) must be linear and 0-de�nable in M, therefore it equals �(x) for some � 2 �.In both 
ases, f is 
learly de�ned using ef , +, and a1 2 d
l(;), hen
eit is fMC-de�nable.The n + 1 
ase: Without loss of generality, i = n + 1 =2 S. Bystandard o-minimal methods one may assume the following:(1) The domain of f is an open 
ell C 2Mn+1 whose proje
tion in Mnis denoted by C1:C = f(x; y) 2 C1 �M : h1(x) < y < h2(x)g;for 0-de�nable h1; h2 : C !M [ f�1g su
h that h1 < h2 on C1.(2) For every x 2 C1, the following hold:(a) The �ber Cx is either M , or of the form (h1(x); h2(x)) for h1(x) 2M , and h2(x) 2 M [ f+1g, uniformly in x. (Indeed, if Cx is of theform (�1; b) then f(x; y) 
an be repla
ed by f(�x; y))).(b) The fun
tion fx(t) = f(x; t) is 
ontinuous and is either 
onstant,stri
tly in
reasing in t, or stri
tly de
reasing in t, uniformly in x.(
) Either, for every x 2 C1 the fun
tion fx is nowhere aÆne, or forevery x 2 C1 the fun
tion fx is aÆne on its domain.



12 PETERZIL(d) If Cx 6= M then the limit of fx(t) as t tends to h1(x) (the lowerbound of Cx), exists in M , 
all it �(x).A
tually, all ex
ept 2(d) 
an be a
hieved in any o-minimal stru
ture.The semi-boundedness assumption gives 2(d) as well.First repla
e f by a fun
tion ef de�ned as follows: If Cx = M forevery x 2 C1, let ef(x; t) = f(x; t)� f(x; 0):If Cx = (h1(x); h2(x)) for h1(x) 6= �1, letef(x; t) = f(x; h1(x) + t)� f(x; h1(x)):(by 2(d), fx 
an be extended to h1(x)).The new domain of ef , whi
h will still be 
alled C, is either C1 �Mor f(x; y) : x 2 C1; 0 < y < h2(x)� h1(x)g(where +1� h1(x) is taken to be +1), so ef is still S-bounded. Inboth 
ases, efx(0) = 0 for every x 2 C1.By indu
tion, h1; h2, f(x; 0) and f(x; h1(x)) are fMC-de�nable. Also,f 
an 
learly be re
overed from ef using h1(x), f(x; h1(x)) and +, soit is suÆ
ient to show that ef 
an be de�ned using �nitely many fMC-de�nable sets, together with �nitely many 0-de�nable fun
tions in Mwhi
h are S [ fn+ 1g-bounded.Case 1 For every x 2 C1, the fun
tion fx(t) = f(x; t) is nowhere aÆne.In this 
ase, by 4.3, every interval (0; h2(x)�h1(x)) is short and hen
ethere exists an upper bound b 2 D to the length of all Cx. Namely thedomain of ef is 
ontained in C1 � (0; b), so f is S [ fn + 1g-bounded.Case 2 For every x 2 C1 the fun
tion fx is aÆne on its domain.It follows that every efx is linear. By Lemma 4.7, there exists a shortelement b and there are �nitely many fun
tions �1; : : : ; �k 2 � su
hthat for every x 2 C1, either jCxj < b, or efx is a restri
tion of one ofthe �i's to Cx.By further partitions (using �1; : : : ; �k), it 
an be assumed that eitherfor every x 2 C1, efx is the restri
tion of some �i (same �i uniformly inx), or for every x 2 C1, Cx � (0; b).In the �rst 
ase, ef is de�nable using C and fun
tions in �, so byindu
tion it is fMC-de�nable. In the se
ond 
ase, the domain of ef is
ontained in C1 � (0; b) so it is S [ fn + 1g-bounded. �



RETURNING TO SEMI-BOUNDED SETS 13Lemma 5.1 shows in parti
ular that if a stru
ture M has no polesthen every de�nable set is de�ned using the ordered group stru
ture,partial (or global) 0-de�nable linear fun
tions, and �nitely many boundedsets. This shows that the \no poles" de�nition of semi-boundedness im-plies the one from the introdu
tion. The opposite impli
ation is provedusing automorphisms (see the proof of Theorem 1.2 in [17℄). The equiv-alen
e of the two de�nitions was originally established by Edmundo in[5℄. 6. Extending partial linear maps to global onesFor � 2 �, denote by b� the 
orresponding equivalen
e 
lass of thelinear fun
tion, and let b� be the 
olle
tion of all those equivalen
e
lasses. Noti
e that b� is a ring under point-wise addition. Moreover,be
ause the image of a long interval under a linear fun
tion is also long,b� is 
losed under 
omposition and inverse 
omposition, therefore it isan ordered division ring. A
tually, as in Corollary 9.3 in [19℄, sin
eit was assumed that M is not a linear stru
ture, a real 
losed �eld Ris de�nable in a neighborhood of 0, and therefore the 
ompositionalgroup b� n f0g 
an be embedded in GL1(R) whi
h is 
ommutative. Itfollows that hb�;+; Æi is a
tually an ordered �eld.Lemma 6.1. There exists an expansion of fM to an o-minimal stru
-ture 
M = hM;<;+; fRX 2 eLDg; fb� : � 2 �ig;in whi
h every b� : M !M is a global linear map, extending all 
orre-sponding �0s in � (and all other symbols in eL are interpreted as before).Proof. The �rst step is to expand the stru
tureM� = hM;<;+; f� : � 2 �gi;to a full ordered ve
tor spa
e V = hM;<;+; fb� : � 2 �gi over the�eld b�, where every partial linear map � is extended to a global linearmap b� : M ! M . The existen
e of su
h a V is exa
tly the 
ontent ofTheorem 6.1 in [13℄: Indeed, although there is a linearity assumptionin that theorem, the proof itself is done in the setting of an o-minimalexpansion of an ordered group by partial linear fun
tions, as givenhere. Also, be
ause M is already saturated there is no need to go toan elementary extension in the 
urrent setting.Having V as above, de�ne
M = hM;<;+; fRX 2 eLDg; fb� : � 2 �gi;



14 PETERZILwith the original interpretation of every RX . The goal is to show that
M is o-minimal.Consider the following (see Proposition 5.1 in [13℄):Proposition 6.2. Let V be an ordered ve
tor spa
e over a �eld b�,I = [�a; a℄ a 
losed interval in V , and letV = hV;<;+; fb� : � 2 �g; fP : P 2 Pgibe an expansion of V by some 
olle
tion P of subsets of In, for variousn. Assume also:(i) P 
ontains all those a-de�nable sets in the ordered ve
tor spa
e V .(ii) P is 
losed under de�nability in I, namely, every 0-de�nable set inthe stru
ture I = hI; fP : P 2 Pgi is already in P.Then V eliminates quanti�ers.Let us see �rst why this theorem implies that 
M is o-minimal. Itis 
learly enough to 
onsider �nitely many predi
ates from bL so, bytaking the proje
tion of ea
h su
h RX into D, it is possible to �nda 2 d
lfM(;) \D, su
h that all RX 's are 
ontained in [�a; a℄ for somea 2 D.Let P be the 
olle
tion of all ;-de�nable subsets of In in fM, as nvaries.Claim 6.3. P satis�es assumption (i) and (ii) of Proposition 6.2.Proof. (i) Every a-de�nable subset of In in the ordered ve
tor spa
e isalready in P:The problem is that V has linear fun
tion whi
h do not exist infM. However, by quanti�er elimination in ordered ve
tor spa
es, everya-de�nable set on V n is a boolean 
ombination of solutions to:(1)b�1(x1)+� � �+b�k(xk)+b�k+1(a) = 0 ; b�1(x1)+� � �+b�k(xk)+b�k+1(a) > 0;for b�i 2 b�.On elements of D, b�i = �i and therefore these equalities and inequal-ities are already de�nable in fM and hen
e are in P.For (ii), be
ause every I-de�nable set is already fM-de�nable it is
lear, by the de�nition of P, that it is 
losed under de�nability in I.End of Claim 6.3.



RETURNING TO SEMI-BOUNDED SETS 15Now that the assumptions of Proposition 6.2 are established, onemay 
on
lude that the stru
ture
MP = hM;<;+; fP : P 2 Pg; fb� : � 2 �gi(whi
h expands fM) has Quanti�er elimination.Claim 6.4. 
MP is o-minimal.Proof. By quanti�er elimination, every 0-de�nable set in 
MP is aboolean 
ombination of terms inequalities in the ordered ve
tor spa
estru
ture, and formulas of the form(t1(x1; : : : ; xn); : : : ; tk(x1; : : : ; xn)) 2 X;for some I-de�nable X � Ik and t1; : : : ; tk terms in the ordered ve
-tor spa
e language. It is 
learly suÆ
ient to handle this last type offormulas, whi
h gives rise to 1-variable formulas:(b�1(x) + a1; : : : ; b�k(x) + ak) 2 X;for a1; : : : ; ak 2 M . Be
ause b�(x) + a = b�(x + ��1(a)), every su
hformula de�nes a set of the form:B = fx 2M : (b�1(x+ b1); : : : ; b�k(x + bk)) 2 Xg;for b1; : : : ; bk 2M . Now letA = f(x1; : : : ; xk) 2Mk : (b�1(x1); : : : ; b�k(xk)) 2 Xg:It may be assumed that none of the b�i is 0. Be
ause X � Ik (and Iis short) the set A is also 
ontained in some Jk, for some short J , andtherefore de�nable in the original fM. The set B is now the set of allx 2M su
h that (x; : : : ; x) 2 A� (b1; : : : ; bk). This set is also de�nablein fM and therefore it is a �nite union of intervals.The stru
ture MP is therefore o-minimal and as a result 
M is o-minimal as well. �Remark 6.5. Proposition 6.2 above is exa
tly Proposition 5.1 from[13℄. However, it was pointed out by Belegradek, [1℄, that the proof ofthat proposition 
ontained a serious gap. The gap was then �xed byBelegradek himself, using an idea of Hrushovski, to yield a similar, butslightly di�erent result. The two results are dis
ussed in Appendix,For every b� 2 b�, b�(D) � D, hen
e the set D � M is an bL- substru
-ture of 
M, whi
h is denoted by bD.



16 PETERZILLemma 6.6. The stru
ture bD is an elementary substru
ture of 
M.Proof. This is a repetition of the proof of Theorem 1.2 from [17℄. Byo-minimality, it is suÆ
ient to prove that d
l
M(D) = D. Equivalently,it will be shown that for every a 2M nD, there exists an automorphism� of 
M, �xing D point-wise, su
h that �(a) 6= a.Fix a 2 M n D. Be
ause D is a b�-subspa
e of M , it has a (non-de�nable) 
omplement D
 in M su
h that M = D�D
, as an orderedve
tor spa
e. If one now takes �(d) = d for every d 2 D, and �(y) = 2yfor every y 2 D
 then � is an automorphism of the ordered ve
tor spa
eV whose �xed elements are exa
tly the elements of D. Be
ause everyother atomi
 relation of 
M is 
ontained in Dn for some n, � is 
learlyan automorphism of 
M �xing D point-wise and moving a. It followsthat d
l
M(D) = D and therefore bD is an elementary substru
ture of
M. �7. Definable groups in semi-bounded stru
turesThere are several papers on de�nable sets and groups whi
h arede�nable in o-minimal expansions of ordered groups (rather than real
losed �elds). The main diÆ
ulty there is the la
k of a triangulationtheorem and therefore the development of the basi
 topologi
al tools ismu
h more diÆ
ult. In [2℄ and [7℄ sheaf Cohomology for su
h stru
tureshas started to emerge. In [8℄ the authors use this Cohomology to givean upper bound for the number of torsion points in abelian de�nablegroups. In [6℄ other properties of groups in the semi-bounded settingare developed.Here is a simple observation:Lemma 7.1. If G is a de�nably 
ompa
t group in a semi-boundedstru
ture then every 
hart in the atlas of G is bounded.Proof. If not then there exists a de�nable 
urve in one of the 
harts Uof M whi
h is unbounded. Be
ause there are no de�nable poles, thereis a de�nable inje
tion � : (a;+1) ! U whose image is unbounded.Be
ause G is de�nably 
ompa
t this map has a limit point g in G (inthe G-topology) as t tends to 1. This limit point belongs to another
hart U but now it is easy to obtain a de�nable inje
tion from anunbounded interval to a bounded interval. Contradi
tion. �7.1. De�nable groups in short models.De�nition 7.2. LetM be an o-minimal semi-bounded stru
ture whi
his not linear. M is 
alled short if every element inM is a short element.



RETURNING TO SEMI-BOUNDED SETS 17It follows that if M is a short model then every de�nably 
ompa
tgroup in M is de�nable in some o-minimal expansion of a real 
losed�eld. Indeed, all the 
harts of G must be bounded so there exists an ininterval I su
h that all 
harts are 
ontained in In for some n. Be
auseM is short I admits a de�nable real 
losed �eld.This in turn implies, using the (heavy) theorem of Edmundo andOtero [9℄:Corollary 7.3. If G is a de�nably 
ompa
t, de�nably 
onne
ted abeliann-dimensional group in a short model then for every k 2 N,Tork(G) = (Z=kZ)n:7.2. Uniformity in parameters. Be
ause not every de�nable groupin o-minimal expansion of group 
an ne
essarily be embedded, as atopologi
al group, in Mn (or at least, it is not known whether thisis so), there is some subtlety in showing that de�nable 
onne
tednessand de�nable 
ompa
tness, with respe
t to the group topology, arede�nable properties in parameters.In this se
tion M 
an be any o-minimal expansion of a group.Lemma 7.4. Let fGs : s 2 Sg be a uniformly de�nable family ofabelian groups. Then:(i) The set of s for whi
h Gs is de�nably 
onne
ted is de�nable.(ii) The set of s for whi
h Gs is de�nably 
ompa
t is de�nable.Proof. (i) It is known, [20℄, that Gs is not de�nably 
onne
ted if andonly if there exists n 2 N su
h that the image of Gs under g 7! ng,
all it nGs, is di�erent than Gs. By 
ompa
tness there exist a boundN 2 N su
h that whenever nGs 6= Gs for some n then ne
essarily thereexists su
h an n with n � N . But now, Gs is de�nably 
onne
ted ifand only if N !Gs 6= Gs.(ii) Without loss of generality every Gs has the same dimension n.By Pillay's theorem on groups, [20℄, there exists, uniformly in s, ade�nable family of atlases and maps for the family of groups. Namely,there is some k, and there exists an de�nable family of open subsetsof Mn, fUi;s : s 2 S; i = 1; : : : ; kg, together with a de�nable familyof bije
tions �i;s : Ui;s ! Gs, su
h that Gs = Ski=1 �i;s(Ui;s) for everys 2 S, the transition maps are 
ontinuous, and su
h that the groupoperations on Gs are 
ontinuous when read through the 
harts. By7.1, it may be assumed that ea
h Ui;s is a bounded subset of Mn.For every � > 0 in M , let U �i;s be the set of all elements in Ui;swhose distan
e (using the maximum norm) from the boundary of Ui;sis greater than �. This is easily seen to be an open set as well. Thefollowing 
laim is based on an observation of Elefethriou:



18 PETERZILClaim 7.5. For every s 2 S, the group Gs is de�nably 
ompa
t if andonly if there exists an � > 0 su
h thatGs = k[i=1�i;s(U �i;s):Proof. If Gs is de�nably 
ompa
t then the negation of the 
onditionyields a de�nable 
urve 
 : (0; a)! Gs, su
h that for every t,
(t) 2 Gs n k[i=1�i;s(U ti;s):If g 2 Gs is the limit of 
(t) as t tends to 0 (whi
h exists by de�n-able 
ompa
tness) then for some i = 1; : : : ; k, ��1i;s (g) 2 Ui;s, thereforefor all suÆ
iently small � > 0, �i;s(g) 2 U �i;s. This easily leads to a
ontradi
tion.For the 
onverse, if there exists an � as above, then any de�nable
urve 
 in Gs will be eventually 
ontained in one of the �i;s(U �i;s), andbe
ause U �i;s is bounded the 
urve ��1i;s (
(t)) has a limit in x 2 Mn,whi
h must be in Ui;s. The element �i;s(x) 2 Gs is the limit of 
(t). �7.3. Torsion of de�nably 
ompa
t groups.Theorem 7.6. Let G be a de�nably 
ompa
t, de�nably 
onne
ted,abelian group in an o-minimal expansionM of an ordered group. Thenfor every k 2 N, we haveTork(G) = (Z=kZ)n:Proof. By Elefetheriou-Star
henko [11℄, the result holds for groups de-�nable in ordered ve
tor spa
es over ordered division rings, and hen
efor all linear expansions of ordered groups. By Edmundo-Otero theresult holds in those expansions whi
h are not semi-bounded (see dis-
ussion in Se
tion 2.1)One may therefore assume that M is semi-bounded. Consider thestru
ture 
M as given in Theorem 6.1, and its elementary sub-stru
turebD (whi
h is a short model).The group G is de�nable in the stru
ture 
M, possibly over a set ofparameters s. Namely, G = Gs for some D-de�nable family fGs : s 2Sg of de�nable groups, in the stru
ture 
M. By 7.4, one may assumethat for every r 2 S(D), the group Gr(D) is de�nably 
onne
ted,de�nably 
ompa
t abelian group.Be
ause bD is a short model, given k 2 N , for every r 2 S(D),Tork(Gr(D)) = (Z=kZ)n: This is 
learly a �rst order property of bD,hen
e it is true in 
M as well and in parti
ular for G = Gs. �



RETURNING TO SEMI-BOUNDED SETS 198. Pillay's Conje
tureAs is pointed out in [12℄ (see Remark 4 at the end of Se
tion 8), thepresen
e of an ambient real 
losed �eld is used twi
e in the proof ofPillay's Conje
ture:1. In order to apply Theorem 2.1 from [18℄ to a de�nably 
ompa
t groupG one needs to know that 
losed subsets of G are 
losed and bounded.This is true if G, with its group topology, is a subspa
e of Mn, whi
hin expansions of real 
losed �eld this 
an always be a
hieved, but notknown in expansions of groups. The following idea was suggested byEleftheriou:Using Claim 7.5, there are �nitely many pairs of bounded open setsV1 � U1; : : : ; Vk � Uk, subsets of Mn, su
h that for ea
h i, Cl(Vi) � Ui(
losure taken in Mn) and su
h thatG =[i �i(Ui) =[i �i(Vi):Given any 
losed set X � G, ea
h set ��1i (X)\Cl(Vi) is 
losed andbounded in Mn. Using Theorem 2.1 in [18℄, this is suÆ
ient to provethe result needed in that paper:If X � G is a de�nable 
losed set and M0 is a small model then theset of M0-
onjugates of X is �nitely 
onsistent if and only if X has apoint in M0.2. The se
ond missing ingredient in the proof of Pillay's Conje
ture issTheorem 7.6, whi
h is now proved.It therefore follows that Pillay's 
onje
ture holds in expansions ofordered groups. 9. some open questions9.1. The stru
ture of de�nable sets. In [17℄ and [5℄, stru
ture the-orems for de�nable sets in semi-bounded stru
tures are given. The
onje
ture below is a natural strengthening of those results.Conje
ture 1 IfM is semi-bounded then every de�nable subset of Mn
an be written as a �nite union of sets of the form:C + f�ki=1(�i;1(ti); � � � ; �i;n(ti)) : t1 2 I1; : : : ; tk 2 Ikg;



20 PETERZILfor a de�nable C � Dn, �i;j 2 � and I1; : : : ; Ik long (possibly un-bounded) intervals.9.2. De�nable groups in semi-bounded stru
tures. It was shownby Edmundo, Eleftherious and Onshuus, [6℄, that every de�nable groupin a semi-bounded stru
ture has a de�nable normal subgroup whi
h isde�nably isomorphi
 to hMn;+i, su
h that the quotient is de�nablyisomorphi
 to a bounded group (namely, a group whose universe is abounded set in Mn). Be
ause of the above 
onje
tured stru
ture theo-rem and be
ause de�nable fun
tions are linear outside short intervals,the following 
onje
ture seems reasonable:Conje
ture 2 Let G a de�nable group in a semi-bounded stru
ture.Then there exists a de�nable normal A � G, with A is de�nably iso-morphi
 to a semi-linear group, su
h that the quotient G=A is de�nablyisomorphi
 to to a group 
ontained in Dn.The 
onje
ture, if true, will allow to analyze every de�nable groupin an o-minimal expansion of ordered groups in terms of semi-lineargroups and groups de�nable in expansions of real 
losed �elds.9.3. A general transfer prin
iple. The arguments used to proveTheorem 7.6 
an 
learly be used to transfer other results from o-minimal expansions of real 
losed �elds to o-minimal expansions ofgroups. This suggests a possible general transfer prin
iple between o-minimal expansions of �elds and of groups. The following 
onje
tureis modeled after another transfer prin
iple, suggested by L. van denDries in [4℄ (and proved false in the original setting):Let �(R1; : : : ; Rn; f1; : : : ; fk) be a senten
e in a language L expandingthe language of ordered sets, with R1; : : : ; Rn; f1; : : : ; fk all relation andfun
tion symbols that are di�erent than <.Conje
ture 3 Assume that �(R1; : : : ; Rn; f1; : : : ; fk) holds in everyo-minimal L-expansion of a real 
losed �eld, where < is interpreted asthe natural ordering of the �eld.Then �(R1; : : : ; Rn; f1; : : : ; fk) holds in every o-minimal L-expansionof an ordered group that is not linear, where < is interpreted as thenatural ordering.The arguments presented here show that it is enough to prove theabove for short models.



RETURNING TO SEMI-BOUNDED SETS 2110. AppendixI now return to Proposition 6.2 (Proposition 5.1 from [13℄). As waspointed out in [1℄, the proof for that theorem 
ontained an error. Theerror was �xed in Belegradek's paper, using an idea of Hrushovski.However, the new result (Fa
t 0.1 in [1℄), reads as follows:Fa
t 10.1. Let V be an ordered ve
tor spa
e over an ordered divisionring D, a a nonnegative element in V andV = hV;<;+; f� : � 2 Dg; fP : P 2 Pgian expansion of V by a 
olle
tion P of relations on I = [�a; a℄. Sup-poses that every relation on [�a; a℄ whi
h is a-de�nable in V belongs toP. Then the stru
ture MP admits elimination of quanti�ers.To see that Fa
t 10.1 implies Proposition 6.2 it is left to prove:Every a-de�nable subset of In in the stru
ture V is already de�nable inI = hI; <; fP : P 2 Pgi.Proof. It is suÆ
ient to prove that every automorphism of I 
an beextended to an automorphism of V whi
h �xes a. Let � : I ! I besu
h an I-automorphism. Be
ause 0 2 I is de�nable, � is ne
essarilyorder preserving. As was shown in Claim 6.3, every subset of In that isde�nable in the ordered ve
tor spa
e V is already I-de�nable therefore�, as a ve
tor spa
e automorphism, 
an be extended to a ve
tor spa
eautomorphism of V whi
h ne
essarily �xes a. However, all atomi
relations in V whi
h are not part of the ordered ve
tor spa
e are partof the I stru
ture, and therefore � is a V-automorphism as well.Referen
es[1℄ Oleg Belegradek, Semi-bounded relations in ordered abelian groups, Model the-ory and appli
ations, Quad. Mat., vol. 11, Ara
ne, Rome, 2002, pp. 15{39.[2℄ A. Berardu

i and A. Fornasiero, O-minimal 
ohomology: Finiteness and in-varian
e results, preprint (2007).[3℄ Lou van den Dries, Tame topology and o-minimal stru
tures, London Math-emati
al So
iety Le
ture Note Series, vol. 248, Cambridge University Press,Cambridge, 1998.[4℄ , o-minimal stru
tures, Logi
: from foundations to appli
ations(Sta�ordshire, 1993), 1996, pp. 137{185.[5℄ Mario J. Edmundo, Stru
ture theorems for o-minimal expansions of groups,Ann. Pure Appl. Logi
 102 (2000), no. 1-2, 159{181.[6℄ M. Edmundo, P. Eleftheriou, and A. Onshuus, De�nable groups in semi-bounded o-minimal stru
tures, preprint (2005).



22 PETERZIL[7℄ M. Edmundo, G. Jones, and N. Peat�eld, A uniform bound for torsion pointsin o-minimal expansions of groups, preprint (2006).[8℄ , O-minimal sheaf 
ohomology with supports, preprint (2006).[9℄ M�ario J. Edmundo and Margarita Otero, De�nably 
ompa
t abelian groups, J.Math. Log. 4 (2004), no. 2, 163{180.[10℄ P. Eleftheriou, Compa
t domination for groups de�nable in linear o-minimalstru
tures, preprint (2006).[11℄ P. Eleftheriou and S. Star
henko, Groups de�nable in oredered ve
tor spa
esover ordered division rings, To appear in JSL.[12℄ E. Hrushovski, Y. Peterzil, and A. Pillay, Groups, measure and the NIP,preprint.[13℄ J. Loveys and Y. Peterzil, Linear o-minimal stru
tures, Israel Journal of Math-emati
s 81 (1993), 1-30.[14℄ D. Marker and C. Steinhorn, De�nable types in ordered stru
tures, J. of Sym-boli
 Logi
 51, 185-198.[15℄ Chris Miller and Sergei Star
henko, A growth di
hotomy for o-minimal expan-sions of ordered groups, Trans. Amer. Math. So
. 350 (1998), no. 9, 3505{3521.[16℄ M. Otero, Y. Peterzil, and A. Pillay, Groups and rings de�nable in o-minimalexpansions of real 
losed �elds, Bulleting of the London Math. So
. 28 (1996),7-14.[17℄ Y. Peterzil, A stru
ture theorem for semi-bounded sets in the reals, Journal ofSymboli
 Logi
 57 (1992), no. 3, 779-794.[18℄ Y. Peterzil and A. Pillay, Generi
 sets in de�nably 
ompa
t groups, Fund.Math. 193 (2007), no. 2, 153{170.[19℄ Y. Peterzil and S. Star
henko, A tri
hotomy theorem for o-minimal stru
tures,Pro
eedings of the Lodon Mat. So
. 77 (1998), no. 3, 481-523.[20℄ Anand Pillay, On groups and �elds de�nable in o-minimal stru
tures, J. PureAppl. Algebra 53 (1988), no. 3, 239{255.[21℄ Anand Pillay, Philip S
ow
roft, and Charles Steinhorn, Between groups andrings, Ro
ky Mountain J. Math. 19 (1989), no. 3, 871{885. Quadrati
 formsand real algebrai
 geometry (Corvallis, OR, 1986).[22℄ R. Poston,De�ning mutipli
ation in o-minimal expansions of the additive reals,J. of Symboli
 Logi
 60 (1995), no. 3, 797-816.Department of Mathemati
s, University of Haifa, Haifa, ISRAELE-mail address : kobi�math.haifa.a
.il


