RETURNING TO SEMI-BOUNDED SETS
YA’ACOV PETERZIL

ABSTRACT. An o-minimal expansion of an ordered vector space
by bounded predicates is called a semi-bounded structure. It is
shown that every sufficiently saturated such structure is either lin-
ear (hence a reduct of an ordered vector space) or, after a modifi-
cation of the language, it has an elementary substructure in which
every interval admits a definable real closed field.

As a result certain questions about definably compact groups
can be reduced to either ordered vector spaces or expansions of
real closed fields. Using the known results in these two settings,
the number of torsion points in definably compact abelian groups
in expansions of ordered groups is given. Pillay’s Conjecture for
such groups follows.

1. INTRODUCTION

An expansion of an ordered abelian group or an ordered vector space
by bounded predicates is sometimes called a semi-bounded structure (a
combination of semi-linear and bounded). The definable sets in such a
structure are called semi-bounded sets. Structural results about semi-
bounded sets can be found in [21], [17], [22],[13], [5] (in the o-minimal
setting) and [1] (in arbitrary ordered abelian groups). Some results in
[15] apply as well.

In this paper I return to the semi-bounded setting, in order to reduce
a question about the torsion points of a definably compact groups in
o-minimal expansions of ordered groups to similar results in expansions
of real closed fields, [9], and in ordered vector spaces, [11].

The idea is as follows: Let M = (M, <,+,---) be a semi-bounded
structure which is assumed to be not linear (see [13]). By the Tri-
chotomy Theorem, [19], a real closed field is defined on some open
fixed interval I C M. An interval J C M will be called short if it is
in definable bijection with I; otherwise it is called long. The structure
M will be called short is every bounded interval in M is short.

As will be observed, every definably compact group in a short model
is contained in the cartesian product of some bounded interval and
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therefore definable in an o-minimal expansion of a real closed field.
Hence, all results about definably compact groups in expansions of real
closed fields hold when the model is short.

Given a sufficiently saturated arbitrary semi-bounded nonlinear struc-
ture M, let D be the collection of all short elements in M (those ele-
ments a such that (0, |a|) is short). One can modify the structure M

to a new o-minimal structure M\, with the same universe, basically by
extending all partial O-definable linear maps defined on long intervals
to global linear maps, and at the same time restricting dcl(0), such that

—

every definable set in the original M is still definable in M. Having
done that, the set D becomes an elementary substructure of M.

Now, every M-definable group is definable in M and because M
has a short elementary substructure D, one can transfer the Edumndo-
Otero result, [9], about the torsion points of definable groups in expan-

sions of real closed fields to groups definable in M.

Together with the result of Eleftheriou and Starchenko, [11], on de-
finable groups in ordered vector spaces, one obtains (see Theorem 7.6
below):

Theorem 1.1. If G is a definably connected, definably compact abelian
group in an o-minimal expansion of an ordered group then for every k,

Tory(G) = (Z/kKZ)".

Since this is the only missing ingredient for proving Pillay’s Conjec-
ture for definable groups in o-minimal expansions of groups, one may
conclude the conjecture in this setting as well (see Section 8).

Remark 1.2. The treatment of semi-bounded sets suggested here does
not make use of the known structure theorems for definable sets in
semi-bounded structures (see [17] and [5]), where the analysis is given
in terms of bounded sets an unbounded intervals. Instead, bounded
sets are replaced by those bounded sets that are contained in D™ and
unbounded intervals are replaced by long intervals. At the end of the
paper several conjectures are made about possible structure theorems
for definable sets and groups semi0-bounded structures.

Notation The letters M, N, D are used for structures whose universe,
respectively, is M, N, D.

Acknowledgments [ returned to the semi-bounded setting after sev-
eral questions from Alessandro Berarducci about the implications that
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the Trichotomy Theorem might have on topological properties of o-
minimal expansions of ordered groups (questions which I was not able
to answer).

2. THE BASIC DEFINITION AND PROPERTIES

As is shown by Edmundo in [5], semi-boundedness has several equiv-
alent definitions. Here I use the following:

Definition 2.1. A semi-bounded structure M = (M, <,+,---) is an
o-minimal expansion of an ordered group without poles. Namely, there
15 no definable bijection between a bounded interval and an unbounded
interval. Note that this is a property which is preserved in elementarily
equivalent structures.

Example 2.2. (1) Every ordered vector space is semi-bounded.

(2) The expansion Ryqq of the ordered group of real numbers by re-
stricted multiplication is a semi-bounded structure in which every in-
terval is short. In fact, very bounded semi-algebraic set is definable in

Ryga .-

(8) Any elementary extension of Ryqq is still semi-bounded, but only
intervals of finite size are in definable bijection with (0,1), hence (see
3.3 below) only those intervals admit a real closed field structure.

2.1. Expansions of ordered groups. Given M an o-minimal expan-
sion of an ordered group, there are three possibilities for the structure
on M:

(a) M is linear which, by [13], is equivalent to saying that M is a
reduct of an ordered vector space over an ordered division ring.

(b) M is nonlinear and therefore, by the Trichotomy Theorem, [19],
a real closed field whose ordering agrees with that of M, is definable
on some interval (—a,a). There are two sub-cases to consider:

(bl) M is semi-bounded.

(b2) M is not semi-bounded. In this case, one can endow the
whole structure M with a definable real closed field R (but + might
not be the addition of the field). Indeed, this is claimed in [19], but
the reference there is not precise, so I spell out the argument: Assume
that o : (by,by) — (¢, +00) is a definable map with lim;_,;, o(t) = +00.
Without loss of generality, by — b; < a.

Using translation, it can be assumed that 6; = 0 and by < a. How-
ever, being inside a real closed field, the intervals (0,a) and (0, by) are
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in definable bijection, so (¢, 00) (and therefore also (0,00)) is isomor-
phic to the positive elements of R. This is clearly enough to get a real
closed field on the whole of M.

2.2. Model theoretic preliminaries. Assume now that M is an o-
minimal expansion of an ordered group, which is semi-bounded.

An immediate corollary of this assumption is: If f : (a,b) — M is
a definable function on a bounded interval then f is bounded on (a, b)
and therefore the limit of f(¢) as ¢ tends to either a or b exists in M.

Proposition 2.3. If M < N and M, is the convex hull of M in N
then M, < N.

Proof. Without loss of generality, the language contains a constant
for every element of M. It is sufficient to see that dcly(M;) = M.
Equivalently, for every M-definable function F(z) in A, and every a
from My, F'(a) € M;. Use induction of the number of variables in F.

Assume that F'(w,y) is of n+1 variables, n > 0, and a@ and b are from
M such that (a,b) € domF. Let fz(y) = F(w,y). By partitioning
the graph of F', we may also assume that for every w, the domain of
[ is either empty, or it is an open (bounded or unbounded) interval.
Also, without loss of generality, every f; is monotonely increasing (the
decreasing case is handled similarly).

Assume first that dom f; = M. In this case, Since b is in the convex
hull of M, there are by < b < by, by,by € M, and hence f3(b;) <
fa(b) < fa(b2). Since fa(b1), fa(b2) € dcly(a) one may use induction to
conclude that they are in M, so by convexity so is fz(b).

If domf; = (¢,+00), for ¢ € M then cis in dcly (@) hence, by induc-
tion it is in M;. One can now find b, € M such that ¢ < b < b, and
proceed as before. The remaining case is handled similarly. 0

Recall that for ordered structures M C N, M is said to be Dedekind
complete in N if for every element n € N, if m; < n < my for some
my, mg € M then n has a standard part in M. Namely, there exists
m € M with no element of M strictly between n and m. Note that
if M, is convex in N then it is clearly Dedekind complete in it. The
following powerful theorem of Marker and Steinhorn [14] will be used
below:

Theorem 2.4. If M is an elementary substructure of N which is
moreover Dedekind complete in N then for every N-definable set X C
N, the set X N MF¥ is definable in M.

Corollary 2.5. Assume that F' : S X (a,b) — M is a definable map
such that for every s € S, the map fs(x) = F(s,x) is a bijection between
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the bounded interval (a,b) and (0,ds) for some d > 0. Then there is
an m € M such that for every s € S, ds < m.

Proof. If not, then in an elementary extension A" of M, there exist
n € N which is greater than all elements of M, and s € S such that f,
is a definable bijection between (a, b) and (0,n). Let M; be the convex
hull of M. Then by Proposition 2.3, M/ is an elementary substructure
of N, which is obviously Dedekind complete in .

Let I" be the intersection of the graph of f;, with M; x M;. By
Theorem 2.4, I' is definable in M and it is still the graph of a definable
function. Moreover, because f; was a bijection, for every y > 0 in
M, there exists € (a,b) C M; such that fs(x) = y. Therefore
there exists in M a surjective map between a sub-interval of (a,b)
and the interval (0,+o0). This is impossible because M; and M are
elementarily equivalent. 0

3. SHORT AND LONG INTERVALS

Here M is assumed to be semi-bounded and in addition nonlinear.

Fix an element, call it 1 > 0, such that a real closed field, whose
universe is (0,1) and whose ordering agrees with the M-ordering, is
definable in M. Assume from now on that 1 € dcl(0).

Definition 3.1. Two open intervals (a,b) and (¢, d) are called equiva-
lent if there exists a definable bijection between them.

An element a € M is called short if either a = 0 or (0, |a|) and (0, 1)
are equivalent; otherwise it is called tall. An interval (a,b) is called
short if b — a is small, otherwise it is called long.

The following lemma can be proved using standard o-minimal ar-
guments, together with the fact that every definable function on a
bounded interval has a limit at the endpoints of the interval.

Lemma 3.2. If (a,b) and (c,d) are equivalent intervals then there ez-
ists a definable and continuous, strictly monotone bijection between
them (if the intervals are bounded one can always choose the bijection
to be increasing).

Corollary 3.3. For any interval I C M, I is short if and only if 1
admits a definable real closed field whose ordering agrees with that of

M.

Proof. If I is short then, by the last lemma it has a definable ordered
preserving bijection with (0,1) so admits a definable real closed field.
For the converse, if I admits a real closed field structure, then after
translation one may assume that either (0,1) C 7 or I C (0,1). In
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both cases one gets an interval inside another real closed field so the
two are in definable bijections. (Actually, by [16], the fields on (0,1)
and I and are also definably isomorphic but this will not be required
here). O

Lemma 3.4. (1) IfI is a short interval then it is definably bijective
with any subinterval of I. In particular, if a is short and 0 <
|b| < |a| then b is short.

(2) If (a,b) and (b,c) are short interval then so is (a,c).
(3) If a and b are short elements then so are a + b and —a.

Proof. (1) By the last lemma, I admits a reals closed field structure
whose ordering agrees with the M-ordering. In real closed field any
two 1-dimensional open intervals are definably bijective.

(2) Since (a,b) is in bijection with (0,1) is it also in bijection with
(0,1/2), and similarly, (b, ¢) is in bijection with (1/2,1).

(3) This is immediate from (2). O

Lemma 3.5. Assume that f : X — M is a definable function whose
domain X is a definably connected set, contained in a cartesian product
of short intervals. Then f(X) is contained in a short interval.

Proof. 1f not, then by definable choice there is a definable curve in X
which is in bijection with a long interval in M. Using projections one
gets a bijection between short and long intervals. Contradiction. [

Proposition 3.6. If M is |T'|"-saturated then the set D of all short
elements in M s a proper convex subgroup of M. In particular, it is
not definable.

Proof. By 3.4, it is left to see that D # M, and here saturation is
important since without it this might fail (consider the reals with re-
stricted multiplication). Assume towards contradiction that D = M.
Consider the type p(z) which says, for every uniformly definable
family of injections from (0, 1) into M, that none of these maps is a
bijection between (0,1) and (0,x). By our assumptions, this type is
inconsistent, hence there are finitely many definable families of injec-
tions from (0, 1) into M such that for every = € M, one such injection
gives a bijection between (0,1) and (0,z). In particular, there exists
an a € M and a definable family of bijections f, : (0,1) — (0, s), for
all s > a. This contradicts Corollary 2.5. O
An immediate corollary of the non-definability of D is:

Lemma 3.7. Let {I; : s € S} be a uniformly definable family of inter-
vals in a |T|"-saturated M. If all intervals are short then there exists
a short a € M such that the length of every I, is at most a. If all
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intervals are long then there exists a tall b € M such that the length of
every Iy is not less than b.

4. AFFINE AND LINEAR FUNCTIONS

Here M is a semi-bounded non-linear structure.
Some of the results in this section, such as 4.3 and 4.7, were proved
in [15] for unbounded intervals instead of long ones.

Definition 4.1. A function f : (a,b) — M is called linear on (a,b) if
for every z,y € (a,b), if x+y € (a,b) then f(z)+ f(y) = f(z+y). The
function is affine if for some (all) ¢ € (a,b), the function f(c+x)— f(c)
is linear on (@ — ¢, b — ¢).

f :(a,b) — M is called locally linear (affine) if for every x € (a,b)
there exists a neighborhood on which f is linear (affine).

The following is standard:

Lemma 4.2. If f : (a,b) — M is definable and locally linear (affine)
then f is linear (affine) on (a,b).

Lemma 4.3. If (a,b) is an interval in M (a,b € M U {£oo}) and
f:(a,b) — M is 0-definable then there are a = ay < --- < a, = b in
del(D) such that whenever I = (a;,a;11) is long the restriction of f to
I s affine.

Proof. The function f can be assumed to be continuous and strictly in-
creasing. The set of all x such that f locally affine near x is definable,
and therefore there is a 0-definable partition a = ap < -+-- < a, = b
such that on each (a;, a;;1) either f is locally affine (hence affine on the
whole interval) or f is nowhere affine. It is sufficient to see that when-
ever the latter occurs then the interval must be short. Assume towards
a contradiction that f is nowhere affine on (a;,a;41) and that the in-
terval is long. Notice that the interval remains long in any elementary
extension hence one may assume that M is sufficiently saturated.

Consider the map g(z) = f(z+1)— f(x), defined on the long interval
J = (aj, a;+1 —1). The function g is continuous and, by our assumption
on f, it is positive everywhere. The interval J can be partitioned into
finitely many sub-intervals such that ¢ is either constant or strictly
monotone on each sub-interval.

The following is again obtained by a standard o-minimal argument.

Claim 4.4. If g is constant on a sub-interval J' then f is affine on J'.

Because f is assumed to be nowhere affine, it follows that g is strictly
monotone on each sub-interval of J and by 3.4, at least one of these
intervals, which is denoted by J again, is long.
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Claim 4.5. There is d € D such that for every x € J, g(x) < d.

Proof. Indeed, consider the family of maps, h, : (0,1) - M, z €
J, given by h,(t) = f(x +t) — f(x). This is a definable family of
strictly increasing continuous bijections between (0, 1) and the interval
(0,g(x)), hence (clearly, all intervals (0,¢g(x)) are short) by Lemma
3.7, there exists a bound d € D such that ¢g(z) < d for all x € J, thus
proving the claim.

It now follows that the map ¢, which is injective on .J, sends .J into
the interval (0,d). This is impossible because J is long while (0, d) is
short. O

Two affine functions f; : I — M and f, : J — M are said to
be equivalent if the associated linear functions fi(a + x) — fi(a) and
falb+x) — f(b),a €I, be J, have the same germ at 0.

Remark 4.6. Note that two linear functions, defined on the same open
interval I are equivalent if and only if they agree one at least one
nonzero element in their common domain (see for example Proposi-
tion 4.1 in [13]).

As in the case for unbounded intervals, one can prove that there is
no infinite definable family of non-equivalent linear functions on long
intervals:

Lemma 4.7. If {fs : s € S} is a 0-definable family of linear functions,
fs 1 (0,as) — M then there are finitely many 0-definable linear func-
tions A1, ..., Ak, and a short b € M, such that for every s € S,

(i) Either |I5| < b, or

(ii) For some i =1,...,k, the function fs is the restriction of \; to I
(in particular, I is contained in dom(X;)).

Proof. The equivalence relation on linear functions induces a definable
equivalence relation ~ on S and by definable choice there exists a
definable set of representatives S; C S for the ~-classes.

For every r € Sy, let J, =J,_, I,, and let A, =, _, f; (this makes
sense because of the equivalence). Our goal is to show that there is a
finite set ¥ C S; such that for all r € S; \ F, the interval J, is short.
Indeed, if that is proved then, by 3.7 there is an upper bound b on the
length of all J,, r € Si\ F, and therefore |I5| < bforall s ~ r € (S1\F).

Assume towards contradiction that there are infinitely many r € S}
for which I, is long. By continuity arguments (applied to the end-
points of .J;) one may find an infinite definable Sy C S; and a tall ¢
such that for every r € Sy, (0,¢) C .J,. Since the equivalence class of a
linear function is determined by its value at a single non-zero element,
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it is possible to re-parameterize the family {\, : » € Sy} by \.(¢) and
so assume that S, is an open interval in M.

Fixing a generic ry € S5 then, by continuity, for r sufficiently close
to rp the element a = A, (¢) — A\, (¢) is a short element. The function
Ar(t) — Mg, (t) is now a linear function (hence continuous and monotone)
sending the long interval (0,¢) onto the short interval (0,a). Contra-
diction.

It was therefore shown that for all but finitely many r € S;, the do-
main of A, is a short interval, whose length is bounded by some short
b e D. It is left to see that this finite set of r’s is O-definable. This can
be done by considering the 0-definable set of intervals {.J, : r € S;}. If
all J,.’s are short there is nothing to do. Otherwise, what was shown
so far implies that there are only finitely many .J,’s of maximal length
(possibly infinite). This set is clearly O-definable so can be omitted,
consider the remaining .J,’s and repeat the process, until there are no
remaining long J,’s in the family. U

Remark 4.8. In the notation of the last proof, it is possible that Sy
will be infinite, namely that there will be an infinite family of nonequiv-
alent linear maps, all defined on short intervals. This will imply the
definability of local multiplication over the group (M,+) but does not
contradict semi-boundedness.

The following lemma will not be used in the subsequent arguments.
It is included here for a possible future use.

Lemma 4.9. Assume that C C M"™* is an open cell, C, the projection
of C' on the first n coordinates. If F': C' — M 1is a 0-definable function
then there are finitely many 0-definable linear functions Ay, ..., A\, each
defined on a long interval, and for every x € C, there is a partition of
the interval Cy, as follows: ag(z) < ai(x) < --- < a,(x) (r depending
on x), and for every i, either

(i) The interval (a;(x),a;+1(x)) is short, or

(ii) The function f.(y) = F(z,y) is affine on (a;(z),a;1(x)) and the
map t = fo(a;(x) +1t) — fu(ai()) is the restriction of one of the \js.

Proof. The initial partition of every C, is given by Lemma 4.3. For
every x, consider all intervals in the partition of C, on which f, is
nowhere affine. This is a definable family of short intervals, hence by
3.7, there is a short upper bound b on the length of all of these intervals.

The remaining intervals in C, are those on which f, is affine and
now consider the family of all f,, restricted to these intervals, as x
varies in C; (namely, for every = € C} there might be finitely many
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such functions). By translation, one may assume that each such func-
tion is linear. Applying 4.7 one obtains finitely many definable linear
functions Ay, ..., A\ and a short element b, such that every interval in
this family is either of length less than b or is a restriction of some A,
t=1,...,k. This implies the lemma. 0

5. CHANGING THE LANGUAGE

Assume now that M is semi-bounded, non-linear and |T|*-saturated.

Let A be the collection of all 0-definable linear functions whose do-
main is a long interval of the form (0, ay). For every 0-definable X C D™
in M, let Ry be an n-place predicate symbol and let Lp be the col-
lection of all those predicates.

Let

L={<,+1YULpU{X: XA},

where each A is a unary function symbol. Let M be the corresponding

L-structure whose universe is M and all other symbols in the language

interpreted naturally (with A taken to be 0 outside (0, ay)).
Obviously, every 0-definable set in M is O-definable in M. The

converse is almost true, in the following sense:

Theorem 5.1. Let Mvc be the exrpansion of M by a new constant
symbol for every element in delyp (D). Then, every 0-definable set in

the structure M 1is definable in M.

Proof. This will be done by induction in a usual o-minimal method. It
is sufficient to show that every O-definable f : U — M, where U is an
open cell M", is definable in M.

Definition 5.2. Let U C M" be an open set, f : U — M a definable
function. For S C {1,....n}, the function f is S-bounded if if for
all i € S there exists d € D such that m;(U) C [—d,d] (where m;
is the projection onto the i-th coordinate). In particular, every f is

(P-bounded.

Note that if S = {1,...,n} and f is 0-definable in M and S-bounded
then its domain is contained in D™ and by 3.5, its image is contained
in a short interval, so after translation by an element of dcly (), the
function is M -definable. Using this notion it is sufficient to prove the
following claim:
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Claim 5.3. For every 0-definable function f : U — M. If f is S-
bounded, for some S C {1,...,n} and i ¢ S then f can be defined

using finitely many Mc-definable sets, together with finitely many 0-
definable functions in M which are S U {i}-bounded.

Once the claim is proved, then by proceeding to handle the S U {i}-
bounded functions one can eventually reach {1,...,n}-bounded func-
tions, thus proving the theorem.

Proof of Claim 5.3.: Use induction on n:

For n = 1: As usual, domf can be assumed to be either M or an
interval (a,b) with b € M U {400} (in case domf = (—o0,b) f can
be replaced by f(—x)). The function f can also be assumed to be
weakly monotone, and either nowhere affine on its domain or affine on
its whole domain.

First, replace f by f(t) = f(a1+t) — f(a1), with a = 0 if domf = M
and a; = a if domf = (a,b) (note that “f(a;)” makes sense because f

extends continuously to a;). Hence, domf is either M, or (0,0 —a). In
either case, f is O-definable in M and f(0) = 0.

If domf is short then f is 1-bounded, which implies that it is M-
definable. If domf is long then, by 4.3, fv(x) must be linear and 0-
definable in M, therefore it equals A(z) for some A € A.

In both cases, f is clearly defined using f, +, and a; € dcl((), hence
it is Mc—deﬁnable.

The n + 1 case: Without loss of generality, i = n+ 1 ¢ S. By
standard o-minimal methods one may assume the following:
(1) The domain of f is an open cell C' € M™*! whose projection in M"
is denoted by Cf:

C={(z,y) €Ci x M : hy(x) <y < hy(x)},

for 0-definable hy, hy : C'— M U {+£oc} such that h; < hy on C4.

(2) For every x € (', the following hold:

(a) The fiber C, is either M, or of the form (hy(z), ha(x)) for hi(z) €
M, and hy(x) € M U {400}, uniformly in z. (Indeed, if C, is of the
form (—o0,b) then f(x,y) can be replaced by f(—z,v))).

(b) The function f,(t) = f(z,t) is continuous and is either constant,
strictly increasing in ¢, or strictly decreasing in ¢, uniformly in x.

(c) Either, for every € C) the function f, is nowhere affine, or for
every x € (' the function f, is affine on its domain.
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(d) If C # M then the limit of f,(¢) as ¢ tends to hy(x) (the lower
bound of C,), exists in M, call it o(z).

Actually, all except 2(d) can be achieved in any o-minimal structure.
The semi-boundedness assumption gives 2(d) as well.

First replace f by a function f defined as follows: If C, = M for
every x € (1, let

If C, = (hi(x), ha(x)) for hy(x) # —o0, let
(by 2(d), fz can be extended to hi(z)).

The new domain of f, which will still be called C, is either C; x M
or

{(z,y) :z € Cy, 0 <y < hy(x) — hi(2)}

(where 400 — hy(z) is taken to be +00), so f is still S-bounded. In
both cases, f,(0) = 0 for every z € C\.

By induction, hy, ha, f(z,0) and f(z, hi(z)) are Mc-definable. Also,
f can clearly be recovered from f using hy(z), f(z, hi(z)) and +, so
it is sufficient to show that fcan be defined using finitely many MVC—

definable sets, together with finitely many 0-definable functions in M
which are S U {n + 1}-bounded.

Case 1 For every x € (1, the function f,(t) = f(z,t) is nowhere affine.
In this case, by 4.3, every interval (0, hy(x)—hy(x)) is short and hence

there exists an upper bound b € D to the length of all C,. Namely the

domain of f is contained in Cy x (0,b), so f is S U {n + 1}-bounded.

Case 2 For every x € (] the function f, is affine on its domain.

It follows that every fx is linear. By Lemma 4.7, there exists a short
element b and there are finitely many functions A;,..., Ay € A such
that for every z € Cy, either |Cy| < b, or f, is a restriction of one of
the A\;’s to C.

By further partitions (using Aj, ..., \g), it can be assumed that either
for every x € (1, f; is the restriction of some \; (same \; uniformly in
x), or for every x € Cy, Cy, C (0, D).

In the first case, f is definable using C' and functions in A, so by
induction it is M-definable. In the second case, the domain of f is
contained in Cy x (0,b) so it is S U {n + 1}-bounded. O
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Lemma 5.1 shows in particular that if a structure M has no poles
then every definable set is defined using the ordered group structure,
partial (or global) O-definable linear functions, and finitely many bounded
sets. This shows that the “no poles” definition of semi-boundedness im-
plies the one from the introduction. The opposite implication is proved
using automorphisms (see the proof of Theorem 1.2 in [17]). The equiv-
alence of the two definitions was originally established by Edmundo in

[5].

6. EXTENDING PARTIAL LINEAR MAPS TO GLOBAL ONES

For A € A, denote by \ the corresponding equivalence class of the
linear function, and let A be the collection of all those equivalence
classes. Notice that A is a ring under point-wise addition. Moreover,
because the image of a long interval under a linear function is also long,
A is closed under composition and inverse composition, therefore it is
an ordered division ring. Actually, as in Corollary 9.3 in [19], since
it was assumed that M is not a linear structure, a real closed field R
is definable in a neighborhood of 0, and therefore the compositional
group A \ {0} can be embedded in GL;(R) which is commutative. It

follows that (A, +, o) is actually an ordered field.

Lemma 6.1. There exists an expansion of M to an o-minimal struc-
ture

M= (M,<,+ {Rx € Lp},{X: A€ A},

wn which every N:M— Misa global linear map, extending all corre-
sponding N's in A (and all other symbols in L are interpreted as before).

Proof. The first step is to expand the structure
My = (M,<,+,{\: X € A}),

to a full ordered vector space V = (M, <,+,{X\ : A € A}) over the
field _//i, where every partial linear map A is extended to a global linear
map X: M — M. The existence of such a V is exactly the content of
Theorem 6.1 in [13]: Indeed, although there is a linearity assumption
in that theorem, the proof itself is done in the setting of an o-minimal
expansion of an ordered group by partial linear functions, as given
here. Also, because M is already saturated there is no need to go to
an elementary extension in the current setting.
Having V' as above, define

M = (M,<,+,{Rx € Lp},{X: A e A},
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with the original interpretation of every Rx. The goal is to show that
M is o-minimal.

Consider the following (see Proposition 5.1 in [13]):

Proposition 6.2. Let V' be an ordered vector space over a field K,
I = [—a,a] a closed interval in V', and let

V=V, <,+{A: €A}, {P:PecP})

be an expansion of V by some collection P of subsets of I™, for various
n. Assume also:
(i) P contains all those a-definable sets in the ordered vector space V.
(i1) P is closed under definability in I, namely, every 0-definable set in
the structure T = (I,{P : P € P}) is already in P.

Then V eliminates quantifiers.

Let us see first why this theorem implies that M is o-minimal. Tt
is clearly enough to consider finitely many predicates from L so, by
taking the projection of each such Ry into D, it is possible to find
a € delg;(0) N D, such that all Rx’s are contained in [—a, a] for some
a€D. -

Let P be the collection of all (-definable subsets of I in M, as n
varies.

Claim 6.3. P satisfies assumption (i) and (ii) of Proposition 6.2.

Proof. (i) Every a-definable subset of I™ in the ordered vector space is
already in P:
The problem is that V' has linear function which do not exist in

M. However, by quantifier elimination in ordered vector spaces, every
a-definable set on V" is a boolean combination of solutions to:

1)

Xi(@0)+ A Ne(w) F A1 (a) = 05 Ny (z0)+- -+ (@) + Mg (@) > 0,

for /):z S //i R

On elements of D, A\; = \; and therefore these equalities and inequal-
ities are already definable in M and hence are in P.

For (ii), because every Z-definable set is already M-definable it is
clear, by the definition of P, that it is closed under definability in Z.
End of Claim 6.3.
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Now that the assumptions of Proposition 6.2 are established, one
may conclude that the structure

Mp= (M, <,+,{P:PeP}{}:1eA})

(which expands M) has Quantifier elimination.

Claim 6.4. M\p s o-minimal.

Proof. By quantifier elimination, every O-definable set in M\p is a
boolean combination of terms inequalities in the ordered vector space
structure, and formulas of the form

(tl(xla Ce ,.Z'n), Ce ,tk(.’l/'l, e ,xn)) € X,

for some Z-definable X C I* and t,...,%; terms in the ordered vec-
tor space language. It is clearly sufficient to handle this last type of
formulas, which gives rise to 1-variable formulas:

N (2) + ar, ..., (@) + a) € X,

for ai,...,a, € M. Because A(z) +a = A(z + A"'(a)), every such
formula defines a set of the form:

B={zeM:M(x+b),...., \lz+b)) e X},
for by,...,br € M. Now let
A={(z1,...,20) € M*: O\ (21), ..., Me(ar)) € X}

It may be assumed that none of the \i is 0. Because X C I* (and I
is short) the set A is also contained in some J*, for some short .J, and
therefore definable in the original M. The set B is now the set of all
x € M such that (x,...,x) € A—(by,...,bg). This set is also definable
in M and therefore it is a finite union of intervals. L

The structure Mp is therefore o-minimal and as a result M is o-
minimal as well. 0

Remark 6.5. Proposition 6.2 above is exactly Proposition 5.1 from
[13]. However, it was pointed out by Belegradek, [1], that the proof of
that proposition contained a serious gap. The gap was then fixed by
Belegradek himself, using an idea of Hrushovski, to yield a similar, but
slightly different result. The two results are discussed in Appendiz,

For every A € A, \(D) C D, hence the set D C M is an L- substruc-
ture of M, which is denoted by D.
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Lemma 6.6. The structure D is an elementary substructure of M.

Proof. This is a repetition of the proof of Theorem 1.2 from [17]. By
o-minimality, it is sufficient to prove that dcl (D) = D. Equivalently,
it will be shown that for every a € M\ D, there exists an automorphism
o of M, fixing D point-wise, such that o(a) # a.

Fix a € M \ D. Because D is a K—subspace of M, it has a (non-
definable) complement D¢ in M such that M = D @ D¢, as an ordered
vector space. If one now takes o(d) = d for every d € D, and o(y) = 2y
for every y € D€ then o is an automorphism of the ordered vector space
V' whose fixed elements are exactly the elements of D. Because every
other atomic relation of M is contained in D" for some n, o is clearly
an automorphism of M fixing D point-wise and moving a. It follows
that dcl (D) = D and therefore D is an elementary substructure of

M. O

7. DEFINABLE GROUPS IN SEMI-BOUNDED STRUCTURES

There are several papers on definable sets and groups which are
definable in o-minimal expansions of ordered groups (rather than real
closed fields). The main difficulty there is the lack of a triangulation
theorem and therefore the development of the basic topological tools is
much more difficult. In [2] and [7] sheaf Cohomology for such structures
has started to emerge. In [8] the authors use this Cohomology to give
an upper bound for the number of torsion points in abelian definable
groups. In [6] other properties of groups in the semi-bounded setting
are developed.

Here is a simple observation:

Lemma 7.1. If G is a definably compact group in a semi-bounded
structure then every chart in the atlas of G is bounded.

Proof. If not then there exists a definable curve in one of the charts U
of M which is unbounded. Because there are no definable poles, there
is a definable injection o : (a,+00) — U whose image is unbounded.
Because G is definably compact this map has a limit point ¢ in G (in
the G-topology) as t tends to co. This limit point belongs to another
chart U but now it is easy to obtain a definable injection from an
unbounded interval to a bounded interval. Contradiction. 0

7.1. Definable groups in short models.

Definition 7.2. Let M be an o-minimal semi-bounded structure which
is not linear. M is called short if every element in M is a short element.
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It follows that if M is a short model then every definably compact
group in M is definable in some o-minimal expansion of a real closed
field. Indeed, all the charts of G must be bounded so there exists an in
interval I such that all charts are contained in I™ for some n. Because
M is short I admits a definable real closed field.

This in turn implies, using the (heavy) theorem of Edmundo and
Otero [9]:

Corollary 7.3. If G is a definably compact, definably connected abelian
n-dimensional group in a short model then for every k € N,

Tory(G) = (Z/kZ)".

7.2. Uniformity in parameters. Because not every definable group
in o-minimal expansion of group can necessarily be embedded, as a
topological group, in M"™ (or at least, it is not known whether this
is s0), there is some subtlety in showing that definable connectedness
and definable compactness, with respect to the group topology, are
definable properties in parameters.

In this section M can be any o-minimal expansion of a group.

Lemma 7.4. Let {Gs : s € S} be a uniformly definable family of
abelian groups. Then:

(i) The set of s for which G is definably connected is definable.

(ii) The set of s for which G is definably compact is definable.

Proof. (i) It is known, [20], that G is not definably connected if and
only if there exists n € N such that the image of G5 under g — ng,
call it nGy, is different than GG,. By compactness there exist a bound
N € N such that whenever nG; # G for some n then necessarily there
exists such an n with n < N. But now, G is definably connected if
and only if NG, # G;.

(ii) Without loss of generality every G has the same dimension n.
By Pillay’s theorem on groups, [20], there exists, uniformly in s, a
definable family of atlases and maps for the family of groups. Namely,
there is some k, and there exists an definable family of open subsets
of M", {U;s : s € S,i = 1,...,k}, together with a definable family
of bijections ¢; s : U; s — G, such that G5 = Ule ¢i (Ui s) for every
s € S, the transition maps are continuous, and such that the group
operations on (G5 are continuous when read through the charts. By
7.1, it may be assumed that each U, is a bounded subset of M™.

For every ¢ > 0 in M, let U;; be the set of all elements in U
whose distance (using the maximum norm) from the boundary of Uj 4
is greater than e. This is easily seen to be an open set as well. The
following claim is based on an observation of Elefethriou:
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Claim 7.5. For every s € S, the group Gy is definably compact if and
only if there exists an € > 0 such that

k
Gy = s (UF)-
=1

Proof. If G is definably compact then the negation of the condition
yields a definable curve 7 : (0,a) — G, such that for every ¢,

V(t) € Gs \ U ¢z,s(Uzt,s)

If g € Gy is the limit of y(¢) as ¢ tends to 0 (which exists by defin-
able compactness) then for some i = 1,...,k, ¢Z_51 (9) € Uiz, therefore
for all sufficiently small ¢ > 0, ¢;,(g9) € Uf,. This easily leads to a
contradiction.

For the converse, if there exists an ¢ as above, then any definable
curve 7 in Gy will be eventually contained in one of the ¢; ,(Us ), and
because Uf, is bounded the curve ¢, (y(t)) has a limit in = € M",

which must be in U; ;. The element ¢; ;(x) € G is the limit of y(¢). O

7.3. Torsion of definably compact groups.

Theorem 7.6. Let G be a definably compact, definably connected,
abelian group in an o-minimal expansion M of an ordered group. Then
for every k € N, we have
Tory(G) = (Z/kKZ)".

Proof. By Elefetheriou-Starchenko [11], the result holds for groups de-
finable in ordered vector spaces over ordered division rings, and hence
for all linear expansions of ordered groups. By Edmundo-Otero the
result holds in those expansions which are not semi-bounded (see dis-
cussion in Section 2.1)

One maX\therefore assume that M is semi-bounded. Consider the
structure M as given in Theorem 6.1, and its elementary sub-structure
D (which is a short model).

The group G is definable in the structure M\, possibly over a set of
parameters s. Namely, G = G for some D-definable family {G; : s €
S} of definable groups, in the structure M. By 7.4, one may assume
that for every r € S(D), the group G,(D) is definably connected,
definably compact abelian group.

Because D is a short model, given k£ € N, for every r € S(D),
Torg(G,(D)) = (Z/kZ)"™. This is clearly a first order property of D,
hence it is true in M as well and in particular for G = Gj. U
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8. PILLAY’S CONJECTURE

As is pointed out in [12] (see Remark 4 at the end of Section 8), the

presence of an ambient real closed field is used twice in the proof of
Pillay’s Conjecture:
1. In order to apply Theorem 2.1 from [18] to a definably compact group
G one needs to know that closed subsets of G are closed and bounded.
This is true if G, with its group topology, is a subspace of M", which
in expansions of real closed field this can always be achieved, but not
known in expansions of groups. The following idea was suggested by
Eleftheriou:

Using Claim 7.5, there are finitely many pairs of bounded open sets
Vi CUy,..., Vi C Uy, subsets of M"™, such that for each i, Cl(V;) C U;
(closure taken in M™) and such that

G = U@(Ui) = Uczsi(vi)-

Given any closed set X C G, each set ¢;'(X) N CI(V;) is closed and
bounded in M". Using Theorem 2.1 in [18], this is sufficient to prove
the result needed in that paper:

If X C G s a definable closed set and My is a small model then the
set of My-conjugates of X 1is finitely consistent if and only if X has a
point in M.

2. The second missing ingredient in the proof of Pillay’s Conjecture iss
Theorem 7.6, which is now proved.

It therefore follows that Pillay’s conjecture holds in expansions of
ordered groups.

9. SOME OPEN QUESTIONS

9.1. The structure of definable sets. In [17] and [5], structure the-
orems for definable sets in semi-bounded structures are given. The
conjecture below is a natural strengthening of those results.

Conjecture 1 If M is semi-bounded then every definable subset of M™
can be written as a finite union of sets of the form:

C A+ S Nin(te), -+, din(ta) st € I, 1 € I},
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for a definable C C D", \;; € A and I,,..., I long (possibly un-
bounded) intervals.

9.2. Definable groups in semi-bounded structures. It was shown
by Edmundo, Eleftherious and Onshuus, [6], that every definable group
in a semi-bounded structure has a definable normal subgroup which is
definably isomorphic to (M",+), such that the quotient is definably
isomorphic to a bounded group (namely, a group whose universe is a
bounded set in M™). Because of the above conjectured structure theo-
rem and because definable functions are linear outside short intervals,
the following conjecture seems reasonable:

Conjecture 2 Let G a definable group in a semi-bounded structure.
Then there ezists a definable normal A C G, with A is definably iso-
morphic to a semi-linear group, such that the quotient G/A is definably
1somorphic to to a group contained in D™.

The conjecture, if true, will allow to analyze every definable group
in an o-minimal expansion of ordered groups in terms of semi-linear
groups and groups definable in expansions of real closed fields.

9.3. A general transfer principle. The arguments used to prove
Theorem 7.6 can clearly be used to transfer other results from o-
minimal expansions of real closed fields to o-minimal expansions of
groups. This suggests a possible general transfer principle between o-
minimal expansions of fields and of groups. The following conjecture
is modeled after another transfer principle, suggested by L. van den
Dries in [4] (and proved false in the original setting):

Let ¢(Ry, ..., Ry, fi1, ..., fr) be asentence in a language £ expanding
the language of ordered sets, with Ry, ..., R,, fi, ..., fr all relation and
function symbols that are different than <.

Conjecture 3 Assume that ¢(Ry,..., Ry, f1,-.., fr) holds in every
o-minimal L-expansion of a real closed field, where < is interpreted as
the natural ordering of the field.

Then ¢(Ry, ..., Ry, f1,..., fr) holds in every o-minimal L-expansion
of an ordered group that is not linear, where < is interpreted as the
natural ordering.

The arguments presented here show that it is enough to prove the
above for short models.
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10. APPENDIX

I now return to Proposition 6.2 (Proposition 5.1 from [13]). As was
pointed out in [1], the proof for that theorem contained an error. The
error was fixed in Belegradek’s paper, using an idea of Hrushovski.
However, the new result (Fact 0.1 in [1]), reads as follows:

Fact 10.1. Let V' be an ordered vector space over an ordered division
ring D, a a nonnegative element in V and

V=(V,<,+,{ \: e D};{P: P ecP})

an expansion of V' by a collection P of relations on I = [—a,al. Sup-
poses that every relation on [—a, a] which is a-definable in 'V belongs to
P. Then the structure Mp admits elimination of quantifiers.

To see that Fact 10.1 implies Proposition 6.2 it is left to prove:

FEvery a-definable subset of I™ in the structure V is already definable in
I=(,<,{P:PeP}).

Proof. 1t is sufficient to prove that every automorphism of Z can be
extended to an automorphism of V which fixes a. Let 0 : I — I be
such an Z-automorphism. Because 0 € [ is definable, o is necessarily
order preserving. As was shown in Claim 6.3, every subset of " that is
definable in the ordered vector space V is already Z-definable therefore
o, as a vector space automorphism, can be extended to a vector space
automorphism of V' which necessarily fixes a. However, all atomic
relations in V which are not part of the ordered vector space are part
of the Z structure, and therefore o is a V-automorphism as well.
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