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Abstract

We prove that the zero-set of a C∞ function belonging to a noethe-
rian differential ring M can be written as a finite union of C∞ man-
ifolds which are definable by functions from the same ring. These
manifolds can be taken to be connected under the additional assump-
tion that every zero-dimensional regular zero-set of functions in M
consists of finitely many points. These results hold not only for C∞

functions over the reals, but more generally for definable C∞ func-
tions in a definably complete expansion of an ordered field. The class
of definably complete expansions of ordered fields, whose basic prop-
erties are discussed in this paper, expands the class of real closed fields
and includes o-minimal expansions of ordered fields. Finally, we pro-
vide examples of noetherian differential rings of C∞ functions over the
reals, containing non-analytic functions.

1 Introduction

Definable completeness is a weak (first order expressible) version of Dedekind
completeness.

1.0.1 Definition. Fix a language L = {+,−, ·, <, 0, . . . } which is an expan-
sion of the language of ordered rings. A definably complete structure K (in
the language L) is an L-expansion of an ordered field, such that every de-
finable subset of the domain of K which is bounded from above, has a least
upper bound.

Let L be a language as in Definition 1.0.1. An L-expansion of an ordered
field is o-minimal if every definable subset of the domain is a finite union of
open intervals and points. Hence, every o-minimal L-expansion of an ordered
field is definably complete. On the other hand, every definably complete
structure expands a real closed field (see Theorem 2.0.1).
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Every L-expansion of the real ordered field R is clearly definably com-
plete, by Dedekind completeness. In particular, not every definably complete
structure is o-minimal.

The notion of definable completeness is thus weaker than that of o-
minimality (which has been extensively studied, see for example [1]). How-
ever, it has the advantage of being first order expressible. Unlike the o-
minimal case, the class of all definably complete structures in a given lan-
guage L is recursively axiomatizable. In particular, if R is elementary equiv-
alent to an expansion of the real ordered field, then R is definably complete.

The aim of this paper is to lay the common groundwork for an axiomatic
analysis of expansions of the real ordered field with some C∞ functions,
such as power functions, the exponential function, the sine function, quasi-
analytic functions. The goal is to understand the geometric behaviour of
sets definable in models of recursively axiomatized fragments of the theories
of these structures, and hence to contribute to the solution of decidability
questions related to these structures.

The main result of this paper is Theorem 5.0.7, which states that, in a
definably complete structure K,

Notice that we do not assume geometric finiteness (o-minimality, Pfaffian-
ity,...), hence this decomposition theorem holds for a wide class of functions
over definably complete structures. Over the real numbers, we find analytic
but non-tame examples like sin(x), and in Section 7 we exhibit some C∞ but
non-analytic examples.

Results of a similar flavour have been obtained by A. Gabrielov in the
context of real analytic functions restricted to a compact ball (see [4]).

This result is a first step in the analysis of quantifier-free definable sets
in an expansion of the real field with noetherian functions.

We apply our decomposition theorem to prove a Khovanskii-type finite-
ness result (see Theorem 6.0.6): given a noetherian differential ring M of
functions, if every zero-dimensional regular zero-set of functions in M con-
sists of finitely many points, then the zero-set of any function in M has
finitely many connected components.

Finally, we refine the candidate for a complete recursive axiomatization
of the real exponential field Rexp proposed by Macintyre and Wilkie in [8].
We note that the axiom schemes A3, A4, TNA, TH in [8] follow from results
2.0.7, 3.0.7, 2.0.6 and 2.0.4 respectively.
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2 Basic results

We fix, for the rest of this paper, a language L, which expands the language
of ordered rings, and a definably complete L-structure K. We equip K with
the interval topology, and any power Kn with the product topology.

We give the usual ε, δ-definition of continuous function (where ε and δ
are elements of K). Limits are well defined, since the topology is Hausdorff.

The following classical results hold true in definably complete structures
(the missing proofs are easy and can be found in [14]).

2.0.1 Theorem (Intermediate value). Let a, b ∈ K and f : [a, b] → K be a
continuous definable function such that f(a) < 0 and f(b) > 0. Then there
exists c ∈ (a, b) such that f(c) = 0.

In particular, every definably complete structure is a real closed field.

2.0.2 Corollary (Intermediate Value Property). Let a, b ∈ K and f :
[a, b] → K be a continuous definable function. Then f takes all values in
K between inf f and sup f (which exist, possibly ±∞, by definable complete-
ness).

2.0.3 Theorem (Weierstrass Property). Let a, b ∈ K and f : [a, b]→ K be a
continuous definable function. Then f is achieves maximum and minimum
on [a, b].

A definable function f : K → K is differentiable at x ∈ K if the limit
limy→x

f(y)−f(x)
|y−x| exists. Note that the derivative of a definable function (if it

exists) is again a definable function. Analogously, if f : Kn → K, we define
the partial derivatives. As usual, we say that a definable function f is C1 if it
is differentiable, with continuous first derivatives. Cn and C∞ are similarly
defined.

2.0.4 Theorem (Taylor’s Theorem). • Let F : Kn → K be a definable
CN map and let x0, x ∈ Kn. Then there exists ξ, lying on the line
segment joining x0 and x, such that

F (x) =
F (x0)+F ′(x0)[x−x0]+ F ′′(x0)

2 [x−x0, x−x0]+ . . .+ F (N)(ξ)
N ! [x−x0, . . . , x−x0]

• Let F : Kn → Kn be a definable CN+1 map and let x0, x ∈ Kn such that
|x− x0| < r. Then

|F (x)− F (x0)− F ′(x0)[x− x0]− . . .− F (N)(x0)
N ! [x− x0, . . . , x− x0]| ≤

supy∈B(x0,r) |
F (N+1)(y)

(N+1)! [x− x0, . . . , x− x0]|
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2.0.5 Corollary (Increasing functions and the sign of the derivative). Let
a, b ∈ K and f : (a, b) → K be a C1 definable function. If for all x ∈ (a, b)
we have f ′(x) > 0, then f is strictly increasing on (a, b).

Let F : Kn → Kn be a C2 definable map. Suppose we are given some
point x0 ∈ Kn such that |F (x0)| is small, |F ′(x0)| is bounded away from
zero, and |F ′(x)| and |F ′′(x)| are not too large on a suitable neighbourhood
of x0. Then F has a zero, moreover a nonsingular one, lying near to x0. More
precisely,

2.0.6 Theorem (Newton’s Method). Let a0, a1, a2 ≥ 1. Then there exist
m, r ∈ K+ (which can be written as rational functions of n, a0, a1, a2) such
that, ∀x0 ∈ Kn,

If |F (x0)| < m and
∀y ∈ B(x0, r) |F ′(y)−1| < a0 and |F ′(y)| < a1 and |F ′′(y)| < a2,

Then ∃x F (x) = 0 and x ∈ B(x0, r).

The proof is based on a repeated use of Taylor’s Theorem.

Proof. Let r = (2n3a2
0a1a2)

−1 and m = (4n3a3
0a1a2)

−1.
Let x ∈ B(x0, r) be such that |F (x)| = min{|F (u)| : u ∈ B(x0, r)} (the

existence of such a point x follows from the fact that the function u 7→ |F (u)|
is continuous definable). We claim F (x) = 0. Let

y = x− F ′(x)−1 · F (x). (1)

Equivalently, F (x) = F ′(x)[x− y]. It is sufficient to show that:
(i) y ∈ B(x0, r);
(ii) |F (y)| ≤ 1

2
|F (x)|.

Proof of (i): By Taylor’s formula,

|F (x0)− F (x)− F ′(x)[x0 − x]| ≤ sup |F
′′(z)

2
[x0 − x, x0 − x]|, (2)

where y ∈ B(x0, r). Hence,

|F (x0)− F (x)− F ′(x)[x0 − x]| ≤ a2

2
n2|x0 − x|2. (3)

Now, using (1),

|F (x0)− F ′(x)[x0 − y]| ≤ a2

2
n2|x0 − x|2. (4)

Hence |x0 − y| ≤ |F ′(x)−1|(|F (x0)| + a2

2
n2|x0 − x|2) ≤ a0(m + a2

2
n2r2) ≤ r

(the last inequality can be easily checked by substituting the values of r,m).
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Therefore y ∈ B(x0, r).

Proof of (ii): By Taylor’s formula and using (1), we get

|F (y)| ≤ |F (x) + F ′(x)[y − x]|+ a2

2
n2|y − x|2 = 0 +

a2

2
n2|y − x|2 (5)

Another use of Taylor’s Theorem yields

|F (x)| ≤ |F (x0)|+ a1n|x− x0|. (6)

Hence, by (1),

|y − x|2 ≤ |F ′(x)−1|2|F (x)|2 ≤ a2
0(m+ a1nr)|F (x)|. (7)

Putting all together, |F (y)| ≤ a2

2
n2a2

0(m+ a1nr)|F (x)| ≤ 1
2
|F (x)|.

2.0.7 Theorem (Uniqueness Theorem for systems of linear differential equa-
tions). Let a, b ∈ K ∪ {±∞} and F = (f1, . . . , fn) : (a, b)→ Kn a C∞ defin-
able map. Let A(t) = (aij(t)) be an n × n matrix of C∞ definable functions
from (a, b) to K; suppose that

∀t ∈ (a, b) F ′(t) = A(t)F (t).

Then, either F is identically zero or else it never vanishes on (a, b).

3 Varieties of C∞ definable functions

In this section we develop some differential topology for the class of topolog-
ical K-manifolds defined as zero-sets of definable smooth functions.

3.0.1 Definition. If n,m ∈ N and U is a definable open subset of Kn, let
C∞(U,Km) be the ring of C∞ definable maps from U to Km.
If G ∈ C∞(U,Km), let the variety of G be the set V (G) = {a ∈ U : G(a) =
0}. If G = (g1, . . . , gm), then V (G) = V (g1)∩ . . .∩V (gm); we will often write
V (g1, . . . , gm) instead of V (G).

3.0.2 Remark. The variety of G is clearly a closed subset of U , for it is the
preimage of a point under a continuous map.

3.0.3 Notation. If n ≥ m ∈ N, G = (g1, . . . , gm) : Kn → Km is a C∞

definable map and a ∈ Kn, we denote by DG(a) the m × n matrix corre-
sponding to the linear map G′(a), with respect to the standard basis. The
rows of DG(a) are the vectors ∇g1(a), . . . ,∇gm(a). If y ⊂ x is a sub-tuple of
coordinates, then we denote by DyG(a) the matrix of the partial derivatives
∂gi
∂yj

(a) with respect to the variables in the tuple y.
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We will use many times in this work, some version of the Implicit Function
Theorem. The statement is standard, but technical and we will find it useful
to fix here a notation and to refer to this subsection whenever we use the
theorem.

3.0.4 Definition. Let n,m ∈ N, U ⊆ Kn open and definable and G =
(g1, . . . , gm) ∈ C∞(U,Km). Let a ∈ V (G) be a point such that the linear
map G′(a) is surjective. Then we say that a is a regular point of G. The set
of regular zeroes of G (the regular set of G, for short) is denoted by V reg(G).
So,

V reg(G) := {a ∈ U : a ∈ V (G) and G′(a) is onto}.

In other words, V reg(G) is the set of those a ∈ V (g1, . . . , gm) such that
the vectors ∇g1(a), . . . ,∇gm(a) are K-linearly independent (We denote by
lin. span〈∇g1(a), . . . ,∇gm(a)〉 the K-vector space generated by these vec-
tors).

Notice that the definition of regular set depends crucially on the choice
of G: as a set, V (g1) = V (g2

1); but V reg(g1) 6= V reg(g2
1). In fact V reg(g2

1) is
always empty.

3.0.5 Remark. Using the result 3.0.7 proved below, we will see that V reg(G)
is locally definably diffeomorphic to an open subset of Kn−m. Hence, V reg(G)
is a differentiable K-manifold, of dimension n−m.

We give now the notation which we will use for the Implicit Function
Theorem and its Corollaries.

3.0.6 Notation. Let n ≥ m ∈ N. We write n = k + m and we fix the
following set of coordinates:

Kn = Kk ×Km

x = (u, v)

Let G = (g1, . . . , gm) ∈ C∞(Kk+m,Km) and x0 = (u0, v0) ∈ V (G) such
that DvG(x0) is non-singular.

3.0.7 Theorem (Implicit function Theorem). There exist

1. open definable subsets O ⊆ Kk and W ⊆ Km such that x0 ∈ O ×W ,
and

2. a definable C∞ map
Y : O → W

such that Y (u0) = v0 and
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∀u ∈ O ∀v ∈ W G(u, v) = 0⇔ v = Y (u).

Moreover, DuY (u) is everywhere non-singular and, if JvG(x) =
detDvG(x),

∀x ∈ U DuY (u) = −JvG−1(u, Y (u)) ·DuG(u, Y (u)).

3.0.8 Definition. The map

φ : Kk → V (G) ∩O ×W
u 7→ (u, Y (u))

is called a local rectangular parametrization of V (G) around x0, and is a
definable diffeomorphism, whose inverse is the restriction to V (G)∩ (O×W )
of the projection π : Kn → Kk onto the first k coordinates.

The proof of the Implicit Function Theorem works as in the o-minimal
case (see for example [1]). The only nontrivial fact in this setting, which is
used in the proof, is the following.

3.0.9 Theorem (Miller,[9]). Let A ⊆ Kn be closed, bounded and definable,
and let f : A → Km be a continuous definable map. Then f(A) is closed,
bounded and definable.

We give now a list of the usual consequences of the Implicit Function
Theorem.

3.0.10 Corollary. There is a ring homomorphism (the restriction homo-
morphism) ̂: C∞(O ×W,K) → C∞(O,K)

h 7→ ĥ(u) = h(u, Y (u))

The kernel of ̂ is the set {h ∈ C∞(O×W,K) : h � V (G)∩(O×W ) ≡ 0},
hence

Ĉ∞(O ×W,K) ∼= C∞(V (G) ∩ (O ×W ),K).

3.0.11 Corollary (Lagrange’s Multipliers Rule). Let h ∈ C∞(O ×W,K).
A point x = (u, Y (u)) ∈ V (G) ∩ (O ×W ) is a local extremum (maximum or

minimum) of h on V (G) if and only if ∇ĥ(u) = 0. Moreover,

∇ĥ(u) = 0 ⇔ ∇h(u, Y (u)) ∈ lin. span〈∇g1(u, Y (u)), . . . ,∇gm(u, Y (u))〉.

3.0.12 Corollary. Suppose M ⊂ C∞(U ×W,K) is a noetherian ring closed

under differentiation. Then so is M̂ [ĴvG−1].

Proof. Notice that M̂ [ĴvG−1] is a finite extension of a homomorphic image of
a noetherian ring, hence it is noetherian; moreover, an easy calculation and

Corollary 3.0.10 show that M̂ [ĴvG−1] is also closed under differentiation.
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4 Noetherian differential rings

4.0.1 Definition. Let n ∈ N and U ⊆ Kn be a definably connected definable
open set. A ring M with the following properties

• M ⊆ C∞(U,K);

• M is noetherian;

• M is closed under partial differentiation;

• M ⊇ Z[x1, . . . , xn].

is called a noetherian differential ring.

4.0.2 Example. Let 〈K,+,−, ·, <, g1, .., gl, 0, 1, . . .〉 be a definably complete
structure such that g1, .., gl ∈ C∞(Kn,K) satisfy a system of differential
equations, with polynomial coefficients:

∂gi
∂xj

(x) = qij(x, g1, . . . , gl) (i = 1, . . . , l; j = 1, . . . , n),

with qij ∈ K[x, y1, . . . , yl].
Examples of such structures over the real numbers are: R := 〈R,+,−, ·, <

, 0, 1, . . .〉, 〈R, exp〉, 〈R, tan〉, 〈R, sin, cos〉 (notice that this last is a non o-
minimal example).

Then,
F[x1, . . . , xn, g1, . . . , gl],

where F is a subfield of K, is a noetherian differential subring of C∞(Kn,K).

4.0.3 Remark. In the given examples, if K is a structure based on R, then
the functions g1, . . . , gl are not only C∞, but even analytic (by Cauchy-
Kowalesky Theorem, see for example [5]). On the other hand, if M is a
noetherian differential ring which is not a finitely generated algebra, then it
does not necessarily follow that M consists of real analytic functions. An
non-analytic example will be exhibited in Section 7.

We now fix a noetherian differential ring M ⊆ C∞(U,K) in our definably
complete structure K, and we study the properties of the zero-sets of func-
tions in M , using the approach suggested in [15]. The following result shows
that the functions in M have a “quasi-analytic” behaviour.

4.0.4 Lemma (Lack of flat functions). Let I ⊆ M be an ideal closed under
differentiation; then either V (I) = ∅ or V (I) = U .
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Proof. Since M is noetherian, I is finitely generated, say I = 〈g1, . . . , gs〉,
and hence V (I) = V (g1, .., gs) is a closed definable subset. If V (I) 6= ∅, since
U is definably connected, all we need to show is that V (I) is open.

Suppose for a contradiction that this is not the case. Then there exists
x ∈ V (I) which is not an interior point, i.e. given an arbitrary open box
neighbourhood B of x0, there exists a point y0 ∈ B which is not in V (I).
Without loss of generality, we may assume that x0, y0 differ in exactly one
coordinate, say, the first one: x0 = (s, p2, . . . , pn), y0 = (t, p2, . . . , pn) and
s 6= t.

Recall that {g1, . . . , gs} is a set of generators for I. Since I is closed under
differentiation, it follows in particular that the derivatives with respect to the
first coordinate ∂g1/∂x1(x), . . . , ∂gs/∂x1(x) all belong to I, hence there exist
functions aij(x) ∈M such that

∀x, ∀i = 1, . . . , s
∂gi
∂x1

(x) =
s∑
j=1

aij(x)gj(x).

Now, consider the restrictions fi(x1) = gi(x1, p2, . . . , pn) of the functions
g1, . . . , gs to the line L = {x ∈ U : x2 = p2 ∧ . . . ∧ xn = pn}, and define
F (x1) = (f1(x1), . . . , fs(x1)). We have

F ′(x1) = A(x1)F (x1),

where A(x1) is the s × s matrix whose entries are the functions
aij(x1, p2, . . . , pn).

It follows from the Uniqueness Theorem for Linear Differential Equations
2.0.7 that either F ≡ 0 or else has no zeros. But this leads to a contradiction,
since F (t) 6= 0 and F (s) = 0.

4.0.5 Corollary. Let G = (g1, . . . , gm) ∈ Mm and x0 ∈ V reg(G). Then
either there exists h ∈ M such that x0 ∈ V reg(G, h) or for all h ∈ M , if
h(x0) = 0, then h vanishes on a definable neighbourhood of x0 in V reg(G).

Proof. We refer to the notation of the Implicit Function Theorem 3.0.7, so
x0 = (u0, v0) ∈ Kk × Km. Up to some rearrangement of the variables, we
may assume that DvG(x0) is non-singular and apply the Implicit Function
Theorem in a suitable neighbourhood O ×W of x0. Suppose that there is
no h ∈ M such that x0 ∈ V reg(G, h) and let h ∈ M be such that h(x0) = 0.
Then ∇h(x0) belongs to lin. span〈∇g1(x0), . . . ,∇gm(x0)〉. This implies, by

Lagrange’s Multiplier Rule 3.0.11, that ∇ĥ(u0) = 0.

Consider the ideal Î = {ĝ ∈ M̂ [ĴvG−1] : ĝ(u) = 0}; what we have

shown is that if ĥ ∈ Î, then its first derivatives ∂ĥ/∂ui belong to Î; thus Î
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is closed under differentiation. Since V (Î) 6= ∅, it follows from Lemma 4.0.4

and the subsequent Remark, that V (Î) = O. This means that h vanishes on
V reg(G) ∩ (O ×W ).

5 Decomposition of noetherian varieties

We fix, for the rest of the section, a noetherian differential ring M . The
zero-sets of functions belonging to M are called M-varieties. We prove the
main result of this paper, namely that every M -variety can be decomposed
into finitely many differentiable K-manifolds of a certain form.

5.0.1 Definition. Let A be a definable set; we say that S is a definable
clopen of A if S ⊆ A is a definable subset which is both open and closed in
A. Clearly, the collection of all definable clopen of A is a boolean algebra
B(A) of sets.

5.0.2 Definition. If G ∈Mm and S is a clopen definable subset of V reg(G),
then S is called a regular component. The dimension of S is the K-manifold
dimension of V reg(G), which is n−m.

5.0.3 Lemma. Let 0 6= f ∈ M and V (f) ⊂ Kn be a nonempty M-variety;
then for all x ∈ V (f) there exists g ∈ M such that x ∈ V reg(g), i.e. g(x) =
0 ∧∇g(x) 6= 0.

Proof. Take x ∈ V (f) and consider f together with all its partial derivatives,
evaluated in x. We claim that there exist a multi-index α = (α1, . . . , αn) and

i0 ∈ {1, . . . , n} such that, if we put ∂αf := ∂α1+...+αnf

∂x
α1
1 ·...·x

αn
n

, then ∂αf(x) = 0 and
∂∂αf
∂xi0

(x) 6= 0, so that we can define g := ∂αf . Suppose, on the contrary,

that f as well as all its derivatives ∂αf vanishes in x and let I be the ideal
of M generated by f and all its derivatives. Notice that V (I) 6= ∅, since
x ∈ V (I); M is noetherian, so I is finitely generated. Moreover, I is closed
under differentiation, since each member of I can be written as a linear
combination (with coefficients in M) of a finite number of derivatives of f .
Then, Lemma 4.0.4 implies that V (I) (and hence V (f)) coincides with Kn,
which is impossible.

5.0.4 Remark. The above argument shows also that, if 0 6= f ∈ M , then
V (f) has empty interior. In fact, if V (f) has interior around a point x, then
x is necessarily not a regular zero of f (otherwise, by the Implicit Function
Theorem 3.0.7, V (f) would be locally diffeomorphic to Kn−1 around x). For
the same reason, x is not a regular zero of any of the derivatives of f , hence
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all the derivatives of any order of f vanish in x. But then, as in the proof
above, V (f) must be Kn.

5.0.5 Definition. For every x ∈ Kn, we define the M-degree of x, degM(x),
as the minimal dimension of a regular component containing x. Equivalently,

degM(x) = min{k| ∃G ∈Mn−k such that x ∈ V reg(G)}.

Lemma 5.0.3 shows that every point belonging to a proper M -variety has
M -degree at most n− 1.

5.0.6 Theorem. Let f ∈ M and V (f) be a proper M-variety. Then, for
every point x in V (f), there exist k < n and G ∈ Mn−k and a regular
component S of V reg(G) such that x ∈ S ⊆ V (f). Moreover, S is definable
with the same parameters used to define G and f .

Proof. Let k = degM(x) and G ∈Mn−k such that x ∈ V reg(G). We define

S := the interior of the set V reg(G) ∩ V (f) in V reg(G).

We claim that x ∈ S. In fact, by the choice of V reg(G) as a regular set of
minimal dimension, by Corollary 4.0.5 it follows that every function h ∈ M
which vanishes in x, also vanishes on an open definable neighbourhood B of
x in V reg(G). In particular, f vanishes on some B (depending on f). Hence
x has an open neighbourhood B contained in V (f) ∩ V reg(G), i.e. x is an
interior point.

We now claim that S is a regular component. S is definable, nonempty
and open in V reg(G), by definition. We must show that S is also closed
in V reg(G). Take a boundary point x0 of S in V reg(G) and consider (after
permuting the variables, if necessary) the local parametrization given by the
Implicit Function Theorem 3.0.7

φ : Kk → V (G) ∩ (O ×W )
u 7→ (u, Y (u)).

Setting, as usual, f̂ = f ◦ φ, we observe that φ−1(S) is open in O and

f̂(φ−1(S)) = 0. Hence, all derivatives of any order of f̂ vanish on φ−1(S).
Since u0 = φ−1(x0) belongs to the closure of φ−1(S), it is also true, by con-

tinuity, that f̂ , and all its derivatives of any order, vanish in u0. By Lemma
4.0.4 and the usual argument, V (f̂) = Kk. Hence, the open neighbourhood
O ×W of x0 is contained in V (f) ∩ V reg(G), that implies x0 ∈ S.
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5.0.7 Theorem (Decomposition of M -varieties). Let f ∈ M and V (f) be
a proper M-variety. Then V (f) can be written as a finite union of regular
components:

∃k ∈ N, ∃G1, . . . , Gk ∈
n⋃
l=1

M l, ∃Si ∈ B(V reg(Gi)) so that V (f) = S1∪. . .∪Sk.

Proof. By compactness. More precisely, let F be a |K|+-saturated elementary
superstructure of K (see [13] for the existence of such an F), so that F realizes
all types over K. Let M̃ be the set of those definable functions g̃ such that
g ∈M and g̃ is the interpretation of g in F (note that g̃ is still a C∞ function).
Then M̃ is still a noetherian differential ring, hence Theorem 5.0.6 holds for
M̃ -varieties. Consider the function f̃ and the following set of formulas:

Φ = {φG̃ := x ∈ V (f̃)∧S̃ = intV reg(G̃)(V
reg(G̃∩V (f̃))∧(x ∈ S̃ → S̃ 6⊂ V (f̃))| G̃ ∈

n⋃
i=1

M̃ i}.

If Φ were a consistent type, then it would be realized F. This means that
there would exists an x ∈ F such that for all G̃ ∈

⋃n
i=1 M̃

i, x ∈ V (f̃) ∧ S̃ =

intV reg(G̃)(V
reg(G̃ ∩ V (f̃)) ∧ (x ∈ S̃ → S̃ 6⊂ V (f̃)), which would contradict

Theorem 5.0.6. Hence there exist k ∈ N, G̃1, . . . , G̃k ∈
⋃n
i=1 M̃

i, such that
the conjunction φG̃1

∧ . . . ∧ φG̃k is not satisfiable in F; in other words the
following holds in F:

∀x (x ∈ S̃1 ∪ . . . ∪ S̃k ∧ S̃1 ∪ . . . ∪ S̃k ⊆ V (f̃)).

Therefore V (f̃) = S̃1 ∪ . . . ∪ S̃k.
Now, in K the following holds: V (f) = S1 ∪ . . .∪Sk, where Si := S̃i ∩Kn

(i = 1, . . . , k) are clearly regular components in K, hence the theorem is
proved.

5.0.8 Remark. The decomposition which appears in Theorem 5.0.7 is
clearly not unique, nor are unique the dimensions of the regular compo-
nents appearing in two different decompositions of the same variety. For
example, the algebraic variety V (x2 − y2) ⊂ R2 can be decomposed as
V reg(x2 − y2) ∪ V reg(x, y) or as V reg(x − y) ∪ V reg(x + y). In the first de-
composition the first regular component has dimension 1 and the second has
dimension 0, while in the second decomposition both regular components
have dimension 1. Moreover, in the first case the union is disjoint, and in
the second case it is not.

On the other hand, the following holds:
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5.0.9 Lemma. Let f ∈ M . Then there exists a unique natural number m
such that for every decomposition of V (f) into regular components, as in
Theorem 5.0.7, the maximal dimension of the regular components appearing
in the decomposition is m.

Proof. Let V (f) = S1 ∪ . . . ∪ Sk be a decomposition of V (f) into regular
components and suppose dimSi ≤ dimS1 = m, for all i = 2, . . . , k. Clearly
V (f) does not contain an open subset which is diffeomorphic to Kl, for
l > m, because otherwise such a subset would be obtained as a finite union
of manifolds of dimension ≤ m, which, as in the classical case, is not possible.
On the other hand, V (f) does contain an open subset which is diffeomorphic
to Km, because so does S1. Hence, every decomposition of V (f) must contain
a component of dimension m, and can not contain components of bigger
dimension.

5.0.10 Definition. The dimension of an M -variety V (f) is defined as

dimV (f) := max{dimSi| i = 1, . . . , k and V (f) = S1 ∪ . . . ∪ Sk},

where V (f) = S1 ∪ . . . ∪ Sk is any decomposition given by Theorem 5.0.7.

5.0.11 Lemma. Let g1, . . . , gm ∈ M and x ∈ V reg(g1, . . . , gm) ⊂ Kn. If
degM(x) < n−m, then there exists f ∈M such that x ∈ V reg(g1, . . . , gm, f).

Proof. Since degM(x) < n − m, there exist f1, . . . , fm+1 ∈ M so that
x ∈ V reg(f1, . . . , fm+1). We claim that there exists i ∈ {1, . . . ,m+ 1} so that
x ∈ V reg(g1, . . . , gm, fi), because otherwise the (linearly independent) vec-
tors ∇f1(x), . . . ,∇fm+1(x) would all lie in the m-dimensional vector space
generated by ∇g1(x), . . . ,∇gm(x), which is impossible.

5.0.12 Proposition. Let V (f) ⊂ Kn be an M-variety. Let F be any
|K|+-saturated elementary superstructure of K and let f̃ be the interpreta-
tion of f in F (as in the proof of 5.0.7). Then,

dimV (f) = max{degM(x)| x ∈ V (f̃)}.

Proof. Let V (f̃) = S̃1 ∪ . . . ∪ S̃l be a decomposition of V (f̃) into regular
components, and let Si = Kn ∩ S̃i. Then V (f) = S1 ∪ . . . ∪ Sl, hence
dimV (f̃) = dimV (f). Let x ∈ V (f̃). Then x ∈ S̃i for some i, hence
degM(x) ≤ dim S̃i ≤ dimV (f). So dimV (f) ≥ max{degM(x)| x ∈ V (f̃)}.

Now we prove that there exists x ∈ V (f̃) with degM(x) = dimV (f). Let
S̃1 ∈ B(V reg(g̃1, . . . , g̃k)) be a component of maximal dimension. Consider
the set of formulas

Φ = {x ∈ S̃1 ∧ x /∈ V reg(g̃1, . . . , g̃k, h̃)| h ∈M}.
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Φ is clearly finitely satisfiable in F, because no finite union of regular sets of
dimension n−k−1 can cover the whole of S̃1, which has dimension n−k. By
saturation, there exists x ∈ Fn which satisfies all formulas in Φ. By Lemma
5.0.11, then, degM(x) = dimV (f).

6 Khovanskii rings

In this section we give an application of the Decomposition Theorem 5.0.7.
We consider a class of noetherian differential rings, called Khovanskii rings,
with the property that 0-dimensional regular sets are finite. An example of
such a ring is M = R[x, f1, . . . , fk], where the functions fi form a Pfaffian
chain, as proved by Khovanskii in [6]. In the same paper, it is proven that all
M -varieties, where M is as above, have finitely many connected components.
Here we prove, with a method which differs from the approach in [6], that if
M is a Khovanskii ring in a definably complete structure, then all M -varieties
have finitely many definably connected components.

This result can be compared with Theorem 1.7 in [3], which is formulated
in the setting of Rolle leaves.

6.0.1 Definition (Khovanskii rings). Let n ∈ N. A ring M with the follow-
ing properties

1. M ⊆ C∞(Kn,K);

2. M is a noetherian differential ring;

3. ∀g1, . . . , gn ∈M |V reg(g1, . . . , gn)| <∞.

is called a Khovanskii ring.
A collection of rings {Mn| n ∈ N} such that

1. Mn is a ring of definable C∞ functions from Kn to K;

2. Mn is a Khovanskii ring;

3. Mn ⊂Mn+1 (in the obvious sense);

4. Mn is closed under permutation of the variables.

is called a collection of Khovanskii rings.
A similar definition appears in [2].

6.0.2 Examples. Examples of Khovanskii rings over the real numbers are:

14



• The ring generated by a Pfaffian chain of functions (see [6]);

• Any noetherian differential ring of functions definable in an o-minimal
expansion of the real field;

• The ring generated by the real functions exp( 1
1+x2 ), sin( 1

1+x2 ) and

cos( 1
1+x2 ) (see [7]).

6.0.3 Remark. Fix n,m ∈ N, m ≤ n. Let M ⊆ C∞(Kn,K) be a noethe-
rian differential ring (not necessarily a Khovanskii ring) and let F ∈ Mm.
Then the set of regular zeroes of F can be expressed as the projection of a
finite union of regular varieties of dimension dimV reg(F ). To see this, let
E1(x), . . . , El(x) be the maximum rank minors of the matrix DF (x). Now
consider Vi := V (F (x), xn+1 detEi(x) − 1). Then Vi is a regular sub-variety
of Kn+1 and πn+1(

⋃l
i=1 Vi) = V reg(F ) (where πn+1 is the projection onto the

first n coordinates).
Notice that dimVi = n + 1 − (m + 1) = n − m = dimV reg(F ). More-

over, if M = Mn belongs to a collection of Khovanskii rings, then the map
(F (x), xn+1 detEi(x)− 1) belongs to Mn−k+1

n+1 .

6.0.4 Proposition. Fix n,m ∈ N, m ≤ n − 1. Let M ⊆ C∞(Kn,K)
be a Khovanskii ring and f1, . . . , fm ∈ M be such that V (f1, . . . , fm) =
V reg(f1, . . . , fm). Then there exists a definable set G such that:

• ∅ 6= G ⊂ V (f1, . . . , fm);

• For every clopen definable subset S of V (f1, . . . , fm), the intersection
S ∩G is not empty;

• ∀x ∈ G ∃h ∈M (x ∈ V reg(f1, . . . , fm, h)).

Proof. For all h ∈ M , consider the matrix of partial derivatives
D(f1, . . . , fm, h). Let x ∈ V (f1, . . . , fm). Then, this matrix, if we evalu-
ate all the entries in x, has rank at least m, because the common zeroes
of the functions f1, . . . , fm are all regular zeroes, by hypothesis. Let Hi(x)
(i = 1, . . . ,

(
n

m+1

)
) be the minors of rank m+1 of the matrix D(f1, . . . , fm, h)

evaluated in x and define h∗(x) =
∑l

i=1(detHi)(x)2 ∈M . Then x is a critical
point of h on V (f1, . . . , fm) if and only if h∗(x) = 0. And (see 3.0.11),

h∗(x) = 0⇔ ∇h(x) ∈ lin. span(∇f1(x), . . . ,∇fm(x)).

We take n+1 points P0, . . . , Pn in Zn such that the vectors ~P0P1, . . . , ~P0Pn
are linearly independent over K. For example, let us take P0 = 0 and Pi to be
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the tuple with the i-th coordinate equal to 1 and the other coordinates equal
to 0 (for i = 1, . . . , n). Now consider the following “distance ” functions:

d0(x) =
n∑
j=1

x2
j , di(x) = (xi − 1)2 +

n∑
j=1,j 6=i

x2
j i = 1, . . . , n.

Clearly these functions belong to M .
For every S ∈ B(V (f1, . . . , fm)), for every i = 0, . . . , n, consider the set

VS(d∗i ) = S ∩ V (d∗i ) of the critical points of the function di on S and let
bdS VS(d∗i ) = VS(d∗i ) \ intS(VS(d∗i )) be the set of boundary points of VS(d∗i )
in S. Now define

G :=
⋃

S∈B(V (f1,...,fm))

⋃
i=0,...,n

bdS VS(d∗i ).

Step 1. We first observe that G is definable and G ⊆ V (f1, . . . , fm).
Step 2. Next, we note that for all S ∈ B(V (f1, . . . , fm)), for every

i = 0, . . . , n, the set S contains a point whose distance from Pi is minimal,
i.e. VS(d∗i ) is nonempty. This follows from the fact that di increases on balls
centered in Pi and of increasing radius, so Theorem 2.0.3 applies.

Step 3. Now we show that G meets every nonempty definable clopen of
V (f1, . . . , fm) (in particular, G is not empty). Equivalently, we show that for
all S ∈ B(V (f1, . . . , fm)) \ {∅}, there exists i ∈ {0, . . . , n} such that the set
VS(d∗i ) is not open in S. Suppose for a contradiction that this is not the case.
Then for all i = 0, . . . , n the set VS(d∗i ), which is clearly closed and defin-
able, in also open in V (f1, . . . , fm), and hence it belongs to B(V (f1, . . . , fm)).
Now consider the boolean subalgebra A of B(V (f1, . . . , fm)) generated by
VS(d∗0), . . . , VS(d∗n). Since A is finite, there is an atom, say, C ∈ A. Let
Ci = C ∩ VS(d∗i ); by Step 1, Ci is nonempty for all i = 0, . . . , n, and hence
Ci = C. But this implies that ∅ 6= C ⊆ V (d∗0, . . . , d

∗
n). But this is not possi-

ble, because the vectors ∇di(x) span Kn at all points x. If x ∈ V (d∗0, . . . , d
∗
n),

then ∀i = 0, . . . , n, ∇di(x) ∈ lin. span(∇f1(x), . . . ,∇fm(x)), which is absurd.
Step 4. We now show that ∀x ∈ G ∃h ∈ M x ∈ V reg(f1, . . . , fm, h).

Suppose for a contradiction that there exists x ∈ G such that it is not
possible to cut transversally V (f1, . . . , fm) at x by any h ∈M . Now arguing
as in the last paragraph of the proof of Theorem 5.0.6, we show that every
h ∈ M must vanish on a suitable neighbourhood of x in V (f1, . . . , fm). But
by definition of G, every point x of G is a boundary point of some VS(d∗i ),
i.e.

∀x ∈ G ∃S ∈ B(V (f1, . . . , fm)) ∃i ∈ {0, . . . , s}
d∗i (x) = 0 ∧ ∀r > 0∃y ∈ S ∩B(x, r) d∗i (y) 6= 0,

(8)

and this leads to a contradiction.
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6.0.5 Theorem. Fix n,m ∈ N, m ≤ n − 1. Let M ⊆ C∞(Kn,K) be a
Khovanskii ring and F ∈ Mm be such that V (F ) = V reg(F ). Then there
exists a definable set G such that:

• ∅ 6= G ⊂ V (F );

• For every clopen definable subset S of V (F ), the intersection S ∩G is
not empty;

• ∃l ∈ N, ∃h1, . . . , hl ∈M G ⊂ V reg(F, h1) ∪ . . . ∪ V reg(F, hl).

Proof. By compactness, using an argument similar to the one used in the
proof of 5.0.7. More precisely, let F be a |K|+-saturated elementary super-
structure of K (see [13] for the existence of such an F), so that F realizes

all types over K. Let M̃ be the set of those definable functions g̃ such that
g ∈ M and g̃ is the interpretation of g in F (note that g̃ is still a C∞ func-

tion). Then M̃ is still a Khovanskii ring, hence Proposition 6.0.4 holds for

M̃ -varieties. Consider the map F̃ = (f̃1, . . . , f̃m) and the following set of
formulas:

Φ = {φh̃ := (x ∈ G ∧ x /∈ V reg(F̃ , h̃))| h ∈M}.

If Φ were a consistent type, then it would be realized in F. This means that
there would exist x ∈ G such that for all h ∈M , x /∈ V reg(F̃ , h̃), which is not
possible by Proposition 6.0.4. Hence there exist h1, . . . , hl ∈ M such that
the conjunction φh̃1

∧ . . .∧ φh̃l is not satisfiable; in other words the following
holds in F:

∀x x ∈ G→ x ∈ V reg(F̃ , h̃1) ∪ . . . ∪ V reg(F̃ , h̃l).

Pulled back to K, this proves the theorem.

6.0.6 Theorem (Finiteness of B(V (F ))). Let {Mn| n ∈ N} be a collection
of Khovanskii rings. Then, for all n,m ∈ N and F ∈ (Mn)m, the boolean
algebra B(V (F )) is finite.

Proof. By induction, using Propositions 6.0.5, 5.0.7 and Remark 6.0.3.
More precisely, we first prove by induction on k = n − m that

∀n ∈ N, B(V reg(F )) is finite.
The case k = 0 follows from the fact that Mn is a Khovanskii ring. Next,

suppose the statement true for n−m < k and consider F ∈Mn−k
n . If V (F ) =

V reg(F ), then there exist a definable set G and functions h1, . . . , hl ∈Mn as
in Theorem 6.0.5.

By inductive hypothesis, B(V reg(F, hi)) is finite, and hence so is
B(V reg(F )), assuming V (F ) = V reg(F ).
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If V (F ) 6= V reg(F ), then, by remark 6.0.3, V reg(F ) is the projection of a
finite union of regular varieties Vi still of dimension k, hence it follows from
what we have just proved that B(Vi) is finite, and hence so is B(π(

⋃
Vi)) =

B(V reg(F )).
Finally, if V (F ) is any variety, not necessarily regular, then by Theorem

5.0.7 it follows that V (F ) is a finite union of clopen subsets of regular sets,
hence, by what we have just proved, B(V (F )) is finite.

6.0.7 Remark (Definablyconnectedcomponents). Since the boolean algebra
B(V (F )) is finite, then there is an atom. If A is an atom, then it is clearly a
maximal definably connected subset, i.e. a definably connected component.
Hence we have proved that V (F ) has a finite number of definably connected
components.

7 A non-analytic example

We give an example of noetherian differential ring over the real numbers,
which contains non-analytic functions. We need to give some definitions.

Let X is a closed and bounded interval [a, b] ⊂ R. Let C∞(X,R) be the
ring of all real functions which are C∞ on a neighbourhood of X.

7.0.1 Definition. A function f ∈ C∞(X,R) is flat at the point x0 ∈ X if
all derivatives of f vanish in x0, but there is no neighbourhood of x0 where
f assumes only the value zero. A function f ∈ C∞(X,R) is flat if it is flat
at some point x0 ∈ X.

7.0.2 Definition. A ring M ⊆ C∞(X,R) is quasi-analytic if for every
x0 ∈ X the ring homomorphism

η: M → R[[x]]
f 7→ the Taylor expansion of f at x0

is injective. Equivalently, M does not contain flat functions.

7.0.3 Remark. The arguments appearing in the proof of Lemma 4.0.4 show
that if M ⊆ C∞(X,R) is noetherian and closed under differentiation, then
M is quasi-analytic.

7.0.4 Definition. A ringN ⊆ C∞(X,R) is closed under taking C∞-quotients
if the following holds: for all f, g ∈ N , if h := f

g
is C∞ on X, then h ∈ N .
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Given a ring M ⊆ C∞(X,R), we denote by M the closure of M under
C∞-quotients, i.e. the smallest ring containing M and closed under taking
C∞-quotients.

The following result is well known folklore.

7.0.5 Theorem. Let M ⊆ C∞(X,R) be a quasi-analytic ring, which is
closed under differentiation and contains the coordinate functions. Then its
closure under C∞-quotients M is closed under differentiation, quasi-analytic
and noetherian.

7.0.6 Remark. The theorem holds true, with the same proof, if X = R
and all functions in M have finitely many zeroes with finite multiplicities. In
particular, if M consists of functions which are definable in some o-minimal
expansion of the real field, then M is noetherian.

7.0.7 Definition. Let M ⊂ C∞([0, 1],R) be a quasi-analytic ring, closed
under differentiation and containing the coordinate function x. Let N :=
{f � (0, 1)|f ∈M} and M := N [x].

M ⊂ C∞(R,R) is clearly noetherian and closed under differentiation.
Moreover, if M contains a non-analytic function, then so does M.

7.0.8 Example. A concrete example of the above construction can be ob-
tained by taking as M a quasi-analytic Denjoy-Carleman class on [0, 1] (ac-
cording to the definition in [11]).
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