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1 Introduction

Let k be a field of char(k) 6= 2, and suppose that q ∈ k is not a root of unity. The associated
quantum plane [5, §IV.1], denoted by kq[x, y], is defined to be the free k-algebra k{x, y}
generated by x and y, modulo the relation yx = qxy. The set of monomials {xiyj}i, j≥0 is
a basis for the underlying k-vector space, and for every pair (i, j) of nonnegative integers,
we have

yjxi = qijxiyj .

There is a natural action on the quantum plane by the quantum group Uq, which is defined
to be the k-algebra generated by the four variables E, F, K, K−1, modulo the relations:

KK−1 = K−1K = 1 ,

KEK−1 = q2E , KFK−1 = q−2F , (1)

EF − FE =
K −K−1

q − q−1
.

Indeed, the quantum plane kq[x, y] acquires the structure of a left Uq-module where the
action of the generators is given by

Kxiyj = qi−jxiyj , Exiyj = [i]xi−1yj+1, Fxiyj = [j]xi+1yj−1 , (2)

and extended linearly; the coefficients are given by [a] :=
qa − q−a

q − q−1
. To appreciate the

significance of the quantum plane and the representation theory of Uq, consult [4, 5]. This
article is devoted to the model-theoretic study of the quantum plane, regarded as a Uq-
module. One consequence of the main result Theorem 1.1 is Theorem 5.1, which states
that, in the language of left Uq-modules, the ring of definable scalars of the quantum plane
is a von Neumann regular epimorphic ring extension of the quantum group Uq.

The action of Uq given by (2) preserves the total degree i + j of the monomial cxiyj ,
c ∈ k, so the quantum plane kq[x, y] decomposes as a Uq-module into a direct sum

kq[x, y] =
⊕
n≥0

kq[x, y]n,
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where kq[x, y]n denotes the k-vector space of all homogenous elements in the quantum
plane of degree n. Each of the components kq[x, y]n is a simple module, i.e., irreducible
representation, whose dimension over k is n + 1. In general, a simple Uq-module V is
called finite dimensional if the dimension of V as a k-vector space is finite. Every finite
dimensional representation of Uq admits a decomposition as a direct sum of simple mod-
ules, and for every whole number n there exist (up to isomorphism) exactly two simple
representations of dimension n + 1, denoted V+, n and V−, n [4, Thm 2.6]. In this regard,
the representation theory of the quantum group Uq resembles the representation theory
of the Lie algebra sl2(k) where k is an algebraically closed field of characteristic 0. The
principal aim of this paper is to prove for Uq the quantum analogues of results obtained
by the first author [3] for the universal enveloping algebra U(L) of L = sl2(k).

The simple representation V+, n is isomorphic to kq[x, y]n. The other simple represen-
tation V−, n of dimension n + 1 is obtained by composing the action of Uq on V+, n with
the automorphism σ (see [4, §5.2]) of Uq determined by

σ(E) = −E, σ(F ) = F, σ(K) = −K.

We will also refer to the module V−, n as kσq [x, y]n; and to kσq [x, y] as the direct sum
of one copy of each kσq [x, y]n, n ≥ 0. This module kσq [x, y] is the Uq-module obtained by
composing the action of Uq on the quantum plane with the automorphism σ. Throughout
the paper, we will denote by M the module

M = kq[x, y]⊕ kσq [x, y],

obtained by taking the direct sum of one copy of each simple representation of Uq, up to
isomorphism. Rather than working with the quantum plane directly, it is easier to prove
the following theorem for M, and then specialize to the quantum plane in the last section
of the paper. To prove the theorem, we follow the general strategy used in [3]. It is shown
in [6] that a large portion of this procedure can be carried out effectively.

Theorem 1.1 The lattice Latt(M) of pp-definable subspaces of M is complemented.

The third section of this article is devoted to an account of this general strategy, while
the second and fourth sections describe how this strategy needs to be amended to suit the
case of a quantum group.

The usual model-theoretic language L(Uq) for Uq-modules has symbols with which to
express addition (in a module) and scalar multiplication (of each element of Uq on the
module), as well as a constant symbol 0 for the zero element of the module. So the basic
(atomic) formulas are just linear equations r1u1 + . . . + rnun

.= 0 with scalars from Uq
acting on the left. A system of linear equations can be expressed by a finite conjuction of
linear equations, which will be abbreviated as (A,B)

(
u
v

) .= 0, where u denotes the tuple
(u1, . . . , un), v the tuple (v1, . . . , vk), A denotes an m× n matrix and B an m× k matrix
with entries from Uq. A pp (“positive primitive”) formula is obtained by existentially
quantifying a system of linear equations, say over the variable v. Formally, it has the
shape

ϕ(u) = ∃v (A, B)
(

u
v

)
.= 0

If V is a Uq-module, the set of the solutions in V to the formula ϕ(v) is a k-subspace
of V n. If ϕ(v) is a pp-formula in one free variable v, then this solution set of ϕ in V is
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denoted ϕ(V ) and is a typical pp-definable subspace of V. The collection of pp-definable
subspaces of V has the structure of a modular lattice (with respect to inclusion), which is
the subject of Theorem 1.1.

Let ϕ(v) be a pp-formula in one free variable and consider a finite dimensional simple
representation Vε, n of Uq, where ε is + or −. By virtue of the fact that Vε, n is finite
dimensional, it is easy to find a pp-formula ψε, n(v) such that

ϕ(Vε, n)⊕k ψε, n(Vε, n) = Vε, n.

Theorem 1.1 states that a complementary pp-formula ψ(v) may be found, which is inde-
pendent of ε and n.

Let V be a representation of Uq. A definable scalar of V is a k-linear transformation
ρV : V → V, whose graph is definable in V by a pp-formula ρ(u1, u2) in two variables,

V |= ∀u1∃!u2 ρ(u1, u2).

The collection of definable scalars of V has the structure of a ring, denoted by UV ; the
operations in UV are composition and pointwise addition. There is a canonical morphism
from the ring Uq to the ring of definable scalars UV , which sends the element r to its
action on V, defined by the pp-formula

u2 = ru1.

It follows from a general fact [3, Prop 7] that if the lattice of pp-definable subspaces of
the Uq-module V is complemented, then the ring UV of definable scalars of V is von
Neumann regular and that the canonical ring morphism is an epimorphism. Because the
quantum plane kq[x, y] is a direct summand of M, its lattice of pp-definable subspaces is
also complemented. The ring of definable scalars of kq[x, y] is obtained as the quotient ring
of the definable scalars of M, modulo the ideal of definable scalars that vanish in kσq [x, y].
As the quantum plane is a faithful Uq-module, we may identify the quantum group Uq
with a subring of its ring of definable scalars.

In general, a left module N over an associative ring R is called pure injective or
algebraically compact if it is pp-saturated : every pp-type p+(v, A) (consisting only of pp-
formulas) over A ⊆ N which is consistent inN has a realization inN . The Ziegler spectrum
of R is a topological space Zg(R) whose points are the pure-injective indecomposable left
R-modules; a basis of open subsets is indexed by ordered pairs ϕ(v), ψ(v) of pp-formulas
in one variable:

Oϕ,ψ = {U ∈ Zg(R) : U |= ∃v (ϕ(v) ∧ ¬ψ(v)) }.

If V a finite dimensional representation of Uq, then it is a pure-injective Uq-module and
because each Vε,n is simple, it is an indecomposable pure-injective Uq-module and therefore
a point in Zg(Uq).

If N is a left R-module, then the closed subset of N in Zg(R) is defined to be

C`(N) :=
⋂

N |=ϕ→ψ

(Oϕ,ψ)c.

For example, the closed subset of the quantum plane kq[x, y] in Zg(Uq) is the closure of
the points kq[x, y]n = V+, n, while the closed subset of

M = kq[x, y]⊕ kσq [x, y]
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is the closure of all the simple finite dimensional representations Vε,n where ε = ±. It is
shown in this article that all but one of the points of the closed set C`(kq[x, y]) associated
to the quamtum plane is pseudo finite. These points represent nonstandard homogeneous
components of the quantum plane.

2 The lattice of K-invariant pp-definable subspaces

A pp-definable subspace ϕ(V ) of a Uq-module V is called K-invariant if Kϕ(V ) ⊆ ϕ(V ).
Thus a pp-definable subspace of M = kq[x, y]⊕ kσq [x, y] is K-invariant if for every simple
representation Vε,n,

Kϕ(Vε,n) ⊆ ϕ(Vε,n).

Since the vector space ϕ(Vε,n) is finite dimensional, and K is an invertible element of Uq,
we have that Kϕ(Vε,n) = ϕ(Vε,n), and hence that Kϕ(M) = ϕ(M). The collection of
K-invariant pp-definable subspacess of M forms a sublattice of the pp-definable subspaces
of M. In this section, we will prove that this sublattice is complemented.

According to Equation (2), the simple representation V+,n
∼= kq[x, y]n has a basis of

K-eigenvectors given by the monomials xn−iyi. These monomials also form a basis of K-
eigenvectors for the representation kσq [x, y]n. The 1-dimensional vector spaces generated
by these monomials are called the weight spaces of kq[x, y] (resp., kσq [x, y]n). If the pp-
definable subspace ϕ(Vε,n) is a direct sum of weight spaces, for every Vε,n, then the pp-
definable subspace ϕ(M) is clearly K-invariant. Conversely, if ϕ(M) is a K-invariant pp-
definable subspace, then we may multiply each of the ϕ(Vε,n) by various of the K− εqn−2i

to see that it must be a direct sum of weight spaces.

Let Uopp
q denote the opposite ring of Uq, defined by reversing the multiplication in

Uq. The formulas in the language L(Uopp
q ) of left Uopp

q -modules, or, equivalently, of the
right Uq-modules, are expressed with the scalars from Uq acting on the right. Given a
pp-formula ϕ(u) = ∃v (A,B)

(
u
v

) .= 0 (with u = (u1, . . . , un) and v = (v1, . . . , vk)) of the
language L(Uq), we may associate to it as in [8] a pp-formula ϕ∗(u) of L(Uopp

q ) in the
same variable u, called dual of ϕ(u):

ϕ∗(u) = ∃w (u,w)
(
In 0
A B

)
.= 0,

where In denotes the n × n identity matrix. If V is a left Uq-module, then the space
V ∗ := Homk(V, k) of functionals acquires the structure of a right Uq-module, given by
(ηr)(v) = η(rv), for every r ∈ Uq. If ϕ(V ) is a pp-definable subspace of V, then ϕ∗(V ∗) is
the subspace of V ∗ consisting of functionals that vanish on ϕ(V ). This association yields
an anti-isomorphism of the lattice of pp-definable subspaces of V and that of V ∗.

There is another way of associating to a pp-formula ϕ(v) in the language L(Uq) a pp-
formula formula in the language of right Uq-modules. It depends on the existence of the
anti-automorphism Tr of Uq determined by the values E 7→ F, F 7→ E, and K 7→ K. This
anti-automorphism is obtained by composing the anti-automorphism τ and automorphism
ω given in [4, Lemma 1.2]. Quite generally, let α : R → S be an isomorphism of rings.
It induces an isomorphism of languages L(α) : L(R) → L(S), which sends a pp-formula
ϕ in L(R) to the pp-formula α(ϕ) in L(S) obtained by replacing every occurence of the
unary function symbol r with α(r). If N is a left R-module, then Nα is defined as the
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left S-module whose underlying abelian group is given by N, and the action of S by
sn := α−1(s)(n). It is readily verified that for n ∈ N, we have that

N |= ϕ(n) iff Nα |= α(ϕ)(n).

The key operation on pp-formulae that turns out to best suit our needs is the com-
position of the operation ϕ 7→ ϕ∗ with ϕ 7→ Tr(ϕ). It will be denoted by ϕ 7→ ϕ−. The
importance of this operation stems from the well-known fact that for every finite dimen-
sional simple representation Vε,n, we have that

V ∗
ε,n
∼= V Tr

ε,n .

We provide a proof for lack of a reference. Recall that the most important element in Uq
is the quantum Casimir element [4, §2.7]:

Cq = EF +
q−1K +K−1q−1

(q − q−1)2
.

The fundamental property of Cq is that it acts on every simple finite dimensional repre-
sentation Vε,n of Uq as multiplication by the scalar

Cε,n =
q−1(εqn) + q(εqn)−1

(q − q−1)2
.

Furthermore, the action of the Casimir element permits us to decide when two simple
finite dimensional Uq-modules are isomorphic.

Lemma 2.1 [4, Lemma 2.8] Let V and V ′
ε,n be some simple finite dimensional represen-

tations of Uq. If Cq acts on V by the same scalar as on V ′
ε,n, then V ∼= V ′

ε,n.

By the lemma, all that needs to be verified is that Cq acts by the same scalar on V ∗
ε,n as

it does on V Tr
ε,n. According to the action of Uq on V ∗

ε,n, it holds that for every v ∈ Vε,n,

(ηCq)(v) = η(Cqv) = η(Cε,nv) = (ηCε,n)(v),

and therefore ηCq = ηCε,n for every η ∈ V ∗
ε,n. On the other hand, considering the action

of Uq on V Tr
ε,n, we have that

vCq = Tr(Cq)v = Cqv = Cε,nv = Tr(Cε,n)v = vCε,n,

for every v ∈ V ; the equality Tr(C) = C follows from Equation (3) on [4, p. 21].

Theorem 2.2 The rule ϕ(M) → ϕ−(M) is an anti-isomorphism of the lattice Latt(M)
of pp-definable subspaces of M.

Proof. Let V ∗
ε,n and V Tr

ε,n as above. By definition of M , it is enough to restrict our
attention to a finite dimensional simple representation Vε,n of Uq. Indeed, if V |= ϕ(v) →
ψ, then

V Tr
ε,n = V ∗

ε,n |= ψ∗(v) → ϕ∗(v),

which is equivalent to
Vε,n |= ψ−(v) → ϕ−(v).
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The following proposition implies that the sublattice of K-invariant pp-definable sub-

spaces of the Uq-module M is complemented. To prove it, the argument used in [3, Lemma
13] may be adapted in the quantum case.

Proposition 2.3 If ϕ is a K-invariant pp-formula, then ϕ− is also K-invariant and for
every simple finite dimensional representation Vε,n,

ϕ(Vε,n)⊕ ϕ−(Vε,n) = Vε,n.

3 The general strategy

Like the universal enveloping algebra U(L) of L = sl2(k), the quantum group Uq is a left
Ore domain and so admits a field of fractions, denoted by Q = Q(Uq). The Uq-module Q is
indecomposable and pp-simple: for every pp-formula ϕ(v) in one variable, the pp-definable
subspace ϕ(Q) equals either Q or 0. Thus the lattice of pp-formulas in the language of
Uq-modules may be partitioned into the filter F of high formulas - those formulas for
which ϕ(Q) = Q - and the ideal I of low formulas - those formulas for which ϕ(Q) = 0.
It is a general fact about left Ore domains that a pp-formula is high if and only if it is
implied by some divisibility pp-formula r|u, with r ∈ Uq nonzero. On the other hand,
every annihilator pp-formula sv .= 0, with s ∈ Uq nonzero, is necessarily low, because it
defines in Q the zero subspace. Because Uq is also a right Ore domain, every low formula
in the language of left Uq-modules implies some annihilator pp-formula sv .= 0.

A pp-formula ϕ(v) is called uniformly bounded, with bound nϕ ≥ 0, if for every finite
dimensional simple representation Vε,n of Uq,

dimk ϕ(Vε,n) ≤ nϕ.

Dually, we define a pp-formula ψ(v) to be uniformly cobounded, if there is a bound on the
k-dimension of the quotient Vε,n/ψ(Vε,n), for every Vε,n. The next section of the article is
devoted to a proof of the following fundamental result.

Theorem 3.1 If s in Uq is nonzero, and ϕ(v) is the annihilator formula sv
.= 0, then

there is a uniformly cobounded formula ψ(v) such that the pp-definable subspace ψ(M) is
K-invariant, and

ϕ(M) ∩ ψ(M) = 0.

Let us note, assuming the theorem, how every low pp-formula ϕ(v) is uniformly
bounded. Since any pp-definable subspace ϕ(M) defined by a low formula is contained in
a pp-definable subspace defined by an annihilator pp-formula, we may assume that ϕ(v)
is an annihilator pp-formula. The bound nϕ is then obtained by taking the bound on
the k-dimension of Vε,n/ψ(Vε,n), where ψ(v) is the formula given by Theorem 3.1. This
implies that every high formula ϕ(v) is uniformly cobounded, because ϕ(v) is implied by
a divisibility pp-formula s|v, and the k-dimension of Vε,n/sVε,n is bounded by nψ, where
ψ(v) is the annihilator pp-formula sv .= 0.

Because the anti-isomorphism ϕ 7→ ϕ− associates to a divisibility pp-formula s|v the
annihilator pp-formula Tr(s)v .= 0 - and vice versa - we see that ϕ(v) is high if and only if
ϕ−(v) is low. The following proposition is proved mutatis mutandis as in [3, Props 16-18],
using a highest pseudoweight argument.
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Proposition 3.2 If ϕ(v) is a low pp-formula for which the pp-definable subspace ϕ(M)
is K-invariant, then the interval [0, ϕ(M)] of the lattice Latt(M) is complemented.

Given Theorem 3.1 and Proposition 3.2, we may now proceed with the proof of Theo-
rem 1.1 as in [3]. If ϕ(M) is defined by a high formula, then ϕ−(v) is low, so that we may
use Theorem 3.1 to obtain a high formula ψ(v) such that ψ(M) is K-invariant and

ϕ−(M) ∩ ψ(M) = 0.

Applying the anti-automorphism ϕ 7→ ϕ− once more gives that

ϕ(M) + ψ−(M) = M.

Now ψ−(M) is a K-invariant subspace defined by a low pp-formula, so Proposition 3.2
implies that the interval [0, ψ−(M)] is complemented. A complement of ϕ(M) ∩ ψ−(M)
in ψ−(M) then serves as a complement of ϕ(M) in M.

If, on the other hand, the pp-definable subspace ϕ(M) is defined by a low pp-formula,
then we may apply the preceding argument to obtain a complement ψ(M) of ϕ−(M) in
M, and apply the anti-automorphism ϕ 7→ ϕ− to see that ψ−(M) is then a complement
of ϕ(M) in M.

4 Homogeneous elements of degree 0

The quantum group Uq may be equipped with the structure of a Z-graded algebra by
assigning degrees as follows: deg(E) = 1, deg(F ) = −1, and deg(K) = deg(K−1) = 0.
Then the relations given in Equation (1) are all homogenous, so that Uq becomes a Z-
graded algebra such that for every m ∈ Z, the m-th homogenous component of Uq, denoted
Umq , is the vector space spanned by

{
EiK lF j : i, j ∈ , l ∈ Z, i− j = m} . This follows from

the quantum version of the Boincaré -Birkhoff-Witt Theorem [4, Thm 1.5]. In fact, we
have

K (EiK lF j)K−1 = q2(i−j)(EiK lF j), (3)

so that Uq =
⊕

m∈Z U
m
q and the grading is the same as the eigenspace decomposition for

the action of K on Uq by conjugation.

Remark 4.1 (see [5, Lemma VI.4.2]) Let u be an element of Uq. Then u ∈ U0
q if and

only if u commutes with K.

Proof. If u ∈ U0
q , then Equation (3) implies that u commutes with K. For the converse,

write u =
∑
ci,jE

iK lF j (for some i, j ∈ N and l ∈ Z). If u commutes with K, then by
the quantum PBK Theorem the coefficient q2(i−j) in Equation (3) must equal 1: as q is
not a root of unity, i− j = 0. �

The remark implies that U0
q contains the center of Uq. Repeated application of the

Relations (1) shows that every element in U0
q is a polynomial in EF, K, and K−1 with

coefficients in k. Since these elements of Uq commute we see that the subring U0
q is a

finitely generated commutative k-algebra U0
q = k[Cq,K,K−1].

Lemma 4.2 If r ∈ U0
q , then the annihilator formula ϕ(v) = (rv .= 0) is uniformly

bounded.
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Proof. Express r = r(Cq,K,K−1) as a polynomial in Cq, K, and K−1 over k. By
factoring out a suitably large power of K−1, we have that r = K−tr̄(Cq,K), where r̄ is
a polynomial in Cq and K over k. Since the axioms for a left Uq-module imply that the
pp-formulae rv .= 0 and r̄v .= 0 are equivalent, we may assume, without loss of generality,
that r = r̄ is a polynomial in Cq and K over k.

Since r commutes with K, the pp-definable subspace ϕ(Vε,n) is K-invariant for every fi-
nite dimensional simple representation Vε,n. The pp-definable subspace ϕ(Vε,n) is therefore
a sum of weight spaces,

V p
ε, n = {vp ∈ Vε,n Kvp = εqn−2pvp},

p = 0, . . . , n, of Vε, n. By considering the action of Cq and K on V p
ε, n, we see that the

pp-definable subspace ϕ(Vε,n) will contain V p
ε, n if and only if

r(Cε,n, εqn−2p) = 0.

Because q is not a root of unity, the exponential map p 7→ qp is a monomorphism as is the
linear function p 7→ n− 2p. We may deduce that the number of solutions p is bounded by
the degree of K in the polynomial r, that is, dimk ϕ(Vε,n) ≤ degK(r). �

To generalize Lemma 4.2 for every element in Uq, we may apply the following property
of the m-th homogeneous component of Uq :

∀m > 0, Umq = Em U0
q ,

∀m < 0, Umq = U0
q F

m.

It may established by repeated application of Equations (1). The following result then
follows using a quantum version of the argument used in [3, Lemma 21].

Proposition 4.3 Let s ∈ Uq and consider the corresponding annihilator formula ϕ(v) =
(sv .= 0). There are an element r in U0

q and a natural number m such that for every simple
finite dimensional representation Vε,n of Uq,

ϕ(Vε,n) ∩ FmVε,n ∩ rVε,n ∩ EmVε,n = 0.

An immediate consequence of Proposition 4.3 is the proof of Theorem 3.1. The uniformly
cobounded formula ψ(v) is given by the conjunction of Fm|v, r|v, and Em|v. It clearly
defines a K-invariant subspace of M.

5 Ideals of definable scalars

Before discussing the ring of definable scalars of the quantum plane, let us review some
of the consequences of Theorem 1.1 for the representation theory of Uq. These results are
recounted without proof, which in all cases is entirely analogous to that given in [3] for the
universal enveloping algebra U(L) of L = sl2(k), when k is an algebraically closed field of
characteristic 0.

Let U ′
q be the ring of definable scalars of the Uq-module M . If r belongs to U ′

q, then
the pp-definable subspace rM is complemented by some pp-definable subspace ψ(M) of
M

rM ⊕k ψ(M) = M.
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If e ∈ U ′
q is the idempotent projection onto rM with respect to this decomposition, then

M |= ∀v(ψ(v) ↔ (ev .= 0)),

and rU ′
q = eU ′

q. Similarly, define e0 ∈ U ′
q to be the idempotent projection onto the pp-

definable subspace ϕ(M) defined by ϕ(v) = (Ev .= 0), with respect to the decomposition

ϕ(M)⊕k FM = M.

For every simple finite dimensional representation Vε,n of Uq, e0Vε,n is the highest weight
space. If I0 ⊆ U ′

q denotes the two-sided ideal generated by e0, then, as in [3], I0 consists
of all the elements r ∈ U ′

q for which the formula r|v is is uniformly bounded, and U ′
q/I0 is

isomorphic to the field of fractions Q of Uq.
As in the general case of a von Neumann regular ring, the Ziegler spectrum Zg(U ′

q) of
U ′
q consists of the injective indecomposable U ′

q-modules where the open subsets in Zg(U ′
q)

are in bijective correspondence with the two-sided ideals of U ′
q according to the rule

I 7→ O(I) := {E ∈ Zg(U ′
q) : IE 6= 0}.

If ϕ(v) is a pp-formula in L(U ′
q), then there is a complementary pp-formula ψ(v) such that

that
ϕ(M)⊕k ψ(M) = M.

If e ∈ U ′
q is the projection onto ϕ(M) with respect to this decomposition, then it may be

easily checked that in Zg(U ′
q),

Oϕ,v .=0 = O(I),

where I is the two-sided ideal of U ′
q generated by e.

As in the case of the universal enveloping algebra of sl2(k),

Zg(U ′
q) = O(I0)

.
∪ {Q}.

The open subset O(I0) forms a compact totally disconnected subspace of Zg(U ′
q), and the

subset of finite dimensional simple representations Vε,n is a dense and discrete open subset
of Zg(U ′

q). It follows that if I1 and I2 are two-sided ideals of U ′
q contained in I0, then

I1 = I2 if and only if the corresponding open subsets O(I1) and O(I2) contain the same
finite dimensional representations.

If V ∈ Zg(U ′
q) is not Q, then I0V ≺ V is a simple U ′

q-module which is an elementary
substructure of V regardless of whether V is considered as a structure for the language
of Uq-modules or U ′

q-modules. An indecomposable representation V in Zg(U ′
q) is finite

dimensional if and only if I0V = V.
A Uq-module V is said to be pseudo-finite dimensional if it satisfies all the first order

sentences of the language of Uq-modules satisfied by every finite dimensional module. A
Uq-module V is pseudo-finite if and only if it is a U ′

q-module and I0V ≺ V . Every pseudo-
finite dimensional representation V is elementary equivalent to a direct sum

V ≡
⊕

W∈C`(V )

I0W,

where every I0W is a pseudo-finite dimensional simple representation of U ′
q. This is an

elementary version of [4, Theorem 2.9].
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Let ϕ+ be the sum of the following pp-formulae

Kv = qv, Kv = v;

the pp-definable subspace ϕ+(M) of M is K-invariant and is complemented by the pp-
definable subspace ϕ−+(M) of M

ϕ+(M)⊕k ϕ−+(M) = M.

So, define e+ to be the idempotent projection onto ϕ+(M), with respect to this decom-
position. Then e+Vε,n 6= 0 if and only if ε = +. If we denote by I+ the ideal generated by
the idempotent e+, then O(I+) is the unique open subset of Zg(U ′

q) contained in O(I0)
that contains all the indecomposable summands V+,n of the quantum plane, and none of
the V−,n.

Similarly, let ϕ− = σ(ϕ+) be the pp-formula gotten by applying the automorphism σ
to the scalar in ϕ+. It is the sum of the pp-formulae

Kv = −qv, Kv = −v.

If we define e− = σ(e+) to be the idempotent projection onto ϕ−(M), with respect to
the corresponding K-invariant decomposition of M, then e−Vε,n 6= 0 if and only if ε = −.
Then the ideal I− generated by e− is nothing more than σ(I). Here we are making tacit
use of the fact that Mσ ∼= M, and if r ∈ U ′

q is a definable scalar of M, represented say
by the pp-formula ρ(u, v), then the pp-formula σ(ρ) also defines an element σ(r) ∈ U ′

q. As
both of the ideals I− and I+ are contained in I0, and the open subsets associated to I0
and I− + I+ both contain all the finite dimensional points of Zg(U ′

q), we conclude that

I− + I+ = I0.

Since O(I−) ∩ O(I+) = O(I− ∩ I+) contains no finite dimensional points, the sum must
be direct.

Theorem 5.1 The lattice Latt(kq[x, y]) of pp-definable subspaces of the quantum plane
is complemented. The ring of definable scalars of kq[x, y] may be identified with the von
Neumann regular ring U ′

q/I−. The canonical morphism ρ : Uq → U ′
q/I− is an epimorphism

of rings with 0 kernel.

Proof. The first statement is clear, because if ϕ(v) is a pp-formula, then any pp-
formula ψ(v) that defines a complementary subspace of ϕ(M) in M, will also define a
complementary subspace of ϕ(kq[x, y]) in kq[x, y].

To prove the second statement, let us first note that any definable scalar r of M
that vanishes on kq[x, y] must belong to I0. This is because kq[x, y] contains finite dimen-
sional indecomposable summands of arbitrarily large k-dimension. The formula r|v cannot
therefore be uniformly cobounded. It is therefore uniformly bounded, and r ∈ I0. Since
I− consists of the elements of I0 that vanish on kq[x, y], our claim is established.

Since every element of U ′
q, acts definably on kq[x, y], there is a canonical morphism of

rings from U ′
q to the ring U ′′

q of definable scalars of kq[x, y]. The lattice of pp-definable
subspaces of kq[x, y] is the same whether we consider kq[x, y] as a Uq-module or a U ′

q-
module. Since it is complemented, the canonical morphism is an epimorphism of rings. If
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we can show that this ring epimorphism is onto, it will follow that U ′′
q is isomorphic in the

obvious way to the quotient ring U ′
q/I−. That the kernel of ρ is 0 follows from the fact that

the quantum plane is a faithful representation of Uq. This follows from Proposition 4.3,
because if s ∈ Uq is nonzero, then the annihilator formula sv .= 0 is uniformly bounded.

Let us note, quite generally, that if ρ : R → S is a ring epimorphism, with R von
Neumann regular, then it must be onto. Replacing R with the von Neumann regular
ring R/Ker ρ, we may assume without loss of generality that Ker ρ = 0. As ρ is an
epimorphism, the morphism µ : S ⊗R S → S of abelian groups, given by s⊗ r 7→ sr, is an
isomorphism. Consider the commutative diagram

0 -R⊗R S ρ⊗ S-S ⊗R S -S/R⊗R S - 0

@
@

@
@

@
@R

?

µ

S.

The top row is exact, because every short exact sequence of R-modules is pure exact. Since
the vertical and diagonal arrows are both isomorphisms, it follows that the monomorphism
ρ⊗S in the top row is also an isomorphism, and hence that S/R⊗RS = 0. But this implies
that S/R = 0, because the morphism

S/R⊗ ρ : S/R⊗R R → S/R⊗R S

is a monomorphism. �
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