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Abstract

Let X be a definable C" manifold, Y7, Y5 definably compact definable C" submanifolds of
X such that dimY; + dimY5 < dim X and Y; has a trivial normal bundle. We prove that
there exists a definable isotopy {h,}pes such that hg = idx and hy(Y;) NYs = 0.
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1. Introduction.

Let N = (R,+,-,<,...) be an o-minimal
expansion of a real closed field R. FEvery-
thing is considered in N, the term “defin-
able” is used throughout in the sense of “de-
finable with parameters in A/, each defin-
able map is assumed to be continuous and
2<r < oo.

General references on o-minimal struc-
tures are [2], [3], also see [10].

In this paper we consider definable iso-
topies of definable C" manifolds and gradi-
ent like vector fields of definable C" Morse
functions when 2 < r < oo. Definable C”
Morse functions in an o-minimal expansion
of the standard structure of a real closed field
are considered in [9].

Definable C" manifolds are studied in [9],
[1], and definable C"G manifolds are studied
in [4]. If R is the field R of real numbers,
then definable C"G manifolds are considered

in [8], 7], [6] [3].

Theorem 1.1 (10.7 [1]). Bvery defin-
ably compact definable C™ manifold X is de-

finably C" diffeomorphic to a definable C”

submanifold of some R™.

By Theorem 1.1, we may assume that a
definably compact definable C" manifold X
is a definable C" submanifold of some R".

Let X be a definable C" manifold and
J an open interval including [0,1]gz = {z €
R0 < z < 1}. A family {hi}ies of defin-
able C" diffeomorphisms of X is a definable
isotopy of X if hy is identity if t <0, hy = hy
is a definable C" diffeomorphism if ¢ > 1 and
H:XxJ—XxJ H(z,t)=(h(zx),t)is a
definable C" diffeomorphism.

Theorem 1.2. Let X be a definable C"
manifold, Y1,Ys definably compact definable
C" submanifolds of X such that dimY; +
dimYs; < dim X and Y] has a trivial normal
bundle. Then there exists a definable isotopy
{hp}pes such that hy = idx and hi(Y1) N
Y, = 0.

Let X be a definable C" manifold. Then
as in the standard version, we can define the
tangent bundle TX of X. A definable C™!



vector field is a definable C"~! section of
TX.

Definition 1.3. Let X be a definable C"
manifold and f : X — R a definable Morse
function. A definable C™' vector field = on
X is a gradient like vector field of f if the
following two conditions are satisfied.

(1) (X - f)(p) > 0 if p is not a critical
point of f.

(2) If p is a critical point of f with in-
dex N\, then there exists a definable coordi-
nate neighborhood (x4, . .., z,) such that f =
—a}— - —as+ai -+l and Z s a
gradient vector field of f.

Theorem 1.4. Let X be a definably com-
pact definable C™ manifold and f : X — R a
definable Morse function. Then there exists
a gradient like vector field of f.

2 . Preliminaries.

Let W7 € R™", W5 C R™ be definable
open sets and f : W; — W, a definable
map. We say that f is a definable C" map
if f is of class C". A definable C" map is a
definable C" dif feomorphism if f is a C"
diffeomorphism.

Definition 2.1. A Hausdorff space X is
an n-dimensional definable C™ manifold if
there exist a finite open cover {U;}*_, of X,
finite open sets {V;}k_, of R", and a finite
collection of homeomorphisms {¢; : U; —
Vit | such that for any i, j with U;NU; # 0,
¢:(U;NU;) is definable and ¢;0¢; " : ¢;(U;N
U;) — ¢;(U;NU;) is a definable C” diffeo-
morphism. This pair ({U;}r_,{¢: : Ui —
Vi}e_)) of sets and homeomorphisms is called
a definable C" coordinate system.

A definable C" manifold X is de finably
compact if for every a,b € RU{oo}U{—0o0}
with a < b and for every definable map f :
(a,b) = X, lim, 410 f(z) and lim, o f ()
exist in X.

If R =R, then for any definable C" man-
ifold X of R™, X is compact if and only if it
is definably compact. In general a definably

compact set is not necessarily compact. For
example, if R = R, then [0,1]g,,, = {7 €
Ru4l0 < 2 < 1} is definably compact but
not compact.

Let X be an m-dimensional definable C"
manifold and f : X — R a definable C"
function. A point p € X is a critical point
of f if the differential of f at p is zero. If
p is a critical point of f, then f(p) is called
a critical value of f. Let p be a critical
point of f and (U,¢ : (U,p) — (V,0)) a
definable C" neighborhood around p. The
critical point p is nondegenerate if the Hes-
sian of f o ¢! at 0 is nonsingular. Direct
computations show that the notion of non-
degeniricity does not depend on the choice
of a local coordinate neighborhood. We say
that f is a definable Morse function if ev-
ery critical point of f is nondegenerate.

3 Proof of our results

The following result is a definable version of
Sard’s Theorem.

Theorem 3.1 (3.5 [1]). Let X; C R
and Xy C R be definable C™ manifolds of
dimension m and n, respectively. Let f :
X1 — X5 be a definable C" map. Then the
set of critical values of f has dimension less
than n.

To prove Theorem 1.2, we have the fol-
lowing lemma.

Lemma 3.2. Let D* be the k-dimensional
closed unit disk of R¥ and 0 < a < 1. Then

there exists a definable isotopy {h;}iey such
that hg = id and h1(0,...,0,0) = (0,...,0,a).

Proof. Take a definable C" function f :

_ [ Lzl <3
R—>R,f(:c)—{ 0. |z >§ .
If € > 0 is sufficiently small, then f.(z)
ef(z) + x is increasing, f(z) = x if |z| >
and f.(0) = e.
Take a definable C" function p. : R —
0,z <%
R,p(x)—{ 1,3(;>e2 '
We define g, : R* — R, g(x1,..., 1)

(I=pe(xi+. .. xp_1)) fe(wr)+pe(ai+. .. af_1)wp.
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Then ge(mlw . ka) = fe(xk) if 33% +o
vy < 5 and ge(zy,...,x) = xp if 2F +
~+x2 | < e Moreover g(z1,..., 1) = zp
if |zx| > 1, ge(w1,..., xy) is increasing with
respect to zx and g.(0,...,0) = f(0) = €
Then the map h : D¥ — DF defined by
h(zy, ... 2p—1,2k) = (T1, .+, Tpo1, (21,

xy)) is the identity on a definable open
neighborhood of dD*, h(0,...,0,0) = (0,

.,0,¢) and h is a definable C" diffeomor-

phism. We define a definable isotopy {h:} of

D* by ht($1,~--7Ik 17%) (1‘17‘- y Lh—1,
Pege(T1, .. xp_1,xk) + (1 — pe(t)x ) Then
ht:’Ldlft<0ht—hlft2€and

hi(0,...,0,0) = (0...0,¢).

Let € < a < 1. We now construct a defin-
able isotopy {H;} of D* such that hy(0,...,
0,0) = (0,...,0,a). For a sufficiently small
0 > 0, take a definable C" function o : R —

fx<a+d
R,o(z) = { Lr>a+20 "

Then the map H : D¥ — D* defined by
H(zy,. . zn) = (o(l|z])zy, ... o(l]z]])zx)
is a definable C" diffeomorphism, where ||z||
denotes the standard norm of R¥. H is the
identity on a definable open neighborhood
of OD* and H(0,...,0,a) = (0,...,0,¢).

Thus {H 'oh;o H}cy is a definable iso-
topy such that the identity if ¢t < 0, H*
hio H(0,...,0,0) = (0,...0,a). O

Theorem 3.3. Let D be the k-dimen-

sional closed unit disk of R* and p,q € IntDF.

Then there ezists a definable isotopy {hi}ies
such that hy = id, hi(p) = q and h; is
identity on a definable open neighborhood of
oD*.

Proof. We prove that the theorem the
case where p = 0 and ¢ # 0. Since ¢ # 0, a =
llq|| satisfies 0 < a < 1. Let (by,...,b;) =

%(pl,...,pk), where p = (p1,...,pk). Since

[|(b1,...,br)|| = 1, we can take an orthogo-
nal matrix B including [by, ..., b as a n-th
b !
row. Hence | : =B

b 0
" 1

0

b ]
Therefore | : =B 0
Pn a

By Lemma 3.2 and composing the matrix
operation of B, we have a definable isotopy
of D* such that hi(0) = q.

By the above argument, we have a de-
finable isotopy of D* such that hy(p) = 0.
Composing these two definable isotopies, we
have the required definable isotopies. O

Remark 3.4. (1) Theorem 3.8 is a de-
finable version of the classical result.

(2) If N = (R,+,-,<,exp,...), then we
can take r = oo.

Proof of Theorem 1.2. By assumption,
S1 has a definable open neighborhood U
which is definably C" diffeomorphic to S; x
int(D**1). We identify U with S x int(
DF=s1). Let 7 : S; x int(D¥%1) be the pro-
jection onto the second factor. By assump-
tion, dim(SoNU) = 89 < k—s; = dim D*=51,
Hence dim 7(Sy NU) < dim int(D*~*1). By
Theorem 3.1, there exists a such that 0 <
a<1landpy=(0,...,0,a) & n(SeNU). By
Lemma 3.2, there exists a definable isotopy
{j+ }ees of int(D¥51) such that

(1) jo = id and j1(0) = po.

(2) For any t, j; is the identity outside of
Dk—sl .

The family {H; };cs defined by hy(p, z) =
(p, j:(x)),V(p, x) € Sy xint(D**) is a defin-
able isotopy of U. Since this is the identity
outside of 57 x %Dk_sl, we can extend it to
a definable isotopy {h;}ics of X. By con-
struction, hy(S1) = S1 X {po} in U. Since
the choice of pg, (S1 X {po}) N (SeNU) = 0.
Therefore hy(S;) N Sy = 0. O
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Theorem 3.5 (5.8 [1]). Let X C R! be
a definable C™ manifold. Given two disjoint
definable sets Fy, F1 C X closed in X, there
exists a definable CP function 6 : X — R
which is 0 exactly on Fy, 1 exactly on F,
and 0 < 6§ < 1.

Lemma 3.6 (6.3.6 [2]). Let A C R be
a definable set which is the union of definable



open subsets Uy, ..., U, of A. Then A is the
unton of definable open subsets Wy, ..., W,
of A with cla(W;) C U; fori = 1,...,n,
where cla(W;) denotes the closure of W; in
A.

The following is the Morse’s lemma in
the definable category.

Lemma 3.7 (A7 [9]). Letr > 0, X
a definable C™2 manifold of dimension n,
f: X — R a definable C™? function and
p € X a nondegenerate critical point of f.
Then there exists a definable C" coordinate
system (U, @) of X at p such that f = —y3 —
= YR Yapr T Une

Proof of Theorem 1.4. By the defini-
tion of definable C" manifolds, there exists
a finite number of definable coordinate sys-
tem {U;}¥_, of X. By Lemma 3.6 and since
X is definably compact, replacing {U;}%_,, if
necessary, there exists finite number of defin-
ably compact sets { K;}¥_, such that K; C U;
and UleKi = X. Moreover we may assume
that for any critical point py, po lies in a
unique U; and U; satisfies Lemma 3.7.

For any i, we define the gradient vector
field Xy of f in U; by

Xp= gL+ 4 2L 52 Then for
any non-critical point, X; - f > 0. By The-
orem 3.5, there exists a definable C" func-
tion h; : U; — R such that 0 < h < 1,
h; = 1 on a definable open neighborhood V;
of K; and h; = 0 outside a definably com-
pact set L; containing V; with L; C U;. Each
h; is extensible to X defining 0 outside of
U;. Then we have a definable C" vector field
X =% hX;of X.

We now prove X is a the required vector
field. Let p be a non-critical point. Then
(Xi-f)(p) > 0ifp € U; and (hi Xy~ f)(p) > 0
otherwise. Since X = UleKi, there exists a
K; such that p € K;. Since h; = 1 on K;,
(X¢- f)(p) >0. Thus X - f > 0.

Let p be a critical point. Then there exist
a sufficiently small definable open neighbor-
hood V' of p contained in a unique U;. Since
h; = 1 on V and f is written in the stan-
dard form, h;X; is a form in the Definition
1.3 (2). Since any other h;X; is 0 on V, X
is a form in the Definition 1.3 (2). O
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