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1 Introduction

In this paper, we refine the analysis begun in Ivo Herzog’s paper [7] on representations
of the Lie algebra sla(k), where k is an algebraically closed field of characteristic 0. Our
principal contribution is to bring out a connection to fundamental problems in the dio-
phantine geometry of curves. We expect to show, in a subsequent paper, that the theory
of finite dimensional representations of sla(k) is decidable, modulo some widely believed
conjectures in diophantine geometry. It should be noted that Prest and Puninski [13]
showed that the theory of all sly(k)-modules is undecidable (this important result seems
not to be well-known).

Our model theory and definability are relative to the formalism of left R-modules

for a ring R [12]. In particular, we tacitly identify the theory of representations of the
Lie algebra sla(k) with the theory of modules over Uy, the universal enveloping algebra
of sla(k). We follow Herzog in calling a Ug-module M finite dimensional if it is finite
dimensional over k. (Note that k is fixed throughout the paper. We discuss the effect of
varying k in the sequel).
Then M is pseudo-finite dimensional (henceforward PFD) if it satisfies all sentences of
the language of Ui-modules true in all finite dimensional modules. By classical model
theory [4], M is PFD if and only if M is elementarily equivalent to an ultraproduct of
finite dimensional modules.

The study of finite dimensional Ug-modules M is dominated by the classical result due
to Lie and Study (see, for instance, [6], Theorem 8.7) showing that any such M is uniquely
a finite direct sum of simple finite dimensional modules and there is exactly one of the
latter for each finite dimension. We write V) for the unique simple finite dimensional
module of dimension A 4 1, and recall that it has a beautiful presentation as the additive
group of homogenous polynomials F'(X,Y') of degree A in X, Y, with Uy acting as certain
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differential operators ([6], § 8.1). Part of the motivation for studying PFD-modules is to
isolate the model-theoretic uniformities in the V' (\), as A — oo.

The ring Uy, is left and right Ore domain (for instance, see [5] § 2.3), and thus belongs to
a well-studied class. To understand PFD-modules, Herzog introduced an exotic epimorphic
extension U, of Uy and showed:

1. U}, is a von Neumann regular ring;
2. PFD-modules are naturally U;-modules;
3. the model theory of Uj-modules is interpretable in that of Up-modules;

4. there is an elegant axiomatization of the class of PFD-modules as a subclass of the
class of Uj-modules.

Unfortunately, the very abstract nature of the construction of Uj leaves some ba-
sic questions unanswered. We remedy this by giving a “recursive” construction of Uj,
building it from Uy in stages. This should enable us to prove decidability of the theory of
PFD-modules (assuming some plausible conjectures about the decision problem for integer
points on curves). We are obliged to describe the structure of the sets

AV 9},

for ® a sentence of the language of Uig-modules. In this paper we bring out some basic
new information about the case when ® concerns the nontriviality of certain kernels. This
is where diophantine geometry is relevant.

For both of us it is an honour to dedicate a paper to the memory of Andrzej Mostowski.
The junior author (S. L'L.) did not exist at the time of Mostowski’s untimely death, and
the model theory of modules was just beginning, but she is well aware of the lasting
importance of his ideas (and we use essentially some of his work in this paper).

The senior author (A. M.) would like to make a more personal statement:

I began reading Mostowski’s books and papers when I was an isolated teenager in Scot-
land, and was taken by their range and clarity. Throughout graduate school I continued
to learn more of his work, and the paper with Andrzej Ehrenfeucht has remained one of
my favourites. I first met Mostowski in 1968 (in Warsaw and in Italy), and was very much
encouraged by the interest he showed in my work. We met a few times before 1975, and
he became for me one of the most admired figures on logic, both for his work and for the
strength and generosity of his personality. His death had many of us fearing for the future
of logic in Poland, And yet, after thirty years, Poland is rich in young researchers, and the
ideas of Mostowski’s generation (and later mine) have evolved very far, exactly the right
memorial to an outstanding teacher and researcher.

2 The basic structure and formalism

2.1 The Lie algebra siy(k)

Fix, for the rest of the paper, an algebraically closed field k of characteristic 0. sly(k) is
the Lie algebra (over k) of 2 x 2 matrices of trace 0. Throughout we consider the basis of



slao(k) over k given by z, y, h where

= (08) = (0 0) =(5 %)

These satisfy the following relations:

[ZE,y] =h,
[h,z] =2,
[hvy] = —2y.

(and indeed all other Lie algebra relations are generated by these).

The study of left modules over the Lie algebra slo(k) is naturally equivalent to the
study of left modules over Uy the universal enveloping algebra [3]. Uy is well-understood.
Via the natural embedding sls(k) — Uy, we construe Uy as freely generated over k by
elements x, y, h satisfying:

ry—yxr=h,
hxr —xh = 2z,
hy —yh = —2y.

Uy, is a left and right Ore domain ([5] § 2.3), and so has a field of fractions. We follow
Herzog in calling this field K. Its Ug-module structure turns out to be important.

Before looking at Ug-modules, we review the basics about the ring structure of Ug.
Here, and in most of the paper, we are presenting, with a different emphasis, ideas from
Herzog’s paper [7].

Recall that Uy has a Z-grading as k-algebra, induced by defining:

gr(h) = gr(a) = 0 forallack
gr(r) = 1,
gr(y) = —1.

Let Uy, be the subalgebra of elements of grade n. We have

U, = @Uk,n;

neZ
forn >0, Uy, = x"Uko = Ugo02";
forn <0, Upn = y"Uko = Uk oy".

These results are proved by simple manipulations of the basic relations connecting x, y
and h.
Of fundamental importance is the Casimir operator, defined as

1
c::vy+yx+§h2 € Uy,o-

Lemma 2.1 c is central in Uy,.



Proof. 1t is enough to prove that ¢ commutes with z, y and h.
i) zc = z(zy+yz + 5h%) = zyz + 2(yz + h) + 1 (ha — 2z)h = 2zyz + $hah,

cx = (zy+yz+ih%)z = zyz+ (xy — h)z + $h*z = 2zyz — ha + $h(zh +2z) =
= 2zyx + %hxh = xc;

i) yc = cy is proved similarly;

iif) ch = (zy+yz+ 1)k = (h+2yx + Lh%)h = B? + 1h3 + 2yzh =
= h?+ i3+ 2y(hx — 2z),

he = h(zy +yx + 1h%) = h(h+2yz + 1h?) = B? + h3 + 2hyx =
= h*+ $h3 +2(yh — 2y)z = ch.

[l
Lemma 2.2 Uy o = klh,c|, the polynomial ring on the two commuting generators h, c.
Proof. See [7] for a brief sketch, using the Poincaré-Birkhoff-Witt Theorem. O
Similarly, one can prove.

Lemma 2.3 The center of Uy is k[c].

2.2 The simple finite dimensional modules

Let A be an integer > 1. Let V), be the k-vectorspace of homogenous polynomials of degree
A over k in the two variables X and Y. V) has dimension A 4+ 1, and a natural basis is
given by the monomials

(X1 Y2 0<i< A},

V) is given a Ug-module structure by having:

t X—
Tr act as oY
t Y —
Yy act as X s
0 0
h act as XaiX — Yaiy .

See [6], § 8.1., for the details.

Lemma 2.4 V) is a simple U, module.

FEvery simple finite dimensional Ug-module is isomorphic to a unique V).

Furthermore, every finite dimensional Ug-module is isomorphic to a direct sum of simple
modules, uniquely up to relabelling.

Proof. See [6], Theorem 8.2 and Theorem 8.5 for the first two statements and Theorem
8.7 for the last statement. g

Of crucial importance for us are the eigenvalues of h, ¢, x and y on a finite dimensional
module M. Here, let us summarize the most basic definitions and facts that we will use
later:



i) Any simple finite dimensional Ui-module V) decomposes as follows:

Vi= @ Vi

0<i<A

where each V) ; equals the one dimensional h-invariant subspace {v € V : hv =
(A —2i)v} of Vy; more precisely, we have Vy ; = Ker(h — (A —2i) - 1).

ii) On V), c acts as scalar multiplication by w

iii) If we make the convention that V) ; = {0} if i ¢ [—\, A], then:
xmaps Vy ; to V) ;i—1,

and
ymaps V) ; to V) ;41 .

iv) Ker(z) = Vo, and
Ker(y) = Vi

v) = and y act nilpotently.

vi) V) = Ker(z) ® Image(y)
Vi = Image(x) ® Ker(y).
The V) ; are called the weight spaces, V) ¢ is called the highest weight space and V)

is called the lowest weight space. (The terminology will be suitably adjusted once
we deal with general Uy-module M).

vii) Let M be a finite dimensional Ug-module. For A € k, define Cas(A, M) to be
Ker(c— w -1). Then
M = @Cas()\, M),
A€k

with Cas(\, M) = {0} unless A € N. Indeed, Cas(\, M) is isomorphic to some

finite power of V.
AO+2)

Note that for A > 0, =5 determines A.

viii) Define Cas(M) as
{N:Cas(\, M) # {0}}.
2.3 Basic model theory and PFD modules

See [12] for all the basics on the formalism for model theory of modules. Our language
is that of abelian groups, with a unary function symbol for (the endomorphism given by)
each element of Uj.

We begin by noting the following:

Lemma 2.5 If M is a Ug-module, then

M=Me&M.



Proof. By the Baur-Monk criteria for elementary equivalence [18] (generalizing that
of Szmielew [16]), the elementary type of M is determined by the cardinality (modulo co)
of all o(M)/¥(M), where ¢, 1) are pp-formulas defining subgroups of M. But since the
infinite field & is in the center of Uy, these groups are k-subspaces, and so the above indices
are always 1 or infinite. Thus M and M & M have the same elementary invariants. O

Corollary 2.6 The class of finite dimensional Ug-modules is not closed under elementary
equivalence.

Proof. Lemma 2.5 shows that M = M), (]

One has already reached an interesting question.

Question 2.7 Which Ug-modules are elementary equivalent to a finite dimensional mod-
ule?

It is worth noting that the theory of finite dimensional Uy -modules (for k a recursive
algebraically closed field) is co-r.e. (that is, it has a recursively enumerable complement).
The basic structure theory of finite dimensional modules gives a recursive enumeration
of them using explicit matrix representations of the actions of h, x and y on the spaces
V. But for any fixed M of finite dimension we can test truth in M using this matrix
representation and the decidability of the theory of algebraically closed fields. Thus if a
sentence is not in the theory, it will be enumerated at some finite stage.

Herzog defines any Ug-module M to be pseudo-finite dimensional (PFD) if it is a model
of the elementary theory of all finite dimensional modules. By general model theory, M
is PFD if and only if M is elementary equivalent to an ultraproduct of finite dimensional
modules (see [4], Exercise 4.1.18).

One should note that various “pseudo-finite” structures have been studied, notably
fields and groups in [1] and [17] respectively. The flavour here is different (as described in
§ 2.2), as it is the dimension which is pseudo-finite, and not the cardinality.

Before entering on the more delicate details of the analysis, we discuss some fairly
superficial aspects of ultraproducts of finite dimensional modules.

Lemma 2.8 Let M be a PFD R-module. Then, the following properties hold:
i) Cas(\, M) = {0} unless A € N:
ii) If M is finite dimensional then Cas(M) is finite.

iit) If Cas(M) is finite, then M 1is elementary equivalent to a finite dimensional Uy-
module if and only if

M = Z Cas(\, M) = @ Cas(\, M) | ,
AeCas(M) AeCas(M)

and this is a first order property of M, for fized finite Cas(M).

Proof. i) Obvious, since the property is expressible in the language and is true for
finite dimensional M.

it) This follows from the decomposition into a sum of V.



i11) Suppose M is finite dimensional. So, Cas(M) = E for some finite subset £ C N.
Obviously, each Cas(\, M), for A € E, is definable, and so one can express by a first-order
sentence that M =}, 5 Cas(\, M).
The direct sum representation follows.

Conversely, if M has this form, then

M%@CQS(A,M)E@V)\,

AeE AEE

by Mostowski’s Theorem [10] and the fact that in all finite dimensional My, for all A\ and

all sentences ®
CCLS()\, M()) ): (OIRS VA ): P

Corollary 2.9 M 1is elementary equivalent to a finite dimensional My if and only if
Cas(M) is finite and M =}y ccqsar) Cas(A, M)

Proof. This is immediate by Lemma 2.8 iii). O

Remarks 2.10 1. For M a nonzero PFD module, Cas(M) may be {0}. To see this,
take M equal to the ultraproduct [ [y Va/D, where D is nonprincipal.

We will show in a later paper that there are 280 complete theories of PFD Uy-modules
M with Cas(M) = {0}.

2. For any E C N with 0 € E, there is a PFD M with Cas(M) = E. This is almost

immediate from the compactness theorem, for if A\1,...,\n € E (with n a nonzero
natural number) and i, . .., pm € N\E (with m a nonzero natural number), then
V)\l D...D V)\n

is a finite dimensional module M with py,...,pun ¢ Cas(M) and M\,...,\, €
Cas(M).

3 The appropriate definable scalars

Let FinDim be the class of all finite dimensional Uj-modules. We consider the ring U},
of definable scalars attached to FinDim. In concrete terms, one consider pp-formulas
p(u,v) in two variables (modulo equivalence in all M € FinDim) such that p defines a
(necessarily additive) map M — M for all M € FinDim. Addition and composition are
defined in the obvious way, giving a ring structure on the equivalence classes. Uj, is the
resulting ring (Herzog gives in [7] several equivalent definitions).

Remarks 3.1 Some things are immediately clear.
i) There is a natural ring homomorphism Uy, — U,’C;
i) FinDim is naturally a class of U} -modules;

i) Each Ul -module formula is naturally equivalent, for M € FinDim, to a Uy-formula.



Less obvious is the result of Harish-Chandra.
Lemma 3.2 Uy — Uj, is 1-1.
Proof. See [5]. O

Understanding Uj, is naturally a prerequisite for understanding PFD modules. Herzog
revealed some striking facts about Uj,, and in particular that it is von Neumann regular.
Probably because of the rather abstract account he gave of U;, he did not answer the
following questions:

Question 3.3 What are the elementary types of PED modules over Uy ?

Question 3.4 Is the elementary theory of PFD modules decidable, if k is countable and
given a natural recursive presentation?

We hope to answer both questions. We will make full use of Herzog’s work, but will
reorganize the analysis so that Uj, is constructed in stages, and the diophantine information
is used systematically.

3.1 Duality and the action of the Weyl group

The Weyl group of slo(k) is cyclic of order 2 and its generator induces an involution o on
U, via:

o(x) = —y;
o(y) = —;
o(h) = —h.

Herzog shows o extends to an involution of U;. His argument, though expressed abstractly,
is really quite concrete. He then considers a related canonical anti-isomorphism 6 : Uy —
UPP between Uy, and UPP defined by:

O(z) = —ux;
0(y) = —v;
9(h) = —h.

Ao induces an antihomomorphism of the lattice of pp subgroups of M, uniformly for all
Ui-modules M. (Herzog states this in functorial terms). The action is written as ¢ — ¢,
and is explicitly described in [7]. He goes on to show that it respects equivalence modulo
FinDim, that is, ¢ — ¥ on FinDim implies ¢~ — 9~ on FinDim, and this becomes
a key tool in his analysis. We remark that ¢ — ¢~ is entirely constructive, uniformly in
any k-scalars.

We note the following fact:

Lemma 3.5 For o, € k, with a # 0, a4 (3 - = is invertible in Uj,.

Proof. x acts nilpotently on each M € FinDim, so o + (- x acts invertibly on M,
with inverse a1 - 3% (—1)™(a~!Bx)™, which is a finite sum, of length depending M.
To see the inverse uniformly as a definable scalar, consider

d(u,v) tu=(a+p-x)- v.



O

The above fact is given only as a simple example, and has no special place in the order of
our analysis.

The heart of the matter is the generation of idempotents, and especially those corre-
sponding to annihilators (which we prefer, for reasons connected to the duality of Section
3.1, to call kernels) of elements of Uy, .

For p € Uy, we consider the following k-subspace:

Ker(p)(M)={me M :p-m=0}.

We want to have in U}, an (associated) idempotent e, corresponding to the projection from
M to this subspace, but this has no real meaning in terms of definable scalars unless we
have a pp complement for Ker(p). It is not obvious that such exists, and Herzog’s proof
that it does depends on the anti-isomorphism ¢ — ¢~ discussed above.

3.2 The centralizer of h

There is a direct (and obvious) connection between elements ¢ of U; commuting with h,
and elements of U}, preserving weight spaces for M in FinDim.

Recall that such M are the direct sum of their pp-definable subspaces Cas(\, M).
Cas(\, M) is isomorphic to a sum of copies of V). Just as in V), we have the h-invariant
weight spaces V) ; (0 < i < X), where V) ; = ker(h — (XA — 2i)) (in the sense of V), we
can define Cas(\, M); as Ker(h — (A — 2i)) (in the sense of Cas(A,M)), and we have
Cas(\, M) =", Cas(\, M);.

Now, if ¢ commutes with h, each Ker(h — (A — 2i)) is closed under ¢ and, since the
Casimir element ¢ commutes with h, each Cas(\, M); is closed under q.

It M =V, and gh = hgq, q leaves each 1-dimensional weight space V) ; invariant.

“Conversely”, if ¢, on every V), leaves the weight spaces V) ; invariant then hg — gh
is the zero map on V), for each A. It follows that hq — ¢h is the zero map on every
M € FinDim, so hq —qgh =0 € Uj.

We take Herzog’s arguments, and add some number theory, to get the basic insight
needed to answer Questions 3.3 and 3.4.

Note that on V) the elements of Uy, ¢ (=k[h, ¢]) have the common basis of eigenvectors
X*YA~t, In particular for each p in Uk 0, we have

Vx = Ker(p) ® Image(p) ,

and then obviously M = Ker(p) ® Image(p) for every M € FinDim. Since I'mage(p) is
uniformly pp-definable, we thus see our first idempotent, e, € U}, for p € Uy ¢ defined by

ep(mi +ma) =my

where m; € Ker(p) and mg € Image(p).
So, e, is the projection onto Ker(p) relative to the decomposition M = Ker(p)@®Image(p).

Remark 3.6 1 — e, is the corresponding projection onto Image(p).



We note that all the e, above commute with Uy o (they, too, have on V) the Xy At
as eigenvectors).

Some are 0, for example e. (where c is the Casimir element), since Ker(c) = {0} on
any M € FinDim. Note that e; # 0 in U}, since for even A, h has a nonzero kernel in V)
(and for odd A it has not).

A(+2)
Note that for p = c— =5

, €p gives the projection onto Cas(\, M) for M € FinDim.

3.3 Standard and nonstandard e,

Here we go significantly beyond [7]. Let p € Uy, o, so p = p(c, h) where p (u,v) € kfu,v].
As before, for M € FinDim, Ker(p) is a sum of eigenspaces Cas(\, M);, where
AN+ 2
Cas(/\,M)i:{m:c-m:(;)-m, h-m=(\—2i)-m}.
Then, as Herzog shows, Cas(\, M); C Ker(p) if and only if p ()‘()‘;2) J A —2i) = 0.
The subsequent analysis in [7], essentially goes as follows.

Case 1. p ¢ k[u].
Then for all but finitely many A (¢ {\1,..., A\ }) p (/\(A;Q), v) is not the zero polynomial.

pr()‘(/\;ﬂ), v) # 0 € k[v], then p()‘(/\;ﬂ),)\ — 2i) = 0 has no more than d solutions (A, 1),

where d is the v-degree of p.
If however A € {A1,..., A} and p(’\(A;Q), v) = 0 € k[v], then p()‘(/\;_?), A —2i) =0 has
no more than |A| solutions with 0 <4 < |\|, and there are no more than 2d, such A, where

d, is the u-degree of p.
Case 2. p € k[u].

Then there are no more than 2d A\ with p ( W) = 0, and for each such A no more than

|A| @ with 0 < ¢ < |A|. This proves the following fact.

Lemma 3.7 Ifp # 0, p € Uy o there is a bound B(p), computable semi-algebraically from
p, on the dimension of V\ N Ker(p), independently of \.

Proof. Done above (modifying slightly that in [7]). O

But much more is true!
Consider the affine plane curve C, defined by p (u,v) = 0.

Suppose first p is an absolutely irreducible polynomial, and that C, has genus > 1.
Then by Siegel’s Theorem (see [8]) there are only finitely many pairs (a,b) € Z? such
that p(%,b) = 0. Thus there are only finitely many pairs (X,7) so that (\,i) € Z?
and p(A()‘;Z),/\ — 2i) = 0. If follows that uniformly across all M € FinDim, Ker(p) N
Cas(\, M) = {0} except for A in a finite set supp(p) which is independent of M.
Moreover, there is a finite set I so that for A € supp(p), Cas(A, M)NKer(p) C @ierCas(A, M);.
The existence of such a supp(p) and I (which we will obtain below for p much more general
than those just considered) will lead us to call p (and the e,) standard.

We can relax the hypothesis on p significantly. First, factor p into absolutely irreducible
factors p,. The Herzog argument identifies Ker(p) as @y ;Cas(\, M);, where the summa-

tion is over all (\,4) in Z2, with 0 <4 < A, and p (’\()‘TH), A—2i) = 0. Thus we are reduced

to considering for each r the condition pr(’\(’\;2) JA—21) =0.

10



It may happen that p, is not defined over Q. But then suppose (\,i) € Z? and
pr(2AE2 N —2i) — 0.

Then for any automorphism o of k,

P25 N —2i) =0,

where p? is got from p, by acting on its coefficients by o.

As far as Ker(p,) is concerned, we can assume that one of the coefficients of p, is 1,
and then if p, is not defined over Q, there exists o so that pJ = 0 defines a different curve.
Then, by Bezout’s Theorem, C,, and Cps have an absolutely bounded number of points
of intersection. So, for p, not defined over Q (and even of genus 0) p, is standard in the
sense outlined before.

Thus, we can see that the interesting p are those for which one of the p, is defined over
Q, and has infinitely many (), ) in Z? with pr()‘(/\+2) A—2i)=0.

In particular, C,, must have genus 0.

But this is far from enough to guarantee infinitely many zeros (), 4) from Z? with 0 < i < \.
Siegel himself showed (see [14] for a particularly clear treatment) that if p is an absolutely
irreducible polynomial over Q, with p = 0 defining a genus 0 curve with > 3 points at
infinity, then the curve has only finitely many points of the form (%, b), (a, b) € Z%. A
fairly recent subsequent literature has completely clarified which plane curves C, have
infinitely many points [11, 15].

In a later paper we will discuss the fine detail of this, in connection with decidability.
For now, an example is provided to show that there are p which are not standard (and we
call these nonstandard).

Example 3.8 Let p (u, v) = u — v2.

Then, p (2052 X — 2i) = Q=L (\ —9;)2.
So, p()‘(/\;2),)\—2i) —0e A+1)2-21—2)2=1.

So, we are asking for infinitely many points (A + 1, A — 2i) with 0 < i < A, on the genus
zero curve corresponding to the Pell equation X2 — 2Y?2 = 1.
The only thing to check is every integer solution (X,Y) with X > 1, Y < 0 is of the
form (A + 1, — 2¢) with 0 <4 < A. This of course requires X — Y to be odd, but this is
automatic, since if X —Y were even, that is X —Y = 2W (for some integer W), we would
have: (Y 4+2W)2 —2Y2 — 1 =4YW +4W?2 —Y2 -1 #0 mod4.
What we need is that for X and Y solutions with X > 1, ¥ < —3, we have

0<Xg= <X —1,
ie 0<X-Y-1<2X-2,
ie 0<-Y—-1<X-2,
ie 3+Y <0<X-Y,

but this is automatic, proving that every nontrivial integer solution of X2 —2Y?2 =1
with X > 1, Y < —3is of the form (A + 1, A —2i) with 0 <i < A.
Let us consider p as in the Example 3.8, we can see that e e, _a0d2) # 0 for infinitely

many A, and the possible A are determined by integer Solutlons of the Pell equation
X2 - 2Y2 =1, with X > 1.

11



Furthermore, we ask how many ¢ exist for each A with 0 < ¢ < A for which the following
relations holds:

AAD) — (A —2i)2 0<i<A

In fact, there are two such 7, say i1, 12, with 71 +io = A, distinct unless A = %, when A =0

is the only possibility. Thus, when e, - €, 2(+2) # 0, its action on V) is to project onto a
2

2-dimensional sum of weight spaces (Vy); ® (Vy)a—i-

Now, we give a formal definition of “standard”.

Definition 3.9 i) p € Uy, o is standard if there is a finite set supp(p) C N, such that
ep-e, o2 =0 for A ¢ supp(p);
2

ii) The X such that e - e, 2(+2) % 0 form the support of p;
2

iit) p is nonstandard if the support of p is infinite.

We can note that by Herzog’s argument, there is an absolute finite bound on the dimension
of e, V.
4 Redundancy in the preceding construction of idempotents

Suppose p (u,v) = [[pr(u,v)™ is the decomposition of p (€ Uy, o) into powers of distinct
irreducible factors. Then, by Herzog’s basic argument,

M N Ker(p) = @CCLS()\,M)Z',
Mg

where the direct sum is taken over all 4 such that, for some r, pr(’\()‘;?)7 A—2i) =0.

Note that e aa+2) - €5 (r—2;) glves the projection onto Cas(\, M);.
2

Now suppose each p, is standard.
Then the different idempotents:

€._ A<A2+2> *Ch—(A—20)

are pairwise orthogonal, so the finite sum

Zk,iec_w ©eh—(A—2i)
gives the projection onto Ker(p).
So, ep = Z)\yi ec_w “€p—(A—2;)- Note that ec_w “€p—(A—2i) gives on any V) the pro-
jection onto a subspace of dimension < 1, so these are what Herzog calls “pseudoweights”.
Suppose however some p, are nonstandard, say exactly p1,..., p; (with [ € N). Our
convention is that the p, are distinct. There seems now no possibility of defining e, , ..., ey,
(“nonstandard idempotents”) in terms of pseudoweights.
We simply show how to define e, in terms of the e, , ..., e, and various pseudoweights.
Then ey, ..., e, are not quite orthogonal to each other, but nearly so. Consider, for
example, e, and ey,, and the corresponding plane curves Cp,, and Cp,. These intersect in
finitely many (algebraic) points, so there are only finitely many (), ) which are common
zeros of pl(w, A—2i) =0 and pg(w, A—2i)=0.
By the same technique as above, one can write the projection onto Ker(py) N Ker(p2)
as a finite sum of orthogonal pseudoweights. One does the same for all finite intersections
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of p1,..., p; and then by a routine formal argument with commuting idempotents writes

the projection onto Ker(pi) + ...+ Ker(p) as a polynomial in ¢,,,..., ¢, and certain
AO+2)
2

2i) = 0 but pj()‘(’\gz), A —2i) # 0 for 1 < j </, one easily writes e, as a polynomial in

€py»---,ep and definite pseudoweights.
We have shown that the ring generated over Uy, ¢ is generated by the various €, A042),
2

pseudoweights as above. Finally, taking account of the finitely (A7) so that p (

eh—(r—2i) and the e, for p nonstandard. Obviously we will not understand U, till we
understand the latter.

4.1 The elements of Uy, inverted in U},

Lemma 4.1 p(c, h) is invertible in Uj, if and only if p (’\(’\;2), A —2i) = 0 has only the
solution (0,0) with 0 < i < .

Proof. The condition just given is equivalent to Ker(p) = {0}, and is clearly equivalent
to p being invertible on all M € FinDim, hence to p being invertible in Uj. U

Note that the condition just given is equivalent to e, = 0.

Incorporating the inverses just considered we have a commutative ring generated over Uy o
by the idempotents just discussed, together with all % where e, = 0.

One can go a bit further. Because of the decomposition M = Ker(p) ® Image(p), we
have in general “p invertible modulo e,” corresponding to the existence of a map which is
the identity on Ker(p), and the inverse of p on I'mage(p).

It can be written naturally as e, + p~1(1 —e,), and it satisfies

plep+pt(1—ep)) =(1—ep).

Adding all of these gives as a commutative extension of Uy, .

Note that p- (e, +p (1 —ep)) -p =p. So, e, +p (1 —e,) “regularizes” p in the sense of
making p satisfy the axiom for von Neumann regularity.

5 More on h-invariance

To go further, even before bringing x and y into the picture, one needs to consider not only
U}, but also the lattice (evidently modular) of pp-definable subgroups modulo equivalence
in all FinDim. Herzog presents this in several ways, with emphasis on the lattice of finitely
generated subobjects of the localization, corresponding to FinDim, of the element H (the
forgetful functor) of the free abelian category over Uy [7]. Herzog uses crucially the anti-
isomorphism of this lattice, ¢ — ¢, which we mentioned already in Section 3.1. It is
very important that ¢ — ¢~ is given completely explicitly.

In view of the basic importance of the above lattice in what follows, we should fix a
suggestive notation for it. On the other hand, we do not wish to enter into a detailed
discussion of Herzog’s various equivalent definitions of the lattice. We have no doubt that
the most elegant and fundamental approach is via categories of functors and localization,
but, given our emphasis on decidability, our immediate purposes are best met by a ”Lin-
denbaum algebra” formulation as in the first sentence of this section. We will simply take
over Herzog’s notation Latt Hg, where S is the Serre subcategory of coherent functors that
vanish on all finite-dimensional representations of sly(k). We will need also the extended
notation Latt g for the lattice of subobjects of the localisation at this S of the subobject
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of H given by the formula (. This of course has a perspicuous meaning in the Lindenbaum
algebra formulation, in terms of equivalence modulo FinDim of formulas intersected with
®.

For the above lattice, we have a natural notion of h-invariance, namely that ¢ is h-
invariant if and only if hep C ¢ in FinDim. This is readily seen to be equivalent to ¢
being, in each simple finite dimensional Ug-module V), a sum of weight spaces.

The fundamental result about h-invariance is the following result.

Lemma 5.1 If  is h-invariant, so is ¢~ and M = (M )@~ (M) for all M in FinDim,
so @ is complemented in the above lattice.

Proof. See [7], page 260. O

This gives us more idempotents. For clearly if ¢ is h-invariant we can define the idempotent
e, corresponding to the projection, with kernel ¢ =, onto the subgroup (defined by) . Note
however, that this is quite an abstract procedure. It is not clear at this stage how to tell
if e, = ey in Uj.

By the way, the preceding discussion is enough to show that the centralizer of h in Uj,
is a commutative von Neumann regular ring. From r in U], and commuting with &, one
passes to ¢ defining the image of r, and then to e,, which is h-invariant, and generates
the same ideal in U}, as r does.

The pseudoweights are the h-invariant elements ¢ of the lattice which in all V) they
define spaces of dimension < 1. (We have already see many of them). For such ¢ it follows
that the lattice Latt pg is not merely complemented (as follows from what said above)
but actually uniquely complemented and is a Boolean algebra. (One should note that if
¢ is a pseudoweight and ¥ C ¢, then v is pseudoweight too).

Among the pseudoweights, some special ones arise as follows.

The highest weight space of V) is Ker(x), which is of course h-invariant. We have e,
the corresponding projection onto Ker(x) (which is complemented by I'mage(y)). Herzog
gives an important generalization for any idempotent e in the centralizer of h (in U},). He
gives, explicitly in his Proposition 18, a definition of a pseudoweight ey corresponding to
the projection of the highest weight subspace of the image of e. eg is called the highest
pseudoweight of e. More precisely, on V), egVy = {0} if e = {0}, and otherwise is V) ;
where j is minimal with 0 < 7 < A such that V) ; C eV).

6 Uniformly bounded ¢

A pp-formula ¢ is said to be uniformly bounded if there is some n so that for all A the
dimension of ¢ in V) is bounded by n. (There is now no condition of h-invariance).

We have already seen some h-invariant examples, namely ¢ defining Ker(p), for p in
Uk,0. Now, (all this is in [7]) one generalizes to Uj. The basic result, with a constructive
proof, is the following.

Lemma 6.1 Suppose q € Uy, q¢ # 0. Then there is p in Uy o and a nonnegative integer
such that
Ker(q) N Image(y™) N Image(p) N Image(z") = {0},

for all M € FinDim,
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Proof. See [7], page 265. O

Herzog’s discussion brings into view further basic information connected to the stan-
dard/nonstandard distinction.

Suppose ¢, p, n are as in the preceding lemma, and M € FinDim. Then Image(p) is
complemented by Ker(p), Image(xz™) is complemented by Ker(y"), and I'mage(y™) by
Ker(z"™).

We have already considered e,, and now we consider e;n, e,» corresponding to the pro-
jections onto Ker(xz™), Ker(y™) respectively. Note that Ker(z") and Ker(y™) are h-
invariant, so e;» and ey~ are in the centralizer of h, and e,, e;n, eyn pairwise commute.
The idempotent 1 — (1 —e,)(1 — ezn)(1 — eyn) gives the projection onto the complement
of Image(p) N Image(z™) N Image(y™), and this complement has dimension bounded by
the sum of those of Ker(p), Ker(z") and Ker(y").

In particular, if M is reduced, that is, is a sum of V) without repetitions (which is no
restriction as far as elementary equivalence is concerned) both Ker(z™) and Ker(y™) have
dimension < n in each Cas(\, M) # {0}, and then the above complement has dimension
< dimension of Ker(p) + 2n.

By [7] Lemma 21, we know that the projection from Ker(q) to the subspace given by
1—(1—ep)(1—ezn)(l—eyn) is injective.

Now suppose p is standard. Then for all but finitely many A\, Ker(p) N Cas(\, M) =
{0}, and in this case, on Cas(A, M), the projection of Ker(q) to Ker(z") + Ker(y™) is
injective. For the other A, one has only that the dimension of Ker(p) in Cas(\, M) is
uniformly bounded, giving the same result for Ker(q).

When p is nonstandard, one has only the uniform boundedness result from the lemma
above. In the sequel, we will look more closely at the nature of the kernels of general q.

For future reference, we note that Herzog’s proof of the lemma above actually gives more
useful information than he states.

Lemma 6.2 Let ¢ = z"a, + 2" an_1+ ...+ za1 +co +ybi + ...+ y™b,, where the a’s,
b’s and ¢’s are in Uy o. Let w € Vy with q¢-w = 0. For 0<i<\, let w; be the projection of
w onto the i-th weight space.

Let ig be the least i with w; # 0, and let i1 be the greatest i with w; # 0. Then

i) If an # 0, either a, - w;; =0 or 2™ - w;, =0 ;
i) If by, # 0, either by, - w;;, =0 or y™ - w;, = 0;
i) If all bj =0 and co # 0 and a, # 0 then q-w # 0;
w) If all a; =0 and co # 0 and by, # 0 then q-w # 0;
v) If all aj =0 and cog = 0, then y™ - w = 0, where my is minimal such that by, # 0;

vi) If all b; =0 and cog = 0, then 2™ - w = 0, where ny is minimal such that ay, # 0.
Proof. (i) and (i7) are seen by inspection of what Herzog does on page 265. For (iii)
and (iv) observe that in these cases ¢ is ¢g + (¢ — ¢p), and (g — ¢p) acts nilpotently on the

finite dimensional modules, so ¢ is invertible. (v) and (vi) are done similarly, this time
expressing ¢ as a power of y (respectively x) times an invertible element. [l
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7 Uj is von Neumann regular: rearranging the proof

We review the last stages of the proof quickly, indicating which points are less constructive.
Firstly, Lemma 25 in [7] shows that if ¢ is an h-invariant uniformly bounded pp-formula,
then Latt pg (its corresponding lattice of subobjects modulo equivalence in FinDim) is
complemented. The proof is by induction on the least n such that the dimension of V) N
< n, and is constructive in this n. By this we mean that once we know n there is an explicit
recursive procedure of length n that allows us to write down complements for (formulas
defining) subobjects of ¢. But note that even for ¢ defining Ker(p) with p € Uy, it is
not completely clear how constructive the exact bound n limiting the dimension is is,
though in that special case a constructive upper bound for n is clear. If in the uniform
boundedness of , an upper bound for the dimension n is given constructively, the rest of
the proof is constructive, as is seen by inspection of what Herzog writes.

To complete the proof one has to drop the uniform boundedness assumption. This is
done very beautifully by Herzog, using the duality and the model theory of one special
Ui-module, K, the field of fractions of Uy.

K, as a left Uj-module, is simple as a module over its endomorphism ring ([7], page
251), and thus induces a fundamental partition of the lattice of pp-definable subgroups.
By the remark on simplicity, since each ¢ defines a module over the endomorphism ring,
then either ¢ defines (0) in K or ¢ defines K in K. Moreover, the ¢ which define (0) form
an ideal Z in the lattice and those defining K form a complementary filter F.

Herzog identifies Z very neatly as given by the ¢ such that (modulo the theory of
Uj-modules) ¢ is bounded by a (nontrivial) torsion condition rv = 0 (with r # 0).

With rather more work he shows ([7], page 253) that F can be characterized “dually” as
the set of ¢ which contain a nontrivial divisibility condition, that is, contain a nontrivial
Image(r), with r € U, — {0}.

If the field k is given recursively (as it can be if k is countable) one may combine these
characterizations of 7 and F to show that Z, F and the theory of K are recursive.

Note that the preceding characterizations show that Z consists of the uniformly bounded
v, and F consists of the ¢ whose codimension is uniformly bounded in the sense that the
dimensions of the V) /¢ are uniformly bounded.

Let us observe that despite its importance for the theory of PFD modules, K itself is
not PFD. Indeed, Ker(z) = {0} in K, since z is invertible in the ring K. But in every
(nonzero) PFD Uj-module, Ker(x) # {0}.

The proof ends by showing that each pp-formula ¢ has a complement in Latt Hg.

There are two cases (decidable by the above discussion).

Case 1. ¢ € F. FEven constructively, it suffices to find an h-invariant ¢ € I with
¢ + 1 = Hg. (This depends on the earlier proof that Latt g is complemented). Herzog
argues that one can assume that ¢ is a divisibility condition, and then the proof is routine
using his Lemma 21 (our 6.2). In fact, it all works constructively. For ¢ contains a
divisibility condition modulo the recursively enumerable theory of Ug-modules , and for
any such divisibility condition we can effectively bound its codimension (and so that of ¢)
uniformly for all V/(\).

Case 2. ¢ € . This is done constructively, by duality.

We are still some distance from any “constructive presentation” of Uj.. For example, we
have emphasized above the constructive aspects of the proof that Latt Hg is complemented.
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It is not quite immediate to get (von Neumann) regularity of U (see Herzog’s discussion
on pages 254-256).

If we have constructed any element 7 in U}, we need to explain the procedure for finding
the element s with rsr = r (and then it is formal to show that sr is idempotent and
generates the same left ideal as ). What is needed is the following. Let e; correspond to
projection onto I'mage(r), and es correspond to projection onto Ker(r), and note that,
unlike what happens when r is in the centralizer of h, in general I'mage(r)NKer(r) # {0}.
Let us define the element s as follows:

s(ei(m)) = (1 —e2)-mg, wherermg=ei(m),
s((1—ep)m) = 0.

Note that if rmg = rmy = e1(m), then mg — mq € Ker(r) so (1 —ea)my = (1 — ez)my.
So, s is a section of r. For,

r(s(er(m))) = r((1 - e2) - mo)
=rmg — r(eamg) =
=rmoy = e1(m).

Clearly, rs((1 — e;)m) = 0. So, we have rsr = r, and s is obtained constructively from r.

7.1 Building U},

It is should be clear from Herzog’s analysis that the “fundamental” idempotents are the
ep (p € Uy,p), followed first by the more general e, (¢ € Uy), and then by the ezn.

For generating more idempotents the highest weight idempotents ey associated to

(previously constructed) e are crucial. Finally, the “sections” s (described above) are
used systematically.
For a general ¢ € Latt Hg, the corresponding e, is got relatively easily from the preceding
using the test whether ¢ € Z or ¢ € F, and the corresponding dominating Ker(g) or
dominated I'mage(q). So, we are now in a position to generate U} constructively, for k
countable.

8 Constructive presentation of U]

Henceforward k is countable (although it is not hard to give a sensible meaning to what
follows for general k). That Uy is a computable domain is clear, using the defining relations,
the grading @,,c7 Uk, n, and the unique representations of Uy, ¢ in terms of ¢ and h, and
of Uy, (n # 0) in terms of 2" - Uy o, Uk, 0 - 2™, Y™ - Uk,0, Uk,0 - y" as before.

Now we add the idempotents e,, corresponding to projection onto Ker(p), for p € Uk, o.
Such p are written uniquely as p(c, h), where p(u,v) € klu,v].
Fix p(u,v) and factor it constructively as a product of a constant and powers of monic
irreducible p;(u,v) over k (for some positive integer ). It is clear ([7]) that Ker(p) is the
sum of the Ker(p;), and that e, can be written equationally in terms of the (pairwise
commuting) ep,,. So, it is enough to add the ep,.
As in [7], we have to consider solutions in integers (A,7) with 0 < i < X of pl(A()‘2+2), A—
2i) = 0.

There are only finitely many solutions if either:
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i) p; is not in Q[u, v] (the argument was given in Section 3.3),
or

ii) p; defines a curve of genus > 1 over Q.
or

iii) p; defines a curve of genus 0 over Q and certain suitable conditions are satisfied (see
Section 3.3).

Now a moment’s reflection shows that to decide such questions as e, = 0 in the theory of
PFD modules, we need to be able to decide compatibilities between the various e, and to
know, in the cases i),1i1),iii) above, what are the finitely many solutions. In Case (i), we
can readily decide that p; is not defined over Q, exhibit constructively a normal number
field E over which it is defined, together with a real subfield F' so that E = F'(i). Moreover,
we can obtain effectively an automorphism o of F so that p; # p;”. Then Bezout applied
to C' = R(i) gives us bounds for the absolute values of the common zeros of p; and p;?,
in terms of the absolute values of the coefficients of p; and p;?, and so allows us to bound
the common integral zeros, and thus the integral zeros of p;.

For ii), the problem is very profound, and no unconditional algorithm is known (though
one is expected). For a thorough discussion, see [8]. It is known that if the Mordell-Weil
Theorem can be constructivized then above problem is decidable [14]. Here we shall simply
assume that the decision problem for curves of nonzero genus is decidable, in the sense
that we can decide if a plane curve of nonzero genus over Q has an integer point («, [3)
with «, 8 > 0, and then find the finitely many solutions.

Case 4i7) involves subtleties not fully appreciated in earlier discussions [11, 15] of the
genus 0 case. It is now known, using Baker’s method, how to decide if a genus 0 curve has
only finitely many points, and then how to find these points.

Henceforward we assume an algorithm for testing which irreducible monic p in k[u, v] have
only finitely many zeros ()‘()‘;2), A —2i) with 0 <4 < X (and A, ¢ € Z), and then listing
those zeros.

In 3.3 we called a p(u,v), which is monic, irreducible over @, and has only finitely many
)‘(/\H), A — 2i) as above, standard. We now have some axioms about e, for p

2
standard. An example is: e, = 0, if there are no solutions (M, A—2i). More generally,

2
if (W, Ar — 2i,), where r = 1,..., R (for some nonzero positive integer R) are all the

solutions, one has an axiom: e, = Zil €. ArOw42) *€h (A —2iy)-

solutions (

So, in fact, one can define e, for the very special idempotents on the right-hand side of
the equation. For economy of notation, let us do so (that is, dispense with the general e,
as primitive).
We note that all e, (p in Uy, o) pairwise commute. In addition, we have obvious orthogonal-
ity axioms. Firstly, e o142 €, pwr2 =0, for A # p. Secondly, for distinct weight-spaces
2 2
with Cas()), we have: e xo2) - €4 (a—2i) * €p—(r—25) = 0 for i # j.
2

The other dramatis personae at this stage are the e,, where p is nonstandard. (We

already know that there are interesting such e,, connected to Pell equations). Such p are

over (9, monic and irreducible. Here is the first axiom:
ep, - ep, = 0 for p1, p» nonstandard if there is no (A, i) with pl(/\(’\;2), A —2i) =
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p2 ( )\()\2-1-2)

, A—2i) = 0. More generally, for pi # p2, €p, -€p, = 27{11 €, ArOrt2) "€ (A —2i,)
2
if (M, A1 —2i1),.. ., (M, AR — 2iR) are the common zeros.

Finally, (because of the uniform boundedness phenomenon), we have e, - €, 20+2) =
2

. >\+2 . .
€. 2042 - > i—1 €h—(x—2i) Where i1,... i are the solutions of p( AO+2) , A —2i) = 0 (this
includes ¢, - €, _Aody = 0 if there are no solutions). So, now we have a fragment of
U}, generated by Uk o and the idempotents e, ERVCEEIR the e,_(n_2;), and the e, for p

nonstandard. Any element of this ring can be represented in the form

Qo+ a1 x0g+2) t+ o+ mce  amOm+n T
2 2
+ Q1 €h—imi1 + ...+ aman- €h—fimin +
+ Qmansl - ec— Amtntl Omant1+2)  Ch—pimint1 + ...+
2

+ Qmants e eci Amants Omantst2)  Ch—fimints +
2

T Qmintstl €py + .t Qmgndts - €py

where the o are in Uy, o, the A and p are integers, A > 0, and the pq, ..., p; are nonstandard.

Using the relations we gave above one readily sees closure under multiplication. The
crucial issue is uniqueness of the above representation. This has to be an essential part of
our decision procedure. Note a slight ambiguity, as the h — u are nonstandard according

to our definition. So, we should assume that the pi,...,p; are not of this form. Note
too that we should obviously assume that Aq, ..., Ay, are distinct and 41, .- -, fhmtn are
distinct.

Suppose the sum above represents the zero element in Uj.

First, suppose ag # 0. Then let d be a bound on the dimension of V) N Ker(ap). First
restrict to (A, ) distinct from the (A, 1) appearing in the sum. Then restrict further
to the (A, u) such that V) , is not included in any of Ker(p1),...,Ker(p;). This leaves
infinitely many A to choose from. Again using uniform boundedness, one sees that there
exists D so that if for some u the pair (A, x) is not yet eliminated then there are > A\ — D
such g with (A, u) not yet eliminated. For any such (A, u) all terms except ag from the
above sum vanish on V) ,. But then a9 does too. But then if A — D > d we have a
contradiction to uniform boundedness of ag. So ag = 0.

So now we put oy = 0 in the above. As before restrict to (A, ) distinct from the
(Ar, ptr) in the sum. The effect of this is that for such (A, ;1) the action of the sum on V) ,
is equal to that of cunqntst1-€p, + ...+ Cngnts - €p,-

Now, recall that the different Ker(p;) intersect in finite dimensional subspaces, and

each Ker(p;) meets infinitely many Cas()\) nontrivially. Thus there are infinitely many A
so that Ker(p;) meets Cas(\) nontrivially, but no other Ker(pz) meets Cas(\) nontriv-
ially. For each such A choose a u so that p;( ()\+2) , A —2u) = 0.
Now, pa( (’\+2) s A—=2u) #£0,... ,pt(A()‘;Z), A — 2,u) # 0,50 €p,,...,ep vanish on Vy,. So
Qmtntstl epl vanishes on Vy ,. Thus, apingst1 and ey, have infinitely many common
integer zeros, and so py divides ay,4pn4s+1. But now we note that p-e, = 0 in general.
This should be added to our defining relations, and so if p divides ¢ € Uy, o, then g-e, = 0.
So now we should assume in our sum representation that no p; divides o+n4s+i. Then
we conclude that each apy4pys+i = 0 if the sum is zero.

So, finally we return to that sum under the assumption that ag = amintst1 = ... =

Amtnts+t = 0.
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If X\ is greater than all the A\; that occur in the sum, then on V) the sum is equal to
Qm41 " €h—ppyy + - T Qmtn * €p—pp, .- NOW assume, in addition, that A is bigger than
each of |1l ..., |ftm+n|. This leaves, for each j, infinitely many A such that X\ — pi,4;
is even. It follows that for each j, V/\’ Aﬂ;m 4; € Ker ay,yj for infinitely many A such that

A — lm4; is even . By the same argument as for the nonstandard p above, h — iy ;
divides a;45. So again we have an instance of p - e, = 0. As before we conclude that
Oyl = ... = Qpq; = 0 provided no h — 2pu; divides ay,4;. We can in any case ignore
such terms because of our defining relations, and so we come down to the case of a sum

1€yt T oo+ Qm e amOmt2 +
c— 5 L
+ ..+ Qmgngr € Amint1Omint1+2) * Ch—pimini1 +
2
+ e + Oém+n+s : eC— A7n+n+s(>\7n+n+s+2) : eh_ﬂm+n+s
2
which we suppose to be 0 (in U},). We can clearly assume Ai, ..., Ay, distinct, but perhaps
not the distinctness of the list Apyn+1,-- -, Amtn+s - There may be some overlap between

the two lists. Suppose first A; does not occur in the second list. Then the idempotent
€. a(y+2) is orthogonal to all the other e a2 occurring, and we conclude that o -
2 2

e o+ = 0, But notice that this relation expresses exactly that al(w, A1—2i) =
2

0 for all ¢ with 0 <4 < A;. And then the relation is simply a consequence, by our defining
relations, of this fact about the number A;. Thus we may discard it.
So, provided we discard (as our relations permit) terms « - €. Xi(i+2) with ¢ — M
2
dividing «;, we can assume that all of A\1,..., A, occur in second list too.
Dually, if some A, yn+s occurs in the second list , but not in first, we get qmynti -

€ AmintiCmintit? " Ch—pimpnpi = 0. If pty4n+i is not of form Ay yp4i —27; with ; integral

2
and 0 < ~v; < Apn+i, the above equation follows from an obvious relation on the e’s, and
so can be discarded . Thus we assume Ay yn+i — m+nti €ven, with ~; as above, and

then the above equation says that V) C Ker(aminti), and we can deduce that
( >\m+n+i()\2m+n+i+2)

m+n+i Vi
s Bm—tn—+i) 1S a zero of aytnti(u, v).

But conversely this forces, by an obvious relation, the equation. Thus we may discard the
term o4 - € AmintiOmintit?) *Ch—piminii - The only remaining (notational) complica-

2
tion is that there may be repetitions in the second list, so that some Ay,4n4; Occurs with
both fi4n+; and at least one different fi,,4,4; attached.

Using orthogonality, this leads to m equations (a; — amnti - 6h_ﬂm+n+i) e A2 = 0.
2

There are two cases (for each 7).

Case 1. A\j — [mintq even, say = 2v;, with 0 < v < Ay, «y; integral. Thus V), ,, C

Ker(a; — omqnyi) while V , € Ker(ay) if v # ;. So we deduce that (w,u,\i_zw)
is a root of (a; — amin+i)(u,v), and for all v with 0 <~ < \; and v # 7, (M, Ha—2v)

is a root of «y.
Conversely, in Case 1, these two conditions imply the equation, using the obvious relations.

Case 2. Not Case 1.
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Then the equation becomes «; - €, A(+2) = 0, and as usual this follows from formal
2 +2)

relations.
Thus, after a long argument we have given a unique normal form for all elements of
the ring generated by U} o and the basic idempotents e, for p € Uy, o.

8.1 The centralizer of h again

The ring already described is a subring of the centralizer Z'(h) of h in U;. Herzog has a
fairly simple argument to show that Z’(h) is a commutative von Neumann regular ring.
He uses the notion of h-invariant pp-formula , that is pp-formula ¢ such that he C ¢ for
all M € FinDim.

From the standpoint of constructivity there is a problem, for it is certainly not clear at
this stage that the set of h-invariant formulas is recursively enumerable (its complement
clearly is).

The basic examples of h-invariant formulas are (those defining) Ker(p) and I'mage(p)
for p in Uy, o. For these we have M = Ker(p) ® Image(p) for any M € FinDim. This
observation yielded the h-invariant e, for projection onto Ker(p) and 1 — e, for projection
onto Image(p).

Other examples are Ker(z™), Ker(y"™), Image(z™), Image(y™), with related decom-
positions

M = Ker(z") @ Image(y™)
= Ker(y") ® Image(z™)
giving idempotents (in Z’(h)) ezn, eyn.

More generally we can use Lemma 6.1 to get information about ker(q) for ¢ in U. Let
us use the notation of Lemma 6.1.

Then the point is that Image(y™)NImage(p)NImage(x™) is h-invariant. Let ¢ be a pp-

formula defining it. Since Ker(p) is uniformly bounded, we have a uniform (constructive)
bound on the codimension of the set defined by ¢. Now by [7], Proposition 13, ¢~ is also
h-invariant, and M = o & ¢~
Thus we have a pp-definable injection from Ker(q) into ¢, which is (constructively)
uniformly bounded.
Now we can use Herzog’s beautiful “highest pseudoweight” construction. Choose a bound
d for the dimension of V) N ¢~ and construct eg,...,eq_1 as follows. e is the idempotent
for projection onto ¢~ (one can write it down explicitly and constructively in terms of
€zn, €yn, €p).

By [7], Proposition 18, there is an explicit formula uniformly defining the highest
weight space of ¢, yielding an idempotent eg in Z’(h) (in some model M for certain A
eoCas(A) = {0}).

Now replace ¢~ by (1 —eg)e~ and get e; defining the highest weight space for this.
Again, e; € Z'(h). Repeat as far as the construction of ez_1, and we have uniformly
o =€y Der-p D...Deq 1 (and the e; are of course pairwise orthogonal).

Herzog adds a refinement, again entirely constructive. Namely, for any pseudoweight
e, he writes down a pp injection from eM to e, M, uniformly for M € FinDim (p. 269,
end of proof of Theorem 30). This, in terms of U}, corresponds to having «, 3, in Z'(h),
with

e,xe = ae

Be = e.
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This implicitly contains a decomposition of the form e, =e; - (1 —eq) B ey - €g.
Note too that it shows that e is in the ideal generated by e, in Z'(h), and so in both the
left and right ideals generated by e, in Uj.

Thus we see that constructively we have for each ¢ # 0 in U a pp injection of Ker(q)
into Ker(z") (n, ¢ as Lemma 8.2).

One can then generalize this to get, for a pp-formula ¢ in Z, constructively and uni-
formly a pp injection of ¢ into Ker(z") for some n.

A crucial point now is the constructive content of Herzog’s argument, which shows
that the lattice of subobjects of an h-invariant ¢ € 7 is complemented. The proof is by
induction on a bound for the dimension in the uniform boundedness condition. To do
this constructively is nontrival, as we still lack a proof that h-invariance is a recursively
enumerable condition.

What we do is in fact quite reminiscent of the sort of unwindings pioneered in logic
by Kreisel [9], although his unwindings are not generally associated to presentations of
structures.

8.2 An enumeration of U]

We have repeatedly stressed that the theory of PFD is co-re, and that we have not yet
improved this. We expect to do so in the sequel, by bringing more number theory to
bear. What we have done, in the preceding, is to give a normal form, and in particular
a recursive enumeration, for the elements of the ring generated by Uy ¢ and the basic
idempotents e, for p € Uy o. The “enumeration” we now give of the whole of U}, is much
weaker, and we explain how.

The elements of Uj, are associated, not at all uniquely, to pp-formulas ¢(u,v) which
satisfy the not obviously r.e condition of defining maps on each M in PFD. It is perfectly
clear that there are recursive operations +, — and - on the class of all pp-formulas ¢(u, v)
which when restricted to those in U}, give the operations of Uj. That is, the ring operations
on U}, lift naturally to operations on the set of all ¢(u,v). What remains to be proved,
hopefully in the sequel, is that the equality in U}, lifts to a recursive operation on the set
of all ¢(u,v). Thus, in this paper, when we talk of presenting U; we have in mind a set of
pp-formulas, with recursive operations +, — and - (and some other recursive operations
with algebraic significance), but we make no assumptions about the equality. We do not
wish to enter into formalities of recursive model theory here. What we intend should be
clear from what follows. Any time we have an enumeration as above, with liftings of the
ring operations (and maybe others) recursively enumerable, but the equality not assumed
r.e, we say we have a weakly enumerated structure. Note, however, that we do not regard
the lifted structures in our case as rings. They simply become so modulo an equivalence
relation which can be very complicated. When we want to refer to the liftings of the ring
operations we call our structure a pre-ring.

The ring generated by U} o and the basic idempotents e, for p € Uy, o, for which we
have given a genuine recursive presentation, is a subring of the centralizer Z () of h in U -
Note that we have a recursive enumeration of certain pp formulas defining these elements
(although we certainly do not have all such pp formulas).

Now, following Herzog, we construct a weakly enumerated structure which lifts, as
above, a von Neumann regular ring Z*(h) which is a subring of Z'(h) and contains the
ring generated by Uy, ¢ and the basic idempotents e, for p € Uy o. Basically, we have to

22



start with the latter ring (note that for it we have identified the collapsing congruence as
recursively enumerable, and so we can without danger conflate the pre-ring and the ring)
and close, in the sense of pre-rings under

1. going from r to Image(r) to the idempotent (Herzog, page 261) corresponding to
projection onto Image(r);

2. the ring operations.

Note that these operations have clear meaning at the level of pp-formulas.

In this way we see clearly that Z*(h) is weakly presented. Moreover, it has a “section”
operator as defined in Section 7. In this context this means that we have an operation
taking an r to an s so that (r —rsr, 0) is in the congruence, and this operation is recursive.

8.3 From Z*(h) towards the lifting of U,, via lattice considerations

Here we follow Herzog’s page 265. As we pointed out already, Z and F are recursive.
Indeed, his argument shows that we can recursively find, for ¢ in Z, a bound n so that
dimyp(Vy) < n (enumerate the theory of Up-modules to get ¢ bounded by a Ker(q), for
q € Ug). There is of course a very serious issue of getting optimal n, but this can be
bypassed, for now, by using Herzog’s fundamental “highest pseudoweight space” operator,
which is recursive at the pre-ring level, if suitably interpreted. First note that we can
recursively bound the dimension of Ker(q) using the workhorse Lemma 6.1 from the
section on uniformly bounded .

We are going to make crucial use of the details of Herzog’s work on his page 262
on the highest pseudoweight space construction. This takes one constructively from any
(definition of an) idempotent e in Z'(h) to a definition, by an h-invariant pp-formula, of
the highest weight space of eV), uniformly in A. Then in turn one gets (a pp definition
of) the idempotent ey corresponding to projection onto this highest weight space. We will
use the notation hw(e) as being more memorable than ey.

Now we first pass to a bigger pre-ring Z*t+(h), got from ZT(h) by closing off, in the
obvious recursively enumerable way, under hw and all the operations previously used to
construct Z*(h). Again we have a pre-ring which is weakly enumerated and, again, we
have closure under the section operation, so that we have a lifting of a von Neumann
regular subring of U, ,;

Now we prove a constructive analogue of Herzog’s Lemma 25. Suppose ¢(u) corre-
sponds to an idempotent 1 — e in Z71(h), and ¢(u) is in Z. Find a recursive bound n for
dimge(V(A)). Form successively:

fO = e—hw(e),ﬁ = fO_hw(f0)7

proceeding through n+1 steps (the series may well stabilize before this, but it will stabilize
by n+ 1 steps). Each f; isin Z*T(h). An easy constructive argument (based on Herzog’s
proposition 16) shows that the lattice of subobjects (relative to FinDim) of each Im(f;)
is a Boolean algebra, and then by easy and explicit Boolean algebra we get

Lemma 8.1 The lattice of subobjects of ¢ as above is complemented and the corresponding
idempotents are in Z+T(h).

23



One should really emphasize the constructive aspects of this prior to collapsing by the
lattice congruence coming from FinDim. The lattice operations, and the complementa-
tion, are constructive at the level of pp-formulas. The congruence itself is not yet fully
analyzed from a constructive viewpoint.

Now we consider a general ¢. As in Herzog there are two cases.

Case 1. ¢ in F. Get constructively g € U so that ¢ dominates Image(q) in the theory of
U-modules. Then, by Herzog’s Lemma 21, get p in Uy, so that for all V in FinDim

Im(q) + Ker(z") + Ker(6o(p)) + Ker(y") =0

so that in Herzog’s notation for the lattice of subobjects of H

o+y==H,

where v is the sum of the three kernels in the above equation. But evidently % is
in Z*Tt(h), whence the lattice of subobjects of 1 is constructively complemented, by the
preceding lemma. So, constructively, as in Herzog, we get a complement for ¢ in H.

Case 2. ¢ in Z. Now work with ¢~ in F.

What has been proved constructively? In terms analogous to those used on “liftings” of
U, l;, we have considered the set of pp-formulas in one free variable, and put on it recursive
liftings of the lattice operations, the sum operation, and a relative complement operation,
which, modulo the congruence associated to FinDim, become the Herzog operations on
subobjects of H.

We stress that we are fully aware of the sketchy nature of our discussion. This is
typical of the unwinding of proofs. We do not expect understanding from a reader who
is not already familiar with Herzog’s precise but non-effective construction. In the sequel
we will be more precise, depending on the demands of the situation.

. 4 . o .
8.4 Reaching U, as a constructive von Neumann regular semiring

If one wants to proceed constructively, then the preceding arguments are not quite enough
to get a presentation of a lifting of U ,; On page 266 of Herzog, he can conclude directly
that U, ,; is von Neumann regular. We have to do more, because we have used, as Herzog
does without comment, only binary ¢(u,v) that define maps from H to H. We should,
and can, get round the prima facie nonconstructive nature of this restriction.

Lemma 8.2 We can attach constructively to every pp-formula ¢ in two free variables a
pp-formula ©! in the same variables such that

o o/ does define a function on H;

o o defines the same function as p on H if ¢ defines a function on H.

Proof. Let ¢(u,v) be pp-formula. Let x(v) be ¢(0,v). Then ¢(u,v) fails to be the
graph of a( partial) function only if x(V) # 0 for some V in FinDim. If ¢(u,v) does
define a function then the function is total on V' if and only if (V) = V, where 0 is
(Fw)p(v, w). Now we have constructively the (liftings of ) definable idempotents e, and
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eg corresponding to projection to the respective subspaces x (V') and 6(V') (the projections
got from constructive definable complements in the set of pp-formulas in one variable).
Now we define a pp-formula ¢P/ in two variables by

Buw)(p(u, v)(1 = ex(w)) = v).

Clearly this is the graph of a partial function, for if ¢(u,w;) and p(u,ws) and (1 —
ey)(w1) = vy and (1—ey)(w2) = v2 in V then x (w1 —w2) and so (1—ey)(w1) = (1—ey)(w2)
since wy — wq lives on x.

Equally clearly, if ¢ is the graph of a partial function on V' then e, annihilates V, so
1 — e, is the identity on V so ¢ and ©PT define the same partial function. Finally, let
o’ (u,v) be ©Pf (eg(u,v), and we clearly have the required conclusion. O

What we have done above replaces Herzog’s terse argument. For now we can take as
our domain for the lifting the set of all ¢ in two variables, replacing ¢ systematically by ¢f
to get a prering structure which is obviously recursive. Moreover, by going from ¢/ to its
image (construed as in the set of all pp-formulas in one variable), we get, constructively,
the section operator on our domain, and thus a proof that when we mod out the congruence
coming from F'inDim, we have a von Neumann regular ring, Herzog’s U, l;

8.5 Concluding Remarks

Our ultimate goal is to exhibit U,; as a genuine recursive von Neumann regular ring, and
thereby to get decidability of the theory of FinDim, as well as a clear understanding of
the algebra of sets

{AIV)\):(I)},

for @ a sentence of the language of Ui-modules. Till now we have considered in detail only
the variation of kernels of p for p in Uy. In the next paper we will go on to consider the
finer detail of the structure of the Ker(q) for general ¢ in Uy. Various uses will be made
of deeper diophantine geometry. Thus we will give a normal form for the nonstandard p,
and analyze, for pairs of nonstandard elements p; and p2, the set of A for which each has
a nonzero kernel in V. A deep theorem relating to this is that of Bilu and Tichy [2]. We
expect that this analysis will lead us to a recursive presentation of U ,;
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