Rings of definable scalars of Verma modules

Sonia 'Innocente *and Mike Prest
University of Manchester

November 21, 2006

Abstract

Let M be a Verma module over the Lie algebra, sla(k), of trace zero
2 X 2 matrices over the algebraically closed field k. We show that the ring,
Ry, of definable scalars of M is a von Neumann regular ring and that the
canonical map from U (slz(k)) to Ras is an epimorphism of rings. We also
describe the Ziegler closure of M. The proofs make use of ideas from the
model theory of modules.

1 Introduction

If R is any ring and M any (right) R-module then the ring of definable
scalars of M, denoted Ry, is the ring of pp-definable maps from M to it-
self. Here “definable” means definable in the natural first-order language for
R-modules and “pp-definable” means definable by a positive primitive formula.
The operations in Rj; are composition and pointwise addition. Of course for
every 7 € R the operation, multiplication by r, is pp-definable so there is a
natural ring homomorphism R — Rj; and it is easily checked that R); is a
subring of the biendomorphism ring, End(gna(aryM), of the R-module M.

There are various alternative, but equivalent, ways of defining this ring
(see, [3], [6]). For instance, we may localise the forgetful functor (gR,—) €
(R-mod, Ab), where R-mod denotes the category of finitely presented left R-
modules, at a certain hereditary torsion theory determined by M (precisely, at
the, finite type, torsion theory generated by those finitely presented functors F'
in (R-mod, Ab) which satisfy (F, M ® —) = 0). Then R, is the endomorphism
ring of this localised functor.

Ivo Herzog proved [6] a number of rather remarkable results about the ring
of definable scalars for the set of finite-dimensional representations of the Lie
algebra sly(k) (that is for M being the direct sum of all these modules). We

*and Department of Mathematics and Computer Science, University of Camerino, Italy.
The first author was supported by a MATHLOGAPS Marie Curie Fellowship



may ask what happens if we replace the set of finite-dimensional modules by the
set of Verma modules. It even makes sense to investigate the ring of definable
scalars for a single Verma module: since the module is infinite-dimensional, the
situation is non-trivial (for a finite-dimensional module the ring of definable
scalars simply is the biendomorphism ring [3, 3.6]).

Let k£ be a field of characteristic zero, which we also assume to be alge-
braically closed (though certainly not all of what we say needs this), and con-
sider the Lie algebra, slo = sly(k), of those 2 x 2 matrices over k with trace 0.
A k-basis of sla(k) is given by x = ( 8 (1) ),y: ( ? 8 >7h= < (1) _01 )
The Lie bracket, which in terms of the algebra of matrices is [u, v] = uv — vu,
is given by [h,z] = 2z, [h,y] = —2y, [z,y] = h. The category of represen-
tations of any Lie algebra L is equivalent to the category of left modules
over its universal enveloping algebra U(L) which, in the case L = sly(k), is
k{x,y,h)/(hx —xzh = 22, hy — yh = —2y, 2y — yx = h). We will not distinguish
between representations of L and left U(L)-modules.

Every finite-dimensional module over U = U(sly) is a direct sum of simple
modules and, for every natural number n, there is, up to isomorphism, exactly
one of these, L(n), of dimension n + 1 (see, e.g., [7, Section 6.1]). As a k-
vectorspace, L(n) has a basis m_,,m_n42,...,My_2,m, of eigenvectors of h
with the action of sl (and hence of U(sly)) determined by hmy, = kmy, xmy =
k(n 4+ k — 1)mgyo (with mgyo interpreted as 0 when k + 2 > n) and ymy =
my—o (with a similar comment if £k — 2 < —n) (see, e.g., [7, Section 7]). That
completely describes the finite-dimensional representations but there are many
infinite-dimensional simple modules: including the Verma modules, which we
define now.

For A € k set M = M(\) = U(sly)/Ix, where I, = Ux + U(h — X), to be the
corresponding Verma module. This is the U-module generated by an element
my (the image of 1 € U) with relations xmy = 0, hmy = Am,. Then a k-basis
for M(\) is ma, mx_o = ymy, ..., mx_2; = y'my,... (i > 0) and one may check
that hmy_g; = (XA — 2i)mx_o;. Therefore, setting M, = {m € M : hm = pm}
to be the p-eigenspace for the action of h on M, one has M = @, Mx—2; with
each M) _o; 1-dimensional. The action of z is easily computed to be zmy_g; =
(A —n+ 1)mr_2;12 (with myy2 being interpreted as 0).

If A is not a natural number then M () is a simple module, also often denoted
L(A), and if A is a natural number, n, then M (n) is a module of length two with
composition factors L(n) and L(—n — 2) (see, e.g., [8, p. 75]). We use the fact,
[4, 7.18] that the endomorphism rings are trivial: End(M (X)) = & (for, consider
the, commuting, actions on my of an endomorphism and h).

For background on representations of Lie algebras see [4] and [7] and for
model theory of modules see [9] and [15] or, when it is complete, [12] (the last
especially for results described here as “folklore”).



2 Definable subgroups of Verma modules

If R is any ring then the usual model-theoretic language for R-modules has
symbols with which to express the addition (in a module) and the scalar mul-
tiplication (of each element of R on a module), as well as a symbol for the zero
element of a module. So the basic (“atomic”) formulas are just linear equations:
2?21 x;r; = 0 where the x; are variables and the r; elements of R. The pp (“pos-
itive primitive”) formulas are those obtained from conjuctions of such equations
(i.e. from systems of linear equations) by existentially quantifying out some of
the variables. Formally, such a formula, ¢ (or ¢(z1,...,zx) if we wish to show
its unquantified variables) has the shape 3zj i1, ..., 2n ( /\;n:1 S airy; =0).
What such a formula defines is the projection, to the first £ coordinates, of the
solution set to a system of R-linear equations. Clearly the set so defined is a
group. If ¢ is a pp formula with just one free variable and if M is a module
then the solution set to ¢ in M is denoted ¢(M) and is a typical pp-definable
subgroup of M: note that this is closed under the action of endomorphisms of
the R-module M. In particular, any pp-definable subgroup of a Verma module
is a k-vectorspace.

Lemma 2.1 Suppose that M is a finitely presented module over an arbitrary
ring R and that End(M) = k is a field (or just a division ring). Then every
finite-dimensional k-subspace of M is pp-definable.

This is “folklore”: we indicate the proof. Since a finite sum of pp-definable
subgroups is easily seen to be pp-definable, it is enough to prove this for 1-
dimensional subspaces of M. So let a € M, a # 0. If ¢1,...,¢, is a gen-
erating set for M and if Z?:l crij = 0 (j = 1,...,m) is a generating set
of relations for M, and if a = Y. | ¢;s; then let ¢(x) be the pp formula
Jz4,. .. ,xn<( /\;n:1 S iwry =0)Ax =Y xlsl) (the symbol A should
be read as “and” and A is to A as > is to +). It is quite easy to check that
¢(M) = ak, as required. In fact, this last point may be generalised, as follows.

First we define the pp-type of an n-tuple @ = (a1, ..., a,) o f elements from

a module M to be the set, pp™ (@), of pp formulas ¢, with n free variables, such
that @ € ¢(M). It is the case (see [9, 8.4]) that if M is finitely presented then
there is a pp formula ¢y in pp™ (@) which generates this pp-type in the sense
that for every module N (in particular for M) we have ¢o(N) < ¢(N) for every
¢ € pp" (a).
Lemma 2.2 Suppose that M is a finitely presented module over an arbitrary
ring R and that End(M) = k is a field (or just a division ring). Let a =
(a1,...,an) be an n-tuple from M. Let ¢g be a pp formula which generates
ppM(@). Then ¢o(M) is 1-dimensional over k.

Proof. Suppose that b € ¢o(M). By [9, 8.5] there is an endomorphism of
M taking @ to b. By assumption, that endomorphism is multiplication by an



element of k. O

When dealing with slo-modules we will use u, v, rather than x,y, for vari-
ables, for obvious reasons (and we will deal with left, rather than right, modules).

Proposition 2.3 Let M()), A ¢ N be a Verma module oversla(k). Then M(X)
has neither the ascending nor descending chain condition on pp-definable sub-
groups. In particular M is not pure-injective (“pure-injective” means injective
over pure embeddings, where an embedding A < B of modules is said to be pure
if, for every pp formula ¢(x), we have ¢(A) = AN ¢(B), equivalently if the
induced morphism (A ®r —) — (B ®r —) of functors from left R-modules is
monic).

Proof. The images of successive powers of y give an infinite descending chain
and the annihilators of successive powers of = give an infinite ascending chain.
Since M () is countable-dimensional it is not, since the dcc fails, 3-pure-
injective (another piece of folklore, with a proof similar to that in [9, 3.1(c)]),
in particular it is not pure-injective. O

Lemma 2.4 Let M(\) be as above. Every finite-dimensional subspace of M(\)
is pp-definable. Furthermore, every cofinite-dimensional subspace, W, of M(\)
which contains some M<y_o; = @ziz My _o5 is pp-definable.

Proof. The first statement is by 2.1.

For the second statement, first note that M<x_o; itself is pp-definable (by
the formula which expresses the condition y’|v). Then write W as M<y_o; &V
where V' < M< y_9;. Thus W is the sum of two pp-definable subgroups, hence
is pp-definable. O

The subgroups above do not exhaust the cofinite-dimensional pp-definable
subgroups: consider, for example, the image of 1+y. Of course, ‘most’ cofinite-
dimensional subspaces are not pp-definable, since there are too many of them
- for instance, if k is countable then they are uncountable in number whereas
there are only countably many pp conditions with which to define subspaces.

We have the following further observations about the ring of definable scalars,
R)\ = RM) of M()\)

First, if W is any pp-definable subspace which has a pp-definable comple-
ment, W’ then projection to W with kernel W’ is a pp-definable map (hence
is in the ring of definable scalars). For, if W = ¢(M) and W’ = (M) then let
p(u,v) be the formula ¢(v) A Jw(y(w) Au = v+ w). Then the binary relation
p(M (X)) € M? clearly is this projection function on M.

Hence if V' is any finite-dimensional subspace of M or if V is any cofinite-
dimensional subspace which contains some M<y_2, then projection to V is
pp-definable.

There is also the following.



Lemma 2.5 If V is any finite-dimensional subspace of M = M(X) and T :
V — V is any k-linear endomorphism of V' then there is a definable scalar, s,

of M(X) such that s [V =T.

Proof. Choose a basis aq,...,a, for V. By 2.1 there are pp formulas ¢; such
that ¢; (M) = (a;) (the vector subspace generated by a;). For each i let p;(u;, v;)
be a pp formula which generates the pp-type of the pair (a;,Ta;) in M (this
exists by [9, 8.4]). Let p’(u,v) be the pp formula Juy, ..., up,v1,..., 0, (u =
ST ui AN di(wi) AN pilus,v) Av=3"7;). Clearly if a € V then p'(a,Ta
holds and that the converse also holds may be checked using that each p; (M) C
M? is, by 2.2, 1-dimensional.

Let ¢ be a pp formula defining V' and let ¥ be a pp formula defining a
complement, W, for V in M (such exists by 2.4). Finally let p(u,v) be the
formula 3z(Y(2) A p(u — 2) Ad(v — 2) Ap'(u— z,v — 2)). Clearly p | W =idw
and p [ V =T, as required. 0O

3 Generalised Weyl Algebras

Let k be a field. The first Weyl algebra over k is the algebra A;(k) = k(x,y :
yxr—axy = 1). There are a number of important algebras with properties similar,
to some degree, to those of A;(k). These were given a uniform treatment by
Bavula ([1], also see [2]) and are referred to as “generalised Weyl algebras”.

In order to define these generalised Weyl algebras start with the poly-
nomial ring k[H]. Choose an automorphism, o, of the ring k[H] and a non-
constant polynomial @ = a(H) € k[H]|. From this data define the algebra
k[H){(z,y : yr = a, zy = o(a), by = yo(b), bx = zo=1(b), (b € k[H])) (in fact
Bavula’s definition is more general). Generalised Weyl algebras where the ac-
tion of o is given by o(H) = H — 1 include the Weyl algebra itself (set H = yx
and take a = H) and all non-semisimple primitive factor rings of the universal
enveloping algebra of sl (k) (see below).

Proposition 3.1 [13, 3.1] Let R be a generalised Weyl algebra over a field of
characteristic 0 with o(H) = H — 1. Then no finite length module, apart from
0, is divisible.

Lemma 3.2 Suppose that R is a generalised Weyl algebra over a field of char-
acteristic 0 with o(H) = H — 1. Let M be a simple R-module. Then (\{{Mr :
reR,r#0}=0.

Proof. We show that V' = (\{Mr : r € R,r # 0} is a submodule of M. Let
a € V and let r € R, r # 0. It must be shown that ar € V. Let s € R, s # 0.
Since R is an Ore domain Rr N Rs # 0, say r'r = s’s # 0. Since a € V there is
a’ € M with a = a/r' and hence ar = a/r'r = as’s, so ar € M s, as required.



If V is non-zero then M =V is divisible, contradicting 3.1. O

Lemma 3.3 Let R be any ring and let M be a finitely presented R-module. Sup-
pose that End(M) = k is a field, that every pp-definable subgroup of M is finite-
dimensional or cofinite-dimensional and that {@p(M) : ¢(M) is cofinite-dimensional } =
0. Then the lattice of pp-definable subgroups of M is complemented (i.e. given

¢ pp there is ¥ pp with M = ¢(M) ® p(M) ).

Proof. Suppose that ¢ is a pp formula such that ¢(M) is finite-dimensional over
k. Choose 9 such that ¢ (M) is cofinite-dimensional and with ¢(M)NyY(M) = 0.
Such exists since, otherwise, choose ¢ with (M) cofinite-dimensional and with
dimy (¢(M) N(M)) of minimum dimension. By hypothesis there is ¢’ with
¢/(M) cofinite-dimensional and /(M) # (M) N¢(M). Then 1 A1)’ is cofinite-
dimensional and its intersection with ¢(M) is strictly smaller than ¢(M )Ny (M)
- contradiction.

Now choose any k-vectorspace complement, W, of (M) in M with W >
¢(M) and choose a complement, W', for ¢(M) within W. By 2.1 W' = ¢o(M)
for some ¢g. Then (M) @ ¢o(M) is a pp-definable complement for ¢(M).

On the other hand, if (M) is cofinite-dimensional then, immediately from
2.1, it has a pp-definable complement. O

Then we use the following result from Herzog’s paper.

Theorem 3.4 [6, pp. 254, 255] Let R any ring and let M be an R-module
such that the lattice of pp-definable subgroups of M is complemented. Then the
ring of definable scalars, Ry, is von Neumann reqular and R — Ry; is an
epimorphism of Tings.

Corollary 3.5 Suppose that M is finitely presented, that End(M) = k is a
field, that every pp-definable subgroup of M is finite- or cofinite-dimensional and
that N{p(M) : (M) is cofinite-dimensional } = 0. Then Ry is von Neumann
reqular and R — Ry is an epimorphism of rings.

4 Rings of definable scalars of Verma modules

We will show that the ring of definable scalars of any Verma module M()) is
von Neumann regular. By 3.4 it will be enough to show that every pp-definable
subgroup of M(\) has a pp-definable complement.

A key observation is that the simple Verma module M(X\) (A ¢ N) is a
module over a generalised Weyl algebra, as follows.

Set 1t = A% 42X and let C = 22y + 2yx + h? be the Casimir element of
U = U(slz). Computation shows that the actions of x, y and h on M (\) satisfy
the relations: zy = +(u— (h—2)? — 2(h —2)) and yz = (u — h* — 2h), as well



as those, zh = (h — 2)z and yh = (h + 2)h, coming from U itself. Furthermore,
computing the action of C' on my_a;, one sees that C' = p on M(\).

Therefore M(A) is a faithful module over the primitive factor ring U, =
U/{C — ) of U (see [4, 8.4.3]). (It is the case, [4, 8.4.4], that, as A\ varies
over all of k, these are all the primitive factor rings of U. Observe also that
MN42d=1v2+wiff v=Aorv=—-\—2s0 M(—\—2) also is a U,-module.)
We check that the rings U,, are generalised Weyl algebras.

Denote by o the automorphism of the polynomial ring k[h] given by o(h) =
h — 2 and let a(h) be the polynomial (—h% — 2h + u)/4. Then U, = k[h](z,y :
zh = o(h)z, yh = o~ (h)y, vy = a(h — 2),yz = a(h)) or, making the change
of variable H = h/2, U, = k[H|(z,y : zH = o(H)z,yH = o '(H)y, zy =
a(H — 1),yx = a(H)) where now o is given by o(H) = H — 1 and o(H) =
—H? - H+ £. So this is even a generalised Weyl algebra of the special form
where the automorphism is given by o(H) = H — 1.

We remark that, by [1, 3.2, Thm. 5], U, is hereditary and a simple ring iff
the roots of H2+ H — & do not differ by an integer. The roots of this polynomial

A

are 5 and —% — 1, so the difference is —A — 1, which is an integer iff A € Z.

Thus U, is hereditary and simple if(f) A ¢ Z.

Proposition 4.1 Suppose that R is a generalised Weyl algebra with o(H) =
H—1. Let M be a simple R-module. Then the ring, Ry, of definable scalars of
M is von Neumann regular and the natural map R — Rys is an epimorphism.

Proof. We apply 3.5. The finite/cofinite hypothesis is satisfied, by [13, 3.3].
The intersection condition is by 3.2. (The non-zero subspaces Mr are cofinite-
dimensional by [13, 2.2, 3.3].) O

Corollary 4.2 Let M = M(X) be a Verma module for sla(k) (k algebraically
closed of characteristic 0). Then its ring of definable scalars, Ry, is a von
Neumann regular ring and the natural map R — Ry; is an epimorphism of
TiNgs.

(The case where A € N follows since then M ()) is the direct sum of the
finite-dimensional simple module L(A) and the Verma module M (—\ — 2), each
of which has von Neumann regular ring of definable scalars (for the finite-
dimensional module this follows by [3, 3.6], which implies that the ring of de-
finable scalars is the full, simple artinian, biendomorphism ring.))

5 The Ziegler-closure of a Verma module
The Ziegler spectrum, Zgp, of a ring R is a topological space, introduced in

[15], the points of which are the isomorphism classes of indecomposable pure-
injective modules. A basis of open sets is given by those of the form (¢/v) =



{N €Zgp: ¢(N) > ¢(N)} where ¢ and ¢ are pp formulas with ¢(M) > (M)
for every module M. Its usefulness in the model theory of modules can be seen
from [9] and some examples of its algebraic relevance are in [11].

Every module M has a pure-injective hull - a minimal pure-injective module
into which M purely embeds. If M is finitely presented with local endomorphism
ring then, [5, p. 157], the pure-injective hull, H(M), of M is indecomposable,
hence a point of Zgp.

Proposition 5.1 Let M = M(\), A ¢ N be a Verma module over sla(k). Then
the Ziegler-closure of the pure-injective hull, H(M), of M consists of H(M)
and Dy where Dy is the quotient division ring of (the noetherian domain) U).
The point H(M) is isolated in its closure. Furthermore this closure also is

homeomorphic to the Ziegler spectrum, Zgg, , of the ring of definable scalars of
M.

Proof. The first statement follows by [13, 3.7], the second is obvious (directly
or since D) clearly is a closed point). For the third we need the general fact that,
if M is a module over the von Neumann regular ring S, then the Ziegler-closure
of H(M) is that of H(S/ann(M)) (see, e.g., [6, p. 255]). The last statement
then follows by [10, Thm. 1(c), Cor. 9] since R — Rj is an epimorphism. O

It also follows from [13, 3.5] that H(M(X\))/M(\) ~ Dg\'{) for some (infinite
by [13, 3.2]) cardinal k.

By 5.1 the Cantor-Bendixson rank of Zgp —is 1 (that is, once the isolated
points are removed, there remain only points isolated in what remains). For
the dimensions, Krull-Gabriel and m-, which appear in the next result, see, for
instance, [11].

Corollary 5.2 Let M = M()\), A ¢ N, be a Verma module over sla(k). Then

Proof. The fact that the m-dimension of M is 1 is immediate from the fact
that every pp-definable subgroup is of finite or cofinite height in the lattice of
pp-definable subgroups of M. That this equals the Krull-Gabriel of R, is then
a consequence of 5.1 and the, already-mentioned, fact that the Ziegler-closures
of M and Rj; are homeomorphic and that the latter is, because Rj; is von
Neumann regular, the closed subset of Zg; corresponding to the category of
Rjps-modules. (It is also a consequence of a result of Trlifaj [14, 3.6] which says
that semiartinian regular rings, which these are (see below), satisfy the isolation
condition, plus Ziegler’s result [15, 8.6], see [9, 10.19], that, in the presence of
this condition, Cantor-Bendixson rank and m-dimension coincide). O

We can say a little more about Rj; when M is a Verma module. By 5.1, D)
is a (simple) Rjp/-module and hence, if I = anng,, D) then Rj;/I is a simple
regular ring which is artinian (e.g. by 5.1). Also by 5.1 the only other simple
Rps-module is M itself.



Proposition 5.3 Let M = M (M), A ¢ N, be a Verma module over sla(k) and
let Ry be its ring of definable scalars. Then Ry is semiartinian.

Proof. Regard Ry as a subring of Biend(My) = End(;M) =~ End(pk®0)).
The image of each element of R)s, being a pp-definable subgroup, is (see before
2.5) either finite-dimensional or cofinite-dimensional and all finite-dimensional
subspaces of M occur as images, so clearly the socle of Rj; consists of those
definable scalars which have finite-dimensional image. But this is exactly I =
anng,, Dy and R/I is artinian. Hence Ry, is, indeed, semiartinian. 0O

We have left unresolved the analogue of Herzog’s result. Namely, is the
main result, 4.2, true for M being the direct sum of all the Verma modules?
(Arguably the correct analogue is the corresponding statement for a direct sum
of modules of the form M)y, where A is fixed and n € Z.)
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