
Definable proper actions and equivariant definable Tietze
extension

Tomohiro Kawakami
Department of Mathematics, Faculty of Education, Wakayama University,

Sakaedani Wakayama 640-8510, Japan

Abstract

Let N = (R,+, ·, <, . . . ) be an o-minimal expansion of the standard structure of a real
closed field R. Let G be a definable group and X a definable proper definable G set. We
prove that X has only finitely many orbit types. We also prove equivariant definable Tietze
extension theorem.
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1 . Introduction.

LetN = (R,+, ·, <, . . . ) be an o-minimal
expansion of the standard structure of a real
closed field R.

General references on o-minimal struc-
tures are [2], [3], and also see [9]. Any defin-
able category is a generalization of the semi-
algebraic category and the definable cate-
gory on R = (R,+, ·, <) coincides with the
semialgebraic one. It is known in [8] that
there exist uncountably many o-minimal ex-
pansions of the field R of real numbers.

Let G be a definable group. A definable
G set means a pair consisting of a definable
set X and a group action ϕ : G × X → X
such that ϕ is definable. A definable map
between definable sets is called definably
proper if the inverse image of every defin-
ably compact definable set is definably com-
pact. We call a definable G set X a proper
definable G set if the map G × X → X ×

X defined by (g, x) 7→ (gx, x) is definably
proper.

Let G be a definable group. We can de-
fine orbit types as well as G is definably com-
pact ([5]).
Theorem 1.1. Let G be a definable
group. Then every proper definable G set X
has only finitely many orbit types.

Theorem 1.1 is proved the case where R
is the field R of real numbers ([5]).

The following theorem is an equivariant
version of definable Tietze extension theo-
rem [1]

Theorem 1.2. Let G be a definably com-
pact definable group, X a definable G set and
A a G invariant definably compact definable
subset of X. Every G invariant definable
function f : A → R is extensible to a G in-
variant definable function F : X → R with
F |A = f .
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2 . Proof of results.

Let X ⊂ Rn and Y ⊂ Rm be defin-
able sets. A continuous map f : X → Y
is definable if the graph of f (⊂ X × Y ⊂
Rn ×Rm) is a definable set. A group G is a
definable group if G is a definable set and
the group operationsG×G → G andG → G
are definable. A definable subset X of Rn

is definably compact if for every definable
map f : (a, b)R → X, there exist the lim-
its limx→a+0 f(x), limx→b−0 f(x) in X, where
(a, b)R = {x ∈ R|a ≤ x < b},−∞ ≤ a <
b ≤ ∞. A definable subset X of Rn is defin-
ably compact if and only if X is closed and
bounded ([7]). Note that if X is a definably
compact definable set and f : X → Y is a
definable map, then f(X) is definably com-
pact.

We say that two homogeneous proper de-
finable G sets are equivalent if they are de-
finably G homeomorphic. Let (G/H) denote
the equivalence class of G/H. The set of all
equivalence classes of homogeneous proper
definable G sets has a natural order defined
as (X) ≥ (Y ) if there exists a definable G
map X → Y . By the definition the reflexiv-
ity and the transitivity clearly hold If (X) =
(G/H) and (Y ) = (G/K), then (X) ≥ (Y ) if
and only ifH is conjugate to a definable sub-
group of K. By a way similar to the proof
of 4.1 [5], we have the following lemma.

Lemma 2.1. Let G be a definable group,
H a definable subgroup of G and g ∈ G. If
gHg−1 ⊂ H, then gHg−1 = H.

By Lemma 2.1, the anti-symmetry is true.
By a way to similar to the proof of 1.1

[5], we have Theorem 1.1.
Note that every definable subgroup of a

definable group is closed ([6]) and a closed
subgroup of a definable group is not neces-
sarily definable. For example Z is a closed
subgroup of R but not a definable subgroup
of R.

Recall existence of definable quotient.

Theorem 2.2 (Existence of defin-
able quotient, 10.2.18 [2]). Let G be a
definably compact definable group and X a

definable G set. Then the orbit space X/G
exists as a definable set, and the orbit map
π : X → X/G is definable, surjective and
definably proper.

The following theorem is the topological
case of Tietze extension theorem.

Theorem 2.3 (Tietze extension the-
orem). Let X be a normal space and A a
closed subset of X. Then every continuous
map f : A → R is extensible to a continuous
map F : X → R with F |A = f .

The following theorem is the definable
case of Tietze extension theorem.

Theorem 2.4 (Definable Tietze ex-
tension theorem, [1]). Let A be a defin-
able closed subset of Rn. Then every defin-
able map f : A → R is extensible to a defin-
able map F : Rn → R with F |A = f .

A definable map f : X → Y is definably
closed if for any definable closed subset A of
X, f(A) is a definable closed subset of Y .

Theorem 2.5 ([4]). Let f : X → Y be
a definable map. Then f is definably proper
if and only if f is definably closed and has
definably compact fibers.

Proof of Theorem 1.2. By Theorem
2.1, X/G exists as a definable set in Rn and
the projection π : X → X/G is a surjective
definable definably proper map. By Theo-
rem 2.4 and A is definably compact, π(A) is
a definable closed subset of Rn. Since f is a
G invariant definable map, it induces a defin-
able map f ′ : f(A) → R with f = π ◦ f ′. By
Theorem 2.2, there exists a definable map
F : Rn → R with F |f(A) = f ′. Hence
H = π ◦ F is the required map.
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