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1 Introduction

We fix an arbitrary o-minimal structure N = (N,<, . . .) and work in the
category of definable sets, X, in N with the o-minimal site on X, with
morphisms being definable continuous maps. The o-minimal site on X is
the site whose underlying category is the set of all relatively open definable
subsets of X (open in the strong, o-minimal topology) with morphisms the
inclusions and admissible covers being finite covers by open definable sets.
We also use the category of pairs (X, A) of definable sets such that A ⊆ X
whose morphisms f : (X, A) −→ (Y, B) are continuous definable maps f :
X −→ Y such that f(A) ⊆ B.

Our main result is the following:

Theorem 1.1 In the category of pairs A ⊆ X of definable sets in an arbi-
trary o-minimal structure N we have a Čech cohomology (Ȟ∗, d∗) functor
with coefficients in a fixed abelian group Z such that the following hold:
Exactness Axiom. For each n ∈ N, if i : (A, ∅) −→ (X, ∅) and j :
(X, ∅) −→ (X, A) are the inclusions of pairs of definable sets then we have
a natural exact sequence

· · · −→ Ȟn(X, A;Z)
ǰ∗→ Ȟn(X;Z) ǐ∗→ Ȟn(A;Z) dn

→ Ȟn+1(X, A;Z) −→ · · · .

Excision Axiom. For every pair of definable sets A ⊆ X and definable open
subset U ⊆ X such that U ⊆ Å, the inclusion (X − U,A − U) −→ (X, A)
induces isomorphisms

Ȟn(X, A;Z) −→ Ȟn(X − U,A− U ;Z)

for all n ∈ N.
Homotopy Axiom. Assume that N has definable Skolem functions and
let [a, b] ⊆ N be a closed interval. If for c ∈ [a, b],

ic : (X, A) −→ (X × [a, b], A× [a, b])

is the continuous definable map given by ic(x) = (x, c) for all x ∈ X, then
the induced homomorphisms are equal

ǐ ∗a = ǐ ∗b : Ȟn(X × [a, b], A× [a, b];Z) −→ Ȟn(X, A;Z)

for all n ∈ N.
Dimension Axiom. If X is a one point set, then Ȟn(X;Z) = 0 for all
n 6= 0 and Ȟ0(X;Z) = Z.

The o-minimal setting generalises the semi-algebraic and sub-analytic
contexts, and so this theorem generalises the existence of Čech cohomology
in semi-algebraic geometry, as described in the appendix of the book on

2



real algebraic geometry by Bochnak, Coste and Roy [1]. Other cohomology
theories have been constructed for o-minimal structures of special types
in the past. Simplicial and singular cohomologies were constructed in o-
minimal expansions of fields by A.Woerheide in his doctoral thesis, a report
of which can be found in [10]. A sheaf cohomology has been constructed
in [9] for o-minimal structures (with certain extra technical assumptions
for the homotopy axiom), which generalised the sheaf cohomology for real
algebraic geometry of Delfs, for which he proved the homotopy axiom in [2].
The theory presented here generalises all of these, at least in the case of
constant coefficients.

We now explain what is new here compared to the classical theory. The
definition of o-minimal Čech cohomology is standard. Given a definable set
X, we associate to each admissible cover U of X its nerve XU which is a finite
abstract simplicial complex; given a continuous definable map f : X −→ Y
between definable sets, we associate to f and each admissible cover V of
Y an abstract simplicial map fV : Xf−1V −→ YV . The next step is to
compute the simplicial cohomology of this abstract simplicial data and take
the direct limit of the simplicial cohomology data over the directed system
of admissible covers. The only difference here to the classical setting is that
our admissible covers are finite (and belong to the category of definable
sets). This construction will be explained in more detail in Section 2.

With this definition of o-minimal Čech cohomology the verification of the
exactness and dimension axioms are immediate and similar to the classical
topological case since they are pure homological algebra (see [11] Chapter
IX, Section 7 and Section 3, Theorem 3.4 respectively). Similarly we can
prove the excision axiom as in [11] Chapter IX, Section 6, Theorem 6.1,
since conditions (1) to (4) in this proof clearly hold for admissible covers of
a definable set (with the same proof) and the rest of the argument there is
pure homological algebra.

The homotopy axiom for topological Čech cohomology relies on the fact
that stacked (open) covers over (open) covers of a topological space X are
cofinal in the category of (open) covers of X × I where I is a closed interval
in R. See [11] Chapter IX, Section 5, Lemma 5.6. There are two important
features in the proof of this fact: (i) it uses the compactness of I and (ii)
the stacked refinement of a given cover of X × I is indexed by X (and so
it is usually infinite!). Hence, the classical proof of the cofinality of stacked
covers does not work in the o-minimal context: (i) closed intervals [a, b] ⊆ N
are usually not compact (e.g. N is non standard) and (ii) admissible covers
are finite. Our solution to this problem appears in Section 3 and follows
the solution of the corresponding problem in real algebraic geometry (see
the appendix of the book by Bochnak, Coste and Roy [1]). More precisely,
we use the o-minimal spectrum of definable sets which is a model theoretic
generalization of the real spectrum of commutative rings from real algebra
and real algebraic geometry.
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For basic o-minimal geometry we refer the reader to the book [3] by van
den Dries. Since semi-algebraic geometry is a special case of o-minimal ge-
ometry, the book [1] is also a good reference. For other o-minimal structures
see for example [4], [5], [6], [7], [8] and [13]. In [4] and [5] the reader can find
explicit constructions of non standard o-minimal structures.

2 O-minimal Čech cohomology

We define the o-minimal Čech cohomology of an arbitrary definable set X
in N with respect to the o-minimal site with coefficients in a fixed arbitrary
abelian group Z.

Let U = {Uα}α∈I be any admissible open cover of X with index set I
and for α = (α0, . . . , αn−1) ∈ In let Uα := Uα0 ∩ . . . ∩ Uαn−1 , and En(U) =
{α ∈ In|Uα 6= ∅}. Then let Č n(U ;Z) be the group of all functions, c from
En+1(U) to Z. The group Č n(U ;Z) is called the n’th Čech group of U with
coefficients in Z, and its elements are called the n-cochains of U . The Čech
groups form a cochain complex:

· · · δn−1−→ Č n−1(U ;Z) δn−→ Č n(U ;Z)
δn+1−→ · · ·

where, for c ∈ Č n−1(U ;Z) (acting on n-tuples), we let

(δnc)(α0, . . . , αn) :=
n∑

i=1

(−1)ic(α0, . . . , α̂i, . . . αn)

(where the hat means that this element of the (n+1)-tuple is omitted). We
have, due to the reversing effect of the power of−1, that δn+1◦δn = 0, so that
Im (δn) ⊆ Ker (δn+1). Thus we can form the o-minimal Čech cohomology
groups with respect to this cover:

Ȟ n(U ;Z) :=
Ker(δn+1)

Im(δn)
.

The equivalence classes of elements of Ker δn which determine these groups
are called cocycles.

As any two admissible covers U and V have a common admissible refine-
ment, the collection of all admissible covers of X form a direct system with
respect to refinement. The maps induced by the inclusions on the n’th Čech
groups with respect to these different admissible covers then turns them,
and thus the n’th o-minimal Čech cohomology groups into a directed sys-
tem (with respect to the different admissible covers). We can thus take the
direct limit of these groups, to form

Ȟ n(X, Z) := lim−→
U

Ȟn(U ;Z),
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the n’th o-minimal Čech cohomology group of X with coefficients in Z.
To get the full o-minimal Čech cohomology theory, as a contravari-

ant functor from the category of definable sets with the o-minimal site
to the category of abelian groups, we need, given a definable continuous
map f : X −→ Y to construct, for each n, a group homomorphism, f̌ n :
Ȟ n(Y ;Z) −→ Ȟ n(X;Z).

First, for a given admissible cover U = {Uα}α∈I of Y , we define the
homomorphism fn

U : Č n(U ;Z) −→ Č n(f−1U ;Z) : c 7→ fn
U c, where f−1U =

{f−1(Uα)}α∈I . Let c ∈ Č n(U ;Z) and α = (α0, . . . , αn) ∈ En+1(f−1U).
Then f−1(Uα0)∩· · ·∩f−1(Uαn) 6= ∅ and so ∅ 6= f(f−1(Uα0)∩· · ·∩f−1(Uαn)) ⊆
Uα0 ∩ · · · ∩ Uαn and α = (α0, . . . , αn) ∈ En+1(U). Thus we can define
(fn

U c)(α0, . . . αn) := c(α0, . . . αn). This fn
U commutes with the boundary

map on the Čech groups, δ, and so sends kernels and images to the correct
places and so can be combined with the quotient map to give a homomor-
phism f̌n

U : Ȟ n(U ;Z) −→ Ȟ n(f−1U ;Z). We can then take the direct limit
over the admissible covers, as before, to give the required homomorphism

f̌ n : Ȟ n(Y ;Z) −→ Ȟ n(X;Z).

We now give a combinatorial characterization of o-minimal Čech coho-
mology with coefficients in the abelian group Z as in the classical case in [11]
Chapter IX. In fact we show that, given an admissible cover U , the cochain
complex {Č ∗(U ;Z), δ} is naturally chain equivalent to the cochain complex
{C∗(XU , Z), ∂}, where XU is the nerve of U . This clearly gives the required
result. The nerve XU is the abstract simplicial complex consisting of all sim-
plices whose vertices are a subset J of the index set I of U = {Ui}i∈I and
are such that

⋂
j∈J Uj 6= ∅. The cochain complex {C∗(XU , Z), ∂} is defined

to be the dual of the chain complex C∗(XU ) which is defined as usual for an
abstract simplicial complex, so that, Cn(XU , Z) =Hom(Cn(XU ), Z).

First note that, letting En(U) = {α ∈ In|Uα 6= ∅} and G(En(U)) be the
free abelian group generated by En(U), each element c ∈ Č n(U ;Z) is a map
from En+1(U) to Z and so determines a homomorphism, which we also call
c, from G(En+1(U)) to Z. In fact it is clear that we can identify Č n(U ;Z)
and Hom(G(En+1(U)), Z).

Now define a homomorphism from G(En+1(U)) into Cn(XU ) by specify-
ing its values on the base: the image of α = (α0, . . . , αn) ∈ En+1(U) is the
elementary n-chain 〈α0, . . . , αn〉 (which is in Cn(XU ) since all its vertice span
the n-simplex s with vertices α0, . . . , αn, which is in XU since

⋂n
j=0 Uαj 6= ∅

by the definition of En(U)). The homomorphism we just defined is clearly
actually an isomorphism, and so induces a natural chain equivalence between
Hom(G(En+1(U)), Z) and Hom(Cn(XU ), Z), which, by the last paragraph,
gives the natural chain equivalence between Č ∗(U ;Z) and Č ∗(XU ;Z).

We now observe that we can view morphisms in this combinatorial way
also. Given a definable continuous map f : X −→ Y between definable
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sets and an admissible cover U of Y , we get an abstract simplicial map
fU : Xf−1U −→ YU . Taking the induced homomorphism, f∗

U , in simplicial
cohomology we get that it coincides with the map f̌∗

U defined above. Thus
the two cohomologies define identical functors.

Let A ⊆ X be a pair of definable sets. If U is an admissible cover of X
and UA is the subcollection from U of those elements that intersect A, then
we can form the pair of abstract simplicial complexes (XU , AUA

) with AUA

a subcomplex of XU . A refinement V of U by open definable subsets gives
an abstract simplicial map (XV , AVA

) −→ (XU , AUA
). We can thus take the

direct limit of these groups, to form

Ȟ n(X, A,Z) := lim−→
U

Hn(XU , AUA
;Z),

the relative n’th o-minimal Čech cohomology group of the pair (X, A) with
coefficients in Z, where the Hn(XU , AUA

;Z) are the relative simplicial co-
homology groups with coefficients in Z.

Given pairs of definable sets A ⊆ X and B ⊆ Y , a definable continuous
map f : X −→ Y such that f(A) ⊆ B, and an admissible cover U of Y
with the subcover UB associated to B, we get an abstract simplicial map
fU : Xf−1U −→ YU such that fU (Af−1UB

) ⊆ BUB
. Thus we can take the

induced homomorphism, f∗
U : H∗(YU , BUB

;Z) −→ H∗(Xf−1U , Af−1UB
;Z),

of the relative simplicial cohomology groups and take limits as before to get
the homomorphism

f̌∗ : Ȟ∗(Y, B;Z) −→ Ȟ∗(X, A;Z).

We end this section by observing that if X is defined in an o-minimal
expansion of a field and (φ,K) is a definable triangulation of X ([3]) then
letting UK be the (admissible) cover of X given by the open stars of all
the simplices of K then we clearly have the identity K ∼= XUK

of abstract
simplicial complexes.

Also note that, by the comments in the introduction to Chapter VI
of [11] (and Section 6 of that chapter) we can use the ordered chain complex
as defined above and get that the resulting cohomology theory is the same as
the one we would obtain using the alternating chain complex defined there.

3 The Eilenberg-Steenrod Axioms

As we explained in the introduction, we can easily prove the exactness,
the excision and the dimension axioms for the o-minimal Čech cohomology
defined in Section 2 by following the proofs in the topological case. For
the proof of the homotopy axiom we recall the definition of the o-minimal
spectrum of definable sets and use it to prove the o-minimal analogue of the
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lemma on stacked covers ([11] Chapter IX, Section 5, Lemma 5.6). With
this lemma available we finish the proof using standard arguments.

For definable X ⊆ Nm let X̃ be the o-minimal spectrum of X, that is
the set of complete m-types of the first-order theory ThN (N ) which imply a
formula defining X, equipped with the topology generated by the basic open
sets of the form Ũ = {α ∈ X̃ : U ∈ α} where U is a definable, relatively
open subset of X and U ∈ α means that a formula defining U is in α.
See [9] or [12] for basic facts about X̃ but recall especially that X̃ is spectral
topological space and so in particular it is quasi-compact.

For α a complete m-type over N we let N (α) be the prime model of the
first-order theory of N over N ∪ {e}, where e is an element realising α.

For definable X ⊆ Nm let X(N(α)) be the realization of the definition
of X in N(α)m. If S ⊆ X × Y are definable sets, and α ∈ X̃ let

Sα = {y ∈ N(α)m|(e, y) ∈ S(N(α))}.

If f, g : U −→ N are definable continuous functions such that f < g, where
U is definable open in Nm, then let [f, g]U = {(x, t)|x ∈ U and f(x) ≤ t ≤
g(x)} and let (f, g)U = {(x, t)|x ∈ U and f(x) < t < g(x)}.

Definition 3.1 Given an admissible cover U = {Ui}p
i=1 of a definable set

X and continuous definable functions a = ϕi,0 < . . . < ϕi,ri = b mapping
Ui to N , the cover Û = {Ui,k|(i, k) ∈ W} of X × [a, b] given by Ui,k =
(ϕi,k−1, ϕi,k+1)Ui and W = {(i, k)|1 ≤ i ≤ p, 1 ≤ k ≤ ri − 1} is called a
towered cover over U . We also call U the base of Û .

Given a towered cover Û of a definable set X as above we say that it is
a nice towered cover if for any F ⊆ W such that

⋂
(i,k)∈F Ui,k 6= ∅ we have⋂

(i,k)∈F Ui,k ∈ Û (i.e. any (nonempty) intersection of sets in the cover is in
the cover.)

Note that a (nice) towered cover is, by definition, admissible. These
covers will play the role of stacked covers in our context.

From now on we assume that N has definable Skolem functions. This
assumption certainly holds when N expands an ordered group (see [3]).
We now prove our analogue of the stacked covers lemma ([11] Chapter IX,
Section 5, Lemma 5.6). We will require the following claim which is the
o-minimal generalization of 11.5.7 in [1] (for convenience our statement of
this is slightly modified).

Claim 3.2 Given any finite cover of the definable set X× [a, b] by definable
open sets, {Vj}p

j=1, there is a finite cover of X by definable open sets, {Ui}q
i=1

and, for each i = 1, . . . q, continuous definable functions a = ϕi,0 < . . . <
ϕi,ri = b mapping Ui to N such that for each pair (i, k) with 1 ≤ i ≤ q and
1 ≤ k < ri there is some j such that [ϕi,k−1, ϕi,k+1]Ui ⊆ Vj .
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Proof If {Vj}p
j=1 is an admissible cover of X × [a, b] and α ∈ X̃ then

{(Vj)α}p
j=1 is a cover of [a, b](N(α)). Since the (Vj)α ⊆ [a, b](N(α)) are open

we can find a sequence a = bα
0 < bα

1 < bα
2 < . . . < bα

rα
= b of elements of N(α)

such that for every 1 ≤ k ≤ rα there is some j such that [bα
k−1, b

α
k+1] ⊆ (Vj)α.

Now also note that [a, b](N(α)) = (X × [a, b])α. By the assumption
on definable Skolem functions, the definition of N(α) and Proposition 2.1
in [12] we have that there is a definable open set Uα ⊆ X with α ∈ Ũα

and continuous definable functions ϕα
1 , . . . , ϕα

rα−1 : Uα −→ N(α) such that
for each i, ϕα

i (e) = bα
i , where e is a fixed realization of α. Taking ϕα

0 = a
and ϕα

rα
= b, and shrinking Uα if necessary we get that a = ϕα

0 < ϕα
1 . . . <

ϕα
rα

= b, by continuity. Again by continuity, and shrinking the Uα more
if necessary, we get that for each 1 ≤ k ≤ rα there is some j such that
[ϕα

k−1, ϕ
α
k+1]Uα ⊆ Vj , since this holds at e.

Now, since α ∈ X̃ was arbitrary the Ũα’s cover X̃. But X̃ is quasi-
compact, so finitely many of them, Ũα1 , . . . , Ũαq cover X̃. Then taking
Ui = Uαi and ϕαi

j = ϕi,j we get an admissible cover, {Ui}q
i=1, of X and, for

each i, continuous definable functions a = ϕi,0 < . . . < ϕi,ri = b from Ui to
N as required. �

Lemma 3.3 The nice towered covers of a definable set X are cofinal in the
collection of all admissible covers, ordered by refinement.

Proof By Claim 3.2 the towered covers of X are cofinal in the collection
of all admissible covers, ordered by refinement. Thus we only need show
that any towered cover of X has a nice refinement. So take a cover as in
Definition 3.1.

For any F ⊆ W such that
⋂

(i,k)∈F Ui,k 6= ∅ we note that the set UF =
{x ∈ X|∃t((x, t) ∈

⋂
(i,k)∈F Ui,k)} is just the projection of an intersection

of definable open sets, and so is open and definable. Also each definably
connected component of UF is definable and open, so we assume UF is
definably connected.

Consider the definable continuous functions ϕF
high = sup{ϕi,k|UF |(i, k) ∈

F} and ϕF
low = inf{ϕi,k|UF |(i, k) ∈ F}. Observe that, in fact both ϕF

high and
ϕF

low are of the ϕj,l|UF . Now choose any i0 in {i|∃k(i, k) ∈ F} and note that
for some k0, k1 we have (ϕF

low, ϕi0,k0)UF
⊆ Ui0,k0 and (ϕi0,k1 , ϕ

F
high)UF

⊆
Ui0,k1 . Thus we can define a tower above UF to be given by the sets
(ϕi0,k−1, ϕi0,k+1)UF for k0 ≤ k ≤ k1 and the set (ϕF

low, ϕF
high)UF .

Now let U ′ = {Ui}q
i=1 be the cover of X obtained by taking all the sets

UF as above. Note that this refines the cover U since we include the case
where F is a singleton, which gives the sets in the original cover. Then
define the nice towered cover Û ′ which refines Û by adding to it the towers
above all the UF ’s with |F | > 1, as described above. �
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The next lemma is the o-minimal analogue of [11] Chapter IX, Section
5, Lemma 5.7. We include its proof since nice towered covers are slightly
different from stacked covers.

Lemma 3.4 Suppose U is an admissible cover of a definable set X. If XU
is a simplex and Û is a nice towered cover over U , then (X × [a, b])bU is
acyclic.

Proof Note that since XU is a simplex the elements of U all intersect. Take
any x ∈

⋂
U∈U U . Suppose Û = {Ui}i∈W and note that Ux = {Ix∩Ui|i ∈ W}

is an admissible cover of Ix = {x} × [a, b] by definably connected definable
subsets, also indexed by W . By the definition of nice towered covers we then
get, for any i, j ∈ W , that Ui∩Uj 6= ∅ if and only if (Ix∩Ui)∩ (Ix∩Uj) 6= ∅.
But by the definition of nerves and the fact that no three distinct members
of Û intersect, this means that we have the following identity

(Ix)Ux = (X × [a, b])bU .

Then just note that Ix = {x}× [a, b] is definably homeomorphic to [a, b],
so that (Ix)V is acyclic for any cover V by definably connected open defin-
able subsets since we have the following claim whose classical analogue is
Lemma 5.2 of Chapter IX of [11] and whose proof clearly also hold for our
definition of Čech cohomology: If V is an admissible cover of [a, b] by defin-
ably connected open definable sets then [a, b]V (the nerve of V) is acyclic. �

Proof the homotopy axiom: With Lemma 3.4 available the rest of the
proof of the o-minimal homotopy axiom is pure holomogical algebra as in
[11]. Indeed, replacing the use of Lemma 5.7 in Chapter IX of [11] by our
Lemma 3.4 we get the analogue of Lemma 5.8 in Chapter IX of [11]: if Û is
a nice towered cover of X over U and A ⊆ X is a definable subset, then the
abstract simplicial maps

(ia)bU , (ib)bU : (XU , AUA
) −→ ((X × [a, b])bU , (A× [a, b])bUA

)

determined by the definable maps ic : (X, A) −→ (X × [a, b], A × [a, b]) :
x 7→ (x, c) with c = a, b, induce the same homomorphism in simplicial
cohomology. Since nice towered covers are cofinal (Lemma 3.3), we can go
to the limit to get the required result. �

We end the paper by pointing out that, as in [11] Chapter I, we get
from the axioms for o-minimal Čech cohomology interesting results such as
the exactness for triples and the Mayer-Vietoris theorem.
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