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Abstract

We generalize the model theory of small profinite structures developed
by Newelski to the case of compact metric spaces considered together with
compact groups of homeomorphisms.

0 Introduction

In [14, 16] Newelski introduced the notion of a profinite structure and developed a
counterpart of geometric stability theory in a purely topological setting.

A profinite structure is a pair (X,Aut∗(X)) consisting of a profinite topological
space X and a closed subgroup Aut∗(X), called the structural group of X, of the
group of all homeomorphisms of X respecting a distinguished inverse system defining
X. We say that (X,Aut∗(X)) is small if for every natural number n, there are only
countably many orbits on Xn under the action of Aut∗(X). To develop the model
theory of small profinite structures, Newelski defined m-independence, which has
similar properties as forking independence in stable theories. He considered counter-
parts of such notions like Lascar U -rank, superstability or 1-basedness, and proved
various results about them. The deepest result seems to be the group configuration
theorem [16, Theorem 1.7 and Theorem 3.3].

Smallness and the fact that we have a basis consisting of clopen sets which are
classes of finite Aut∗(X)-invariant equivalence relations play a prominent role in all
these considerations. From the model theoretic point of view smallness is a natural
assumption, because any profinite structure interpretable in a small theory (see Def-
inition 1.2) is small. Unfortunately, it is not easy to find explicit examples of small
profinite structures, especially of small profinite groups. All known examples of small
profinite groups are abelian profinite groups of finite exponent and some variants of
them (see [4, 5] for details). So it would be interesting to extend Newelski’s approach
to wider classes of profinite structures or even to ”non-profinite” mathematical ob-
jects.
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In this paper we investigate pairs (X,G) where X is a compact metric space
and G is a compact group acting continuously and faithfully on G (so G is just
a compact subgroup of the group of all homeomorphisms of X). We call them
compact structures. We assume that (X,G) satisfies the existence of m-independent
extensions (the weakest condition necessary to develop a counterpart of geometric
stability theory), and we show that most of the results from [16] can be proved in
this context. Notice that the class of objects that we consider contains profinite
structures which are not necessarily small, but in which m-independent extensions
exist. Sometimes we will restrict the class of compact structures to such profinite
structures.

Similarly as profinite structures, compact structures appear naturally as objects
interpretable in some sense in first order theories (see Definition 1.3). Namely, the
space of classes of a bounded type-definable equivalence relation together with the
group of homeomorphisms induced by automorphisms of the monster model is a
compact structure. Moreover, any compact structure is of this form (see Theorem
1.4). We will use this fact in some proofs.

The paper is constructed as follows. In Section 1 we give definitions, prove
some fundamental results about compact and profinite structures, and give a new,
very short proof of Kim’s theorem that in small theories the finest bounded type-
definable equivalence relation equals the relation of having the same strong type.
In Section 2 we analyze the notion of m-independence, particularly the existence
of m-independent extensions, and give some examples. In Section 3 we explain
how to generalize some results from [16] to the case of compact structures; we also
show counterparts of some results from stable (simple) theories about regular types,
domination and weights (see Sections 5.1 and 5.2 of [17]).

1 Compact and profinite structures

In this section we give definitions and prove some fundamental results about compact
and profinite structures. We also discuss some notions of interpretability of compact
and profinite structures in first order theories. Finally, we give a very short proof of
a theorem of Kim [3] which says that in a small theory the finest bounded ∅-type-
definable equivalence relation equals the relation of having the same strong type.

Definition 1.1 A compact structure is a pair (X,G) where X is a compact metric
space and G is a compact group acting continuously and faithfully on X.

Equivalently, G is a compact subgroup of the group of all homeomorphisms of X
with compact-open topology (this topology guaranties that the action of G on X is
continuous). Of course each profinite structure is a compact structure (recall that
we always assume that the inverse system is countable).

Let (X,G) be a compact structure. Let A ⊆ X be finite. By GA we denote
the pointwise stabilizer of A. We say that V ⊆ X is A-invariant if f [V ] = V for
every f ∈ GA. If in addition V is closed, we say that V is A-definable. For a ∈ Xn
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and A ⊆ X we define o(a/A) = {f(a) : f ∈ GA} (the orbit of a over A) and
On(A) = {o(a/A) : a ∈ Xn}. Each orbit is always a closed subset of X.

For a finite A ⊆ X, the algebraic closure of A, denoted by acl(A), is the set of
all elements in X with finite orbits over A. If A is infinite, acl(A) =

⋃
{acl(A0) :

A0 ⊆A is finite}. We will introduce later an imaginary extension Xeq of X; acleq is
defined then as acl but in Xeq.

We say that compact structures (X,G) and (Y,H) are isomorphic, if there is a
homeomorphism φ : X → Y and an automorphism ψ : G → H such that φ(gx) =
ψ(g)φ(x) for all x ∈ X, g ∈ G. To be precise, the definition of a profinite structure
is up to isomorphism, i.e. any compact structure isomorphic to a profinite structure
is also a profinite structure.

We have the following natural notion of interpretability of profinite structures
in first order theories [14, 16] (for more details on this and another notion of inter-
pretability see [6]).

Let T be a first order countable complete theory T with a monster model C, and
A ⊆ C be countable. In the definition below Y is an arbitrary A-type-definable subset
of Ceq and E1 ⊇ E2 ⊇ . . . is an arbitrary descending sequence of finite A-definable
equivalence relations on Y .

Definition 1.2 We say that a profinite structure is interpretable in T over A if it
is isomorphic to the inverse limit of spaces Y/Ei with the structural group induced
by Aut(C/A).

So (X,Aut∗(X)) is interpretable in T over A iff it is isomorphic to

{〈a/E1, a/E2, . . .〉 : a ∈ Y }

with the structural group induced by Aut(C/A).
The main examples of profinite structures interpretable in T over A are traces of

complete types overA. More precisely, for p ∈ S(A) we consider (Tr(p), Aut∗(Tr(p))),
where

Tr(p) = {q ∈ S(acleq(A)) : p ⊆ q}

and Aut∗(Tr(p)) is induced by Aut(C/A). We treat Tr(p) as the inverse limit of the
system of all spaces p(C)/E, with E ranging over finite equivalence relations on C

definable over A. So Tr(p) is a profinite structure homogeneous under the action of
Aut∗(Tr(p)).

It is obvious that any profinite structure interpretable in a small theory over any
finite set is small. Moreover, it is easy to show that any (small) profinite structure is
interpretable as the space of all strong types in some (small) stable weakly minimal
theory. To see this take any profinite structure (X,Aut∗(X)); then we have the
distinguished set {Ei : i ∈ I} of finite invariant equivalence relations inducing the
profinite topology on X. Let X be the first order structure with the universe X,
the relations Ei, i ∈ I, and the relations Ri, i ∈ I, which are defined as follows.
Write explicitly X/Ei = {ai

1/Ei, . . . , a
i
ki
/Ei} and let π : X → X/Ei be the quotient
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map. Then Ri ⊆ Xki is defined as (π × . . . × π)−1[o(ai
1/Ei, . . . , a

i
ki
/Ei)], where

o(ai
1/Ei, . . . , a

i
ki
/Ei) is the orbit of the tuple (ai

1/Ei, . . . , a
i
ki
/Ei) under the action of

Aut∗(X). Now we define T = Th(X ). Then one can check that T is stable, weakly
minimal and that (X,Aut∗(X)) is interpretable in T as the set of all stationary types
over ∅.

For compact structures we can also introduce a natural notion of interpretabil-
ity. Let T be a first order countable complete theory with a monster model C and
A ⊆ C be countable. Let Y be any A-type-definable set and E be a bounded
A-type-definable equivalence relation on Y. Then Y/E is a compact metric space
(with so called logic topology) and Aut(C/A) induces a compact group (denoted by
Aut(C/A)�Y/E) acting continuously on Y/E (for details see [1, 8, 10]).

Definition 1.3 We say that a compact structure is interpretable in T over A if it is
isomorphic to a compact structure of the form (Y/E,Aut(C/A)�Y/E), where E is a
bounded A-type-definable equivalence relation on Y .

Similarly as for profinite structures, it turns out that any compact structure is
interpretable in some first order theory. This fact is a folklore but I have never found
any published proof of it, so I give a proof below.

Theorem 1.4 Any compact structure (X,G) is interpretable in some first order
countable theory T so that X = C/E where E is a bounded ∅-type-definable equiva-
lence relation on a monster model C of T .

Proof. Using the Haar measure on G and a given metric on X it is easy to produce
a new metric d on X which is invariant under the action of G (see [8], the paragraph
before Theorem 3.5).

We are going to consider X as a first order relational structure. Choose a dense
countable subset A of X. Let A be the set of finite tuples of elements of A. Now we
define a countable family of relational symbols and their interpretations in X:

• Uq(x, y), q ∈ Q+, and X |= Uq(x, y) iff d(x, y) < q;

• Ra(x), a ∈ A, and Ra(X) = o(a).

We treat X as a model in the language L = {Uq(x, y), Ra : q ∈ Q+, a ∈ A}.
Let T = Th(X) and C be a monster model of T containing X as an elementary
substructure. In fact the relations Ra will be used only in the proof of Claim 4
below.

We define a ∅-type-definable equivalence relation on C:

E(x, y) ⇐⇒
∧

q∈Q+

Uq(x, y).

To finish the proof we need to show that E is a bounded ∅-type-definable equiv-
alence relation on C and (C/E,Aut(C) � C/E) ∼= (X,G). We will prove this in
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successive claims.

Claim 1 C/E = {x/E : x ∈ X} and for any distinct x, y ∈ X we have x/E 6= y/E;
hence E is bounded.

Proof. The second part is obvious. For the first part suppose for a contradiction that
there is a ∈ C such that [a]E∩X = ∅. Then for each x ∈ X there is qx ∈ Q+ such that
¬Uqx(x, a). But since X is compact, finitely many sets Uqx1

(x1, X), . . . , Uqxn
(xn, X)

cover X. Hence the sets Uqx1
(x1,C), . . . , Uqxn

(xn,C) cover C, so Uqxi
(xi, a) for some

i. This is a contradiction. �

Claim 2 X is homeomorphic to C/E.

Proof. Let π : X → C/E be the natural projection. By Claim 1 π is 1-1 and onto.
Since both spaces X and C/E are compact and Hausdorff, it is enough to show that
π is continuous. An open basis of the logic topology on C/E consists of the sets
Ub,q = {a/E : [a]E ⊆ Uq(b,C)}, b ∈ X. Then π−1[Ub,q] = Uq(b,X) is open in X. �

From now on we identify spaces X and C/E; then G and Aut(C) � C/E become
compact subgroups of the group of all homeomorphisms of X.

Claim 3 G is contained in Aut(C)�C/E.

Proof. It follows from the fact that G consists of automorphisms of the structure X.
�

Claim 4 Aut(C)�C/E is contained in G.

Proof. In the following we use compactness of X and G, and continuity of the action.
Suppose for a contradiction that there is f ∈ Aut(C) such that f �C/E /∈ G. Then
there is a = (a1, . . . , an) ∈ A such that ¬Ra(b1, . . . , bn) where {bi} = [f(ai)]E ∩X for
i = 1, . . . , n. Since Ra(X) is closed, there is q ∈ Q+ such that

X |= (∀x1, . . . , xn)

( ∧
1≤i≤n

Uq(bi, xi) → ¬Ra(x1, . . . , xn)

)
.

So the same formula holds in C, but the tuple (f(a1), . . . , f(an)) witnesses that this
is impossible. �

One can show even more about the theory constructed above: if (X,G) is homo-
geneous and X is connected (hence G is also connected), then for any strong type

p ∈ S1(acl
eq(∅)), (X,G) ∼= (p(C)/E∩ s≡, Aut(C/{p(C)}) �p(C)/E∩ s≡), where

s≡ is the
relation of having the same strong type.

We see that the definition of a profinite structure depends on a distinguished
inverse system. The question arises if we can define profinite structures without
referring to this inverse system. The next result yields a positive answer.

Proposition 1.5 If (X,G) is a compact structure such that X is a profinite space,
then (X,G) is a profinite structure (hence G is a profinite group).
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Proof. By Theorem 1.4 there exists a countable theory T and a bounded ∅-type-
definable equivalence relation E on a monster model C of T such that (X,G) ∼=
(C/E,Aut(C) � C/E). Since C/E ≈ X is 0-dimensional, we get that E is an in-
tersection of countably many finite ∅-definable equivalence relations Ei, i ∈ ω, [8,
Proposition 2.4]. We see that

(C/E,Aut(C)�C/E) ∼= (lim
←−

C/Ei, Aut(C)� lim
←−

C/Ei),

and, of course, Aut(C) preserves the inverse system C/Ei, i ∈ ω, with the natural
projections. So (X,G) is a profinite structure. �

Hence we can define profinite structures as those compact structures (X,G) for
which X is a profinite space.

In model theory we can freely use names of definable sets, because we can add
imaginary sorts whose elements are classes of definable equivalence relations. We
can make a similar trick for compact structures.

Remark 1.6 Let (X,G) be a compact structure and E be a ∅-definable equivalence
relation on Xn. Then Xn/E is a compact metric space, and Aut(X) induces a
compact group, denoted by Aut(X) � Xn/E, of homeomorphisms of Xn/E acting
continuously on Xn/E. So (Xn/E,Aut(X)�Xn/E) is a compact structure.

Proof. Since Xn is a compact metric space and E is closed, we easily get that Xn/E
is a compact Hausdorff second countable space, so it is a compact metric space. The
rest is an easy exercise which uses compactness of X and G, and continuity of the
action of G on X. �

Definition 1.7 Let (X,G) be a compact structure. We define Xeq as the disjoint
union of sets Xn/E with E ranging over ∅-definable equivalence relations on Xn.
The sets Xn/E will be called sorts of Xeq.

By the last remark each sort of Xeq is a compact structure. From now on our elements
and sets of parameters can be taken from Xeq. As in model theory, (Xeq)eq =
Xeq, which means that if E is ∅-definable equivalence relation on a product of sorts
Xn1/E1 × . . . × Xnk/Ek, then the set of E-classes can be identified with the sort
Xn1 × . . .×Xnk/E ′ where

E ′(x1, . . . , xk; y1, . . . , yk) ⇐⇒ E(x1/E1, . . . , xk/Ek; y1/E1, . . . , yk/Ek).

Definition 1.8 Let V be a definable subset of a compact structure (X,G). We say
that a ∈ Xeq is a name for V if any f ∈ G fixes V as a set iff it fixes a.

Proposition 1.9 Any set definable in a compact structure (X,G) has a name in
Xeq.
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Proof. Suppose V is a-definable for some a ∈ Xeq. On the sort of a we define an
equivalence relation E by:

E(a1, a2) ⇐⇒ [a1 = a2 ∨ (a1, a2) ∈ S(a, a))]

where S = {(f, g) ∈ G×G : f [V ] = g[V ]}. It is easy to check that E is a ∅-definable
equivalence relation and that a/E is a name for V . �

Similar definition of Xeq was given in [14, 16] for profinite structures. By [14,
Lemma 1.3] we know that all sorts of a small profinite structure are profinite struc-
tures. The next proposition shows that in general this is not the case.

Proposition 1.10 If (X,Aut∗(X)) is a non-small profinite structure, then there is
a ∅-definable equivalence relation E on some Cartesian power Xn such that Xn/E is
not profinite; even more, each compact metric space is of the form Xn/E for some
E as above.

Proof. Replacing X by Xn, if necessary, we can assume that O1(∅) is uncountable.
We know that (X,Aut∗(X)) is interpretable as S1(acl

eq(∅)) in some first order theory

T (so we can identify X with C/
s≡, where C is a monster model of T ). Since O1(∅)

is uncountable, S1(∅) is uncountable as well. Let Y be any compact metric space.
By [8, Corollary 2.3] there is a ∅-definable equivalence relation E ′ on C coarser than

the relation of having the same type and such that C/E ′ ≈ Y . Let π : C/
s≡→ C/E ′

be the natural projection. Define an equivalence relation E on X = C/
s≡ by

E(a/
s≡, b/ s≡) ⇐⇒ π(a/

s≡) = π(b/
s≡).

We see that E is ∅-definable in X and X/E ≈ Y . �

If (X,Aut∗(X)) is a profinite structure, it is natural to define Xeq as the disjoint
union of those sorts X/E which are profinite spaces. Then by Proposition 1.5 and
Remark 1.6 (X/E,Aut(X)�X/E) is a profinite structure. It is obvious that still we
have (Xeq)eq = Xeq.

Proposition 1.11 Let (X,Aut∗(X)) be a profinite space and E be a ∅-definable
equivalence relation. Then X/E is profinite iff E is an intersection of finite ∅-
definable equivalence relations.

Proof. (⇐) is obvious.
(⇒) Since (X/E,Aut(X)�X/E) is a profinite structure, there is a countable family
{Ei : i ∈ ω} of finite ∅-definable equivalence relations on X/E whose classes form an
open basis. Let π : X → X/E be the natural projection. Then (π × π)−1[Ei], i ∈ ω,
are finite ∅-definable equivalence relations on X whose intersection equals E. �

Proposition 1.12 Let (X,Aut∗(X)) be a profinite structure. If E is a ∅-definable
equivalence relation on X finer than lying in the same orbit, then X/E is profinite.
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Proof. Once again we use the fact that (X,Aut∗(X)) is interpretable as S1(acl
eq(∅))

in some theory T , and hence X can be identify with C/
s≡. Let π : C → C/

s≡ be the
quotient map and E ′ = (π×π)−1[E]. It is easy to check that E ′ is a ∅-type-definable

equivalence relation on C finer than ≡ but coarser than
s≡. By [8, Fact 2.5] C/E ′ is

profinite. Since X/E ≈ C/E ′, we are done. �

The next proposition shows that Xeq contains names for definable sets.

Corollary 1.13 Any set definable in a profinite structure (X,Aut∗(X)) has a name
in Xeq.

Proof. We see that the relation E defined in the proof of Proposition 1.9 is finer than
lying in the same orbit. Hence the assertion follows from Proposition 1.12. �

Now we will prove some technical result which will be useful later.

Proposition 1.14 Let (X,G) be a compact structure and Z be an A-definable subset
of Xeq for some finite A ⊆ Xeq. Let Y be a clopen subset of Z. Then there exists
a finite A-definable equivalence relation E on Z such that Y is a union of finitely
many classes of E. In particular, the set {f [Y ] : f ∈ GA} is finite.

Proof. Wlog A = ∅ and X = Z. By Theorem 1.4 (X,Aut∗(X)) is interpretable in
some theory T as (C/E,Aut(C) � C/E)) for some bounded ∅-type-definable equiva-

lence relation E. So we can identify X with C/E. Let E ′ = E∩ s≡ and π : C/E ′ →
C/E be the natural projection. We put Y ′ = π−1[Y ]; so Y ′ is clopen in C/E ′.

Let τ : C/E ′ → C/
s≡ be the natural projection. By [2] or [8, Proposition 3.1] we

know that pre-images of singletons by τ are connected components of C/E ′. Hence

τ−1τ [Y ′] = Y ′ and τ [Y ′] is clopen in C/
s≡.

So there is a finite ∅-definable equivalence relationE0 on C and elements a1, . . . , an ∈
C such that τ [Y ′] = σ−1(a1/E0) ∪ . . . ∪ σ−1(an/E0), where σ : C/

s≡→ C/E0 is the
natural projection.

Define an equivalence relation E ′′ on C/E ′ in the following way:

E ′′(x/E ′, y/E ′) ⇐⇒ στ(x/E ′) = στ(y/E ′).

We see that E ′′ is a finite, closed and Aut(C)-invariant equivalence relation. More-
over,

Y ′ = τ−1τ [Y ′] = τ−1σ−1[{a1/E0, . . . , an/E0}] = [a1/E
′]E′′ ∪ . . . ∪ [an/E

′]E′′ .

Of course we have π[Y ′] = Y . We define a relation F ′ on C/E = X as (π×π)[E ′′].
The relation F ′ is ∅-definable in X, but it is not necessarily an equivalence relation.
Let F be the transitive closure of F ′. It is easy to check that F is a finite ∅-definable
equivalence relation on X and Y is a union of finitely many classes of F . �

One can also prove the above proposition without referring to first order theories
(see [7] for such a proof).
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Corollary 1.15 Let (X,G) be a compact structure. Let A,B, a ⊆ Xeq be finite
and such that o(a/AB) is open in o(a/A). Then there exists a finite A-definable
equivalence relation E on o(a/A) such that o(a/AB) is a union of finitely many
classes of E. In particular, the set {f [o(a/AB)] : f ∈ GA} is finite.

Similarly as for profinite structures we say that a compact structure is small if
there are only countably many orbits over any finite set. The next remark shows that
if we want to consider a class of objects essentially wider than profinite structures,
we can not assume smallness.

Remark 1.16 Any small compact structure is a small profinite structure.

Proof. Suppose (X,G) is a small compact structure which is not profinite. Then
there is a non-trivial connected component Y of X. Choose y ∈ Y . Then Y is
y-definable and it is covered by countably many orbits over y. By Baire category
theorem one of these orbits is open in Y , but it is also closed, so it must be equal to
Y . Hence Y = {y}, a contradiction. �

The following result of Kim (see [3] or [8, Theorem 3.5]) is an immediate corollary
of the last Remark and Proposition 3.1 of [8].

Theorem 1.17 In a small theory, the finest bounded ∅-type-definable equivalence

relation equals
s≡.

Proof. Let
bd≡ denote the finest bounded ∅-type-definable equivalence relation on a

monster model C of a small theory T . Then (C/
bd≡, Aut(C)�C/

bd≡) is a small compact

structure. Hence, by Remark 1.16 C/
bd≡ is profinite. Since by [8, Proposition 3.1] the

strong types are connected components of C/
bd≡, the proof is completed. �

2 Properties of independence relation

In profinite structures Newelski defined the following notion of independence relation,
which plays a similar role as forking independence in stable and simple theories. Here
we consider this notion in the more general context of compact structures.

Definition 2.1 Let (X,G) be a compact structure, a be a finite tuple and A,B finite
subsets of X. We say that a is m-independent from B over A (written a

m|̂ AB) if
o(a/AB) is open in o(a/A). We say that a is m-dependent on B over A (written
a

m6̂ | AB) if o(a/AB) is nowhere dense in o(a/A).

Of course if A,B,C are finite subsets of X, then A
m|̂ CB means that a

m|̂ Cb where
a, b are any tuples consisting of the elements of A and B.

To develop a model theory of compact structures we need several good properties
of

m|̂ . The following was proved by Newelski [15].
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Fact 2.1 In a small profinite structure (X,Aut∗(X)) m-independence has the fol-
lowing properties.

(1) (Symmetry) For every finite A,B,C ⊆ X we have that A
m|̂ CB iff B

m|̂ CA.

(2) (Transitivity) For every finite A ⊆ B ⊆ C ⊆ X and a ⊆ X we have that
a

m|̂ AC iff a
m|̂ BC and a

m|̂ AB.

(3) a ∈ acl(A) implies a
m|̂ AB for every finite B ⊆ X.

(4) (Extensions) For every finite a,A,B ⊆ X there is some a′ ∈ o(a/A) with
a′

m|̂ AB.

In fact properties (1), (2) and (3) are true for any compact structures (without
smallness): (2) and (3) are trivial; (1) follows from Kuratowski-Ulam theorem applied
to the subset o(ab/C) of the product o(a/C) × o(b/C), where a, b are any tuples of
the elements of A and B. As to Property (4), it may fail without smallness, e.g. in
the additive group of p-addic numbers with the standard structural group or in the
unit circle S1 with the group of all rotations.

In the next section we will see that assuming Property (4), we can show most of
the results proved by Newelski for small profinite structures.

Fact 2.1 is also true when we work in Xeq instead of X. To show some results we
have to work in Xeq.

As in the case of forking independence, from symmetry and transitivity we get

(∗) ab
m|̂ AB ⇐⇒ a

m|̂ AB ∧ b
m|̂ AaB

for any finite a, b, A,B ⊆ Xeq.

Remark 2.2 Let (X,G) be any compact structure. If Property (4) holds in X [or
more generally in Xeq] when a and B are singletons from X, then it holds in general,
even for a,B ⊆ Xeq.

Proof. By transitivity and an easy induction we get that (4) holds when a is a
singleton and B ⊆ X is finite.

Suppose now that A,B ⊆ X are finite [A ⊆ Xeq, when we work in Xeq]. By
induction on n we will show that for any a = (a1, . . . , an) ∈ Xn there is a′ ∈ o(a/A)
such that a′

m|̂ AB.
Suppose that the statement holds for (n − 1)-tuples. So there is a tuple b =

(a′1, . . . , a
′
n−1) ∈ o((a1, . . . , an−1)/A) such that b

m|̂ AB. Choose a′′n ∈ X with
(a′1, . . . , a

′
n−1, a

′′
n) ∈ o(a/A). Once again by the inductive hypothesis we get an ele-

ment a′n ∈ o(a′′n/Ab) such that a′n
m|̂ AbB. So we are done by (∗).

Now the fact that Property (4) holds even for a,B ⊆ Xeq easily follows from
properties (2), (3) and (∗). �

Definition 2.3 We say that an orbit o(a/A) in a compact structure (X,G) is strongly
small if for any finite B ⊆ X, the orbit o(a/A) is a union of countably many orbits
over AB. We say that it is small if the same condition holds but with B ⊆ o(a/A).

10



Remark 2.4 Each 1-orbit over ∅ is strongly small iff for every natural number n
each n-orbit over any finite subset of Xeq is (strongly) small iff for every natural
number n each n-orbit over ∅ is small iff each orbit on any sort of Xeq over any
finite subset of Xeq is (strongly) small.

If one of the above equivalent conditions holds, we say that (X,G) has small
orbits.

In the next proposition we consider a list of stronger and stronger properties
between Property (4) and smallness. If D is a definable set in a compact structure
(X,G), then pDq ∈ Xeq denotes a name of D.

Proposition 2.5 Let us consider the following list of properties of a compact struc-
ture (X,G).

(a) Property (4) holds in X.

(b) Property (4) holds in Xeq.

(c) For every finite A ⊆ X, for every A-definable subset D of X (equivalently, of
Xeq) such that any two elements a, b ∈ D lie in the same orbit over pDq, there
is a ∈ D such that o(a/A) is open in D.

(d) (X,G) has small orbits.

(e) For every finite A ⊆ X, for every A-definable subset D of X such that any two
elements a, b ∈ D lie in the same orbit over ∅, there is a ∈ D such that o(a/A)
is open in D.

(f) For every finite A ⊆ X, for every A-definable subset D of X, there is a ∈ D
such that o(a/A) is open in D.

(g) (X,G) is small.

Then (a) ⇐= (b) ⇐⇒ (c) ⇐= (d) ⇐⇒ (e) ⇐= (f) ⇐⇒ (g).

Proof. (a) ⇐= (b) is obvious.
(b) ⇐= (c). Let a,A,B ⊆ Xeq be finite. By Remark 2.2 we can assume that
a ∈ X and B ⊆ X. We can identify A with an element b/E from some sort
Xn/E. Let D = o(a/A). Then D is b-definable, so it is also Bb-definable. Moreover,
o(a/A) = o(a/ApDq) = o(a/pDq). Hence by (c) we can find an element a′ ∈ D such
that o(a′/Bb) is open in D. Hence o(a′/AB) is open in o(a/A), i.e. a′

m|̂ AB.
(b) =⇒ (c). Let D satisfy the assumptions of (c). We have pDq ∈ dcl(A). Take any
a ∈ D. By the assumption we have that o(a/pDq) = D. Hence from (b) it follows
that there is a′ ∈ D such that a′

m|̂ pDqA, i.e. o(a′/A) is open in D.
(c) ⇐= (e) is obvious.
(d) =⇒ (e) follows easily from Baire category theorem.
(d) ⇐= (e) has a similar proof as (f) =⇒ (g) below.
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(e) ⇐= (f) is obvious.
(f) ⇐= (g) follows form Baire category theorem.
(f) =⇒ (g). We will show that there are only countably many 1-orbits over any finite
set A. Wlog A = ∅. We construct a descending sequence Xα, α ∈ Ord, of ∅-definable
subsets of X in the following way:

• X0 = X,

• Xα+1 = Xα \
⋃
{o(a) : o(a) is open in Xα},

• Xγ =
⋂

α<γ Xα for γ ∈ Lim.

By (f) we have that if Xα 6= ∅, then Xα+1 is a proper subset of Xα.
If Xα 6= ∅ for all α < ω1, then we get a contradiction with the fact that X is second

countable. Hence Xα = ∅ for some α0 < ω1. Then X =
⋃

α<α0
Xα \Xα+1. But since

X is second countable, for every α the set Xα \Xα+1 is a union of countably many
orbits which are open in Xα. So we get that X is a union of countably many orbits. �

Below we give examples showing that (a) does not imply (b) and that (e) does
not imply (f). In particular these are examples of non-small compact (profinite)
structures where m-independent extensions exist.

As to the implication (c) =⇒ (d), I think it is false, but I have not found a
counterexample so far.

A trivial example showing that (e) does not imply (f) is any uncountable compact
(profinite) structure with the trivial structural group. A little bit more complicated
(but still rather trivial) examples are the following.

Example 1 Let (X,Aut∗(X)) be any small profinite structure and let Y be an un-
countable profinite space. Consider the profinite structure (X × Y,Aut∗(X)) with
the trivial action of Aut∗(X) on Y and the given action of Aut∗(X) on X. Then
(X × Y,Aut∗(X)) is not small but it has small orbits, so (e) does not imply (f).

Example 1’ Let (X,Aut∗(X)) be a small profinite structure and Y be a compact
metric space which is not profinite. Consider the compact structure (X×Y,Aut∗(X))
with the trivial action of Aut∗(X) on Y . Then (X × Y,Aut∗(X)) is a compact non-
profinite (hence non-small) structure which has small orbits.

Remark 2.6 If (X,G) is a compact structure with Property (4) [in Xeq] and Y is a
compact metric space, then (X × Y,G) is a compact structure with Property (4) [in
(X × Y )eq, respectively], where G acts on Y trivially.

Proof. We will show the version with imaginary sorts (the version without imagi-
nary sorts is very easy). By Proposition 2.5 we need to show that for any A-definable
subset D of X × Y such that any two elements from D lie in the same orbit over
pDq, there is a ∈ D such that o(a/A) is open in D. Let π : X × Y → X be the
projection on the first coordinate. Since G acts trivially on Y , we get that π[D] is an
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π[A]-definable subset of X such that any two elements of π[D] lie in the same orbit
over pπ[D]q (notice that π is a bijection between D and π[D]). So by the assumption
and Proposition 2.5 we can find an a′ ∈ π[D] such that o(a′/π[A)]) is open in π[D].
Let a ∈ D be such that π(a) = a′. We see that o(a/A) is open in D. �

One can easily check that if (X,G) and (Y,H) are small [or with small orbits,
or with Property (4)] compact structures, then so is (X × Y,G ×H) with the nat-
ural action of G × H on X × Y . I do not know, however, if the same implication
holds for Property (4) in imaginary sorts. Any counterexample would show that the
implication (c) =⇒ (d) is false.

Now we describe some general construction, which will yield further examples, in
particular an example showing that (a) does not imply (b).

Construction (∗) Let (X,Aut∗(X)) be a profinite structure with a distinguished
inverse system X = {Xi, fji : i ≤ j; i, j ∈ I}, i.e. X is the inverse limit of X and
Aut∗(X) respects X . Let (Y,G) be a compact structure and let Y = {Yi, gji : i ≤
j; i, j ∈ I} be an inverse system of compact metric spaces such that Y is the inverse
limit of Y and G respects Y .

It is clear that X×Y can be considered as the inverse limit of the system X×Y :=
{Xi × Yi, (fji, gji) : i ≤ j; i, j ∈ I}. Both groups Aut∗(X) and GX act naturally on
X × Y as groups of permutations, and GX is a normal subgroup of Sym(X × Y ).
Let H = Aut∗(X) nGX . Finally we define G(X, Y ) as the subgroup of H consisting
of the permutations from H respecting the inverse system X × Y .

As a topological space H can be considered as the space Aut∗(X) × GX with
the product topology; then H is a compact Hausdorff space (but not necessarily a
topological group). It is easy to see that this topology coincides with the pointwise
convergence topology coming from the action of H on X × Y . Then G(X, Y ) is a
closed subset of H, hence it is a compact Hausdorff space.

Lemma With the above topologyG(X, Y ) is a topological group and (X×Y,G(X, Y ))
is a compact structure.

Proof. Let Ai and Gi be the groups of homeomorphisms of Xi and Yi induced by
Aut∗(X) and G, respectively. Since Xi is finite, GXi

i acts continuously on Xi × Yi.
So Ai nGXi

i is a compact topological group acting continuously on Xi × Yi.
Let Gi(Xi, Yi) be the group of permutations of Xi × Yi induced by G(X, Y ). If

we equip Gi(Xi, Yi) with the pointwise convergence topology coming from the action
on Xi × Yi, then the natural map from G(X, Y ) onto Gi(Xi, Yi) is continuous, so
Gi(Xi, Yi) is compact, and hence it is a closed subset of Ai nGXi

i . Hence Gi(Xi, Yi)
is a compact topological group acting continuously on Xi × Yi. Finally G(X, Y ) is
the inverse limit of all these groups (so it is a compact topological group) and it acts
continuously on X × Y . �

Now we use Construction (∗) to produce some examples. In all applications of
Construction (∗) we assume that I = ω, i.e. the inverse systems are indexed by
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natural numbers.

Example 2 Let (X,Aut∗(X)) be any small profinite structure [or more generally a
profinite structure satisfying Property (4)] such that acl(A) = A for any finite subset
A of X. Let (Y,Aut∗(Y )) be an infinite strongly 1-transitive profinite structure,
i.e. all points lie in the same orbit and if we fix any point, orbits are singletons.
Then (X ×Y,G(X, Y )) satisfies Property (4), but it does not satisfy Property (4) in
(X × Y )eq. This shows that (a) does not imply (b).

Proof. Let A ⊆ B be finite subsets of X × Y and a = (a1, a2) ∈ X × Y . We need to
show that there is a′ ∈ o(a/A) such that o(a′/B) is open in o(a/A).

Let A1, B1 be the projections of A and B on the first coordinate and A2, B2 on
the second one. If a1 ∈ A1, then o(a/A) is a singleton, hence a′ = a does the job. If
a1 /∈ A1, then there is an open subset U of Y such that o(a1/A1)×U is an open subset
of o(a/A). Now, since (X,Aut∗(X)) satisfies Property (4), there is a′1 ∈ o(a1/A1)
such that o(a′1/B1) is open in o(a1/A1). Then a′1 /∈ B1, so if we take any a′2 ∈ U , we
get that o((a′1, a

′
2)/B) is open in o(a/A). So it is enough to put a′ = (a′1, a

′
2).

Let us prove now that (X×Y,G(X, Y )) does not satisfy Property (4) in (X×Y )eq.
Choose a1 ∈ X and a2 ∈ Y ; put a = (a1, a2). Let U be a proper, canonical open
neighborhood of a2 in Y . Then U is a2-definable, and hence D := {a1} × U is a-
definable. Moreover, any two elements of D lie in the same orbit over pDq. But all
orbits over a on D are singletons. So we see that (X × Y,G(X, Y )) does not satisfy
(c) in Proposition 2.5 and we are done. �

Remark 2.7 If (X,Aut∗(X)) and (Y,G) have small orbits, then so has (X×Y,G(X, Y )).

Proof. Take any 1-orbit o(a) in X × Y and any finite subset B of X × Y . Let
B1 and B2 be the projections of B on both coordinates and a = (a1, a2). Then
o(a) = o(a1)×o(a2) and for any a′ = (a′1, a

′
2) ∈ o(a), o(a′/B) ⊇ o(a′1/B1)×o(a′2/B2).

To finish the proof notice that by the assumption o(a1) and o(a2) are unions of
countably many orbits over B1 and B2, respectively. �

Proposition 2.8 Let (X,Aut∗(X)) and (Y,Aut∗(Y )) be profinite structures.
(i) If X and Y are small, then (X × Y,G(X, Y )) is small.
(ii) If Property (4) holds in X and in Y eq, then it also holds in (X × Y,G(X, Y )).
(iii) If X and Y have Property (4) in imaginary sorts, then so has (X×Y,G(X, Y )).

Proof. (i) is easy.

(ii) Let A ⊆ B be finite subsets of X × Y and a = (a1, a2) ∈ X × Y . Let A1, B1 be
the projections of A and B on the first coordinate and A2, B2 on the second one.

If a1 ∈ A1, then o(a/A) = {a1} × o(a2/A2). Since (Y,G) satisfies Property (4),
we can find a′2 ∈ o(a2/A2) such that o(a′2/B2) is open in o(a2/A2). So a′ := (a1, a2)
does the job.

If a1 /∈ A1, then there is a canonical open neighborhood U of a2 such that
o(a1/A1)× (o(a2) ∩ U) is an open subset of o(a/A).
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Since (X,Aut∗(X)) satisfies Property (4), there is a′1 ∈ o(a1/A1) such that
o(a′1/B1) is open in o(a1/A1). Since (Y,Aut∗(Y )) satisfies Property (4) in Y eq, there
is a′2 ∈ o(a2/pUq) such that o(a′2/B2pUq) is open in o(a2/pUq) = o(a2) ∩ U . Put
a′ = (a′1, a

′
2).

We see that a′ ∈ o(a/A). We also have o(a′/B) ⊇ o(a′1/B1) × o(a′2/B2) ⊇
o(a′1/B1) × o(a′2/B2pUq) and the last product is open in o(a/A). Hence o(a′/B) is
open in o(a/A).

(iii) Let D ⊆ X × Y be A-definable for some finite subset A of X × Y and assume
that D is an orbit over pDq. By Proposition 2.5 it is enough to find a ∈ D with
o(a/A) open in D.

Let A1, A2 and D1, D2 be the projections of A and D. Then D1 is an A1-definable
subset of X whose elements lie in the same orbit over pD1q. Since (X,Aut∗(X))
satisfies Property (4) in Xeq, we can find a1 ∈ D1 such that o(a1/A) is open in D1.

If a1 ∈ A1, then D1 is finite and it is enough to apply the assumption that
Y satisfies Property (4) in Y eq to the A2-definable set π2[({a1} × Y ) ∩ D], where
π2 : X × Y → Y is the projection on the second coordinate.

Assume now that a1 /∈ A1. Take any a2 ∈ Y with (a1, a2) ∈ D. Put a =
(a1, a2). Then we can choose a canonical open neighborhood U of a2 such that
o(a1/A1) × (o(a2) ∩ U) ⊆ o(a/A) ⊆ D. Of course o(a1/A1) × (o(a2) ∩ U) is open in
D1 × o(a2). On the other hand, since all elements in D lie in the same orbit over ∅,
we have D ⊆ D1 × o(a2). Hence o(a/A) is open in D. �

Let us introduce the following terminology.

Definition 2.9 A compact e-structure is a compact structure satisfying Property
(4), and a compact ei-structure is a compact structure satisfying Property (4) in
imaginary sorts.

We already know that there exist profinite ei-structures which are not small
and compact ei-structures which are not profinite. However, we have the following
proposition.

Proposition 2.10 All orbits in a compact ei-structure are profinite.

Proof. Let o be any orbit. We need to show that all connected components of o
are trivial. Let D be the connected component of an element a ∈ o. Then D is a-
definable and any two elements of D lie in the same orbit over pDq. By Proposition
2.5 there is b ∈ D such that o(b/a) is clopen in D. So D = {a}. �

Following Newelski, we say that a sequence (ai : i ∈ ω) is a flat Morley sequence
in an orbit o = o(a/A) in a compact structure (X,G) if it is m-independent (i.e.
o(an/Aa<n) is open in o for every n) and dense in o.

Remark 2.11 Morley sequences exist in compact ei-structures.
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This remark follows easily from Proposition 2.10 and the fact that names of canon-
ical open sets are algebraic over ∅. This shows even more, namely, that Morley se-
quences in orbits over standard sets exist in every profinite e-structure (X,Aut∗(X))
that satisfies Property (4) over finite subsets of X ∪ acleq(∅). Notice that the profi-
nite e-structure constructed in Example 2 has this property but it is not a profinite
ei-structure.

3 Model theory of compact e-structures

3.1 Newelski’s results in a wider context

In this section we explain why most of the results (including the group configuration
theorem) proved by Newelski for small profinite structures hold in the more general
context of compact (profinite) ei-structures. In fact some basic results hold even in
compact e-structures. We also mention some results which cannot be generalized to
the case of compact ei-structures.

Essentially, in model theory of small profinite structures we use the following
consequences of smallness:

(a) Property (4);

(b) Property (4) in imaginary sorts;

(c) Existence of open orbits in definable sets.

A general rule is that any result about small profinite structures whose proof uses
only (a) [or (b)] holds for any profinite e-structure [ei-structure]. If a proof uses (c),
then we cannot automatically generalize it to the case of profinite ei-structures.

Similarly, if we look at the results about small profinite structures, we see that
the fact that the universe is a profinite space is used in the following way:

(i) Proposition 1.14 (or only Corollary 1.15) holds;

(ii) There is a family of ∅-definable equivalence relations whose classes form a basis
of open sets.

In general, any result about profinite structures whose proof uses only (i) holds
for compact structures. If a proof uses (ii), we cannot automatically generalize it to
the case of compact structures.

The following theorem is a generalization of [12, Theorem 1.5]. We repeat the
proof in our context.

Theorem 3.1 Let (X,G) be any compact structure. Let I be a ternary relation
defined on finite tuples from Xeq, invariant under G and satisfying properties (1),
(2), (3) and (4) listed in Fact 2.1. Then

m|̂ implies I.
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Proof. Suppose for a contradiction that a
m|̂ Cb, but ¬aICb for some finite a, b, C ⊆

Xeq. Then o(a/Cb) is open in o(a/C). By Corollary 1.15 we get that d := po(a/Cb)q ∈
acleq(C).

Let us prove now that ¬aICdb. Otherwise, by (1) we get bICda. By (3) we have
dICa. So by (1) and (2) we get bdICa, hence aICbd, and finally aICb, a contradiction.

Since d is a name for o(a/Cb), we have that o(a/Cd) = o(a/Cdb). Take any
a′ ∈ o(a/Cd). Then a′ ∈ o(a/Cdb). Since I is invariant under G, we get ¬a′ICdb;
this contradicts Property (4) for I. �

From now on assume that (X,G) is a compact (profinite) e-structure. Working
in Xeq we additionally assume that it is a compact ei-structure.

We will recall some notions and results of Newelski, but in our wider context.
Instead of repeating proofs, we will briefly explain why they work, referring the
reader to Newelski’s papers for details.

We can measure the size of orbits in X (or Xeq) by means of the rank function
M.

Definition 3.2 The rank M is the unique function from the collection of orbits over
finite sets to the ordinals together with ∞, satisfying

M(a/A) ≥ α + 1 iff there is a finite set B ⊇ A such that
o(a/B) is nowhere dense in o(a/A) and M(a/B) ≥ α.

The following results follow from a standard forking calculation (e.g. see [17, Lemma
5.1.4 and Theorem 5.1.6]. In the next proposition a, b, A are finite tuples (subsets)
of X or Xeq.

Proposition 3.3 1. a
m|̂ Ab iff M(a/Ab) = M(a/A).

2. M(a/bA) +M(b/A) ≤M(ab/A) ≤M(a/bA)⊕M(b/A).

3. Suppose M(a/Ab) < ∞ and M(a/A) ≥ M(a/Ab) ⊕ α. Then M(b/A) ≥
M(b/Aa) + α.

4. Suppose M(a/Ab) < ∞ and M(a/A) ≥ M(a/Ab) + ωαn. Then M(b/A) ≥
M(b/Aa) + ωαn.

5. If a
m|̂ Ab, then M(ab/A) = M(a/bA)⊕M(b/A).

As in stable or simple theories, the inequalities in the point (2) are called Lascar
inequalities.

Remark 3.4 Let a,A ⊆ X be finite. Then the M-rank of o(a/A) computed in X is
the same as the M-rank of o(a/A) computed in Xeq.

Definition 3.5 (X,G) is m-stable if every 1-orbit has an ordinal M-rank.

Equivalently, there is no infinite sequence A1 ⊆ A2 ⊆ . . . of finite subsets of X and
a ∈ X such that o(a/Ai+1) is nowhere dense in o(a/Ai) for every i.

By Lascar Inequalities we easily get:
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Remark 3.6 (X,G) is m-stable iff each n-orbit has an ordinal M-rank iff each
n-orbit in Xeq has an ordinal M-rank.

The following fact proved by Newelski for small profinite structures [15, Lemma
2.6] also holds in our context (since its proof uses only properties (b) and (i)).

Proposition 3.7 Assume that (X,G) is m-stable and a,A ⊆ Xeq. Then o(a/A) is
invariant over finitely many parameters from o(a/A).

The next definition (see [16]) is in the same spirit as the above result; in fact it is
a counterpart of the notion of 1-basedness in geometric stability theory. However, in
compact structures we have to formulate it in a little bit different way than in [16]
(both definitions coincide in profinite structures).

Definition 3.8 (X,G) is m-normal if for every finite a,A ⊆ X, there is U 3 a
clopen in o(a/A) and with finitely many conjugates under Ga.

The next two results are more or less Theorem 2.3 of [15]. However, we will prove
them in our context to ilustrate how Proposition 1.14 works.

Remark 3.9 (X,G) is m-normal iff for every finite a,A ⊆ Xeq, there is U 3 a
clopen in o(a/A) and with finitely many conjugates under Ga.

Proof. (⇐=) is obvious.
(=⇒). Take any a,A ∈ Xeq. Then A = A0/F where A0 is a finite tuple from X and
F is a ∅-definable equivalence relation. Wlog A0

m|̂ Aa, hence a
m|̂ AA0. This means

that o(a/A0) is clopen in o(a/A). Hence, wlog A = A0.
Now, a = a0/E for some finite tuple a0 from X and a ∅-definable equivalence

relation E. Wlog
(∗) a0

m|̂ aA.

Since (X,G) is m-normal, we can find a set V 3 a0 clopen in o(a0/A) and with
finitely many conjugates under Ga0 .

Let b = pV q. Then b ∈ acleq(a0). On the other hand, by Proposition 1.14
b ∈ acleq(A). This together with (∗) gives us

(∗∗) b ∈ acleq(a).

Moreover, by Proposition 1.14 we can assume that V is the equivalence class [a0]E0 of
some finite A-definable equivalence relation E0 on o(a0/A). Indeed, by Proposition
1.14 there is a finite A-definable equivalence relation E0 on o(a0/A) such that [a0]E0 ⊆
V . Since [a0]E0 is clopen in V , V is b-invariant and b ∈ acleq(a0), we get that
{f [[a0]E0 ] : Ga0} is finite. Hence wlog V = [a0]E0 .

Let T : X → X/E be the quotient map.

Claim T [V ] is a clopen subset of o(a/A).

Proof. GAb acts transitively on V , so it acts transitively on T [V ]. On the other hand,
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since o(a0/A) is covered by finitely many translates of V by elements of GA, o(a/A)
is also covered by the translates of T [V ] by these same elements of GA. Hence T [V ]
has a nonempty interior in o(a/A), so it is open by the first line of the proof. The
fact that T [V ] is closed follows from continuity of T and compactness of X. �

Claim tells us that T [V ] is a clopen neighborhood of a inside o(a/A). By (∗∗) we
get that T [V ] has finitely many conjugates under Ga. �

The next result shows that m-normality corresponds to the notion of 1-basedness.

Proposition 3.10 (X,G) is m-normal iff for all finite a, b ⊆ Xeq, there exists c ∈
acleq(a) ∩ acleq(b) with a

m|̂ cb.

Proof. (=⇒) Take a, b ∈ Xeq. Then we can find a set U 3 a clopen in o(a/b)
and with finitely many conjugates under Ga. Let a+ = pUq. By Proposition 1.14
we get a+ ∈ acleq(a) ∩ acleq(b) and, moreover, wlog we can assume that U = [a]E
for some finite b-definable equivalence relation E on o(a/b). Hence we see that
U = o(a/a+b) = o(a/a+), so a

m|̂
a+b.

(⇐=) Take any finite a,A ⊆ X. Let a+ = po(a/A)q. We have o(a/A) = o(a/a+).
By assumption there is c ∈ acleq(a) ∩ acl(a+) such that a

m|̂ ca
+.

So o(a/a+c) is clopen in both o(a/c) and o(a/a+) = o(a/A). Put U = o(a/a+c).
Then U is a clopen neighborhood of a in o(a/A). By Proposition 1.14 it has finitely
many conjugates under Gc. Since c ∈ acleq(a), U has finitely many conjugates over
a. �

The next remark (see [16, Remark 1.4]) follows from Proposition 2.10.

Remark 3.11 Assume (X,G) is a compact ei-structure and a,A are finite subsets
of Xeq. Then acleq(A) = dcleq(A ∪ acleq(∅)).

So far we have discussed some basic results of Newelski which can be generalized
to compact ei-structures. Now we turn to some deeper results.

Lemma 3.1 of [16] is true in our context. Namely:

Proposition 3.12 Let (X,G) be a compact ei-structure and o an orbit over ∅. Then
acleq(a) ∩ o is finite for every a ∈ o.

The proof of Lemma 3.1 of [16] works here, except for one step that will be
explained now. As in [16], we define Ya as the topological closure of acleq(a)∩ o and
we prove that Ya = Yb for b ∈ Ya. This means that Ya is a-definable and any two
elements of Ya lie in the same orbit over pYaq. Hence by Proposition 2.5 there is an
orbit over a which is open in Ya. This orbit meets acleq(a) ∩ o, so it is finite. Hence
there is an element b ∈ Ya which is isolated in o. We finish in the same way as in
[16].

19



Recall that A = {a, b, c} is a dcl-triangle in (X,G) if for every x ∈ A we have
x ∈ dcl(A \ {x}) \ acl(∅) and every two elements of A are m-independent. Replacing
dcl by acl we get the definition of an acl-triangle.

Having the last two results and using Proposition 1.14 or 2.10 in appropriate
places, we can repeat the proof of Theorem 3.3 of [16]. So we have the following
group configuration theorem for compact ei-structures.

Theorem 3.13 Assume {a, b, c} is an acl-triangle in an m-normal compact ei-
structure (X,G). Then there is a group G, which is open in o(a), a is the neutral
element of G and G is definable over a and finitely many parameters from acleq(∅).

If we want to have such a theorem in the wider class of compact (profinite) e-
structures, we have to formulate it in a little bit weaker form. The reason is that in
this situation we do not have Proposition 3.12, and we do not know whether Remark
3.11 is true for compact e-structures.

Definition 3.14 A compact structure (Y,H) is interpretable in (X,G) over a finite
subset A of X if there is a closed subgroup H∗ of H and A-definable subset Z of Xeq

such that (Y,H∗) is isomorphic to (Z,GA).

Theorem 3.15 1. Assume {a, b, c} is an acl-triangle in an m-normal profinite e-
structure (X,Aut∗(X)) with Property (4) over finite sets from X ∪ acleq(∅). Then
there is a profinite group (H,Aut∗(H)) interpretable in (X,Aut∗(X)) over a and
finitely many parameters from acleq(∅).
2. Assume {a, b, c} is a dcl-triangle in an m-normal compact e-structure (X,G) with
Property (4) over finite sets from X∪acleq(∅). Then there is a compact group (H,K)
interpretable in (X,G) over a and finitely many parameters from acleq(∅).

To prove this theorem it is enough to apply Newelski’s proof of Theorem 3.3
of [16], using Proposition 1.14 in appropriate places. The group H obtained in
Newelski’s proof together with K defined as the pointwise stabilizer of a and finitely
many parameters from acleq(∅) named in the proof do the job.

There are many other results which can be generalized to the case of compact
(profinite) ei-structures. We will briefly discuss some of them.

In [12, 13, 15, 16] Newelski considered acl-pregeometry on an orbit of M-rank
1. To have some good properties (e.g. homogeneity) of this pregeometry we need to
localize it at a flat Morley sequence. Since we do not know if flat Morley sequences
exist in compact (profinite) e-structures, we should rather concentrate on compact
ei-structures (where flat Morley sequences always exist). Newelski introduced the
notion of full (weak) coordinatization and he proved [15, Theorem 3.3] that a small
profinite structure of finite M-rank is m-normal iff it has full (weak) coordinatization
and each orbit of M-rank 1 is locally modular. Analyzing Newelski’s proof, and
modifying it appropriately, we can conclude that this equivalence is also true for
compact ei-structures (the only problem is that we need to apply Theorem 1.4 of
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[11], whose proof uses the existence of open orbits in definable sets; fortunately, we
can omit this obstacle using Proposition 2.5).

Similarly as in [16], we get the following corollary of Theorem 3.13, which is
another form of the group configuration theorem.

Corollary 3.16 If (X,G) is a compact ei-structure with a non-trivial locally modu-
lar orbit o, of M-rank 1, then some open subset o′ of o is a definable group.

In my opinion the group configuration theorem is the deepest result concerning
small profinite structures. The fact that this result (and many others) holds for
compact ei-structures shows that the existence of m-independent extensions is a
sufficient assumption.

On the other hand, there are some results [14, 18, 9] which describe the struc-
ture of small profinite groups and rings, and which significantly restrict the class of
possible examples of small profinite groups (recall that all known examples of small
profinite groups are some variants of abelian profinite groups of finite exponent [4, 5]).
Most of these results are based on various chain conditions proved in Section 2 of
[14], and on the fact that small profinite groups are locally finite [14, Proposition
2.4]. In compact (profinite) ei-groups these results are false (to see this consider
infinite profinite groups with the trivial structural group). So there is a chance to
get some interesting examples of compact (profinite) ei-groups. I do not know, for
example, whether the free profinite group on infinitely many generators with some
natural (standard) structural group satisfies the existence of m-independent exten-
sions (whereas we know that it is not small, since it is not locally finite).

3.2 Regular orbits, domination and weights

In this section we study counterparts of some model theoretic notions (which have
not been considered in the context of small profinite structures so far) in our general
context of compact ei-structures. The main result of this section is Theorem 3.24
saying that each orbit in an m-stable compact ei-structure is equidominant with a
product of finitely many regular orbits.

From now on (X,G) is an m-stable compact ei-structure. The general scheme
is the same as in Sections 5.1 and 5.2 of [17]. However, caution has to be taken
because we do not have stationary (Lascar strong) types, independence theorem and
canonical bases. The following, stronger version of Proposition 3.7 will allow us to
omit all such obsatcles.

Proposition 3.17 Let a,A,B ⊆ Xeq be finite. Then in o(a/A) there exists a finite
sequence (ai)i≤n m-independent over A, m-independent from B over A, and such
that o(a/A) is invariant over {ai : i ≤ n}.

Proof. Wlog a
m|̂ AB and A ⊆ B. Let b = po(a/A)q. We use induction on M(b).

Case 1. M(b) = 0. This means that b ∈ acleq(∅) and hence X0 := o(a/A) has
finitely many conjugates X0, . . . , Xn under G. This implies that X0 is not a subset
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of Xi for every i 6= 0. Now we see that for any ai ∈ X0 \ Xi, the orbit o(a/A) is
invariant over {ai : i ≤ n}.

So we need to prove that we can find ai ∈ X0 \Xi, i ≤ n, m-independent over A
and m-independent from B over A. It is enough to show that for any finite C ⊆ Xeq

and for every i ≤ n there is a′ ∈ X0 \Xi with a′
m|̂ AC.

Since X0\Xi is clopen in o(a/A), by Proposition 1.14 we get that c := pX0\Xiq ∈
acleq(A). We also know that X0 \ Xi 6= ∅, so we can find a′ ∈ X0 \ Xi such that
a′

m|̂ AcC. Then a′
m|̂ AC.

Case 2. M(b) = α > 0. First notice that by Proposition 1.14 we get that a
m6̂ | A.

Since o(a/A) = o(a/b), we get that a
m6̂ | b, and so b

m6̂ | a. Hence

(∗) M(b/a) < α.

Now take a′ ∈ o(a/b) such that a′
m|̂ ba. Let b′ be a name for o(a′/ab). Since o(a′/ab)

is open in o(a/b), by Corollary 1.15 we get that b′ ∈ acleq(b). So by (∗) and Lascar
inequalities we get that M(b′/a) < α.

Take any finite C ⊇ B such that a
m|̂ AC. Now we can use the inductive hypothesis

for o(a′/ab) in (X,Ga) to get a sequence (ai)i≤k ⊆ o(a′/ab) m-independent over ab,
m-independent from C over ab and such that b′ ∈ dcleq(a, a0, . . . , ak). Since a′

m|̂ ba,
we get that a, a0, . . . , ak are m-independent over b, and since a

m|̂ bC, we get that
the sequence (a, a0, . . . , ak) is m-independent from C over b. Since A ⊆ C and
b ∈ acleq(A), the same is true over A instead of over b.

We know that there are only finitely many conjugates of o(a′/ab): X0 := o(a′/ab) =
f0[o(a

′/ab)], X1 := o(f1(a
′)/f1(a)b)) = f1[o(a

′/ab)], . . . , Xm := o(fm(a′)/fm(a)b) =
fm[o(a′/ab)], under Gb, and that they cover o(a/b). Consider j ≤ m. Take any finite
C ⊇ B. We can assume that fj(a)

m|̂ bC. Indeed, since a name b′j of Xj belongs to
acleq(b), there is (α, β) ∈ o(fj(a

′)fj(a)/bb′j) with αβ
m|̂ bC; then it is enough to replace

fj(a
′) and fj(a) by α and β, respectively. Having this, we can repeat the reasoning

of the previous paragraph for Xj instead of X0.
So by an easy induction on j = 0, 1 . . . ,m, we get a finite sequence (ai)i≤n in

o(a/A) m-independent over A, m-independent from B over A, and such that o(a/A)
is invariant over this sequence. �

Recall that two orbits o(a/A) and o(b/B) are said to be m-orthogonal if for any
finite C ⊇ A ∪ B and any a′ ∈ o(a/A) and b′ ∈ o(b/A) with a′

m|̂ AC and b′
m|̂ BC we

have a′
m|̂ Cb

′. As in stable theories, we say that o(a/A) is regular if it is m-orthogonal
to all its m-dependent extensions.

It turns out that, as in stable theories, regular orbits are exactly the orbits on
which m-dependence induces a pregeometry. More precisely, let o(a/A) be any orbit
and take any finite B ⊆ o(a/A); define cl(B) := {b ∈ o(a/A) : b

m6̂ | AB}; if B is
infinite, put cl(B) =

⋃
{cl(B0) : B0 is a finite subset of B}.

Proposition 3.18 Assume that a /∈ acleq(A). Then o(a/A) is regular iff (o(a/A), cl)
is a pregeometry.
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Proof. (=⇒). Only cl(cl(B)) = cl(B) requires a proof; this can be shown by an easy
forking calculus (exactly as in stable theories) and it does not use m-stability.

(⇐=) This is a place where Proposition 3.17 or 3.7 (and hence m-stability) plays
an important role. Suppose for a contradiction that o(a/A) is regular, a

m|̂ AC, b ∈
o(a/A), b

m6̂ | AC and a
m6̂ | Cb.

By Proposition 3.17 we can find a finite sequence I ⊆ o(ab/C) over which o(ab/C)
is invariant and with I

m|̂ Cab. Hence o(ab/IC) is open in o(ab/C) and o(ab/I) ⊆
o(ab/C). So ab

m|̂ IC.
A simple forking calculus yields: a

m|̂ AI, b
m6̂ | AI and a

m6̂ | IAb. This means that
a /∈ cl(I), b ∈ cl(I) and a ∈ cl(Ib), a contradiction. �

The above proposition is also true for m-normal compact ei-structures. The proof
is the same as the above one, except for the fact that instead of Proposition 3.17 we
use the fact that for each orbit o(a/A) in any m-normal compact ei-structure we can
find b ∈ acleq(∅) such that o(a/Ab) is invariant over ab. For the proof of the last fact
see [11, Remark 0.2].

The proof of Proposition 5.1.11 of [17] works in our context and so we get:

Proposition 3.19 Each non-algebraic orbit is non-orthogonal to a regular orbit (of
an element from X).

Definition 3.20 The weight, denoted by w, is the unique function from the collection
of all orbits over finite sets to ω∪{∞} such that for every n ∈ ω we have w(o(a/A)) ≥
n iff there is a finite set A′ ⊇ A and a′ ∈ o(a/A) with a′

m|̂ AA
′, and a sequence

(ai : i < n) independent over A′ and such that a′
m6̂ | A′ai for every i < n.

The proof of Theorem 5.2.5 of [17] works in our context so we get that every orbit
in any m-stable compact ei-structure has a finite weight.

The following properties of weights can be proved as in stable or simple theories
[17].

Proposition 3.21 1. If a
m|̂ AB, then w(a/A) = w(a/B).

2. w(ab/A) ≤ w(a/A) + w(b/Aa).

3. If a
m|̂ Ab, then w(ab/A) = w(a/A) + w(b/A).

The next proposition is a counterpart of the well-known result for stable theo-
ries, but to prove it we use Proposition 3.17 instead of canonical bases and Morley
sequences.

Proposition 3.22 Each regular orbit o(a/A) has weight 1.

Proof. Suppose for a contradiction that there are A′ ⊇ A, a′ ∈ o(a/A) with a′
m|̂ AA

′,
and elements b, c with b

m|̂ A′c, a′
m6̂ | A′b and a′

m6̂ | A′c. By Proposition 3.17 we can find
a finite sequence (bi : i ≤ n) ⊆ o(a′/A′b) which is m-independent over A′b, m-
independent from c over A′b, and over which o(a′/A′b) is invariant. So there is k ≤ n
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such that a′
m|̂ A′b<k and a′

m6̂ | A′b<k
bk. The rest of the proof is the same as in the proof

of Lemma 5.2.11(1) in [17]. By regularity of o(a/A′) = o(bk/A
′) we have bk

m|̂ A′b<k.
Since c

m|̂ A′b≤k, we get bk
m|̂ A′cb<k. By regularity of o(bk/A

′) = o(a′/A′) we obtain
bk

m|̂ A′cb<k
a′; this yields bk

m|̂ A′a′cb<k, a contradiction. �

We define the notions of domination exactly as in [17, Definition 5.2.6]. a and b
below are elements (or finite tuples) and C is a finite set containing sets A and B.

Definition 3.23 1. We say that a dominates b over A, written amA b, if b
m|̂ Ac for

all c
m|̂ Aa. a and b are equidominant over A, denoted a

.
=A b, if amA b and bmA a.

2. We say that o(a/A) is more dominant than o(b/B) over C, in symbols o(a/A) mC

o(b/B), if there are a′ ∈ o(a/A) and b′ ∈ o(b/B) such that a′
m|̂ AC, b′

m|̂ BC and
a′ mC b′. o(a/A) is more dominant than o(b/B), written o(a/A) m0 o(b/B), means
that o(a/A) mC o(b/B) for some C.

3. We say that o(a/A) is equidominant with o(b/B) over C, in symbols o(a/A)
.
=C

o(b/B), if there are a′ ∈ o(a/A) and b′ ∈ o(b/B) such that a′
m|̂ AC, b′

m|̂ BC and
a′

.
=C b′. Finally, o(a/A) and o(b/B) are equidominant, written o(a/A)

.
=0 o(b/B),

if o(a/A)
.
=C o(b/B) for some C.

Equidominance over a fixed set is an equivalence relation on elements, whereas
it may not be an equivalence relation on orbits (it is easy to find an example of an
orbit with two m-independent extensions which are m-orthogonal).

We have all the basic properties of domination, e.g.: if w(o1) = 1 and o1 is not
m-orthogonal to o2 over a set A (containing the domains of o1 and o2), then o2 mA o1.
If additionally w(o2) = 1, we get o2

.
=A o1. In particular, by Proposition 3.22, if a

regular orbit is not m-orthogonal to an orbit of weight 1 over A, then these orbits
are equidominant over A (which together with Proposition 3.19 is used in the proof
of the next theorem).

Having all these results, we can repeat the proof of Theorem 5.2.18 of [17] to get
the main theorem of this section.

Theorem 3.24 Each orbit in an m-stable compact ei-structure is equidominant with
a product of finitely many regular orbits (hence of weight 1).

References

[1] E. Casanovas, D. Lascar, A. Pillay, M. Ziegler. Galois groups of first order
theories. J. Math. Logic., 1:305–319, 2001.

[2] E. Hrushovski. Simplicity and the Lascar group. Preprint 1997.

[3] B. Kim. A note on Lascar strong types in simple theories. J. Symb. Logic.,
63:926–936, 2000.

24



[4] K. Krupiński. Products of finite abelian groups as profinite groups. J. Alg.,
288:556–582, 2005.
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