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Abstract. It is shown that the space of finite-to-finite holomorphic correspon-

dences on an OT-manifold is discrete. When the OT-manifold has no proper

infinite complex-analytic subsets, it then follows by known model-theoretic re-
sults that its cartesian powers have no interesting complex-analytic families

of subvarieties. The methods of proof, which are similar to [Moosa, Moraru,

and Toma “An essentially saturated surface not of Kähler-type”, Bull. of the
LMS, 40(5):845–854, 2008], require studying finite unramified covers of OT-

manifolds.

1. introduction

This note is concerned with complex-analytic families of subvarieties in cartesian
powers of the compact complex manifolds introduced by Oeljeklaus and the second
author in [7], here referred to as OT-manifolds. These manifolds are higher dimen-
sional analogues of Inoue surfaces of type SM . In [4], we, along with Ruxandra
Moraru, showed that if X is an Inoue surface of type SM then Xn contains no in-
finite complex-analytic families of subvarieties, except for the obvious ones such as(
{a}×V : a ∈ Xm

)
where V is a fixed subvariety of Xn−m. Using model-theoretic

techniques we were able to reduce the problem to considering only the case of n = 2.
That case amounted to showing that the set of finite-to-finite holomorphic corre-
spondences on X, viewed as subvarieties of X2, is discrete. Here we extend this
result to OT-manifolds in general. Actually, it is useful to consider the following
higher arity version of correspondences: for any compact complex manifold X, let
Corrn(X) denote the set of irreducible complex-analytic S ⊂ Xn such that the
co-ordinate projections pri : S → X are surjective and finite for all i = 1, . . . , n. So
Corr2(X) is the set of finite-to-finite holomorphic correspondences.1

Theorem 1. If X is an OT-manifold then Corrn(X) is discrete for all n > 0.

The proof, which we will give in Section 3, follows to some extent what was
done for Inoue surfaces of type SM in [4]. But this approach leads naturally to the
consideration of finite unramified coverings of OT-manifolds, and the latter are not
formally instances of the original construction in [7]. However, we show in Section 2
that a mild generalisation of that construction leads to a class of manifolds which is
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1It may be worth pointing out that the elements of Corrn(X) are simply components of in-

tersections of pull-backs of finite-to-finite holomorphic correspondences. That is, for n > 1, if
S ∈ Corrn(X) and πi : Xn → X2 is the co-ordinate projection (x1, . . . , xn) 7→ (x1, xi), for
i = 2, . . . , n, then each πi(S) ⊂ X2 is a correspondence and S is an irreducible component of
n⋂

i=2

π−1
i (πi(S)). This is an easy dimension calculation, see [5, Lemma 3.2].
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closed under finite unramified coverings. We call these manifolds also OT-manifolds
and the theorem is valid for this larger class.

The theorem is particularly significant when X has no proper positive dimen-
sional subvarieties, because of the following fact coming from model theory.

Fact 2. Suppose X is a compact complex manifold that is not an algebraic curve,
is not a complex torus, and has no proper infinite complex-analytic subsets. Then
every irreducible complex-analytic subset of a cartesian power of X is a cartesian
product of points and elements of Corrn(X) for various n > 0.

Proof. This is Proposition 5.1 of [9] together with Lemma 3.3(b) of [5]. �

That OT-manifolds without proper positive dimensional subvarieties are ubiq-
uitous in all dimensions follows from work of Ornea and Verbitsky [8] showing that
we get examples whenever X is the OT-manifold corresponding to a number field
that has precisely two complex embeddings which are not real.

Putting together the Theorem and the Fact, we conclude:

Corollary 3. Suppose X is an OT-manifold that has no proper infinite complex-
analytic subsets. Then, for all n > 0, Xn has no infinite complex-analytic families
of subvarieties that project onto each co-ordinate.

Remark 4. The model theorist should note that for X to have no proper infinite
complex-analytic subsets is exactly strong minimality of X as a first-order structure
in the language of complex-analytic sets. Strongly minimal OT-manifolds are of
trivial acl-geometry by the manifestation of the Zilber trichotomy in this context.
By [5, Proposition 3.5], the discreteness of Corr2(X) implies that strongly minimal
OT-manifolds are essentially saturated in the sense of [3]. In particular, we obtain
in every dimension examples of essentially saturated manifolds that are not of
Kähler-type. This was the original motivation for both [4] and the current note.

2. Finite covers of OT-manifolds

We will quickly review the original construction of OT-manifolds from [7] and then
describe how to generalise it.

Fix a number field K admitting n = s + 2t distinct embeddings into C, which
we will denote by σ1, . . . , σn where σ1, . . . , σs are real and each σs+i is complex
conjugate to σs+i+t. Assume that s and t are positive. By Dirichlet’s Theorem the
multiplicative group of units O∗K of the ring of integers OK of K has rank s+ t−1.
The subgroup

O∗,+K := {a ∈ O∗K : σi(a) > 0 for all 1 ≤ i ≤ s}
of “positive” units is free abelian of finite index in O∗K . Let U be a rank s subgroup

of O∗,+K that is admissible for K in the sense of [7]. With respect to the natural
action of U on the additive group OK , consider the semidirect product Γ = UnOK .
Let m = s+ t and consider the action of Γ on Cm given by,

(a, x)(z1, . . . , zm) :=
(
σ1(ax) + σ1(a)z1, . . . , σm(ax) + σm(a)zm

)
.

As U < O∗,+K , this action leaves Hs×Ct invariant, and the admissibility condition is
equivalent to the action being proper and discontinuous. The original OT-manifold,
denoted by X(K,U), is the quotient of Hs × Ct by this action. In the sequel we
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will denote these manifolds by X(OK , U) in order to distinguish them from their
generalisations.

The above construction is generalised by replacing the role of OK in Γ by any
rank n additive subgroup M ≤ OK that is stable under the action of U . We say
then that U is admissible for M . Taking Γ = U nM , we again get a proper and
discontinuous action on Hs × Ct, and the quotient is denoted by X(M,U). We
will continue to call these compact complex manifolds OT-manifolds. To avoid
confusing them with the previous construction we will occasionally say that they
are of type X(M,U) (otherwise of type X(OK , U)). Note that the possibility of
generalising the original construction by replacing OK with an order of K is already
mentioned in [7]. However only the Z-submodule structure of M and the stability
under the U -action are necessary to make the construction work.

The universal cover of X(M,U) is Hs×Ct and the fundamental group is UnM .
As the latter is of finite index in UnOK , we see that X(M,U) is a finite unramified
covering of X(OK , U). In fact, all finite unramified covers are of this form:

Lemma 5. The class of OT-manifolds of type X(M,U) is closed under finite un-
ramified coverings.

Proof. Given X(M,U), such a covering would correspond to a finite index subgroup
Γ1 ≤ U n M . Taking U1 to be the image of Γ1 in U , and setting M1 := Γ1 ∩M , it
is not hard to check that U1 is admissible for M1 and that the covering is nothing
other than X(M1, U1). �

Much of the theory of OT-manifolds developed in [7] goes through in this more
general setting. In particular,

Lemma 6. If X = X(M,U) is an OT-manifold then H0(X,TX) = 0.

Proof. For OT-manifolds of type X(OK , U) this is Proposition 2.5 of [7]. Imitating
that argument, it suffices to prove for M a rank n additive subgroup of OK , that
the image of M in Rs under (σ1, . . . , σs) is dense. But this is the case because
M has finite index in OK and the latter does have dense image (see the proof of
Lemma 2.4 of [7]). �

The following remarks serve as further evidence that the above extension of the
definition of OT-manifolds is natural.

Remark 7. Any OT-manifold of type X(M,U) admits a finite unramified cover
of type X(OK , U).

Indeed, since M is of maximal rank in OK , there exists a positive integer l such
that lOK ⊂M . Thus X(lOK , U) is a finite unramified cover of X(M,U). But the
multiplication by l at the level of Hs×Ct conjugates the actions of U nOK and of
U n lOK and thus induces an isomorphism between X(OK , U) and X(lOK , U).

Remark 8. When s = t = 1 the class OT-manifolds of type X(M,U) coincides
with the class of Inoue surfaces of type SM defined in [2].

Indeed, if one starts with the manifold X(M,U), then choosing a generator a of
U with σ1(a) > 1 and a base (α1, α2, α3) of M over Z one obtains a matrix A(a) ∈
GL(3,Z) which represents the action of a on M with respect to this basis. Applying
the embedding σk to the relation a(α1, α2, α3)> = A(a)(α1, α2, α3)> shows that
(σk(α1), σk(α2), σk(α3))> is an eigenvector of A(a) associated to the eigenvalue
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σk(a). In particular this implies A(a) ∈ SL(3,Z) since σ1(a) > 0. At this point
one sees that X(M,U) coincides with the surface SA(a) as defined in [2].

Conversely, starting with any matrix A ∈ SL(3,Z), with one real eigenvalue
larger than 1 and two complex non-real eigenvalues, we denote by K the splitting
field of the characteristic polynomial χA of A over Q. Then there exists an ele-
ment a ∈ O∗,+K such that the eigenvalues of A (i.e the roots of χA) are precisely
σ1(a), σ2(a), σ3(a). We find now an eigenvector v ∈ Z[σ1(a)]3 associated to σ1(A)
by solving the system (A − σ1(a)I3)v> = 0 over K. There exist now elements
α1, α2, α3 ∈ OK such that v = (σ1(α1), σ1(α2), σ1(α3)). Moreover α1, α2, α3 are
linearly independent over Q since a linear relation would entail a linear relation
between the components v1, v2, v3 of v over Q, which combined with the equations
(A − σ1(a)I3)v> = 0 would show that σ1(a) is quadratic over Q. Now choosing
M to be the Z-sumbodule of K generated by α1, α2, α3 and U the multiplicative
group generated by a we get again X(M,U) = SA(a).

3. The Proof

As in the case of Inoue surfaces of type SM studied in [4], we will make use of some
deformation theory to prove the main theorem. But we will need a bit more than
was used in [4]. We say that a holomorphic map f : V → W between compact
complex manifolds is rigid over W if there are no nontrivial deformations of f that
keep W fixed. More precisely: Whenever V → D is a proper and flat holomorphic
map of compact complex varieties with V = Vd for some d ∈ D, and F : V → D×W
is a holomorphic map over D with Fd = f , then there is an open neighbourhood U
of d in D and a diagram

VU

""F
FF

FF
FF

FF
FU

**UUU
UUUU

UUUU
UUUU

UUUU
UU

φ

��

U U ×Woo

U × V

<<xxxxxxxxx idU ×f

44hhhhhhhhhhhhhhhhhhhh

where φ is a biholomorphism. In particular Fs(Vs) = f(V ) for all s ∈ U .

Fact 9 (Section 3.6 of [6]). Suppuse f : V → W is a holomorphic map between
compact complex manifolds such that

• H0(V, f∗TW ) = 0, and
• f∗ : H1(V, TV )→ H1(V, f∗TW ) is injective.

Then f is rigid over W .

Lemma 10. Suppose X and Y are compact complex manifolds, H0(Y, TY ) = 0,
and f : Y → Xn is a holomorphic map such that pri ◦f : Y → X is a finite
unramified cover for each i = 1, . . . , n. Then f is rigid over Xn.

Proof. Note that here pri : Xn → X is the projection onto the ith co-ordinate. Let
fi := pri ◦f : Y → X. As each fi is unramified, we have that

f∗TXn = f∗

(
n⊕
i=1

pr∗i TX

)
=

n⊕
i=1

f∗i TX =

n⊕
i=1

TY
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Hence, H0(Y, f∗TXn) =

n⊕
i=1

H0(Y, TY ) = 0. On the other hand, the isomorphism

(f1)∗ : H1(Y, TY )→ H1(Y, f∗1TX) factors through f∗ : H1(Y, TY )→ H1(Y, f∗TXn),
and hence the latter is injective. So f : Y → Xn is rigid over Xn by Fact 9. �

We can now prove the main theorem.

Proof of Theorem 1. Suppose X is an OT-manifold of type X(M,U). As in [4], in
order to show that Corrn(X) is discrete we let S ∈ Corrn(X) be arbitrary, consider
the irreducible component D of the Douady space of Xn in which S lives, and show
that D is zero-dimensional. This suffices as it proves that each element of Corrn(X)
is isolated in the Douady space.

Let Z ⊂ D×Xn be the restriction of the universal family to D. By the flatness of

Z → D, for general d ∈ D, Zd ∈ Corrn(X) also. Let Z̃ → Z be a normalisation and

denote by f : Z̃ → D×Xn the composition of the normalisation with the inclusion

of Z in D ×Xn. Then for general d ∈ D we have that fd : Z̃d → Xn is such that

each projection pri ◦fd : Z̃d → X is a finite surjective map. In [1] it is shown that
OT-manifolds of type X(OK , U), and hence also OT-manifolds of type X(M,U),

have no divisors. So the purity of branch locus theorem (which applies as Z̃d is
normal and X is smooth) implies that pri ◦fd is a finite unramified covering. In

particular, Z̃d is a generalised OT-manifold by Lemma 5, and so H0(Z̃d, TZ̃d
) = 0

by Lemma 6. But moreover, by Lemma 10, fd is rigid over Xn. It follows that

for some open neighbourhood U of d in D, fU : Z̃U → U × Xn is biholomorphic

over U × Xn with idU ×fd : U × Z̃d → U × Xn. In particular, for all s ∈ U ,

Zs = fs(Z̃s) = fd(Z̃d) = Zd. The universality of the Douady space now implies
that U = {d}, so that in fact D = {d}, as desired. �
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