

The universal covering homomorphism in o-minimal expansions of groups

Mário J. Edmundo*

CMAF Universidade de Lisboa
Av. Prof. Gama Pinto 2
1649-003 Lisboa, Portugal
edmundo@ci.fc.ul.pt

Pantelis E. Eleftheriou†

Department of Mathematics
University of Notre Dame
Notre Dame, IN 46556, USA
pelefthe@nd.edu

February 19, 2006

Abstract

Suppose that G is a definably connected, definable group in an o-minimal expansion of an ordered group. We show that the o-minimal universal covering homomorphism $\tilde{p} : \tilde{G} \longrightarrow G$ is a locally definable covering homomorphism and $\pi_1(G)$ is isomorphic to the o-minimal fundamental group $\pi(G)$ of G defined using locally definable covering homomorphisms.

*With partial support from the FCT (Fundação para a Ciência e Tecnologia), program POCTI (Portugal/FEDER-EU).

†Partially supported by NSF grant DMS-02-45167 (Cholak). *MSC:* 03C64, 20E99.
Keywords and phrases: O-minimal structures, universal covers, definable groups. Revised: June 1, 2007.

1 Introduction

Let \mathcal{R} be an o-minimal expansion of an ordered group $(R, 0, +, <)$. The structure \mathcal{R} will be fixed throughout and will be assumed to be \aleph_1 -saturated. By definable we will mean definable in \mathcal{R} with parameters.

In the paper [3] the first author introduced a notion of o-minimal fundamental group and o-minimal universal covering homomorphism for definable groups (or more generally for locally definable groups) in arbitrary o-minimal structures which we now recall.

First recall that a group (G, \cdot) is a *locally definable group over A*, with $A \subseteq R$ and $|A| < \aleph_1$, if there is a countable collection $\{Z_i : i \in I\}$ of definable subsets of R^n , all definable over A , such that: (i) $G = \bigcup\{Z_i : i \in I\}$; (ii) for every $i, j \in I$ there is $k \in I$ such that $Z_i \cup Z_j \subseteq Z_k$ and (iii) the restriction of the group multiplication to $Z_i \times Z_j$ is a definable map over A into R^n .

Given two locally definable groups H and G over A , we say that H is a *locally definable subgroup of G over A* if H is a subgroup of G .

A homomorphism $\alpha : G \rightarrow H$ between locally definable groups over A is called a *locally definable homomorphism over A* if for every definable subset $Z \subseteq G$ defined over A , the restriction $\alpha|_Z$ is a definable map over A .

In the terminology of [9], locally definable groups (respectively homomorphisms) are \vee -definable groups (respectively homomorphisms). Therefore, every locally definable group $G \subseteq R^n$ over A is equipped with a unique topology τ , called the *τ -topology*, such that: (i) (G, τ) is a topological group; (ii) every generic element of G has an open definable neighborhood $U \subseteq R^n$ such that $U \cap G$ is τ -open and the topology which $U \cap G$ inherits from τ agrees with the topology it inherits from R^n ; (iii) locally definable homomorphisms between locally definable groups are continuous with respect to the τ topologies. Note also that when G is a definable group, then its τ -topology coincides with its *t -topology* from [10].

Definition 1.1 A locally definable homomorphism $p : H \rightarrow G$ over A between locally definable groups over A is called a *locally definable covering homomorphism* if p is surjective and there is a family $\{U_l : l \in L\}$ of τ -open definable subsets of G over A such that $G = \bigcup\{U_l : l \in L\}$ and, for each $l \in L$, $p^{-1}(U_l)$ is a disjoint union of τ -open definable subsets of H over A , each of which is mapped homeomorphically by p onto U_l .

We call $\{U_l : l \in L\}$ a *p -admissible family of definable τ -neighborhoods* over A .

We denote by $\text{Cov}(G)$ the category whose objects are locally definable covering homomorphisms $p : H \rightarrow G$ (over some A with $|A| < \aleph_1$) and

whose morphisms are surjective locally definable homomorphisms $r : H \rightarrow K$ (over some A with $|A| < \aleph_1$) such that $q \circ r = p$, where $q : K \rightarrow G$ is a locally definable covering homomorphism (over some A with $|A| < \aleph_1$). Let $p : H \rightarrow G$ and $q : K \rightarrow G$ be locally definable covering homomorphisms. If $r : H \rightarrow K$ is a morphism in $\text{Cov}(G)$, then by [3] Theorem 3.6, $r : H \rightarrow K$ is a locally definable covering homomorphism.

Definition 1.2 The category $\text{Cov}(G)$ and its full subcategory $\text{Cov}^0(G)$ with objects $h : H \rightarrow G$ such that H is a definably connected locally definable group, form inverse systems ([3] Corollary 3.7 and Lemma 3.8). The inverse limit $\tilde{p} : \tilde{G} \rightarrow G$ of the inverse system $\text{Cov}^0(G)$ is called the *(o-minimal) universal covering homomorphism of G* .

The kernel of the universal covering homomorphism $\tilde{p} : \tilde{G} \rightarrow G$ of G is called the *(o-minimal) fundamental group of G* and is denoted by $\pi(G)$.

Inverse limits of inverse systems of groups always exist in the category of groups ([11] Proposition 1.1.1), but in general we do not know if the o-minimal universal covering homomorphism $\tilde{p} : \tilde{G} \rightarrow G$ is locally definable. The main result of this paper is that this is the case in o-minimal expansions of groups.

On the other hand, in the paper [5], the second author and S. Starchenko use definable t -continuous paths to define the o-minimal fundamental group $\pi_1(G)$ of a definably t -connected, definable group G following the classical case in [7] and the case in o-minimal expansions of fields treated by Berarducci and Otero in [1]. We will adapt that definition to the category of locally definable groups. As in [5] we will run the definition in parallel with respect to the τ -topology of a definably connected locally definable group G and the usual topology on an arbitrary definable subset X of R^n .

A $(\tau\text{-})$ path $\alpha : [0, p] \rightarrow X$ ($\alpha : [0, p] \rightarrow G$) is a $(\tau\text{-})$ continuous definable map. A $(\tau\text{-})$ path $\alpha : [0, p] \rightarrow X$ ($\alpha : [0, p] \rightarrow G$) is a $(\tau\text{-})$ loop if $\alpha(0) = \alpha(p)$. A concatenation of two $(\tau\text{-})$ paths $\gamma : [0, p] \rightarrow X$ ($\gamma : [0, p] \rightarrow G$) and $\delta : [0, q] \rightarrow X$ ($\delta : [0, q] \rightarrow G$) with $\gamma(p) = \delta(0)$ is a $(\tau\text{-})$ path $\gamma \cdot \delta : [0, p+q] \rightarrow X$ ($\gamma \cdot \delta : [0, p+q] \rightarrow G$) with:

$$(\gamma \cdot \delta)(t) = \begin{cases} \gamma(t) & \text{if } t \in [0, p] \\ \delta(t-p) & \text{if } t \in [p, p+q]. \end{cases}$$

Given two definable $(\tau\text{-})$ continuous maps $f, g : Y \subseteq R^m \rightarrow X$ ($f, g : Y \subseteq R^m \rightarrow G$), we say that a definable $(\tau\text{-})$ continuous map $F(t, s) : Y \times [0, q] \rightarrow X$ ($F(t, s) : Y \times [0, q] \rightarrow G$), is a $(\tau\text{-})$ homotopy between f and g if $f = F_0$ and $g = F_q$, where $\forall s \in [0, q]$, $F_s := F(\cdot, s)$. In this situation we say that f and g are $(\tau\text{-})$ homotopic, denoted $f \sim g$ ($f \sim_\tau g$).

Definition 1.3 Two (τ) -paths $\gamma : [0, p] \rightarrow X$ ($\gamma : [0, p] \rightarrow G$), $\delta : [0, q] \rightarrow X$ ($\delta : [0, q] \rightarrow G$), with $\gamma(0) = \delta(0)$ and $\gamma(p) = \delta(q)$, are called (τ) -homotopic if there is some $t_0 \in [0, \min\{p, q\}]$, and a (τ) -homotopy $F(t, s) : [0, \max\{p, q\}] \times [0, r] \rightarrow X$ ($F(t, s) : [0, \max\{p, q\}] \times [0, r] \rightarrow G$), for some $r > 0$ in R , between

$$\gamma|_{[0, t_0]} \cdot \mathbf{c} \cdot \gamma|_{[t_0, p]} \text{ and } \delta \text{ (if } p \leq q\text{), or}$$

$$\delta|_{[0, t_0]} \cdot \mathbf{d} \cdot \delta|_{[t_0, q]} \text{ and } \gamma \text{ (if } q \leq p\text{).}$$

where $\mathbf{c}(t) = \gamma(t_0)$ and $\mathbf{d}(t) = \delta(t_0)$ are the constant (τ) -paths with domain $[0, |p - q|]$.

If $\mathbb{L}(G)$ denotes the set of all τ -loops that start and end at the identity element e_G of G , the restriction of \sim_τ to $\mathbb{L}(G) \times \mathbb{L}(G)$ is an equivalence relation on $\mathbb{L}(G)$. We define

$$\pi_1(G) := \mathbb{L}(G) / \sim_\tau$$

and $[\gamma] :=$ the class of $\gamma \in \mathbb{L}(G)$. Note that $\pi_1(G)$ is indeed a group with group operation given by $[\gamma][\delta] = [\gamma \cdot \delta]$.

In a similar way we define the o-minimal fundamental group $\pi_1(X)$ of a definable set $X \subseteq R^n$.

Given the above two possible definitions of o-minimal fundamental groups it is natural to try to find out if they coincide. Our main result shows that this is the case:

Theorem 1.4 *Let \mathcal{R} be an o-minimal expansion of a group and G a definably t -connected definable group. Then the o-minimal universal covering homomorphism $\tilde{p} : \tilde{G} \rightarrow G$ is a locally definable covering homomorphism and $\pi_1(G)$ is isomorphic to $\pi(G)$.*

Theorem 1.4 will actually be proved for definably τ -connected locally definable groups. See Theorem 3.11 below. As a consequence of our work we obtain the following corollary which is proved at the end of the paper.

Corollary 1.5 *Let \mathcal{R} be an o-minimal expansion of a group and G a definably t -connected definable group. Then $\pi_1(G)$ is a finitely generated abelian group. Moreover, if G is abelian, then there is $l \in \mathbb{N}$ such that $\pi_1(G) \simeq \mathbb{Z}^l$ and, for each $k \in \mathbb{N}$, the subgroup $G[k]$ of k -torsion points of G is given by $G[k] \simeq (\mathbb{Z}/k\mathbb{Z})^l$.*

When G is a definably compact, abelian definable group, we conjecture that l above is the dimension of G . This is known to be the case when \mathcal{R} is linear ([5]) or \mathcal{R} is an o-minimal expansion of a real closed field ([4]). So the conjecture is open for \mathcal{R} eventually linear but not linear.

2 Preliminary results

This section contains all the lemmas that come from other references and are used later in the paper. Thus we generalize the theory of [3] and [4] Section 2 to the category of locally definable covering *maps* of locally definable groups in \mathcal{R} . Since the arguments are similar we will omit the details.

Definition 2.1 A set Z is a *locally definable set over A*, where $A \subseteq R$ and $|A| < \aleph_1$, if there is a countable collection $\{Z_i : i \in I\}$ of definable subsets of R^n , all definable over A , such that: (i) $Z = \bigcup\{Z_i : i \in I\}$; (ii) for every $i, j \in I$ there is $k \in I$ such that $Z_i \cup Z_j \subseteq Z_k$.

Given two locally definable sets X and Z over A , we say that X is a *locally definable subset of Z over A* if X is a subset of Z .

A map $\alpha : Z \rightarrow X$ between locally definable sets over A is called a *locally definable map over A* if for every definable subset $V \subseteq Z$ defined over A , the restriction $\alpha|_V$ is a definable map over A .

By saturation, the set Z does not depend on the choice of the collection $\{Z_i : i \in I\}$. Furthermore, if $\alpha : Z \rightarrow X$ is a locally definable map over A between locally definable sets over A and Y is a locally definable subset of X over A , then the following hold:

(1) $\alpha(Z)$ is a locally definable subset of X over A and $\alpha^{-1}(Y)$ is a locally definable subset of Z over A .

(2) If Y is such that $V \cap Y$ is definable for every definable subset V of X , then $W \cap \alpha^{-1}(Y)$ is definable for every definable subset W of Z . (Since $W \cap \alpha^{-1}(Y) = \alpha|_W^{-1}(\alpha(W) \cap Y))$.

Definition 2.2 Let G be a locally definable group over A and W a locally definable set over A . A locally definable map $w : W \rightarrow G$ over A is called a *locally definable covering map* if w is surjective and there is a family $\{U_l : l \in L\}$ of τ -open definable subsets of G over A such that $G = \bigcup\{U_l : l \in L\}$ and, for each $l \in L$, the locally definable subset $w^{-1}(U_l)$ of W over A is a disjoint union of definable subsets of W over A , each of which is mapped bijectively by w onto U_l .

We call $\{U_l : l \in L\}$ a *w-admissible family of definable τ -neighborhoods* over A .

Given a locally definable covering map $w : W \rightarrow G$ over A there is a topology on W , which we call the *w-topology*, generated by the definable sets of the form $w^{-1}(U) \cap V$, where U is a τ -open definable subset of G and V is one of the definable subsets of the disjoint union $w^{-1}(U_l)$ for some U_l in the w -admissible family of definable τ -neighborhoods.

Clearly, with respect to the w -topology on W (and the τ -topology on G), $w : W \rightarrow G$ is continuous. Furthermore, $w : W \rightarrow G$ is an open surjection. In fact, let V be a w -open definable subset of W over A and, for each $l \in L$, let $\{U_s^l : s \in S_l\}$ be the collection of w -open disjoint definable subsets of W over A such that $w^{-1}(U_l) = \cup\{U_s^l : s \in S_l\}$ and $w|_{U_s^l} : U_s^l \rightarrow U_l$ is a definable homeomorphism over A for every $s \in S_l$. Since $|A| < \aleph_1$, by saturation, there is $\{W_1, \dots, W_m\} \subseteq \{U_s^l : l \in L, s \in S_l\}$ such that $V \subseteq \cup\{W_i : i = 1, \dots, m\}$. But then $V = \cup\{V \cap W_i : i = 1, \dots, m\}$ and $w(V) = \cup\{w(V \cap W_i) : i = 1, \dots, m\}$ is τ -open.

Lemma 2.3 *Let $w : W \rightarrow G$ be a locally definable covering map and suppose that W is also a locally definable group. Then on W the w -topology coincides with the τ -topology.*

Proof. Let $a \in W$ be a generic point and U a definable w -open neighborhood of a in W . We may assume that $w|_U : U \rightarrow w(U)$ is a definable homeomorphism. Since $w(a)$ is also generic, there exists a definable subset $V \subseteq w(U)$ containing $w(a)$ such that V is both τ -open in G and open in G with the induced topology on G from R^n . Thus $w^{-1}(V)$ is also both a w -neighborhood of a in W and in W with the induced topology on W from R^n . Hence, $w^{-1}(V)$ is a τ -neighborhood of a in W . By uniqueness of τ -topology, this implies that the w -topology and the τ -topology on W agree. \square

Let $w : W \rightarrow G$ be a locally definable covering map (over some A with $|A| < \aleph_1$). Let X be a definable subset of W equipped with the induced w -topology from W . We will now introduce certain notions in parallel for X and W .

A w -path $\alpha : [0, p] \rightarrow X$ ($\alpha : [0, p] \rightarrow W$) is a w -continuous definable map. A w -path $\alpha : [0, p] \rightarrow X$ ($\alpha : [0, p] \rightarrow W$) is a w -loop if $\alpha(0) = \alpha(p)$. A concatenation of two w -paths $\gamma : [0, p] \rightarrow X$ ($\gamma : [0, p] \rightarrow W$) and $\delta : [0, q] \rightarrow X$ ($\delta : [0, q] \rightarrow W$) with $\gamma(p) = \delta(0)$ is a w -path $\gamma \cdot \delta : [0, p+q] \rightarrow X$ ($\gamma \cdot \delta : [0, p+q] \rightarrow W$) with:

$$(\gamma \cdot \delta)(t) = \begin{cases} \gamma(t) & \text{if } t \in [0, p] \\ \delta(t-p) & \text{if } t \in [p, p+q]. \end{cases}$$

Given two definable w -continuous maps $f, g : Y \subseteq R^m \rightarrow X$ ($f, g : Y \subseteq R^m \rightarrow W$), we say that a definable w -continuous map $F(t, s) : Y \times [0, q] \rightarrow X$ ($F(t, s) : Y \times [0, q] \rightarrow W$) is a w -homotopy between f and g if $f = F_0$ and $g = F_q$, where $\forall s \in [0, q], F_s := F(\cdot, s)$. In this situation we say that f and g are w -homotopic, denoted $f \sim_w g$.

Definition 2.4 Two w -paths $\gamma : [0, p] \rightarrow X$ ($\gamma : [0, p] \rightarrow W$), $\delta : [0, q] \rightarrow X$ ($\delta : [0, q] \rightarrow W$), with $\gamma(0) = \delta(0)$ and $\gamma(p) = \delta(q)$, are called w -homotopic if there is some $t_0 \in [0, \min\{p, q\}]$, and a w -homotopy $F(t, s) : [0, \max\{p, q\}] \times [0, r] \rightarrow X$ ($F(t, s) : [0, \max\{p, q\}] \times [0, r] \rightarrow W$), for some $r > 0$ in R , between

$$\gamma|_{[0, t_0]} \cdot \mathbf{c} \cdot \gamma|_{[t_0, p]} \text{ and } \delta \text{ (if } p \leq q\text{), or}$$

$$\delta|_{[0, t_0]} \cdot \mathbf{d} \cdot \delta|_{[t_0, q]} \text{ and } \gamma \text{ (if } q \leq p\text{).}$$

where $\mathbf{c}(t) = \gamma(t_0)$ and $\mathbf{d}(t) = \delta(t_0)$ are the constant w -paths with domain $[0, |p - q|]$.

If $\mathbb{L}(W)$ denotes the set of all w -loops that start and end at a fixed element e_W of W such that $w(e_W) = e_G$, the restriction of \sim_w to $\mathbb{L}(W) \times \mathbb{L}(W)$ is an equivalence relation on $\mathbb{L}(W)$. We define

$$\pi_1(W) := \mathbb{L}(W) / \sim_w$$

and $[\gamma] :=$ the class of $\gamma \in \mathbb{L}(W)$. Note that $\pi_1(W)$ is indeed a group with group operation given by $[\gamma][\delta] = [\gamma \cdot \delta]$. Also this group depends on the w -topology on W .

In a similar way we define the o-minimal fundamental group $\pi_1(X)$ of a definable subset $X \subseteq W$ with respect to the induced w -topology.

Clearly, any two constant w -loops at the same point $c \in W$ are w -homotopic. We will thus write ϵ_c for the constant w -loop at c without specifying its domain.

In view of Lemma 2.3, we obtain the above notions with w replaced by τ for definable subsets of a locally definable group equipped with the induced τ -topology.

Lemma 2.5 *Let $w : W \rightarrow G$ and $v : V \rightarrow H$ be locally definable covering maps. Then $(w, v) : W \times V \rightarrow G \times H$ is a locally definable covering map and $\theta : \pi_1(W) \times \pi_1(V) \rightarrow \pi_1(W \times V) : ([\gamma], [\delta]) \mapsto [(\gamma, \delta)]$ is a group isomorphism.*

Proof. The inverse of θ is $\pi_1(W \times V) \rightarrow \pi_1(W) \times \pi_1(V) : [\rho] \mapsto ([q_1 \circ \rho], [q_2 \circ \rho])$ where q_1 and q_2 are the projections from $W \times V$ onto W and V , respectively. \square

Let $w : W \rightarrow G$ be a locally definable covering map (over some A with $|A| < \aleph_1$). Let Z be a definable set and let $f : Z \rightarrow G$ be a definable

continuous map (with respect to the τ -topology on G). A *lifting of f* is a continuous definable map $\tilde{f} : Z \rightarrow W$ (with respect to the w -topology on W) such that $p \circ \tilde{f} = f$.

Lemma 2.6 *Let $w : W \rightarrow G$ be a locally definable covering map, Z a definably connected definable set and $f : Z \rightarrow G$ a definable continuous map. If $\tilde{f}_1, \tilde{f}_2 : Z \rightarrow W$ are two liftings of f , then $\tilde{f}_1 = \tilde{f}_2$ provided there is a $z \in Z$ such that $\tilde{f}_1(z) = \tilde{f}_2(z)$.*

Proof. As in the proof of [3] Lemma 3.2, both sets $\{w \in Z : \tilde{f}_1(w) = \tilde{f}_2(w)\}$ and $\{w \in Z : \tilde{f}_1(w) \neq \tilde{f}_2(w)\}$ are definable and open, the first one is nonempty. \square

Lemma 2.7 *Suppose that $w : W \rightarrow G$ is a locally definable covering map. Then the following hold.*

(1) *Let γ be a τ -path in G and $y \in W$. If $w(y) = \gamma(0)$, then there is a unique w -path $\tilde{\gamma}$ in W , lifting γ , such that $\tilde{\gamma}(0) = y$.*

(2) *Suppose that F is a τ -homotopy between the τ -paths γ and σ in G . Let $\tilde{\gamma}$ be a w -path in W lifting γ . Then there is a unique definable lifting \tilde{F} of F , which is a w -homotopy between $\tilde{\gamma}$ and $\tilde{\sigma}$, where $\tilde{\sigma}$ is a w -path in W lifting σ .*

Proof. In our category, the path and the homotopy liftings can be proved as in [4] by observing that, by saturation, a definable subset of G is covered by finitely many open definable subsets of G . \square

Notation: Referring to Lemma 2.7, if $\gamma : [0, q] \rightarrow G$ is a τ -path in G and $y \in W$, we denote by $y * \gamma$ the final point $\tilde{\gamma}(q)$ of the lifting $\tilde{\gamma}$ of γ with initial point $\tilde{\gamma}(0) = y$.

The following consequence of Lemma 2.7 is proved in exactly the same way as its definable analogue in [4] Corollary 2.9. Below, for $w : W \rightarrow G$ a locally definable covering map, we say that W is *definably w -connected* if there is no proper locally definable subset of W which is both w -open and w -closed and whose intersection with any definable subset of W is definable. In view of Lemma 2.3, this notion generalizes the notion of definably connected in locally definable groups studied in [3].

Remark 2.8 Suppose that $w : W \rightarrow G$ is a locally definable covering map and let $y \in W$ be such that $w(y) = e_G$. Suppose that W and G are definably w -connected and τ -connected respectively. Then we have a

well defined homomorphism $w_* : \pi_1(W) \longrightarrow \pi_1(G) : [\gamma] \mapsto [w \circ \gamma]$ and the following hold.

- (1) If σ is a τ -path in G from e_G to e_G , then $y = y * \sigma$ if and only if $[\sigma] \in w_*(\pi_1(W))$.
- (2) If σ and σ' are two τ -paths in G from e_G to x , then $y * \sigma = y * \sigma'$ if and only if $[\sigma \cdot \sigma'^{-1}] \in w_*(\pi_1(W))$.

Let $w : W \longrightarrow G$ be a locally definable covering map. We say that W is *w-path connected* if for every $u, v \in W$ there is a w -path $\alpha : [0, q] \longrightarrow W$ such that $\alpha(0) = u$ and $\alpha(q) = v$.

Lemma 2.9 *Let $w : W \longrightarrow G$ be a locally definable covering map. Then W is definably *w-connected* if and only if W is *w-path connected*. In fact, for any definably *w-connected* definable subset X of W there is a uniformly definable family of *w*-paths in X connecting a given fixed point in X to any other point in X .*

Proof. Since $w : W \longrightarrow G$ is a locally definable covering map, it is enough to prove the result for locally definable groups. By the first part of the proof of [9] Lemma 2.13, there is a locally definable subset U of G such that $\dim(G \setminus U) < \dim G$, the intersection of any definable subset of G with U is a definable subset and the induced τ -topology on U coincides with the induced topology from R^n . So a definable subset B of U is τ -connected if and only if B is definably connected (in R^n). Thus the result follows from by [6] Chapter VI, Proposition 3.2 and its proof, saturation and [3] Lemma 3.5 (i.e., countably many translates of U cover G). \square

The next proposition is also a consequence of Lemma 2.7 and is proved in exactly the same way as its definable analogue in [4] Corollary 2.8 and Proposition 2.10.

Proposition 2.10 *Let $w : W \longrightarrow G$ be a locally definable covering map. Suppose that W and G are definably *w-connected* and τ -connected respectively. Then the following hold:*

- (1) $w_* : \pi_1(W) \longrightarrow \pi_1(G)$ is an injective homomorphism;
- (2) $\pi_1(G)/w_*(\pi_1(W)) \simeq \text{Aut}(W/G)$ (the group of all locally definable *w*-homeomorphisms $\phi : W \longrightarrow W$ such that $w = w \circ \phi$).

Below we will also require the following generalization of Lemma 2.6:

Lemma 2.11 *Let $w : W \rightarrow G$ and $v : V \rightarrow H$ be locally definable covering maps and let $f, g : V \rightarrow W$ be two continuous locally definable maps (with respect to the v and w topologies) such that $w \circ f = w \circ g$. If V is definably v -connected and $f(x) = g(x)$ for some $x \in V$, then $f = g$.*

Proof. This is as in [3] Lemma 3.2 once we show that $\{x \in V : f(x) = g(x)\}$, which is open and closed, is a locally definable subset whose intersection with any definable subset of V is a definable subset of V . If $C, D \subseteq V$ are definable, then $(V \times_W V) \cap (C \times D) = \{(x, y) \in C \times D : f|_C(x) = g|_D(y)\}$ is definable, and so $(V \times_W V) \cap E$ is definable for every definable subset E of $V \times V$. Similarly, $\Delta_V \cap E$ is definable for every definable subset E of $V \times V$. Hence, $(V \times_W V) \cap \Delta_V \cap E$ is definable for every definable subset E of $V \times V$. From this and the observation (2) on page 5 we get our result since $\{x \in V : f(x) = g(x)\} = i^{-1}((V \times_W V) \cap \Delta_V)$, where $i : V \rightarrow \Delta_V : x \mapsto (x, x)$ is a locally definable map. \square

Finally we include the following result ([3] Proposition 3.4) which will also be useful later:

Proposition 2.12 *Let $h : H \rightarrow G$ be a locally definable covering homomorphism and suppose that H is definably τ -connected. Then*

$$\text{Ker } h \simeq \text{Aut}(H/G)$$

and $\text{Aut}(H/G)$ is abelian.

3 The universal covering homomorphism

Here we will present the proof of our main result. We start however with a special case.

3.1 A special case of the main result

The main result of the paper [5], in the language of the theory of locally definable covering homomorphisms, is the following (compare with [5] Remark 6.14). For a related result see also [8].

Theorem 3.1 ([5]) *Suppose that \mathcal{R} is an ordered vector space over an ordered division ring and G is a definably t -connected, definably compact, definable group of dimension n . Then there is a locally definable group V which is a subgroup of $(\mathcal{R}^n, +)$ and a locally definable covering homomorphism $v : V \rightarrow G$ such that $\pi_1(G) \simeq \text{Ker } v \simeq \mathbb{Z}^n$.*

In [5] Remark 6.14 it is suggested that $v : V \rightarrow G$ is in some sense the universal cover of G since we have $\pi_1(V) = 1$ ([5] Corollary 6.7). This claim can now be made more precise:

Theorem 3.2 *Suppose that \mathcal{R} is an ordered vector space over an ordered division ring and G is a definably t -connected, definably compact, definable group of dimension n . Then the locally definable covering homomorphism $v : V \rightarrow G$ is isomorphic to $\tilde{p} : \tilde{G} \rightarrow G$ and $\pi_1(G) \simeq \pi(G) \simeq \mathbb{Z}^n$.*

Proof. Suppose that $q : K \rightarrow V$ is a locally definable covering homomorphism. Then from Propositions 2.10 and 2.12 we obtain $\text{Ker}q \simeq \text{Aut}(K/V) \simeq \pi_1(V)/q_*(\pi_1(K)) = 1$ since $\pi_1(V) = 1$, by [5] Corollary 6.7. So $q : K \rightarrow V$ is a locally definable isomorphism (since it is surjective). Consequently, by [3] Lemma 3.8, the set of all $h : H \rightarrow G$ in $\text{Cov}^0(G)$ which are locally definably isomorphic to $v : V \rightarrow G$ is cofinal in $\text{Cov}^0(G)$ and hence the inverse limit $\tilde{p} : \tilde{G} \rightarrow G$ is isomorphic to $v : V \rightarrow G$. By Propositions 2.10 and 2.12 we obtain $\pi(G) \simeq \text{Ker}v \simeq \text{Aut}(V/G) \simeq \pi_1(G)$ since $\pi_1(V) = 1$. Thus the result holds as required. \square

3.2 The main result

Here we prove the main result of the paper. Before we proceed we need the following propositions.

Proposition 3.3 *Let G be a definably τ -connected locally definable group of dimension k . Then there is a countable collection $\{O_s : s \in S\}$ of τ -open definably τ -connected definable subsets of G with $G = \bigcup\{O_s : s \in S\}$ and, for each $s \in S$, O_s is definably homeomorphic to an open cell in R^k . In particular, for each $s \in S$, the o-minimal fundamental group $\pi_1(O_s)$ with respect to the induced τ -topology on O_s is trivial*

Proof. By the first part of the proof of [9] Lemma 2.13, there is a locally definable subset U of G such that $\dim(G \setminus U) < \dim G$, the intersection of any definable subset of G with U is a definable subset and the induced τ -topology on U coincides with the induced topology from R^n . Without loss of generality we can assume that U is a countable union of cells of dimension $k = \dim G$. Note that on each of these k -cells in U , the induced τ -topology coincides with the induced topology from R^n . By [3] Lemma 3.5 countably many translates of U cover G , so countably many τ -open definably τ -connected subsets of G which are definably τ -homeomorphic to k -cells in U cover G .

Let $\{O_s : s \in S\}$ be this collection. To finish, it is enough to show that if C is an open cell in R^k then $\pi_1(C) = 1$ (since definable homeomorphisms induce isomorphisms between the o-minimal fundamental groups).

We will show this by induction on the construction of cells. If C has dimension zero then this is obvious. Assume that $C = (a, b) \subseteq R \cup \{-\infty, +\infty\}$ is an open cell of dimension one and $\alpha : [0, q] \rightarrow C$ is a definable loop at $c \in C$. Consider the continuous definable map $H : [0, q] \times [0, q] \rightarrow C$ given by

$$H(t, x) := \alpha\left(\frac{t+x+|t-x|}{2}\right).$$

Then H is a definable homotopy between α and ϵ_c . So $[\alpha] = 1$ and $\pi_1(C) = 1$ as required.

Suppose that B is a cell, $\pi_1(B) = 1$ and $C = (f, g)_B$ with $f, g : B \rightarrow R \cup \{-\infty, +\infty\}$ continuous definable maps such that $f < g$. Let $c = (b, a) \in C$ and let $\sigma : [0, q] \rightarrow C$ be a definable loop at c . We can write $\sigma(t) = (\beta(t), \alpha(t))$ for some definable loop $\beta : [0, q] \rightarrow B$ at b and $\alpha : [0, q] \rightarrow R$ a definable loop at a . By assumption there is a definable homotopy $F : [0, q] \times [0, p] \rightarrow B$ between β and ϵ_b and a definable homotopy $E : [0, q] \times [0, r] \rightarrow R$ between α and ϵ_a . Let $H : [0, q] \times [0, \max\{r, p\}] \rightarrow C$ be the definable map such that if $r \leq p$ then

$$H(t, x) = \begin{cases} (F(t, x), E(t, x)) & \text{if } x \leq r, \\ (F(t, x), E(t, r)) & \text{if } x \geq r, \end{cases}$$

and if $p \leq r$ then

$$H(t, x) = \begin{cases} (F(t, x), E(t, x)) & \text{if } x \leq p, \\ (F(t, p), E(t, x)) & \text{if } x \geq p. \end{cases}$$

Then H is a definable homotopy between σ and ϵ_c . So $[\sigma] = 1$ and $\pi_1(C) = 1$ as required. \square

Proposition 3.4 *Let G be a definably τ -connected locally definable group. Then the o-minimal fundamental group $\pi_1(G)$ of G (with respect to the induced τ -topology) is countable. In fact, if G is definable, then $\pi_1(G)$ is finitely generated.*

Proof. Consider the countable cover $\{O_s : s \in S\}$ of G by τ -open definably τ -connected definable subsets given by Proposition 3.3. For each pair of distinct elements $s, t \in S$ such that $O_s \cap O_t \neq \emptyset$ and for each definably

τ -connected component C of this intersection choose a point $a_{s,t,C} \in C$. For each pair $(a_{s,t,C}, a_{s',t',D})$ of distinct points and $l \in \{s, t\} \cap \{s', t'\}$ let $\sigma_{(C,D),s,t,s',t'}^l$ be a τ -path in O_l from $a_{s,t,C}$ to $a_{s',t',D}$. Also, for each $a_{s,t,C}$ such that $e_G \in O_s$, let $\sigma_{(e_G,C),s,t}^s$ (respectively, $\sigma_{(C,e_G),s,t}^s$) be a τ -path in O_s from e_G to $a_{s,t,C}$ (respectively, from $a_{s,t,C}$ to e_G).

Let Σ be the countable collection of all τ -paths $\sigma_{(C,D),s,t,s',t'}^l$, $\sigma_{(e_G,C),s,t}^s$ and $\sigma_{(C,e_G),s,t}^s$ as above. The set Σ generates a free countable language Σ^* such that some of its words correspond in an obvious way to τ -paths in G . To finish the proof it is enough to show that any τ -loop in G is τ -homotopic to a τ -loop which is a concatenation of τ -paths in Σ and thus corresponds to a word in Σ^* .

Let λ be a τ -loop in G . Then by saturation and o-minimality there exists a minimal k for which we can choose points $0 = t(0) < t(1) < \dots < t(k) < t(k+1) = q_\lambda$ such that for each $j = 0, \dots, k$, we have $\lambda([t(j), t(j+1)]) \subseteq O_{s(j)}$ for some $s(j) \in S$. Thus $\lambda = \lambda_0 \cdot \dots \cdot \lambda_k$ where, for each j , $\lambda_j : [0, q_{\lambda_j}] \rightarrow G$ is the τ -path with $q_{\lambda_j} = t(j+1) - t(j)$ and given by $\lambda_j(t) = \lambda(t + t(j))$. For $i = 0, \dots, k-1$, let C_i be the definably τ -connected component of $O_{s(i)} \cap O_{s(i+1)}$ containing $\lambda_i(q_{\lambda_i})$ and let ϵ_i be a τ -path in C_i from $a_{s(i),s(i+1),C_i}$ to $\lambda_i(q_{\lambda_i})$. Let σ_0 be the τ -path $\sigma_{(e_G,C_0),s(0),s(1)}^{s(0)}$ in $O_{s(0)}$ and let σ_k be the τ -path $\sigma_{(C_{k-1},e_G),s(k-1),s(k)}^{s(k)}$ in $O_{s(k)}$. Finally, for $i = 1, \dots, k-1$, let σ_i be the τ -path $\sigma_{(C_{i-1},C_i),s(i-1),s(i),s(i+1)}^{s(i)}$ in $O_{s(i)}$. Since by Proposition 3.3, $\pi_1(O_{s(j)}) = 1$ for all $j = 0, \dots, k$, we have that σ_0 is τ -homotopic to $\lambda_0 \cdot \epsilon_0^{-1}$, σ_k is τ -homotopic to $\epsilon_{k-1} \cdot \lambda_k$ and, for each $i = 1, \dots, k-1$, σ_i is τ -homotopic to $\epsilon_{i-1} \cdot \lambda_i \cdot \epsilon_i^{-1}$. Hence, λ is τ -homotopic to $\sigma_0 \cdot \sigma_1 \cdot \dots \cdot \sigma_k \in \Sigma^*$ as required.

Assume now that G is definable. Let K be the simplicial complex of dimension one whose vertices are the end points of the τ -paths in Σ and whose edges are the images of the τ -paths in Σ . Clearly we have a homomorphism $\pi_1(|K|, e_G) \rightarrow \pi_1(G)$ which sends an edge loop in K into the τ -loop it determines in G . This is well defined since if two edge loops are homotopic in $|K|$ then they are obviously τ -homotopic in G . The argument in the previous paragraph shows that the homomorphism $\pi_1(|K|, e_G) \rightarrow \pi_1(G)$ is surjective. Now as explained in [2] Chapter 3, Subsection 3.5.3, the fundamental group of a (finite) simplicial complex is finitely generated. Hence $\pi_1(G)$ is also finitely generated. \square

For the rest of the section, fix G a definably τ -connected locally definable group.

We will construct now an “abstract universal covering map” $u : U \rightarrow G$ from which we will obtain a locally definable covering map $v : V \rightarrow G$ which

will be a locally definable covering homomorphism once we put a suitable locally definable group structure on V . The later will then be shown to be isomorphic to $\tilde{p} : \tilde{G} \longrightarrow G$.

Given two τ -paths $\sigma : [0, q_\sigma] \longrightarrow G$ and $\lambda : [0, q_\lambda] \longrightarrow G$ in G , we put $\sigma \simeq \lambda$ if and only if $\sigma(0) = \lambda(0) = e_G$, $\sigma(q_\sigma) = \lambda(q_\lambda)$ and $[\sigma \cdot \lambda^{-1}] = 1 \in \pi_1(G)$. Here, $\lambda^{-1} : [0, q_{\lambda^{-1}}] \longrightarrow G$ is the τ -path such that $q_{\lambda^{-1}} = q_\lambda$ and $\lambda^{-1}(t) = \lambda(q_\lambda - t)$ for every t in $[0, q_{\lambda^{-1}}]$. The relation \simeq is an equivalence relation and we denote the equivalence class of σ under \simeq by $\langle \sigma \rangle$. For each $s \in S$, let $U_s = \{ \langle \sigma \rangle : \sigma \text{ is a } \tau\text{-path in } G \text{ such that } \sigma(0) = e_G \text{ and } \sigma(q_\sigma) \in O_s \}$ and fix a τ -path $\sigma_s : [0, q_s] \longrightarrow G$ such that $\sigma(0) = e_G$ and $\sigma(q_s) \in O_s$.

Claim 3.5 *There is a well-defined bijection*

$$\phi_s : U_s \longrightarrow O_s \times \pi_1(G) : \langle \lambda \rangle \mapsto (\lambda(q_\lambda), [\lambda \cdot \eta \cdot \sigma_s^{-1}]),$$

where $\eta : [0, q_\eta] \longrightarrow O_s$ is a τ -path in O_s such that $\eta(0) = \lambda(q_\lambda)$ and $\eta(q_\eta) = \sigma_s(q_s)$.

Proof. Clearly, ϕ_s is well-defined, i.e. it does not depend on the choice of η since $\pi_1(O_s) = 1$ (Proposition 3.3) and for $\langle \lambda \rangle = \langle \lambda' \rangle$ we have $\lambda(q_\lambda) = \lambda(q_{\lambda'})$ and

$$\begin{aligned} [\lambda \cdot \eta \cdot \sigma_s^{-1}] &= [\lambda \cdot \lambda'^{-1} \cdot \lambda' \cdot \eta \cdot \sigma_s^{-1}] \\ &= [\lambda \cdot \lambda'^{-1}] [\lambda' \cdot \eta \cdot \sigma_s^{-1}] \\ &= [\lambda' \cdot \eta \cdot \sigma_s^{-1}]. \end{aligned}$$

Also, for $o \in O_s$ and $[\gamma] \in \pi_1(G)$ we have $\phi_s(\langle \lambda \rangle) = (o, [\gamma])$ for $\lambda = \gamma \cdot \sigma_s \cdot \eta^{-1}$, where $\eta : [0, q_\eta] \longrightarrow G$ is a τ -path in O_s such that $\eta(0) = o$ and $\eta(q_\eta) = \sigma_s(q_s)$. Thus ϕ_s is surjective. On the other hand, suppose that $\phi_s(\langle \lambda \rangle) = \phi_s(\langle \lambda' \rangle)$. Then $\lambda(q_\lambda) = \lambda'(q_{\lambda'})$ and $[\lambda \cdot \eta \cdot \sigma_s^{-1}] = [\lambda' \cdot \eta' \cdot \sigma_s^{-1}]$. But we also have

$$\begin{aligned} [\lambda \cdot \eta \cdot \sigma_s^{-1}] &= [\lambda \cdot \lambda'^{-1}] [\lambda' \cdot \eta \cdot \sigma_s^{-1}] \\ &= [\lambda \cdot \lambda'^{-1}] [\lambda' \cdot \eta' \cdot \sigma_s^{-1}] \\ &= [\lambda \cdot \lambda'^{-1}] [\lambda \cdot \eta \cdot \sigma_s^{-1}] \end{aligned}$$

(the fact $\pi_1(O_s) = 1$ (Proposition 3.3) implies that $\lambda' \cdot \eta \cdot \sigma_s^{-1}$ is τ -homotopic to $\lambda' \cdot \eta' \cdot \sigma_s^{-1}$). Thus we have $[\lambda \cdot \lambda'^{-1}] = 1$, $\langle \lambda \rangle = \langle \lambda' \rangle$ and ϕ_s is injective. \square

Set $U = \cup \{U_s : s \in S\}$ and let $u : U \longrightarrow G$ be the surjective map given by $u(\langle \lambda \rangle) = \lambda(q_\lambda)$. By Claim 3.5 and its proof we have, for each $s \in S$,

(•) $u^{-1}(O_s)$ is the disjoint union of the subsets $\phi_s^{-1}(O_s \times \{[\gamma]\})$ with $[\gamma] \in \pi_1(G)$;

(••) u restricted to $\phi_s^{-1}(O_s \times \{[\gamma]\})$ is a bijection onto O_s .

Claim 3.6 *If $s, t \in S$ are such that $O_s \cap O_t \neq \emptyset$ and C is a definably τ -connected component of $O_s \cap O_t$, then the restriction of the bijection*

$$\phi_t \circ \phi_s^{-1} : (O_s \cap O_t) \times \pi_1(G) \longrightarrow (O_s \cap O_t) \times \pi_1(G)$$

to $C \times \{[\gamma]\}$ is the same as $C \times \{[\gamma]\} \longrightarrow C \times \{[\gamma_C]\} : (o, [\gamma]) \mapsto (o, [\gamma_C])$ for some $[\gamma_C] \in \pi_1(G)$.

Proof. Let $o \in C$. By Claim 3.5 and its proof, $\phi_t \circ \phi_s^{-1}(o, [\gamma]) = (o, [\lambda \cdot \eta' \cdot \sigma_t^{-1}])$, where $\lambda = \gamma \cdot \sigma_s \cdot \eta^{-1}$ and $\eta : [0, q_\eta] \longrightarrow O_s$ and $\eta' : [0, q_{\eta'}] \longrightarrow O_t$ are τ -paths such that $\eta(0) = \eta'(0) = o$, $\eta(q_\eta) = \sigma_s(q_s)$ and $\eta'(q_{\eta'}) = \sigma_t(q_t)$. Thus to prove the claim it is enough to show that $[\gamma \cdot \sigma_s \cdot \eta^{-1} \cdot \eta' \cdot \sigma_t^{-1}] = [\gamma \cdot \sigma_s \cdot \theta^{-1} \cdot \theta' \cdot \sigma_t^{-1}]$ whenever $\theta : [0, q_\theta] \longrightarrow O_s$ and $\theta' : [0, q_{\theta'}] \longrightarrow O_t$ are τ -paths such that $\theta(0) = \theta'(0) \in C$, $\theta(q_\theta) = \sigma_s(q_s)$ and $\theta'(q_{\theta'}) = \sigma_t(q_t)$.

Since C is τ -path connected, let $\rho : [0, q_\rho] \longrightarrow C$ be a τ -path such that $\rho(0) = o$ and $\rho(q_\rho) = \theta(0) = \theta'(0)$. Now using the fact that $\pi_1(O_s) = \pi_1(O_t) = 1$ (Proposition 3.3) we see that $\rho \cdot \theta$ (respectively $\theta' \cdot \rho^{-1}$) is τ -homotopic to η (respectively η'^{-1}). Thus $\eta^{-1} \cdot \eta'$ is τ -homotopic to $\theta^{-1} \cdot \theta'$. From here we get $[\gamma \cdot \sigma_s \cdot \eta^{-1} \cdot \eta' \cdot \sigma_t^{-1}] = [\gamma \cdot \sigma_s \cdot \theta^{-1} \cdot \theta' \cdot \sigma_t^{-1}]$ as required. \square

We will let $1 \in R$ be a fixed 0-definable positive element of R and denote the element $n \cdot 1$ of the group $(R, 0, +)$ by n . By Proposition 3.4, we will identify $\pi_1(G)$ with a subset of $\mathbb{N} \subseteq R$ and thus, assuming that $G \subseteq R^l$,

$$O_{(s, [\gamma])} := O_s \times \{[\gamma]\}$$

is a definable subset of R^{l+1} and $O := \cup\{O_{(s, [\gamma])} : (s, [\gamma]) \in S \times \pi_1(G)\}$ is a locally definable subset of R^{l+1} .

Let $\{(s_i, l_j) : (i, j) \in \mathbb{N} \times \mathbb{N}\}$ be an enumeration of $S \times \pi_1(G)$. Define inductively (on i) the sets $N_i, O'_{(s_i, l_j)}$ and $V_{(s_i, l_j)}$ in the following way:

$$N_0 = \emptyset \text{ and } O'_{(s_0, l_j)} = V_{(s_0, l_j)} = O_{(s_0, l_j)};$$

assuming that $N_i, O'_{(s_i, l_j)}$ and $V_{(s_i, l_j)}$ were already defined, put

$$N_{i+1} = \{n : n < i+1 \text{ and } O_{s_{i+1}} \cap O_{s_n} \neq \emptyset\};$$

$O'_{(s_{i+1}, l_j)} = O_{(s_{i+1}, l_j)} \setminus \cup\{C \times \{l_j\} : C \text{ is a definably } \tau\text{-connected component of } O_{s_{i+1}} \cap O_{s_n}, n \in N_{i+1} \text{ and } (\phi_{s_{i+1}} \circ \phi_{s_n}^{-1})|_{C \times \{l_j\}}(o, l_C) = (o, l_j)\};$

$V_{(s_{i+1}, l_j)} = O'_{(s_{i+1}, l_j)} \cup \cup\{V_{(s_n, l_C)}^C : C \text{ is a definably } \tau\text{-connected component of } O_{s_{i+1}} \cap O_{s_n}, n \in N_{i+1} \text{ and } (\phi_{s_{i+1}} \circ \phi_{s_n}^{-1})|_{C \times \{l_C\}}(o, l_C) = (o, l_j)\},$ where $V_{(s_n, l_C)}^C = \{x \in V_{(s_n, l_C)} : x = (o, l) \text{ with } o \in C\}$.¹

¹We wish to thank here Elias Baro (Universidad Autónoma de Madrid) for pointing out an imprecision on an early version of our inductive construction.

By Claim 3.6, the sets $V_{(s_i, l_j)}$ are well defined definable subsets of R^{l+1} .

Claim 3.7 *Let $V = \cup\{V_{(s_i, l_j)} : (i, j) \in \mathbb{N} \times \mathbb{N}\}$. Then V is a locally definable set and the surjective map $v : V \rightarrow G$ given by the projection onto the first coordinate is a locally definable covering map, i.e., for each i , we have:*

- (1) $v^{-1}(O_{s_i}) = \cup\{V_{(s_i, l_j)} : j \in \mathbb{N}\}$ (disjoint union);
- (2) $v|_{V_{(s_i, l_j)}}$ is a definable bijection onto O_{s_i} .

Proof. This follows by induction on the definition of the definable sets $V_{(s_i, l_j)}$ together with Claim 3.6. \square

Fix $s_{e_G} \in S$ such that $e_G \in O_{s_{e_G}}$ and assume without loss of generality that $\sigma_{s_{e_G}} = \epsilon_{e_G}$ (the trivial τ -loop at e_G , see page 7). Let $e_V = (e_G, [\epsilon_{e_G}]) \in V$.

Claim 3.8 *Let $(o, [\gamma]) \in V$ and suppose that $\lambda : [0, q_\lambda] \rightarrow G$ is a τ -path such that $\lambda(0) = e_G$, $\lambda(q_\lambda) = o$ and $\phi_s(\langle \lambda \rangle) = (o, [\gamma])$. Then there exists a v -path $\tilde{\lambda} : [0, q_{\tilde{\lambda}}] \rightarrow V$ in V such that $\tilde{\lambda}(0) = e_V$, $\tilde{\lambda}(q_{\tilde{\lambda}}) = (o, [\gamma])$ and $v \circ \tilde{\lambda} = \lambda$. In particular, V is v -path connected and the o -minimal fundamental group $\pi_1(V)$ of V with respect to the v -topology is trivial.*

Proof. By saturation and o -minimality there exists a minimal k for which we can choose points $0 = t(0) < t(1) < \dots < t(k) < t(k+1) = q_\lambda$ such that for each $j = 0, \dots, k$, we have $\lambda([t(j), t(j+1)]) \subseteq O_{s(j)}$ for some $s(j) \in S$.

We prove the result by induction on k . If $k = 0$, then $\lambda([0, q_\lambda]) \subseteq O_{s(0)}$ and $[\gamma] = [\epsilon_{e_G}]$, and we put $\tilde{\lambda} := (v|_{V_{(s(0), [\epsilon_{e_G}])}})^{-1} \circ \lambda$. For the inductive step let $\eta := \lambda|_{[0, t(k)]}$ and $\delta : [0, q_\lambda - t(k)] \rightarrow O_{s(k)} : t \mapsto \lambda(t + t(k))$. By the induction hypothesis, let $\tilde{\eta} : [0, t(k)] \rightarrow V$ be a v -path such that $\tilde{\eta}(0) = e_V$, $\tilde{\eta}(t(k)) = (\eta(t(k)), [\gamma'])$ and $v \circ \tilde{\eta} = \eta$, where $\phi_{s(k-1)}(\langle \eta \rangle) = (\eta(t(k)), [\gamma'])$. Assume that $s(k)$ appear after $s(k-1)$ in the enumeration of S introduced before. The other case is treated symmetrically. If $\phi_{s(k)}(\langle \eta \rangle) = (\eta(t(k)), [\gamma''])$, then $(\eta(t(k)), [\gamma'])$ and $(\eta(t(k)), [\gamma''])$ are the same point in $V_{(s(k), [\gamma''])}$. Since $\lambda = \eta \cdot \delta$ and $\pi_1(O_{s(k)}) = 1$ (Proposition 3.3), we have $[\gamma] = [\gamma'']$. Thus, if $\tilde{\delta} := (v|_{V_{(s(k), [\gamma''])}})^{-1} \circ \delta$, then $\tilde{\eta}(t(k)) = \tilde{\delta}(0)$, and $\tilde{\lambda} := \tilde{\eta} \cdot \tilde{\delta}$ satisfies the claim. So, in particular, V is v -path connected.

By Lemma 2.7, any v -loop δ in V at e_V is the unique lifting $\tilde{\lambda}$ of a τ -loop $\lambda = v \circ \delta$ in G at e_G as defined in the previous paragraph. So we see that $(e_G, [\epsilon_{e_G}]) = e_V = \tilde{\lambda}(0)$ and $e_V = \tilde{\lambda}(q_{\tilde{\lambda}}) = (e_G, [\lambda])$. This implies that $[\lambda] = 1$ and so $v_*([\tilde{\lambda}]) = [\lambda] = 1$. Therefore, since by Proposition 2.10 (i), $v_* : \pi_1(V) \rightarrow \pi_1(G)$ is injective, it follows that $\pi_1(V) = 1$. \square

Our next goal is to make the locally definable covering map $v : V \rightarrow G$ into a locally definable covering homomorphism. For this we will need the following claim:

Claim 3.9 *Let $h : Y \rightarrow X$ be either $v : V \rightarrow G$ or $(v, v) : V \times V \rightarrow G \times G$, and let e_Y be e_V or (e_V, e_V) respectively, and e_X be e_G or (e_G, e_G) respectively. Suppose that $g : X \rightarrow G$ is a continuous locally definable map such that $g(e_X) = e_G$. Then there is a unique continuous locally definable map $\tilde{g} : Y \rightarrow V$ such that $\tilde{g}(e_Y) = e_V$ and $v \circ \tilde{g} = g \circ h$.*

Proof. The uniqueness of such a locally definable lifting \tilde{g} of $g \circ h$ follows from Lemma 2.11. To construct $\tilde{g} : Y \rightarrow V$ we will use the fact that $h : Y \rightarrow X$ is a locally definable covering map, and by Lemma 2.5 and Claim 3.8, $\pi_1(V \times V) \simeq \pi_1(V) \times \pi_1(V) = 1$. We will also use the notation introduced right after Lemma 2.7.

Let $\{U_l : l \in L\}$ be either $\{O_s : s \in S\}$ or $\{O_s \times O_t : s, t \in S\}$. Let $f = g \circ h : Y \rightarrow G$ and for each $l \in L$, let $\{V_i^l : i \in I_l\}$ be the definably h -connected components of $f^{-1}(U_l)$. For all $l \in L$, $i \in I_l$, choose $y_i^l \in V_i^l$ such that if $e_Y \in V_i^l$ then $e_Y = y_i^l$, and let η_i^l be an h -path in Y from e_Y to y_i^l . Since each V_i^l is definably h -connected, by Lemma 2.9 there is a uniformly definable family $\{\gamma_i^l(w) : w \in V_i^l\}$ of h -paths in V_i^l from y_i^l to w . For $w \in V_i^l$, let $\delta_i^l(w)$ be the h -path $\eta_i^l \cdot \gamma_i^l(w)$ from e_Y to w . Let $\sigma_i^l(w) = f \circ \delta_i^l(w)$ and put $f(w) = e_Y * \sigma_i^l(w)$.

If $w \in V_i^l \cap V_j^k$ then we have another h -path $\delta_j^k(w)$ from e_Y to w obtained from V_j^k , and $f \circ (\delta_j^k(w) \cdot (\delta_i^l(w))^{-1}) = \sigma_j^k(w) \cdot (\sigma_i^l(w))^{-1}$ is a τ -path from e_G to e_G . By hypothesis, $[\sigma_j^k(w) \cdot (\sigma_i^l(w))^{-1}] \in f_*(\pi_1(Y)) = 1$ and by Remark 2.8 (2), $e_Y * \sigma_i^l(w) = e_Y * \sigma_j^k(w)$ and so \tilde{f} is well defined. Note that the same argument shows that \tilde{f} does not depend on the choice of the points $y_i^l \in V_i^l$ or of the h -paths η_i^l .

We now show that \tilde{f} is a locally definable map. For this it is enough to show that $\tilde{f}|_{V_i^l}$ is a definable map since by saturation any definable subset of Y is contained in a finite union of V_i^l 's. But for $w \in V_i^l$, we have $\tilde{f}(w) = e_Y * \sigma_i^l(w)$ which is the endpoint of the lifting $\widetilde{\sigma_j^k(w)}$ of $\sigma_j^k(w)$ starting at e_Y . Since $\sigma_j^k(w) = (f \circ \eta_i^l) \cdot (f \circ \gamma_i^l(w))$, $\tilde{f}(w)$ is the endpoint of the lifting $\widetilde{f \circ \gamma_i^l(w)}$ of $f \circ \gamma_i^l(w)$ starting at the endpoint $\widetilde{f \circ \eta_i^l(q_{\eta_i^l})}$ of the lifting $\widetilde{f \circ \eta_i^l}$ of $f \circ \eta_i^l$. Thus, if W_i^l is a v -open subset of $v^{-1}(O_l)$ such that $v|_{W_i^l} : W_i^l \rightarrow O_l$ is a definable homeomorphism and $\widetilde{f \circ \eta_i^l(q_{\eta_i^l})} \in W_i^l$, then $\tilde{f}(w) = ((v|_{W_i^l})^{-1} \circ (f \circ \gamma_i^l(w)))(q_{\gamma_i^l(w)})$ where $q_{\gamma_i^l(w)}$ is the end point of the domain of $\gamma_i^l(w)$.

To finish we need to show that $\tilde{g} := \tilde{f}$ is continuous. For this we use $v \circ \tilde{g} = g \circ h = f$ (which is immediate from the above characterization of $\tilde{f}(w)$) and the fact that, as remarked after Definition 2.2, $v : V \rightarrow G$ is an open mapping. \square

Let $\mu : G \times G \rightarrow G$ and $\iota : G \rightarrow G$ be the multiplication and the inverse in G . Let $\tilde{\mu} : V \times V \rightarrow V$ and $\tilde{\iota} : V \rightarrow V$ be the unique continuous locally definable maps given by Claim 3.9.

Claim 3.10 $(V, \tilde{\mu}, \tilde{\iota}, e_V)$ is a locally definable group and $v : V \rightarrow G$ is a locally definable covering homomorphism.

Proof. We have that $\tilde{\mu} \circ (\tilde{\mu} \times \text{id}_V)$ and $\tilde{\mu} \circ (\text{id}_V \times \tilde{\mu})$ are the liftings of the same continuous locally definable map $\mu \circ (\mu \times \text{id}_G) = \mu \circ (\text{id}_G \times \mu)$ and they coincide at (e_V, e_V, e_V) . Thus by Lemma 2.11, we have $\tilde{\mu} \circ (\tilde{\mu} \times \text{id}_V) = \tilde{\mu} \circ (\text{id}_V \times \tilde{\mu})$ and so $(V, \tilde{\mu})$ is a locally definable semigroup. Similarly, we see that $\tilde{\mu} \circ (\tilde{\iota} \times \text{id}_V) \circ \Delta_V = e_V = \tilde{\mu} \circ (\text{id}_V \times \tilde{\iota}) \circ \Delta_V$ and $\tilde{\mu} \circ i_1^V = \text{id}_V = \tilde{\mu} \circ i_2^V$ where $\Delta_V : V \rightarrow V \times V$ is the diagonal map, $i_1^V : V \rightarrow V \times V : v \mapsto (v, e_V)$ and $i_2^V : V \rightarrow V \times V : v \mapsto (e_V, v)$. Thus $(V, \tilde{\mu}, \tilde{\iota}, e_V)$ is a locally definable group as required. Since $v \circ \tilde{\mu} = \mu \circ (v, v)$ and $v \circ \tilde{\iota} = \iota \circ v$, it follows that $v : V \rightarrow G$ is a locally definable homomorphism which must be a locally definable covering homomorphism since it is also a locally definable covering map. \square

We are now ready to prove the main theorem of the paper (Theorem 1.4 in the introduction is a special case of this):

Theorem 3.11 *Let G be a definably τ -connected locally definable group. Then the o-minimal universal covering homomorphism $\tilde{p} : \tilde{G} \rightarrow G$ is a locally definable covering homomorphism and $\pi_1(G)$ is isomorphic to $\pi(\tilde{G})$.*

Proof. Suppose that $q : K \rightarrow V$ is a locally definable covering homomorphism. Then from Propositions 2.10 and 2.12 we obtain $\text{Ker}q \simeq \text{Aut}(K/V) \simeq \pi_1(V)/q_*(\pi_1(K)) = 1$ since $\pi_1(V) = 1$, by Claim 3.8. So $q : K \rightarrow V$ is a locally definable isomorphism (since it is surjective). Consequently, by [3] Lemma 3.8, the set of all $h : H \rightarrow G$ in $\text{Cov}^0(G)$ which are locally definably isomorphic to $v : V \rightarrow G$ is cofinal in $\text{Cov}^0(G)$ and hence the inverse limit $\tilde{p} : \tilde{G} \rightarrow G$ is isomorphic to $v : V \rightarrow G$. By Propositions 2.10 and 2.12 we obtain $\pi(G) \simeq \text{Ker}v \simeq \text{Aut}(V/G) \simeq \pi_1(G)$ since $\pi_1(V) = 1$. Thus the result holds as required. \square

Proof of Corollary 1.5: Let G be a definably t -connected definable group. By Proposition 3.4, $\pi_1(G)$ is finitely generated and, by the isomorphism $\pi_1(G) \simeq \pi(G)$ (Theorem 3.11) and [3] Proposition 3.11, $\pi_1(G)$ is abelian. If G is abelian, then by [12] the assumptions of [3] Theorem 3.15 hold for G . Therefore we have $\pi_1(G) \simeq \pi(G) \simeq \mathbb{Z}^l$ and $G[k] \simeq (\mathbb{Z}/k\mathbb{Z})^l$ for some $l \in \mathbb{N}$ as required.

References

- [1] A. Berarducci and M. Otero *O-minimal fundamental group, homology and manifolds* J. London Math. Soc. **65** (2) (2002) 257–270.
- [2] C. T. J. Dodson and P. E. Parker *A User's Guide to Algebraic Topology* Kluwer Academic Press 1997.
- [3] M. Edmundo *Covers of groups definable in o-minimal structures* Illinois J. Math. **49** (1) (2005) 99–120.
- [4] M. Edmundo and M. Otero *Definably compact abelian groups* J. Math. Logic **4** (2) (2004) 163–180.
- [5] P. Eleftheriou and S. Starchenko *Groups definable in ordered vector spaces over ordered division rings* J. Symb. Logic (to appear).
- [6] L. van den Dries *Tame Topology and o-minimal Structures* Cambridge University Press 1998.
- [7] A. Hatcher *Algebraic Topology* Cambridge University Press 2002.
- [8] A. Onshuus *Groups definable in $(\mathbb{Z}, +, <)$* Preprint 2005.
- [9] Y. Peterzil and S. Starchenko *Definable homomorphisms of abelian groups definable in o-minimal structures* Ann. Pure Appl. Logic **101** (1) (1999) 1–27.
- [10] A. Pillay *On groups and fields definable in o-minimal structures* J. Pure Appl. Algebra **53** (1988) 239–255.
- [11] L. Ribes and P. Zalesskii *Profinite Groups* A Series of Modern Surveys in Mathematics, Volume 40, Springer 2000.

[12] A.Strzebonski *Euler characteristic in semialgebraic and other o-minimal groups* J. Pure Appl. Algebra **96** (1994) 173–201.