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Abstract

We develop a basic theory of rosy groups and we study groups of small Uþ-

rank satisfying NIP and having �nitely satis�able generics: Uþ-rank 1 implies

that the group is abelian-by-�nite, Uþ-rank 2 implies that the group is solvable-

by-�nite, Uþ-rank 2, and not being nilpotent-by-�nite implies the existence of

an interpretable algebraically closed �eld.

0 Introduction

Motivation

If one hopes to apply geometric stability theory methods to study groups which are
not necessarily stable, the weakest possible assumption that seems to be necessary,
is rosiness, i.e. the assumption that we have an independence relation satisfying a
minimal list of nice properties necessary to develop forking calculus.

A general goal is to apply techniques from stable groups to the much wider class
of rosy groups. During the last ten years, signi�cant progress in the studies of groups
in simple theories (which are always rosy) has been made. In this paper, following [6],
we concentrate on another generalization of stable groups, namely, we will study rosy
groups satisfying NIP and having �nitely satis�able generics (de�nitions to follow).
In particular, our results generalize the appropriate theorems about stable groups
and de�nably compact groups de�nable in o-minimal expansions of real closed �elds.

Another motivation is the fact that in the same way as groups of �nite Morley
rank generalize algebraic groups over algebraically closed �elds, the groups that we
consider (i.e. superrosy groups satisfying NIP and having �nitely satis�able generics)
are a common generalization of algebraic groups over algebraically closed �elds and
compact Lie groups.

There is a long history of structural theorems about groups in model theory. For
instance, one has the following [4]:
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Theorem 0.1. Let G be a superstable group. Then
(a) if it is of U-rank 1, it is abelian-by-�nite, and
(b) if it is of U-rank 2, it is solvable-by-�nite.

In comparison, here are the corresponding theorems about groups in o-minimal struc-
tures [11, 8]:

Theorem 0.2. Let G be a de�nably connected group de�nable in a o-minimal struc-
ture. Then

(a) (Razenj) if it is of dimension 1, it is isomorphic to either
⊕

p∈P Zp∞ ⊕
⊕

δ Q
or

⊕
δ Q, and, in particular, it is abelian.

(b) (Nesin, Pillay, Razenj) if it is of dimension 2, and non-abelian, it is R+oR∗
>0,

for some real closed �eld R, and, in particular, it is solvable.

Our initial goal was to obtain results along these lines in the more general setting
of superrosy groups with hereditary fsg and the NIP. Indeed, we have proved the
following theorems.

Theorem 1. Let G be superrosy with NIP. Then if G is of Uþ-rank 1 and has fsg,
it is abelian-by-�nite.

Theorem 2. Let G be superrosy with NIP. Then if G is of Uþ-rank 2 and has
hereditarily fsg, it is solvable-by-�nite.

While in the case of groups, there are a rich class of non-stable examples of
dependent, superrosy groups with �nitely satis�able generics, the same is not true
of �elds. In fact, we show

Theorem 3. Suppose that K is a superrosy �eld and K+ has fsg. Then K is alge-
braically closed.

Finally, we show

Theorem 4. Assume that G has NIP, hereditarily fsg, Uþ(G)=2 and G is not
nilpotent-by-�nite. Then, after possibly passing to a de�nable subgroup of �nite in-
dex and quotienting by its �nite center, G is (de�nably) the semidirect product of the
additive and multiplicative groups of an algebraically closed �eld F interpretable in
G, and moreover G = G00.

Preliminaries

Throughout, we may assume that we work in a monster model (i.e. large κ-saturated
model) C of a theory T . G will always denote a de�nable group in this model, and all
collections of parameters, A,B,C etc., are assumed to be of size less than κ. (With
the one exception, of course, being when we consider a global type, p, over all of C.)
We write G multiplicatively, with identity e.

When we write �de�nable� or �type de�nable� without further quali�cation, we
will always mean �de�nable with parameters� or �type de�nable with parameters�
respectively.

2



Rosy Theories

A model, M , is said to be rosy if it admits a notion of independence which extends
to M eq. More precisely, we have the following de�nition (See, for instance, [9], or [1]
for an alternate treatment):

De�nition 0.3. T is rosy if and only if there exists a ternary relation, |̂ ∗, on both
real and imaginary subsets (we treat tuples as subsets) of models of T such that:

1. |̂ ∗ is automorphism invariant.

2. If c ∈acl(aB)\acl(B), then a 6 |̂ ∗
B
c.

3. If a |̂ ∗
B
C and B∪C ⊆ D, then there is some ã |= tp(a/BC) such that ã |̂ ∗

B
D.

4. There is some λ such that for all a, whenever one has (Bi)i<α with Bi ⊂ Bj

for i < j and a 6 |̂ ∗
Bi
Bj for i < j < α, then α < λ.

5. If B ⊆ C ⊆ D, then a |̂ ∗
B
D if and only if a |̂ ∗

B
C and a |̂ ∗

C
D.

6. C |̂ ∗
A
B if and only if c |̂ ∗

A
B for any �nite c ⊆ C.

7. a |̂ ∗
C
b if and only if b |̂ ∗

C
a.

We refer to a relation that satis�es (1) to (7) an independence relation. If a 6 |̂ ∗
C
b,

we say that tp(a/Cb) ∗-forks over C. A model is rosy if its theory is rosy.

Remark 0.4. Any theory with a ternary relation on Ceq satisfying (1) to (4) together
with the left to right direction of (5) is rosy, but these need not imply that the ternary
relation is an independence relation. We restrict our attention to |̂ ∗.

Alternatively, in any rosy theory, one may de�ne a particular, well-behaved, notion of
independence, namely þ-forking, and give an equivalent de�nition of rosiness based
on the behaviour of this notion of independence [5].

De�nition 0.5. A formula δ(x, a) strongly divides over A if the formula is not
almost over A and {δ(x, a′)}a′|=tp(a/A) is k-inconsistent for some k ∈ N.

We say that δ(x, a) þ-divides over A if we can �nd some tuple c such that δ(x, a)
strongly divides over Ac.

A formula þ-forks over A if it implies a (�nite) disjunction of formulas which
þ-divide over A.

We say that the type p(x) þ-divides over A if there is a formula in p(x) which
þ-divides over A; þ-forking is similarly de�ned. We say that a is þ-independent from
b over A, denoted a |̂ þ

A
b, if tp (a/Ab) does not þ-fork over A.

Fact 0.6. A theory is rosy if and only if þ-forking is a symmetric relation.

Not only is þ-forking symmetric, in fact we have (e.g. [9]):
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Fact 0.7. In a rosy theory, þ-independence is an independence relation.

Of all independence relations, þ-independence is the weakest in the following
sense:

Fact 0.8. Let |̂ ∗ be an independence relation (or, in fact, any ternary relation

satisfying (1)-(4) and the left to right direction of (5)), then a |̂ ∗
C
b⇒ a |̂ þ

C
b.

Example 0.9. 1. Any simple theory is rosy.
2. Any o-minimal theory is rosy.
3. The theory of p-adically closed valued �elds is not rosy.

The structures in which we are interested are not just rosy, but superrosy. We
will de�ne superrosy theories in terms of the Uþ-rank [9].

De�nition 0.10. We de�ne the U∗-rank inductively as follows. Let p be a complete
type over some set A. Then,

1. U∗(p) ≥ 0 if p is consistent.

2. For any ordinal α, U∗(p) ≥ α + 1 if there is some tuple a and some type
q ∈ S(Aa) such that q ⊃ p, U∗ (q) ≥ α and q ∗-forks over A.

3. For any λ limit ordinal, U∗(p) ≥ λ if and only if U∗(p) ≥ σ for all σ < λ.

An important property of U∗ is that it satis�es the Lascar inequalities:

Proposition 0.11. U∗(a/bA) + U∗(b/A) ≤ U∗(ab/A) ≤ U∗(a/bA)⊕ U∗(b/A)

Proof. As Theorem 5.1.6 in [12]. �

De�nition 0.12. T is superrosy if and only if Uþ(p) <∞ for every type p.

Clearly, a theory is superrosy if and only if there is some independence relation
such that that U∗(p) < ∞ for every p (recalling, of course, that we insist that an
independence relation extends to Ceq).

De�nition 0.13. For a de�nable set X := ϕ(C, a) we de�ne U∗(X) := sup{U∗(p) :
p ∈ S(a), ϕ(x, a) ∈ p}.

If T is of �nite U∗-rank, then for every X as above, U∗(X) = U∗(p) for some
p ∈ S(a) containing ϕ(x, a). The same conclusion is also true when X is a de�nable
group, as we will show later.

Example 0.14. 1. Any supersimple theory is superrosy, and Uþ-rank equals SU-
rank.
2. Any o-minimal theory is superrosy, and Uþ-rank equals dimension.
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Finally, the following lemma about rosy theories is quite useful: namely that
although the de�nition of þ-dividing requires that one produce a k-inconsistent set,
to get þ-forking one need only �nd an almost k-inconsistent set. That is one need
only to �nd a uniform family of formulas so that the intersection of any k members
of the family is �nite. There seems to be no reference for this fact, so we give a proof
below.

Lemma 0.15. Suppose that ϕ(a, b), and suppose that for any k distinct realizations,
b1, . . . , bk, of the non-algebraic tp(b/C) the conjunction

∧
i≤k ϕ(x, bi) de�nes a �nite

set, but a /∈ acl(C). Then a 6 |̂ ∗
C
b.

Proof. Suppose that for any k distinct realizations, b1, . . . , bk, of tp(b/C) the con-
junction

∧
i≤k ϕ(x, bi) de�nes a �nite set. By compactness, there is m such that each

such conjunction de�nes a set of size less than m. Thus there is a maximal n (possi-
bly n = 0) such that there is ~a = (a1, . . . , an) for which one may �nd in�nitely many
bi |= tp(b/C) such that each ϕ(C, bi) contains ~a. We may assume, after possibly
moving ~a by a C-automorphism, that tp(b/C~a) is not algebraic and ϕ(C, b) contains
~a.

By the maximality of n, we see that for every a′ ∈ ϕ(C, b) \ {a1, . . . , an}, b ∈
aclC(a′,~a). If a ∈ acl(bC), we are done. Otherwise, we can choose a′ |= tp(a/bC)
di�erent from a1, . . . , an so that

(∗) a′ |̂ ∗
bC
~a.

Since b ∈ aclC(a′,~a) and b /∈ aclC(~a), we get b 6 |̂ ∗
C~a
a′. This together with (∗) implies

a′ 6 |̂ ∗
C
b. Hence a 6 |̂ ∗

C
b. �

Dependence

In addition to rosiness, the groups we will consider satisfy a second condition: de-
pendence (often called the non independence property and denoted by NIP):

De�nition 0.16. T is said to have the independence property if there is ϕ(x, y), an
M |= T , and an in�nite set A ⊆ M such that for any B ⊆ A one can �nd a cB such
that ϕ(M, cB) ∩ A = B. Otherwise, T is said to be dependent.

The only consequence of dependence in groups that we will use is the following,
from [2].

Fact 0.17. If G is a group de�ned in a dependent theory, for each ϕ there is some
n such that the intersection of any �nite family of ϕ-de�nable subgroups is an inter-
section of n members of the family.

Example 0.18. 1. Any stable theory is dependent. In fact, simple and dependent is
the same as stable, and supersimple and dependent is the same as superstable.
2. p-adically closed �elds are dependent.
3. Pseudo-algebraically closed but not algebraically closed �elds are not dependent.
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Finitely Satis�able Generics

The �nal condition satis�ed by the groups we consider is that they (and sometimes
their de�nable subgroups) have �nitely satis�able generics.

First let us give a precise de�nition of translations of formulas and types which
we will use in this paper.

De�nition 0.19. We assume that G is a group de�nable in C by a formula G(x).
Let g ∈ G, ϕ(x, y) be any formula, π(x) any partial type (over a small set) and p(x)
any global type containing G(x). We de�ne:
1. ϕ∗(x,wy) := (∃u)(ϕ(u, y) ∧G(w) ∧G(u) ∧ x = w · u) and gϕ(x, y) := ϕ∗(x, gy),
2. gπ(x) := {gϕ(x) : ϕ(x) ∈ π(x)},
3. gp(x) is the unique global type implied by {gϕ(x) : ϕ(x) ∈ p(x)}.

It is obvious that gϕ(x) and gπ(x) de�ne the sets g·ϕ(G) and g·π(G), respectively.
If p ∈ S(A) extends G(x) and g ∈ A, then gp implies the unique complete type over
A, and in some situations gp will denote this complete type.

De�nition 0.20. A formula ϕ(x) (or the set ϕ(G)) is left generic if there are
g1, . . . , gn ∈ G such that g1ϕ(G) ∪ · · · ∪ gnϕ(G) = G. We say that a type is left
generic if every formula in it is left generic.

De�nition 0.21. G has �nitely satis�able generics (or fsg) if there is a global type p
containing G(x) and a model M ≺ C, of cardinality less than the degree of saturation
of C, such that for all g, gp is �nitely satis�able in M (i.e. each formula in gp
de�nes a set which intersects M).

We say that G has hereditarily fsg if every de�nable subgroup of G also has fsg.
When we consider a de�nable subgroup G of some non-saturated model (as in the

example below), we say that G has (hereditarily) fsg if the set de�ned by the same
formula in a large saturated model of theory has (hereditarily) fsg.

Remark 0.22. It is not di�cult to see that if Y ⊆ G is generic, and N is a normal
de�nable subgroup, then the image of Y under the quotient map is generic in G/N .
Thus, if G has fsg, and N is a normal de�nable subgroup, then G/N has fsg.

Example 0.23. 1. Algebraic groups have hereditarily fsg, as in fact do all stable
groups, or even stably dominated groups.
2. Compact Lie groups (which are interpretable in o-minimal structures) have hered-
itarily fsg, by [6].
3. The complex numbers, in the language of �elds together with a predicate de�ning
the algebraic closure of rational numbers, has fsg, but not hereditarily fsg.

The following fact (from [6]) is the central result about groups with �nitely sat-
is�able generics:

Fact 0.24. Suppose that G has fsg as witnessed by p. Then
1. A formula is left generic if and only if it is right generic (so we will skip the words
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`left' and `right').
2. p is generic.
3. The family of nongeneric subsets of G form an ideal, so every partial generic type
can be extended to a global one.
4. G00 (i.e. the smallest type de�nable subgroup of bounded index in G) exists, is
type de�nable over empty set, and is the stabilizer of every global generic type.

We mention here a couple of additional facts to be used later:

Remark 0.25. Note that for every X ⊆ G if g1X ∪ · · · ∪ gnX covers G, then
X−1g−1

1 ∪ · · · ∪X−1g−1
n covers G as well. Thus X generic implies X−1 is generic.

Proposition 0.26. Assume G has fsg. If G00 is de�nable, it has a unique global
generic type.

Proof. We may assume G = G00. By Fact 0.24, at least one global generic type
exists. Denote it by p. Take any generic formula ϕ(x). It is enough to show that
ϕ(x) ∈ p.

There is g ∈ G such that gϕ(x) ∈ p. So ϕ(x) ∈ g−1p. But by Fact 0.24, G = G00

stabilizes p, i.e. g−1p = p. So ϕ(x) ∈ p. �

1 Rosy groups

The facts about rosy groups we will use are all quite straightforward, and proofs
in general follow the proofs about groups in simple and stable theories. However,
there is no prior exposition of these facts in the case of rosy groups, so we will
provide proofs, or in the case where the proof is identical to that in simple theories,
a reference.

We recall the de�nition of local þ-ranks, which we will use brie�y in 1.3 below
and then repeatedly during our proof of the existence of þ-generics.

Throughout this section, G will denote a group de�nable by a formula G(x) (over
∅) in a monster model C of a rosy theory T . Such a group will be called a rosy group.

De�nition 1.1. Given a formula ψ(x), a �nite set Φ of formulas with object variables
x and parameter variables y, a �nite set of formulas Θ in the variables y, z, and
natural number k > 0, we de�ne the þΦ,Θ,k-rank of ψ inductively as follows:

1. þΦ,Θ,k(ψ) ≥ 0 if ψ is consistent.

2. For λ limit ordinal, þΦ,Θ,k(ψ) ≥ λ if and only if þΦ,Θ,k(ψ) ≥ α for all α < λ.

3. þΦ,Θ,k(ψ) ≥ α + 1 if and only if there is a ϕ ∈ Φ, some θ(y, z) ∈ Θ and
parameter c such that

(a) þΦ,Θ,k(ψ ∧ ϕ(x, a)) ≥ α for in�nitely many a |= θ(y, c), and

(b) {ϕ (x, a)}a|=θ(y,c) is k−inconsistent.
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Given a (partial) type π(x) we de�ne þΦ,Θ,k(π(x)) to be the minimum of þΦ,Θ,k(ψ)
for ψ ∈ π(x). When Φ and Θ each contain only one formula, we will write þϕ,θ,k(ψ).

We recall that a theory is rosy if and only if for each ψ,Φ,Θ, k, the local thorn
rank þΦ,Θ,k(ψ) is �nite. Given a partial type π(x), and a þΦ,Θ,k-rank, one can always

extend π(x) to a complete type of the same þΦ,Θ,k-rank as π(x). Moreover, a |̂ þ

C
b

if and only if for each Φ,Θ, k, one has that þΦ,Θ,k(tp(a/bC)) = þΦ,Θ,k(tp(a/C)).
First, and easiest, we have a collection of chain conditions. De�nitions, (from,

e.g., [13]) are repeated here for convenience.

De�nition 1.2. A family of groups {Hi : i ∈ I} is called uniformly de�nable if there
is a formula ϕ and parameters bi such that Hi is de�ned by ϕ(x, bi).

A group satis�es the uniform chain condition, or ucc, if for any formula ϕ there
is an mϕ < ω such that each chain of ϕ-de�nable groups has length at most mϕ.

Proposition 1.3. A rosy group has the ucc.

Proof. Note that if there is a chain of length ω of groups Hi := ϕ(C, bi), then by
compactness, there is a descending chain of arbitrary length. Let {Hi : i < ω · ω} be
such that for i > j, Hi < Hj. Then for k < ω, [Hkω : H(k+1)ω] ≥ ℵ0. Let ϕ̃(x, b, d) be
the formula that says �x is in the coset of ϕ(C, b) that corresponds to the element d
of M eq.� This shows that G has in�nite þeϕ,θ,2-rank for appropriate θ. �

Proposition 1.4. A superrosy group has the ωdcc, i.e. any descending chain of
de�nable groups, each with in�nite index in its predecessor, is �nite.

Proof. Suppose such a descending chain G = H0 > H1 > . . . exists. Let A be such
that each Hi is A-de�nable. We can choose a sequence (ai : i ∈ ω) such that

1. b0 /∈ acl(A), b1 /∈ aclA(b0), b2 /∈ aclA(b0, b1), . . . , where bi ∈ Ceq is a name of the
coset aiHi+1,

2. a0H0 ⊇ a1H1 ⊇ a2H2 ⊇ . . . .

Now take any a ∈
⋂

i∈ω aiHi. Then bi ∈ aclA(a) \ aclA(b<i). So a 6 |̂ þ

Ab<i
bi for i ∈ ω,

contradicting superrosiness. �

The proof also shows the following:

Proposition 1.5. A superrosy group of �nite Uþ-rank also satis�es the ωacc: any
ascending chain of de�nable groups, each with in�nite index in its succesor, is �nite.

De�nition 1.6. A group has the intersection chain condition, or icc, if for each ϕ
there is some mϕ < ω such that any chain of intersections of ϕ-de�nable groups has
length at most mϕ.

Proposition 1.7. A rosy dependent group has the icc.
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Proof. Dependent means we may apply Fact 0.17, and rosy means we may apply the
ucc. Together, they clearly give the icc. �

We never use the full icc in any proof. Rather we use the following:

Corollary 1.8. Rosy dependent groups have the icc on centralizers.

Of particular use is the centralizer connected component of G.

De�nition 1.9. The centralizer connected component is the intersection of all cen-
tralizers of �nite index.

Corollary 1.10. The centralizer connected component of a rosy dependent group has
�nite index in this group and is ∅-de�nable.

þ-Generics

We de�ne now a di�erent notion of generic for a given independence relation |̂ ∗,
modeled after the notion of a generic type in simple theories. We �rst introduce a
de�nition of a ∗-generic type, and prove several facts about them assuming that they
exist, and then show that they exist in the particular case where the independence
relation is |̂ þ. Most proofs are simply obtained from the standard proof in simple
theories by replacing |̂ by |̂ ∗. In these cases, we give a reference rather than a
proof.

It is important to note that we deal with two di�erent notions, both regularly
called �generic�. If we say simply �generic�, we will always mean generic in the sense
that �nitely many translates cover G. The notion of genericity that arises from an
independence relation |̂ ∗, which we are about to introduce, will always be referred
to as ∗-generic.

De�nition 1.11. We say that a type, p ∈ S(A), extending G(x) is left ∗-generic
over A if for all a, b ∈ G with a |= p and a |̂ ∗

A
b, one has that b · a |̂ ∗Ab. We say

that it is right ∗-generic over A if, for a, b as above, we have a · b |̂ ∗Ab. A type is
∗-generic if it is both right and left ∗-generic.

Lemma 1.12. 1. If p is left (right) ∗-generic then p does not ∗-fork over the
empty set.

2. Let a, b ∈ G. If tp(a/A) is left ∗-generic and b ∈ acl(A), then tp(b · a/A) is
also left ∗-generic.

3. Let p(x) be a type containing G(x), and let q be a non-∗-forking extension of
p. Then p is left ∗-generic if and only if q is left ∗-generic.

4. If p ∈ S(A) and B ⊆ A, and p is ∗-generic, then so is p|B.

5. If p ∈ S(A) is left ∗-generic, then p−1 is as well, where we de�ne p−1 to be
tp(a−1/A) where a is any realization of p.
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6. A type is left ∗-generic if and only if it is right ∗-generic.

7. If a |̂ ∗
A
b and tp(a/A) is ∗-generic, then so is tp(b · a/A).

Proof. 1. Let b = e.
2. Lemma 4.1.2.1 of [12].
3. Lemma 4.1.2.2 and Lemma 4.1.2.3 of [12].
4. Left (right) ∗-generic types do not ∗-fork over the empty set.
5. Lemma 4.1.2.4 of [12].
6. Note that p is left ∗-generic if and only if p−1 is right ∗-generic.
7. Note that tp(a/Ab) is ∗-generic, and thus so is tp(b · a/Ab). From this we see that
tp(b · a/A) is also ∗-generic. �

Now we prove the existence of þ-generic types. As in the corresponding proof in
the case of simple theories, the existence of þ-generics will follow from the de�nition
and examination of translation invariant local ranks.

We introduce the translation invariant strati�ed þ-ranks as a speci�c kind of local
þ-rank:

De�nition 1.13. The strati�ed þG
Φ,Θ,k-rank of a partial type π(x) is de�ned as

þΦ∗,eΘ,k(π(x) ∪ {G(x)}), where Φ∗ = {ϕ∗(x,wy) : ϕ(x, y) ∈ Φ} and Θ̃(wy,w′z) =
{θ(y, z) ∧ w = w′ ∧G(w) : θ ∈ Θ}.

While the strati�ed ranks are de�ned for formulas, it is clear that if two di�erent
formulas de�ne the same set, they have the same rank, so we may speak of the
strati�ed ranks of de�nable sets as well.

Lemma 1.14. The strati�ed rank is translation invariant.

Proof. By induction on rank: It is clear that for every ψ(x), for every Φ,Θ, and k,
and for every g ∈ G, we have þG

Φ,Θ,k(ψ(x)) ≥ 0 if and only if þG
Φ,Θ,k(gψ(x)) ≥ 0.

Now suppose that θ̃(wy, hc) ∈ Θ̃ and ϕ ∈ Φ witness that the þG
Φ,Θ,k-rank of ψ(x)

is greater than n. That is, suppose

1. þG
Φ,Θ,k(ψ(x) ∧ ϕ∗(x, hb)) ≥ n for in�nitely many hb |= θ̃(wy, hc), and

2. {ϕ∗ (x, hb)}hb|=eθ(wy,hc) is k−inconsistent.

Then θ̃(wy, (g · h)c) and ϕ ∈ Φ witness that the þG
Φ,Θ,k-rank of gψ(x) is greater than

n. �

Lemma 1.15. For a ∈ G, a |̂ þ

A
b if and only if for each Φ,Θ, k, we have that

þG
Φ,Θ,k(tp(a/Ab)) = þG

Φ,Θ,k(tp(a/A)).

Proof. For the left to right direction, if a |̂ þ

A
b, then all the local ranks of tp(a/Ab)

and tp(a/A) are equal, and in particular all of the strati�ed ranks are equal.
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For the right to left direction, �rst suppose that tp(a/Ab) þ-divides over A. This

is witnessed by some ϕ(x, b) and θ(y, c). Thus one has {ϕ∗(x, eb̃) : eb̃ |= θ̃(x, ec)} is
k-inconsistent. Hence,

þG
ϕ,θ,k(tp(a/A)) > þG

ϕ,θ,k(tp(a/A) ∪ {ϕ∗(x, eb)}) ≥ þG
ϕ,θ,k(tp(a/Ab)).

Now suppose that a 6 |̂ þ

A
b. Thus for some n, tp(a/Ab) implies a disjunction of

formulas ϕi(x, ei), i ≤ n, such that each þ-divides over A (witnessed, say, by θi and
ki respectively). As only the type of the ei over Ab matters, we may assume that
a |̂ þ

Ab
e1. Thus by the left to right direction of this lemma,

þG
ϕ1,θ1,k1

(tp(a/Abe1)) = þG
ϕ1,θ1,k1

(tp(a/Ab)).

But ϕ1, θ1, and k1 witness that tp(a/Abe1) þ-divides over A, so by the previous
paragraph,

þG
ϕ1,θ1,k(tp(a/A)) > þG

ϕ1,θ1,k1
(tp(a/Abe1)).

Thus þ-forking implies that not all of the strati�ed þ-ranks can be equal. �

Now it is a simple matter to show the existence of þ-generic types.

Theorem 1.16. There is a þ-generic type for G over A.

Proof. This is the same proof as the existence of generic types in simple theories in
Proposition 4.1.7 in [12], after one replaces D∗(πi, ϕi, ki) with þG

Φi,Θi,ki
(πi). �

We say that a partial type (or a set de�ned by this type) is ∗-generic if it can be
extended to a complete ∗-generic type.
Proposition 1.17. Let π(x,A) be a partial type extending G(x). The the following
are equivalent:

1. π is þ-generic for G,

2. þG
Φ,Θ,k(π) is the maximal possible among types in SG(A), for all Φ,Θ and all k,

3. For any g ∈ G the partial type gπ does not þ-fork over ∅,

4. For any g ∈ G the partial type gπ does not þ-fork over A.

Proof. The proofs (1) ⇒ (2), (3) ⇒ (4), and (4) ⇒ (1) are the same as those given
in Lemma 4.1.9 of [12]. We consider (2) ⇒ (3).

Suppose that gπ þ-forks over ∅. Then for some n, there are ϕi(x, bi), i ≤ n, whose
disjunction is implied by gπ, and such that each þ-divides over ∅. Thus there are θi, ki

such that {ϕi(x, b̃i) : b̃i |= θi(y, ci)} is ki-inconsistent for each i. Let Φ = {ϕ1, . . . , ϕn}
and let Θ = {θ1, . . . , θn} and let k be the max of k1, . . . , kn. Thus for each extension
of gπ to b1, . . . , bn one has (as in the proof of Lemma 1.15) that the þG

Φ,Θ,k-rank of
the extension is less than that of G(x). But since for a given Φ,Θ, k there is always
some extension of the same þG

Φ,Θ,k-rank to any set, it must be that the þG
Φ,Θ,k-rank

of gπ is less than that of G(x). As the strati�ed ranks are translation invariant, this
contradicts (2). �
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Remark 1.18. The above was rather easier than the corresponding proofs in the case
of simple theories because we restrict our attention to de�nable groups. In a similar
fashion, one could de�ne strati�ed ranks also for type-de�nable groups, and prove all
the above results in this wider context.

Question 1.19. We have obtained þ-generics by analyzing the local ranks. If one
instead works with an abstract independence relation |̂ ∗ without associated local
ranks, do ∗-generic types still exist?

As mentioned earlier, one may always �nd a type whose Uþ-rank is equal to that
of G. In fact, this is true for any independence relation |̂ ∗ for which ∗-generics
exist.

Remark 1.20. If p is a ∗-generic type of G, then U∗(p) = U∗(G). If U∗(G) <∞ and
p is such that U∗(p) = U∗(G), then p is ∗-generic. In particular, since a þ-generic
type exists, Uþ(G) = Uþ(p) where p is a complete þ-generic type.

Proof. The proof that every ∗-generic type has maximal U∗-rank is the same as
the proof of a similar fact for SU -rank (e.g. in the remarks at the beginning of
Section 5.4 of [12]). For the other direction, consider any type p ∈ S(A) extend-
ing G(x) of maximal U∗-rank. Take a |= p and b ∈ G such that a |̂ ∗

A
b. Then

U∗(p) = U∗(a/A) = U∗(a/Ab) = U∗(ba/Ab) ≤ U∗(ba) ≤ U∗(p). So ba |̂ ∗Ab, i.e. p
is ∗-generic. �

It is easy to see that our two notions of generics are not the same:

Example 1.21. Let R be an ω-saturated real closed �eld. We may think of R2 as C,
the algebraic closure of R. Consider the unit circle in R2 as a multiplicative subgroup
of C. Then consider the circle intersect an in�nitesimal neighborhood of the point
(1, 0). This is of Uþ-rank one as is S1. Thus it is þ-generic, but clearly it is not
generic.

On the other hand, we do have the converse:

Proposition 1.22. A generic type is þ-generic.

Proof. Let X ⊆ G be a generic de�nable set. We must show that each strati�ed
rank of X is maximal. Say G ⊆ g1X ∪ · · · ∪ gnX. Thus G(x) implies

∨
i≤n(x ∈ giX).

Thus the þG
Φ,Θ,k-rank of G is equal to the maximum of the þG

Φ,Θ,k-ranks of giX. But
these are all the same, as the strati�ed ranks are translation invariant. �

As in Question 1.19, it is not clear whether every generic type is ∗-generic. One
can say slightly more about the relation between generic and þ-generic in the case of
subgroups. The following is clear, but useful.

Proposition 1.23. 1. Let H be a type de�nable subgroup of G. H has bounded
index in G ⇔ H is generic in G ⇒ H is þ-generic in G.
2. Let H be a de�nable subgroup of G. H has �nite index in G ⇔ H is generic in
G ⇔ H is þ-generic in G.
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In the following considerations, we will often use cosets modulo a de�nable sub-
group H of G. Then, for every g ∈ G, ḡ will always denote the coset gH treated as
an element of Ceq.

The following will be useful later.

Proposition 1.24. Let H be an A-de�nable normal subgroup of G. If tp(g/A) is
a ∗-generic of G, then tp(ḡ/A) is a ∗-generic of G/H. Furthermore, if at least one
∗-generic type of G exists (e.g. it is the case when ∗ = þ), then all ∗-generics of
G/H over A arise in this fashion.

Proof. Assume for simplicity that A = ∅. Take any h̄ ∈ G/H such that ḡ |̂ ∗ h̄.

We need to show that h̄ḡ |̂ ∗ h̄. First we can �nd g′ |= tp(g/ḡ) so that g′ |̂ ∗
ḡ
h̄.

Then g′ |̂ ∗ h̄. Now we choose h′ |= tp(h/h̄) so that h′ |̂ ∗
h̄
g′. So g′ |̂ ∗ h′. Since

tp(g′) = tp(g) is ∗-generic, we get h′g′ |̂ ∗ h′. As h̄ = h̄′ ∈ acl(h′) and ḡ = ḡ′ imply

h̄ḡ = h̄′ḡ′ = h′g′ ∈ acl(h′g′), we get h̄ḡ |̂ ∗ h̄.
For the converse, take any ḡ which is ∗-generic in G/H. Now choose h ∈ G which

is ∗-generic in G and h |̂ ∗ g. Then ḡ |̂ ∗ h, so ḡ is ∗-generic of G/H over h. Since

h̄ ∈ acl(h), we get h̄ḡ |̂ ∗ h. Choose g′ |= tp(hg/h̄ḡ) so that g′ |̂ ∗
h̄ḡ
h. Then h |̂ ∗ g′.

Since tp(h) is ∗-generic, we get that g1 := h−1g′ is also ∗-generic. On the other hand,

ḡ′ = hg so ḡ1 = h−1g′ = h−1hg = ḡ. �

De�nition 1.25. Suppose H is an A-de�nable subgroup of G and a coset aH is
de�nable over B. A type p ∈ S(B) is a ∗-generic of aH over B if there is a non-∗-
forking extension q ∈ S(ABa) of p such that a−1q is ∗-generic of H.

It is obvious that p is þ-generic for aH if and only if it is a type extending
x ∈ aH of maximal possible strati�ed ranks (equal to the strati�ed ranks of H). If
U∗(G) < ∞, then p is ∗-generic of aH if and only if it is a type extending x ∈ aH
of maximal possible U∗-rank (and U∗(p) = U∗(H)). One can also apply the proof
of [12, Lemma 4.3.12] to conclude that if g is þ-generic for G over A, then gH is
de�nable over A, ḡ and g is þ-generic for gH over A, ḡ (the proof uses the existence
of a þ-generic in H).

In the �nal part of this section, we check some basic properties of U∗-rank in
groups. In particular, we show a version of Lascar inequalities for groups.

Proposition 1.26. Assume H is an A-de�nable subgroup of G. If tp(g/A) is a
∗-generic type of G, then U∗(G/H) = U∗(ḡ/A). Furthermore, if U∗(G) <∞ and at
least one ∗-generic type of G exists, then all elements of maximal U∗-rank in G/H
over A arise in this way.

Proof. Assume for simplicity that A = ∅. Take any h ∈ G. We need to show
that U∗(ḡ) ≥ U∗(h̄). Wlog h |̂ ∗ g. Then ḡ |̂ ∗ h. Since g is ∗-generic, we get
that hg |̂ ∗ h. Let g1 = hgh−1. Since g1h = hg, we see that g1h |̂ ∗ h and hence

g1h |̂ ∗ h. Using this, we get U∗(ḡ) = U∗(ḡ/h) = U∗(h−1g1h/h) = U∗(g1h/h) =

U∗(g1h) ≥ U∗(g1h/g1) = U∗(h̄/g1) ≥ U∗(h̄).
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The proof of the second part is similar as in Proposition 1.24. Suppose that ḡ ∈
G/H is such that U∗(ḡ) = U∗(G/H). Now choose h ∈ G which is ∗-generic in G and

h |̂ ∗ g. Then ḡ |̂ ∗ h, so U∗(ḡ/h) = U∗(G/H). Since ḡ and hg are interalgebraic over

h, we get that U∗(hg/h) = U∗(G/H) ≥ U∗(hg). So hg |̂ ∗ h. Choose g′ |= tp(hg/hg)
so that g′ |̂ ∗

hg
h. Then h |̂ ∗ g′. Since tp(h) is ∗-generic, we get that g1 := h−1g′ is

also ∗-generic. On the other hand, ḡ′ = hg so ḡ1 = h−1g′ = h−1hg = ḡ. �

Proposition 1.27 (Lascar inequalities for groups). Let H be a de�nable subgroup
of G. Then
1. α+U∗(G/H) ≤ U∗(G) ≤ U∗(H)⊕U∗(G/H) for every α < U∗(H) or α = U∗(H)
if there is a ∗-generic type of H,
2. Uþ(H) + Uþ(G/H) ≤ Uþ(G) ≤ Uþ(H)⊕ Uþ(G/H).

Proof. (2) follows from (1) and the existence of þ-generics.
(1). Wlog H is ∅-de�nable. First let us prove the right inequality. Take any λ <
U∗(G) or λ = U∗(G) if there is a ∗-generic type of G. Then, by Remark 1.20,
there is g ∈ G such that U∗(g) ≥ λ. In the following computation, gH denotes
a subset of G and ḡ = gH an element of Ceq. Using Lascar inequalities, we get
λ ≤ U∗(g) = U∗(ḡ/g)+U∗(g) ≤ U∗(g, ḡ) ≤ U∗(g/ḡ)⊕U∗(ḡ) ≤ U∗(gH)⊕U∗(G/H) =
U∗(H)⊕ U∗(G/H).

Now we turn to the left inequality. Take any α as in the proposition and β <
U∗(G/H) or β = U∗(G/H) there is an element in G/H of maximal U∗-rank. It
is enough to show that α + β ≤ U∗(G). By Remark 1.20, there are h ∈ H and
ḡ ∈ G/H such that U∗(h) ≥ α and U∗(ḡ) ≥ β. Wlog we can assume that h |̂ ∗ g.
Then U∗(gh/ḡ) ≥ U∗(gh/g) = U∗(h/g) = U∗(h) ≥ α. Let g1 = gh. Then ḡ = ḡ1

and so, by Lascar inequalities, we get U∗(G) ≥ U∗(g1) = U∗(ḡ1/g1) ⊕ U∗(g1) ≥
U∗(g1, ḡ1) ≥ U∗(g1/ḡ1) + U∗(ḡ1) = U∗(gh/ḡ) + U∗(ḡ) ≥ α+ β. �

þ-orthogonality and þ-regular types

We work in our rosy theory T . We de�ne all notions with respect to an arbitrary
independence relation |̂ ∗. In particular, everything applies to þ-independence. We
de�ne ∗-orthogonality and ∗-regular types in the same way as the corresponding
notions are de�ned in stable theories.

De�nition 1.28. Let p and q be complete types, and A be a set containing each of
their domains. If a |̂ ∗

A
b for any a, b realizing non-∗-forking extensions to A of p, q

respectively, then we say that p and q are ∗-orthogonal. We say that p ∈ S(A) is
∗-regular if it is ∗-orthogonal to all its ∗-forking extensions.

Remark 1.29. ∗-regularity is preserved under non-∗-forking extensions.

As in the stable case, using Lascar inequalities one can show the following:

Remark 1.30. Each type of U∗-rank ωα is ∗-regular.
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Now we study ∗-regularity in our group G de�nable in C.

Lemma 1.31. Let p, q ∈ S(A) extend G(x) and let p be ∗-generic. Then there is
some g such that gp ∪ q is a non-∗-forking extension of q (i.e. there is a complete
type extending gp ∪ q which does not ∗-fork over A).

Proof. Take a |= p and b |̂ ∗
A
a with b |= q. Since p is ∗-generic, so is tp(a−1/A). Since

a and a−1 are interde�nable, we also have a−1 |̂ ∗
A
b. Thus we see that ba−1 |̂ ∗Ab.

We note that b |= ba−1p ∪ q, a partial type over A(ba−1). Since b |̂ ∗
A
ba−1, we may

extend this partial type to a complete type, q′, over A(ba−1) extending q which does
not ∗-fork over A. We let g := ba−1. �

Proposition 1.32. If p ∈ S(A) is a ∗-regular ∗-generic type of G, then it is ∗-
orthogonal to every non-∗-generic type q ∈ S(A) of G.

Proof. Wlog A = ∅. By Lemma 1.31, we can choose g and a non-∗-forking extension
r ∈ S(B) of q so that gp ⊆ r, where B = dcl(g). Then, by Lemma 1.12.2 and 1.12.3,
we get g−1r ∈ S(B) is a ∗-forking extension of p, so by ∗-regularity of p, g−1r is
∗-orthogonal to p. Hence

(∗) r is ∗-orthogonal to p.

Now suppose for a contradiction that p and q are not ∗-orthogonal. Then there
is C ⊆ G, a |= p, and b |= q such that a |̂ ∗C, b |̂ ∗C, and a 6 |̂ ∗

C
b.

Take any b′ |= r. Since tp(b) = tp(b′), we can choose g′ |= tp(g) so that
tp(gb′) = tp(g′b) and g′ |̂ ∗

b
Ca. As g |̂ ∗ b′, we get g′ |̂ ∗ b and hence g′ |̂ ∗Cab.

Thus a |̂ ∗Cg′, b |̂ ∗Cg′, and a 6 |̂ ∗
Cg′

b. It follows that tp(b/g′) is not ∗-orthogonal
to p. This yields a contradiction with (∗). �

2 Groups of Uþ-rank 1

In this section G is a de�nable group in a monster model C of a rosy theory T . In
all results of this section in which we assume that T satis�es NIP, one can replace
this assumption by the weaker condition that G has icc on centralizers (see Corollary
1.8).

Proposition 2.1. If G contains a þ-generic involution, then it contains a þ-generic
element g such that [G : C(g)] < ω.

Proof. Let i be a þ-generic involution. Choose j |= tp(i) so that j |̂ þ i. Then j is

þ-generic over i. So i |̂ þ ij. Thus tp(i/ij) is þ-generic.
On the other hand, (ij)i = (ij)−1. So for every i′ |= tp(i/ij) we also have

(ij)i′ = (ij)−1. Hence (ij)i = (ij)i′ , so i′ ∈ C(ij)i. We conclude that C(ij)i is
de�nable over ij and a formula de�ning this set belongs to tp(i/ij). Since tp(i/ij)
is þ-generic, we get that C(ij)i and hence C(ij) is þ-generic. Hence [G : C(ij)] < ω.
Moreover, as i is þ-generic and i |̂ þ j, we get that ij is also þ-generic. �
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Corollary 2.2. If T satis�es NIP and G has a þ-generic involution, then G is
abelian-by-�nite.

Proof.
Let H be the centralizer connected component of G (a de�nable set by the icc

on centralizers). It is of �nite index, and we will show that it is abelian. Let g be a
þ-generic involution; by Proposition 2.1, C(g) is a �nite index subgroup of G. Thus
H is a subgroup of C(g), and hence g ∈ CG(H). Since CG(H) may be extended to
a þ-generic type, it is of �nite index in G, and thus CG(H) = H, and the latter is
abelian. �

The next two corollaries follow immediately from Proposition 2.1 and Corollary
2.2.

Corollary 2.3. Assume Uþ(G) = α < ∞. If G contains an involution of Uþ-rank
α, then it contains an element g such that [G : C(g)] < ω and Uþ(g) = α.

Corollary 2.4. If T satis�es NIP, and G has an involution i such that Uþ(i) =
Uþ(G) <∞, then G is abelian-by-�nite.

Theorem 2.5. If T satis�es NIP, G has hereditarily fsg, and 0 < Uþ(G) <∞, then
G contains an in�nite de�nable abelian subgroup.

Proof. We can replace G by an in�nite de�nable subgroup of least possible Uþ-rank
and we can assume that G is centralizer connected. We will show that G is abelian.

If Z(G) is in�nite, then [G : Z(G)] < ω, so G = Z(G), and we are done. So
we can assume that Z(G) is �nite. Let H = G/Z(G). Then H is in�nite and each
non-trivial element of H has a �nite centralizer. Now we will show that this leads to
a contradiction.

Claim There are �nitely many conjugacy classes in H.

Proof. Take any g ∈ H \ {e}. Since C(g) is �nite, we get that Uþ(gH) = Uþ(H).
Now the relation of being in the same conjugacy class is a ∅-de�nable equivalence
relation on H \ {e} whose classes are þ-generic. Hence there must be only �nitely
many of them. �

By the above claim, we get that H00 is de�nable. So wlog H = H00. By Proposition
0.26, we get that there is a unique generic type in H. So in virtue of the claim, we
get that there is a unique generic conjugacy class aH .

Case 1. There is no involution in H.
Since aH is generic, (a−1)H is also generic. By uniqueness, aH = (a−1)H . Hence

there is g ∈ H such that a−1 = g−1ag. Thus a = g−2ag2. Since a is not an involution,
we get a ∈ C(g2) \ C(g). So C(g) ( C(g2). Since C(g) is �nite and there are no
involutions, we get that g has an odd exponent. This implies C(g2) = C(g), a
contradiction.

Case 2. There is an involution i ∈ H.
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There are two ways to get a contradiction. By [7, Theorem 2.1], we get that
there is a non-trivial element with in�nite centralizer, a contradiction. Alternatively,
we can argue as follows: there is g ∈ H such that ig is þ-generic, but ig is also an
involution, so by Proposition 2.1 (or Corollary 2.2), we get a non-trivial element with
an in�nite centralizer, a contradiction. �

If G has fsg, then every de�nable subgroup of �nite index in G also has fsg. So
if every de�nable subgroup of G is either �nite or of �nite index in G and G has fsg,
then G has hereditarily fsg. Thus we have the following immediate corollary:

Corollary 2.6. If T satis�es NIP, G has fsg, Uþ(G) < ∞, and each de�nable
subgroup of G is either �nite or of �nite index in G, then G is abelian-by-�nite.

In particular, we have proven Theorem 1:

Theorem 1. If T has NIP, G has fsg, and Uþ(G) = 1, then G is abelian-by-�nite.

Now we are going to modify the proof of Theorem 2.5 (using the idea of the
proof of [10, Proposition 7.2]) to generalize Theorem 1 to the case of groups with a
þ-regular þ-generic type.

Theorem 2.7. If T satis�es NIP, G has fsg, and at least one þ-regular þ-generic
type, then G is abelian-by-�nite.

Proof. First of all we can assume that G is centralizer connected.

Claim 1 The conjugacy class of every non-central element is þ-generic ( i.e. there
is an element in this conjugacy class which is þ-generic over a name of this class).

Proof. Take any a ∈ G such that aG is not þ-generic. Let tp(b/a) be a þ-regular
þ-generic type. Then b−1ab is not þ-generic over a. By Proposition 1.32, we get
b |̂ þ

a
b−1ab. Thus b is þ-generic over {a, b−1ab}. So the set de�ned by the formula

x−1ax = b−1ab is þ-generic and de�nable over {a, b−1ab}. But this set is equal to
C(a)b. Hence C(a) is þ-generic. Thus [G : C(a)] < ω. Since G is centralizer
connected, we get a ∈ Z(G). �

Claim 2 G is the union of Z(G) and �nitely many þ-generic conjugacy classes.

Proof. By Claim 1, G is the union of Z(G) and some number of þ-generic conjugacy
classes. Suppose for a contradiction that there are in�nitely many of them. Then the
relation of being in the same conjugacy class is ∅-de�nable and it divides G \ Z(G)
into in�nitely many classes. So at least one of these classes, say C, is non-algebraic
over ∅ (as an element of Ceq). Now we can choose c ∈ C which is þ-generic over C.
Since C ∈ dcl(c) and C /∈ acl(∅), we get c 6 |̂ þC, a contradiction with Lemma 1.12.1.

�

We will show that Z(G) = G. Suppose for a contradiction that it is false. Then
[G : Z(G)] ≥ ω. By Claim 2 and Proposition 1.24, G/Z(G) is the union of {e}
and �nitely many þ-generic conjugacy classes. Hence H := (G/Z(G))00 is de�nable
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and it is also the union of {e} and �nitely many þ-generic conjugacy classes. In the
same way as in the proof of Theorem 2.5, we conclude that there is a unique generic
conjugacy class aH .

As in the proof of Theorem 2.5, we get that there is an involution i ∈ H. Since
iH is þ-generic, we get that there is an involution which is þ-generic. We �nish using
Proposition 2.1. �

By Theorem 2.7 and Remark 1.30, we get the following strengthening of Theorem
1, which generalizes the appropriate result about superstable groups.

Corollary 2.8. If T satis�es NIP, G has fsg, and Uþ(G) = ωα, then G is abelian-
by-�nite.

At the end let us make a few remarks. Proposition 2.1 and Corollaries 2.2, 2.3,
and 2.4 are true for an arbitrary independence relation, |̂ ∗ (the same proofs work).

Since Uþ-rank is less or equal than the U∗-rank, Theorem 2.5, Corollary 2.6 and
Theorem 1 are also true for |̂ ∗. Since Proposition 1.32 is true for |̂ ∗, one can
easily check that the whole proof of Theorem 2.7 also works for |̂ ∗.

As to Corollary 2.8, it is true for an arbitrary independence relation |̂ ∗ under the
additional assumption that there is a type of U∗-rank ωα (in other words a ∗-generic
exists), in which case it follows immediately from the fact that Theorem 2.7 is true
for |̂ ∗; an alternative way to prove this is to modify the proof of Theorem 2.5 and
use Lascar inequalities for groups.

By Proposition 1.22 and Theorem 2.7, we get that if T satis�es NIP, G has fsg
and at least one þ-regular generic type, then G is abelian-by-�nite.

Notice that the proofs of Theorems 1 and 2.7 produce a de�nable abelian subgroup
of �nite index in G, namely the centralizer connected component of G.

Notice also that when A is an arbitrary abelian subgroup of �nite index in G, we
may follow the proof of Theorem 3.17 of [10] in considering the intersection of C(a)
for a ∈ A. This is de�nable, as is its center, which is abelian of �nite index in G and
contains A.

Finally, we should mention a conjecture generalizing the results above. The exis-
tence of �nitely satis�able generics implies the weaker condition that G is de�nably
amenable. (This means, roughly, that there is a left invariant probability measure
on the de�nable sets of G. See [6] for a precise de�nition.)

Conjecture 2.9. In each result in this section, the hypothesis �G has fsg� may be
replaced with �G is de�nably amenable�.

3 Groups of Uþ-rank 2

In this section G is a group de�nable in a monster model C of an arbitrary theory T .

Theorem 3.1. If G has hereditarily fsg, the de�nable quotients of de�nable subgroups
of G satisfy icc on centralizers, and Uþ(G)=2, then G is solvable-by-�nite.
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By Corollary 1.8, Theorem 3.1 implies Theorem 2:

Theorem 2. If T satis�es NIP, G has hereditarily fsg, and Uþ(G) = 2, then G is
solvable-by-�nite.

The rest of this section is devoted to the proof of Theorem 3.1. Some ideas are
taken from the proof that each connected group of Morley rank 2 is solvable [10,
Theorem 3.16]. The main obstacle in comparison with the Morley rank 2 case is
that a þ-generic may not be generic and there may be many þ-generics even in the
connected component.

The structure of the proof is as follows. We suppose for a contradiction that G
is not solvable-by-�nite. First we de�ne Borels (albeit in a slightly di�erent manner
from that which is used in the Morley rank 2 case because we do not have de�n-
able connected components), and we study their properties. Then we use them to
�nd involutions. In the last part of the proof we use Borels, involutions and some
particular function that comes from the theory of black box groups to get a �nal
contradiction.

Proof of Theorem 3.1. By icc, we can assume that G is centralizer connected. If
Z(G) is in�nite, then either [G : Z(G)] < ω or Uþ(Z(G)) = Uþ(G/Z(G)) = 1 and
then we are done by Theorem 1. So we can assume that Z(G) is �nite. Then
G/Z(G) is centerless and centralizer connected. So wlog G is centerless. Suppose for
a contradiction that G is not solvable-by-�nite.

If centralizers of all non-trivial elements in G are �nite, we can argue in the same
way as in the proof of Theorem 2.5. So we can assume that there is a non-trivial
element in G with an in�nite centralizer.

De�nition 3.2. We say that a subgroup B of G is a Borel if it is a minimal in�nite
intersection of centralizers.

By icc and the last paragraph, we have that at least one Borel exists and all
Borels are intersections of �nitely many in�nite centralizers, so they are de�nable.

Claim 1. (i) Every Borel has in�nite index in G.
(ii) All Borels are abelian.
(iii) Any two Borels are either equal or they have trivial intersection.
(iv) Every Borel has �nite index in its normalizer.
(v) Every non-trivial element a ∈ G with an in�nite centralizer centralizes exactly
one Borel, which will be denoted by B(a). In fact, B(a) is the centralizer connected
component of C(a) computed in G.

Proof. (i) This follows from the fact that the centralizer of any non-trivial element
has in�nite index in G.
(ii) By (i), Uþ(B) = 1. So by Theorem 1, there is an abelian subgroup B0 of �nite in-
dex in B. By the de�nition of Borels, B is centralizer connected. Hence B0 ≤ Z(B).
So for every a ∈ B, [B : CB(a)] < ω. Since B is centralizer connected, it must be
abelian.
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(iii) Suppose B1 6= B2 are Borels. Then B1 ∩ B2 is �nite. Let a ∈ B1 ∩ B2. Then
B1, B2 ⊆ C(a). So [C(a) : B1] ≥ ω, which implies Uþ(C(a)) = 2, so [G : C(a)] < ω.
Hence a = e.
(iv) If B is a Borel and [N(B) : B] ≥ ω, then Uþ(N(B)/B) = 1 and [G : N(B)] < ω,
so we �nish using Theorem 1.
(v) Since Uþ(C(a)) = 1, if a centralizes a Borel B, then B is a subgroup of �nite
index in C(a). So by (iii), there is a unique Borel centralized by a, and, of course, it
must be the centralizer connected component of C(a) computed in G. �

The following is an easy corollary of Claim 1.

Claim 2. If B1 6= B2 are Borels, then:
(i) C(B1) ∩ C(B2) = {e},
(ii) N(B1) ∩N(B2) is �nite.

Proof. The �rst part follows from the fact that every non-trivial element centralizes at
most one Borel. The second part is an easy consequence of the fact that B1∩B2 = {e}
and B1 and B2 are subgroups of �nite index in N(B1) and N(B2), respectively. �

Claim 3. If B is a Borel and a is generic over a name of B, then BaB is generic.

Proof. We have that there are m,n ∈ ω such that:

(1) BN(B)B = Bb1B ∪ · · · ∪BbmB for some b1, . . . , bm ∈ N(B),

(2) B(G \N(B))B = Ba1B ∪ · · · ∪BanB for some a1, . . . , an ∈ G \N(B).

Item (1) follows from Claim 1(iv). To see (2), notice that if a /∈ N(B), then
Ba 6= B, hence Ba ∩ B = {e}. So f : B × B → BaB de�ned by f(x, y) = xay is a
de�nable bijection. Thus Uþ(BaB) = 2. Moreover, for all a1, a2 ∈ G we have that
Ba1B and Ba2B are either equal or disjoint. Since Uþ(G) = 2, we get that there are
only �nitely many sets of the form BaB for a /∈ N(B).

Let d be a name for B. Take any generic a over d. Let p = tp(a/d). By (1) and
(2), we get that p(G) is covered by Ba′1B, . . . , Ba

′
kB for some a′1, . . . , a

′
k ∈ p(G)

Let p′ be a global generic extension of p. Then there is i such that a formula
de�ning the set Ba′iB is in p′. So we have proved that there is a′ |= p such that
Ba′B is generic. Hence BaB is generic. �

In the remainder of the proof, we analyze B∩G00. The next claim is not necessary
to �nish the proof, but we include it, since it gives us a better understanding of Borels
(and lets us simplify our notation).

Claim 4. Every Borel is relatively connected in G00, i.e. B00 = B ∩G00.

Proof. The inclusion B00 ⊆ B ∩G00 is obvious. We will prove B00 ⊇ B ∩G00.
Suppose for a contradiction that there is c ∈ (B ∩ G00) \ B00. Let a ∈ G00 be

generic over a name of B.
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By Claim 3, we easily get that boundedly many two-sided translates of B00aB00

cover G, so all these translates are de�ned by partial generic types. Let p be a
global generic type extending a partial generic type de�ning the set cB00aB00. Then
a partial type de�ning the set B00aB00 is contained in c−1p = p (as c ∈ G00 and
Stab(p) = G00). Hence we get

B00aB00 ∩ cB00aB00 6= ∅.

Combining this with the fact that the function f : B × B → G de�ned by
f(b1, b2) = b1ab2 is injective and that cB00 ∩B00 = ∅, we get a contradiction. �

Claim 5. If B is a Borel and a ∈ N(B) \ C(B), then C(a) is �nite.

Proof. First notice that we have

(∗) aN(B) is in�nite.

Otherwise, aB would also be �nite. So C(a)∩B would be in�nite. Hence C(a)∩B =
B, which would mean that a ∈ C(B), a contradiction.

For any g we have aN(B)g = (aN(B))g ⊆ N(B)g = N(Bg). Using this and Claim
2(ii) we see that

(∗∗) if N(B)g1 6= N(B)g2, then a
N(B)g1 ∩ aN(B)g2 is �nite.

Now add a and a name of B to the language. Take g so that N(B)g /∈ acleq(∅).
Let φ(x, y) be a formula over ∅ such that φ(C, N(B)g) = aN(B)g (on the left hand
side N(B)g is treated as an element of the sort N(B)\G and on the right hand
side it is treated as a set). By (∗), (∗∗) and Lemma 0.15, we get that there is
b ∈ φ(C, N(B)g) = aN(B)g such that Uþ(b) = 2. Hence, working in the original
language, Uþ(b/a) = 2. Since aG = bG, we get that Uþ(aG) = 2, so C(a) is �nite. �

Now we will combine the above result and the proof of Claim 4 to get that Borels
are relatively self-normalizing in G00, i.e for every Borel B we have NG00(B ∩G00) =
B ∩G00. By Claim 1(iii), this is equivalent to the condition N(B) ∩G00 = B ∩G00,
and by Claim 4, to the statement NG00(B00) = B00 .

Claim 6. All Borels are relatively self-normalizing in G00.

Proof. Take any Borel B and a ∈ G00 generic over a name of B. Suppose for a
contradiction that there is c ∈ (N(B) ∩G00) \ (B ∩G00). The same argument as in
the proof of Claim 4 yields B00aB00 ∩ cB00aB00 6= ∅. Hence

(!) BaB ∩ cBaB 6= ∅.

Subclaim The function f : N(B)×B → G de�ned by f(b1, b2) = b1ab2 is injective.

Proof. Suppose b1ab2 = c1ac2 for some b1, c1 ∈ N(B) and b2, c2 ∈ B. Let b = c−1
1 b1.

We see that ba ∈ B, so b ∈ Ba−1
. Hence C(b) is in�nite. On the other hand,

b ∈ N(B), so by Claim 5, we get that b ∈ C(B).
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Since a /∈ N(B), we have that Ba−1 6= B, so by Claim 2(i), C(B) ∩ Ba−1
= {e}.

Since b ∈ C(B) ∩Ba−1
, we get b = e. So b1 = c1 and then also b2 = c2. �

Subclaim and (!) yield a contradiction. �

So far we have been studying various properties of Borels. Now we will use Borels
to �nd an involution in G00.

Claim 7. There is an involution in G00.

Proof. By fsg, there is a generic element a ∈ G00. Moreover, we have at least one
Borel B. So we can choose a ∈ G00 generic over a name of B.

By Claim 3, we get

(∗) BaB and Ba−1B are generic.

Subclaim. B00aB00 = B00a−1B00.

Proof. It is clear that B00aB00 and B00a−1B00 are contained in G00. Let π be a
partial type de�ning the set B00a−1B00.

Since by (∗), boundedly many two-sided translates of B00a−1B00 cover G, π is a
partial generic type. Let p be any extension of π to a global generic.

Consider any de�nable subset X of B containing B00. Then �nitely many right
translates of BaX cover BaB, so by (∗), BaX is generic. Hence boundedly many
left translates of B00aX cover G, which implies that one of them, say gB00aX, is
de�ned by a partial type which is contained in p.

Since boundedly many right translates of gB00aB00 by elements from X cover
gB00aX, one of them, say gB00aB00x where x ∈ X, is de�ned by a partial type
which is contained in p.

By the de�nition of π, we have that p extends the partial type x ∈ G00, so
gB00aB00x ∩ G00 6= ∅. Hence gx(x−1B00aB00x) ∩ G00 6= ∅. Thus gx ∈ G00, which
implies that g = hx−1 for some h ∈ G00.

So a partial type de�ning B00aX is contained in g−1p = xh−1p = xp (as
Stab(p) = G00). On the other hand, a partial type de�ning xB00a−1B00 is also
contained in xp. Hence

(!) B00aX ∩ xB00a−1B00 6= ∅.

So we have proved that for every de�nable subset X of B containing B00 there is
x ∈ X such that (!) holds. Thus by the compactness theorem, B00aB00∩B00a−1B00 6=
∅ and hence B00aB00 = B00a−1B00. �

By the subclaim, there is b ∈ B00 such that (ab)2 ∈ B. Put i := ab. Then, of course,
i ∈ G00. We will show that i is an involution.

Since a is generic over a name of B and Uþ(B) = 1, we get that i 6= e. Suppose
for a contradiction that i2 6= e. As i2 ∈ B, we have B(i2) = B. But i centralizes i2, so
Bi = B(i2)i = B(i2) = B. Thus i ∈ N(B), which implies a ∈ N(B), a contradiction
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with the fact that a is generic over a name of B. �

Notice that by Corollary 2.3, we get that all involutions have in�nite centralizers.
Indeed, if there was an involution i with a �nite centralizer, then Uþ(iG) = 2, so
there would be an involution of Uþ-rank 2. Then by Corollary 2.3, we would get a
non-trivial element whose centralizer has a �nite index in G, a contradiction.

Claim 8. If i and j are involutions such that B(i) 6= B(j), then C(ij) is �nite.

Proof. The argument is similar as in the Morley rank 2 case. Indeed, we have
(ij)i = (ij)j = ji = (ij)−1. Hence B(ij)i = B((ij)−1) = B(ij), which implies
that i ∈ N(B(ij)). Similarly, j ∈ N(B(ij)). But i and j have in�nite centralizers.
Hence by Claim 5, i, j ∈ C(B(ij)). Similarly, by Claim 5, we easily conclude that
i ∈ C(B(i)) and j ∈ C(B(j)). In virtue of Claim 2(i), we get B(i) = B(ij) = B(j),
a contradiction. �

Claim 9. Every Borel B contains at most �nitely many involutions.

Proof. Let I be the set of all involutions. Suppose for a contradiction that I ∩ B is
in�nite. Then I ∩ Bg is also in�nite for every g ∈ G. Now add a name of B to the
language.

Take g so that N(B)g /∈ acleq(∅). Let φ(x, y) be a formula over ∅ such that
φ(C, N(B)g) = I ∩ BN(B)g = I ∩ Bg. We see that for any N(B)g1 6= N(B)g2

realizing tp(N(B)g) we have φ(C, N(B)g1) ∩ φ(C, N(B)g2) = I ∩Bg1 ∩Bg2 = {e}.
So by Lemma 0.15, there is an involution b ∈ φ(C, N(B)g) = I ∩ Bg such that

Uþ(b) = 2, a contradiction with Corollary 2.3. �

Let X be the set of all elements of G00 with �nite centralizers. By Claim 4 and
Claim 6, we see that G00 \X is a union of connected components of Borels.

Claim 10. (i) For every a ∈ X, if an ∈ G00 \X, then an = e.
(ii) There is no a ∈ X such that a2 ∈ G00 \X.
(iii) Every element of X has an odd exponent.

Proof. (i) Suppose a ∈ X, an ∈ G00 \ X and an 6= e. Since a−1ana = a, we get
B(an)a = B(an), so by Claim 6, we get a ∈ NG00(B(an)00) = B(an)00, a contradic-
tion.
(ii) If a ∈ X and a2 ∈ G00 \ X, then by (i), we see that a2 = e. So we get an
involution with a �nite centralizer, a contradiction.
(iii) Suppose that some a ∈ X has an even exponent, say 2n. Then an 6= e, so by
(i), an ∈ X. But we also have (an)2 = e, a contradiction with (ii). �

Claim 11. For every a ∈ X there is a unique b ∈ G00 such that b2 = a. Moreover,
b ∈ 〈a〉.

Proof. By Claim 10(iii), we have that 〈a〉 is an abelian group of odd order, say n.
So there is a unique b ∈ 〈a〉 such that b2 = a.
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Now suppose b21 = a for some b1 ∈ G00. Then b1 ∈ X. Since b2n
1 = an = e, we get

(bn1 )2 = e, so by Claim 10(i, ii), bn1 = e. But 〈a〉 is a subgroup of 〈b1〉 of cardinality
n. Thus 〈a〉 = 〈b1〉, which implies b = b1. �

Now we will introduce and use a function similar to that appearing in [3], which
comes from the theory of so-called black box groups.

By Claim 7, we can choose an involution i ∈ G00. Let B := B(i). By Claim 6,
we have NG00(B00) = B00.

Notice that if g ∈ G00\B, thenB(ig) 6= B(i), so by Claim 8, we get iig ∈ X. Hence√
iig is well-de�ned in G00 by Claim 11. So we can de�ne a function f : G00\B → G00

putting

f(g) =
√
iigg−1.

Claim 12. rng(f) = B00.

Proof. First we check that rng(f) ⊆ B00. By Claim 6, we get B00 = C(i) ∩ G00,
so it is enough to show that for g ∈ G00 \ B, i

√
iigg−1 =

√
iigg−1i. We have the

following sequence of equivalent conditions: i
√
iigg−1 =

√
iigg−1i i� i

√
iigig =

√
iig

i� i
√
iigigi

√
iigig = iig i�

√
iig(iig)−1

√
iig = e. Since iig and

√
iig commute, we see

that the last condition is true. So rng(f) ⊆ B00. Now we easily check that for
b ∈ B00 we have f(bg) = f(g)b−1. So rng(f) = B00. �

Take any g ∈ G00 \B. By Claim 12, we get
√
iig = b1g for some b1 ∈ B00. Hence

iig = b1gb1g, so g
−1 = ib1gb1i. Let b = ib1. Since i, b1 ∈ B00, we get b ∈ B00 and

(bg)2 = e. But g /∈ B00, so bg is an involution.
Hence we have proved the following statement:

(∗) for every g ∈ G00, B00g ∩ I 6= ∅ where I is the set of involutions in G00.

In other words, B00I = G00.
Notice that everything that we have proved about B (including (∗)) holds for any

Borel whose connected component contains an involution.
Let d be a name of B. Replacing B by Bh for some h ∈ G00, if necessary, we can

assume that d /∈ acleq(∅). Now we can easily choose an element g ∈ G00\(X∪I∪{e})
so that g |̂ þ d. Then g ∈ G00 \B00.

Claim 13. (i) Uþ(gG) = 1
(ii) gB is in�nite.

Proof. Point (i) follows from Lascar inequalities and the fact that C(g) is in�nite. To
see (ii), notice that if gB were �nite, then C(g)∩B would be in�nite, so C(g)∩B = B.
Then g ∈ G00 ∩ C(B) = B00, a contradiction. �

Now add g to the language. Then d /∈ acleq(∅) and there is a formula φ(x, y) over
∅ such that φ(C, d) = gB.
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Claim 14. If d1 6= d2 are any realizations of tp(d), then φ(C, d1)∩ φ(C, d2) is �nite.

Proof. There are automorphisms f1 and f2 such that f1(d) = d1 and f2(d) = d2. Let
B1 = f1[B] and B2 = f2[B]. Then φ(C, d1) = gB1 , φ(C, d2) = gB2 , and B1 6= B2.
So by (∗) (applied to B1 and B2), we get that there are b1 ∈ B00

1 , b2 ∈ B00
2 , and

j1, j2 ∈ I such that g = b1j1 = b2j2. Since g /∈ I, we have b1, b2 6= e.
Suppose for a contradiction that gB1 ∩ gB2 is in�nite. Then b1j

B1
1 ∩ b2j

B2
2 is

in�nite. So there are in�nite subsets {kn : n ∈ ω} and {ln : n ∈ ω} of I such that
c := b−1

2 b1 = knln for all n ∈ ω. Since B1 6= B2 and b1, b2 6= e, we get c 6= e.
Notice that there is n ∈ ω such that B(kn) 6= B(ln). Otherwise, kn, ln ∈ B(kn)00

and so c ∈ B(kn)00 for all n ∈ ω. Hence kn, ln ∈ B(k0)
00 for all n ∈ ω, a contradiction

with Claim 9.
So by Claim 8, we get that C(c) is �nite. On the other hand, ckn = (knln)kn =

(knln)−1 = c−1, so kn ∈ N(C(c)) for all n ∈ ω, which implies that N(C(c)) is in�nite.
This is a contradiction. �

By Lemma 0.15, Claim 13(ii), and Claim 14, we get that there is an element
h ∈ φ(C, d) such that Uþ(h) = 2. But h ∈ gG which is ∅-de�nable (as we have added
g to the language). Thus Uþ(gG) = 2, a contradiction to Claim 13(i). This completes
the proof of Theorem 3.1. �

Remark 3.3. We may see, by examining the proof above, that not only is there
a solvable group of �nite index, but that we may take this group to be de�nable.
However, in any case, given a solvable group of �nite index, we may �nd a de�nable
solvable group also of �nite index by the argument of, for instance, Theorem 3.17 of
[10].

Notice that Theorem 3.1 is true for an arbitrary independence relation |̂ ∗, be-

cause Uþ-rank is less or equal to U∗-rank.
From the proof of Theorem 3.1, we get that, after possibly passing to a de�nable

subgroup of �nite index and quotienting by its �nite center, the group is solvable of
solvability degree at most 2.

Let us �nish this section with the following conjecture which generalizes Theorem
2.

Conjecture 3.4. Suppose G is superrosy and has NIP. Then if G, and every de�n-
able subgroup of G, is de�nably amenable (in the sense of [6]) and of Uþ-rank 2, it
is solvable-by-�nite.

4 Superrosy �elds

First we make several remarks about (absolute) connected components and generic
types in �elds. Then we adapt Macintyre's proof of [10, Theorem 3.1] to prove
Theorem 3. The last part of this section is devoted to the proof of Theorem 4.

Suppose K is an in�nite �eld de�nable in a monster model C |= T . The additive
and multiplicative groups of K will be denoted by K+ and K∗, respectively.

25



Proposition 4.1. (i) If (K+)00 exists (e.g. if K+ has fsg or T satis�es NIP), then
(K+)00 = K+.
(ii) If K+ has fsg, then it has a unique global generic type p and StabK∗(p) = K∗ =
(K∗)00.
(iii) If there is a global type p such that StabK∗(p) = K∗ and K∗ has a global generic
type (e.g. if K∗ has fsg), then p is the unique global generic type of K∗.

Proof. (i) Since (K+)00 is the smallest subgroup of bounded index in K+, we see that
for any k ∈ K∗, k(K+)00 also has this property. Hence k(K+)00 = (K+)00, which
means that (K+)00 is a nontrivial ideal of K. Thus (K+)00 = K+.
(ii) Assume that K+ has fsg. By (i) and Proposition 0.26, we get the existence and
uniqueness of a global generic type p of K+. Then we see that for every k ∈ K∗, kp
is also generic, so kp = p. Hence StabK∗(p) = K∗. On the other hand, it is clear
that if H is a type-de�nable subgroup of bounded index in K∗, then StabK∗(p) ≤ H.
So (K∗)00 exists and is equal to K∗.
(iii) As in the proof of Proposition 0.26, we show that every generic formula in K∗

belongs to p. So, if there is a global generic type for K∗, it must be p. �

Proposition 4.2. Assume that T is superrosy, (K+)00 = K+ and (K∗)00 = K∗.
Then for every n > 0, the function f(x) = xn is onto and, if char(K) = p is �nite,
the function g(x) = xp − x is also onto.

Proof. The proof is completely standard. Let us show the �rst part (the second one
is similar). Let a be þ-generic over ∅. Since a ∈ acl(an), Lascar inequalities give
us that an is also þ-generic. So we get that Kn has �nite index in K∗, and by our
assumption, we conclude that Kn = K. �

Proposition 4.3. If K+ has fsg and L is a �nite extension of K, then L is de�nable
in C and L+ also has fsg. In particular, (L+)00 = L+ and (L∗)00 = L∗. If T is
additionally superrosy, then L satis�es the conclusion of Proposition 4.2.

Proof. Of course L is de�nable in K×n for some n. That L+ has fsg follows by induc-
tion from [6, Proposition 4.5] and the fact that L+ can be identi�ed with (K+)×n.
The rest is a consequence of Propositions 4.1 and 4.2. �

Theorem 3. Suppose that T is superrosy and K+ has fsg. Then K is algebraically
closed.

Proof. If not, then (as in Macintyre's proof, see [10, Theorem 3.1]) by Galois theory,
there are �nite extensions K ⊆ L ⊆ F such that F is a cyclic extension of L of prime
degree, q, and if q is di�erent from the characteristic of K, then a primitive qth root
of 1 belongs to L; then we get a contradiction with the last part of Proposition 4.3. �

The following conjecture seems more di�cult to prove. But it may be easier
than the corresponding conjecture concerning supersimple �elds, namely that each
supersimple �eld is pseudo-algebraically closed.
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Conjecture 4.4. Suppose T is superrosy and has NIP. Then K is either an alge-
braically closed or a real closed �eld.

Suppose G is a group de�nable in C |= T . We will prove the following theorem
which, by Corollary 1.8, implies Theorem 4.

Theorem 4.5. Assume that G has hereditarily fsg, the de�nable quotients of de-
�nable subgroups of G satisfy icc on centralizers, Uþ(G)=2 and G is not nilpotent-
by-�nite. Then, after possibly passing to a de�nable subgroup of �nite index and
quotienting by its �nite center, G is (de�nably) the semidirect product of the additive
and multiplicative groups of an algebraically closed �eld F interpretable in C, and
moreover G = G00.

Proof. By Theorem 3.1, we know that G is solvable-by-�nite. In fact, it has a
de�nable solvable subgroup of �nite index. We may assume that G is centralizer
connected, centerless and solvable. Let U be a de�nable normal commutative sub-
group of G of Uþ-rank 1. We may assume that U is centralizer connected in the
sense of G, namely that for no g ∈ G is C(g) ∩ U a proper subgroup of U of �nite
index. Note that C(U) (centralizer of U in G) has in�nite index in G (otherwise,
G is nilpotent-by-�nite). Also G/C(U) being of Uþ-rank 1 is abelian-by-�nite. It
follows that there is b ∈ G \ C(U) such that C(b) is in�nite (and so of Uþ-rank
1). (Otherwise, every conjugacy class in G \ C(U) has Uþ-rank 2 so there are only
�nitely many of them, but then G/C(U) has only �nitely many conjugacy classes,
contradicting it being in�nite and abelian-by-�nite.) By choice of U and b, C(b)∩U
is �nite, hence C(b)U (the group generated by C(b) and U which is de�nable) has
Uþ-rank 2 so �nite index in G. We claim that C(b) ∩ U = {e}. For otherwise, the
centralizer of every element in C(b) ∩ U 6= {e} is of Uþ-rank 2, which contradicts
G being centralizer connected and centerless. Let T be a commutative de�nable
subgroup of C(b) of �nite index. It follows likewise that T ∩C(U) is also trivial and
for every u ∈ U \ {e}, T ∩ C(u) is �nite. Now the group UT has Uþ-rank 2, so we
may assume it equals G. So to summarize the situation we have:

(∗) G = UT (semidirect product of U and T ), U, T are commutative of Uþ-rank 1,
C(U) ∩ T = {e} and for every u ∈ U \ {e}, T ∩ C(u) is �nite.

We will write U additively, and T multiplicatively. T acts by conjugation on U ,
and we sometimes let t·u denote ut = tut−1. By the last part of (∗), each orbit except
{0} is in�nite. So by (∗), T acts regularly on each orbit except {0}. (Otherwise,
there are u ∈ U \ {0} and t ∈ T \ {e} such that ut = u. Then every element of the
in�nite orbit uT is stabilized by t, so C(t)∩U is in�nite, and hence t ∈ T ∩C(U), a
contradiction.) Hence as U has Uþ-rank 1, there are only �nitely many orbits. But
U00 is clearly a union of such orbits. Hence U00 is de�nable. So we may assume:

(∗∗) U = U00 (hence we know there is a unique generic type in U).
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Note that all our previous assumptions remain valid. In particular T acts freely on
U \ {0}. Let C1, . . . , Cr be the orbits of U \ {0} under T . By (∗∗), exactly one of
them, without loss C1 is generic in U . If it so happened that r = 1 then we easily get
our desired conclusion (as in the �nite Morley rank case). In fact we will undertake
an analysis which will eventually show that r = 1 anyway.

The important thing we will use is that each element of U is a sum of generics
and thus a sum of elements of C1. Each element of T de�nes an endomorphism
(in fact automorphism) of U . Let S be the ring of endomorphisms of U generated
by T . Note that two di�erent elements of T de�ne di�erent endomorphisms (in
fact automorphisms) of U , so we can and will identify an element of T with the
endomorphism it de�nes. Moreover, multiplication in T is just the restriction to T
of multiplication (composition) in S. As T is commutative, so is S. For s ∈ S we
still write the action on U as ·. We write T + T for the subset of S consisting of
elements s+ t for s, t ∈ T . Fix an element u ∈ C1.

Claim (i) Any s ∈ S is determined by s · u.
(ii) S = T + T .
(iii) The ring S is an (interpretable) �eld.
(iv) Let i : S → U be given by i(s) = s · u. Then i induces an isomorphism between
the �eld S and (U,+,⊗) (some de�nable ⊗) and moreover this �eld is algebraically
closed.

Proof. This is actually quite routine and implicit or explicit in the literature, but we
will give some details anyway.
(i) As every element of U is a sum of elements of C1 and as C1 = T · u, we see that
every element of U is of the form s ·u for some s ∈ T +T . Let s1, s2 ∈ S, and suppose
that s1 · u = s2 · u. Let x ∈ U , and suppose s ∈ T + T is such that x = s · u. Then
s1 · x = s1 · (s · u) = s · (s1 · u)) = s · (s2 · u) = s2 · (s · u) = s2 · x.
(ii) follows from (i) as (T + T ) · u = U .
(iii) Suppose �rst that s ∈ S, x ∈ U and s · x = 0. Now x ∈ Ci for some i = 1, . . . , r
and Ci = T ·x. As S is commutative, s is 0 on Ci, so ker(s) (a de�nable subgroup of
U) is in�nite, thus as U is connected of Uþ-rank 1, ker(s) = U and s = 0. So we have
shown that any nonzero s ∈ S is injective, hence also surjective (by connectedness of
U again). The existence of inverses follows easily: let s ∈ S be nonzero. From what
we have seen let x ∈ U be such that s · x = u. Let s′ ∈ S be such that s′ · u = x.
So s · (s′ · u) = u, and by part (i), s · s′ is the identity. So s′ is the inverse of s. We
have shown that S is a �eld. Identifying S with T × T/E for a suitable de�nable
equivalence relation E (using (i) and (ii)), we see that addition and multiplication
are de�nable.

So we have an interpretable de�nable �eld. But we only have a theorem telling
us the structure of such a �eld when the underlying additive group has fsg. This is
the point of:
(iv) We know by (i) that i is a bijection. Moreover i clearly takes addition on S to
addition on U . So we have a de�nable �eld structure (U,+,⊗) on U whose additive
part has the fsg (by our hypothesis on G). By Theorem 3 the �eld is algebraically
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closed. �

Let us now complete the proof of the theorem. Consider the de�nable �eld struc-
ture F = (U,+,⊗) expanding (U,+). From Proposition 4.1 (U∗,⊗) is (absolutely)
connected, in particular has no proper de�nable subgroup of �nite index. But T
embeds de�nably in (U∗,⊗) via t → t · u, and T as well as U∗ has Uþ-rank 1. This
forces T · u to equal U \ {0}. So in fact the action of T on U is the action of F ∗ on
F+.

For absolute connectedness, we have that U = U00 and that T = T 00 (being
isomorphic to the multiplicative group of F ). It follows that G, the semidirect
product of U and T is absolutely connected: G00 ∩ U = U and G00 ∩ T = T , hence
G = G00. �

References

[1] H. Adler, A geometric introduction to forking and thorn-forking, preprint.

[2] J. Baldwin, J. Saxl, Logical stability in group theory, Journal of the Aus-
tralian Mathematical Society, 21, (1976), pp. 267�276.

[3] A. Borovik, J. Burdges and G. Cherlin, Involutions in groups of �nite
Morley rank of degenerate type, preprint.

[4] G. Cherlin, S. Shelah, Superstable �elds and groups, Annals of Mathemat-
ical Logic, 18, (1980), no. 3, pp. 227�270.

[5] C. Ealy, A, Onshuus, Characterizing Rosy Theories, to appear, Journal of
Symbolic Logic.

[6] E. Hrushovski, A. Pillay, Y. Peterzil, Groups, measures, and the NIP,
to appear, Journal of the American Mathematical Society.

[7] O. Kegel, B. Wehrfritz, Locally Finite Groups, North-Holland Publishing
Company, 1973.

[8] A. Nesin, A. Pillay; V. Razenj, Groups of dimension two and three over
o-minimal structures, Ann. Pure Appl. Logic 53, (1991), no. 3, pp. 279�296.

[9] A. Onshuus, Properties and consequences of thorn-independence, Journal of
Symbolic Logic, 71 (2006), no. 1, pp. 1�21.

[10] B. Poizat, Groupes Stables (English), Mathematical Surveys and Monographs,
87, American Mathematical Society, Providence, 2001.

[11] V. Razenj, One-dimensional groups over an o-minimal structure, Ann. Pure
Appl. Logic 53, (1991), no. 3, pp. 269�277.

29



[12] F. Wagner, Simple Theories, Kluwer Academic Publishers, Dordrecht, The
Netherlands, 2000.

[13] F. Wagner, Stable Groups, London Mathematical Society Lecture Note Series,
240, Cambridge University Press, Cambridge, 1997.

30


