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1 Introduction
This is the final article of the series [DJ12, DJ10, DJ13]. It has a sad story but at least it has the
merit to exist. For the last time we deal with ∗-locally◦◦ soluble groups of finite Morley rank. And
although we have already used some phrases that our prospective reader may not be familiar with
we hope the present work to be of interest to some experts in finite group theory.

1.1 The Context
Let us first say a few words of groups of finite Morley rank. The present subsection is deliberately
vague as we only hope to catch the reader’s attention (possibly through provocation). Should we
succeed we can suggest three books. The first monograph dealing with groups of finite Morley
rank, among other groups, was [Poi87]. An excellent and thorough reference textbook is [BN94b]
which has no pictures but many exercises instead. The more recent [ABC08] quickly focuses on the
specific topic of the classification of infinite simple groups of finite Morley rank of so-called even
type, a technical assumption. For the moment let us be quite unspecific.

Morley rank is a notion invented by model theorists for pure mathematical logic. It turned out
to be an abstract form of the Zariski dimension in algebraic geometry. But for the sake of the
introduction we wish to suggest a completely different, anachronistic motivation.

The classification of simple Lie groups, the classification of simple algebraic groups, and the
classification of finite simple groups are facets of a same truth: in certain categories, simple groups
are matrix groups in the naive sense. The case of the finite simple groups reminds us that we are at
the level of an erroneous truth, but still there must be something common to Lie groups, algebraic
groups, and finite groups beyond the mere group structure that forces them to fall into the same
class.

In a sense, groups of finite Morley rank answer this; Morley rank is a form of common structural
layer, or methodological least common denominator to the Lie-theoretic, algebraic geometric, and
finite group-theoretic worlds. They are groups equipped with a dimension on subsets enabling the
most basic computations; the expert in finite group theory will be delighted to read that matching
involutions against cosets, for instance, is possible. On the other hand, no analysis, no geometry,
and no number theory are available. But the existence of a rudimentary dimension is a common
though thin structural layer.

Although we gave no definition we hope to have motivated the Cherlin-Zilber conjecture, which
postulates in particular that infinite simple groups of finite Morley rank are matrix groups. The
conjecture goes back to the seventies and is still open. [ABC08] gives a complete answer in a
special case where there are “many” involutions, but apart from that there is little hope to prove
the conjecture in full generality. Yet after all, not all finite simple groups are groups of Lie type,
so refuting the Cherlin-Zilber conjecture would certainly not show that it is not interesting.

The present work deals with small groups of finite Morley rank; the notion of smallness under
consideration, viz. ∗-local◦◦ solubility defined in §2, is borrowed from finite group theory. The
decorations are here to remind the reader that it has nothing to do with local solubility in the
classical sense, but with the solubility of local subgroups in the sense of Thompson’s N -groups
[Tho68].

Another, even more restrictive, notion of smallness in [Tho68] was minimal simplicity; its finite
Morley rank analogue is named minimal connected simplicity and also defined in §2. Minimal
connected simple groups of finite Morley rank have already been studied at length (see §§1.2 and
1.3) and the present article completes the move from the minimal connected simple to the ∗-locally◦◦
soluble setting.

We do not provide a full classification of ∗-locally◦◦ soluble groups of finite Morley rank but we
delineate major cases and delimit the insertion of possible pathological groups in context – just in
case the conjecture would be false, but not that false.

1.2 The Result
Our notations are explained in §2; a hasty expert already looking for the structure of the proof
will find a few words at the beginning of §4.
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Theorem. Let Ĝ be a connected, U⊥2 group of finite Morley rank and G E Ĝ be a definable,
connected, non-soluble, ∗-locally◦◦ soluble subgroup.

Then the Sylow 2-subgroup of G is isomorphic to that of PSL2(C), isomorphic to that of SL2(C),
or is a 2-torus of Prüfer 2-rank at most 2.

Suppose in addition that for all ι ∈ I(Ĝ), C◦G(ι) is soluble.
Then m2(Ĝ) ≤ 2, G or Ĝ/G is 2⊥, and involutions are conjugate in Ĝ. Moreover one of the

following cases occurs:

• PSL2: G ' PSL2(K) in characteristic not 2; Ĝ/G is 2⊥;

• CiBo∅: G is 2⊥; m2(Ĝ) ≤ 1; for ι ∈ I(Ĝ), CG(ι) = C◦G(ι) is a self-normalising Borel subgroup
of G;

• CiBo1: m2(G) = m2(Ĝ) = 1; Ĝ/G is 2⊥; for i ∈ I(Ĝ) = I(G), CG(i) = C◦G(i) is a self-
normalising Borel subgroup of G;

• CiBo2: Pr2(G) = 1 and m2(G) = m2(Ĝ) = 2; Ĝ/G is 2⊥; for i ∈ I(Ĝ) = I(G), C◦G(i)
is an abelian Borel subgroup of G inverted by any involution in CG(i) \ {i} and satisfies
rkG = 3 rkC◦G(i);

• CiBo3: Pr2(G) = m2(G) = m2(Ĝ) = 2; Ĝ/G is 2⊥; for i ∈ I(Ĝ) = I(G), CG(i) = C◦G(i) is a
self-normalising Borel subgroup of G.

There is at present no hope to remove any of the non-algebraic configurations of type CiBo
(“Centralisers of Involutions are Borel subgroups”; unlike the cardinal, these configurations are far
from innocent). Three of them were first described in [CJ04] under much stronger assumptions of
both group-theoretic and model-theoretic natures, and the goal of [Del07b, Del07a, Del08] merely
was to carry the same analysis with no model-theoretic restrictions. Despite progress in technology,
nothing new could be added on the CiBo configurations, nor was since. So it is likely they will
linger for a while; one may even imagine that they ultimately might be proved consistent.

But beyond porting the description of non-algebraic configurations from the minimal connected
simple setting [Del07b] to the broader ∗-locally◦◦ soluble context, our theorem gives strong limi-
tations on how these potential counterexamples embed into bigger groups. This line of thought
goes back to Delahan and Nesin proving that so-called simple bad groups have no involutory auto-
morphisms ([DN93]; [BN94b, Proposition 13.4]; a simple bad group would be the most drammatic
kind of counterexample to the Cherlin-Zilber conjecture).

The present result therefore replaces a number of earlier (pre)publications: [BCJ07, Del07b,
Del07a, Del08, DJ08, BCD09], the contents of which are described in §1.3 hereafter. We can
however not do better than Frécon’s analysis.

Fact ([Fré10, Theorem 3.1]). Let G be a minimal connected simple group with a nontrivial Weyl
group. Then each connected definable automorphism group of G is inner.

Parenthetically said, the reason why we cannot extend the latter analysis is the following.
[Fré10] uses the conjugacy of Carter subgroups in minimal connected simple groups obtained by
Frécon himself [Fré08], and there is a technical gap between the minimal connected simple and
∗-locally◦◦ soluble classes preventing us from replicating methods.

What next then? The author would be delighted to share some thoughts on the possibility
to classify simple groups of finite Morley rank no simple subquotients of which have a connected
Sylow 2-subgroup. But at the moment we are looking towards the past.

1.3 Version History
The present subsection will be of little interest to the non-expert; we include it mostly because the
present article is meant to be our last on the topic.

The project of classifying ∗-locally◦◦ soluble groups with involutions started as early as 2007
under the suggestion of Borovik and yet is only the last chapter of an older story: the identification
of PSL2(K) among small groups of odd type.
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• We could go back to Cherlin’s seminal article on groups of small Morley rank [Che79] which
identified PSL2, considered bad groups, and formulated the algebraicity conjecture. Other im-
portant results on PSL2 in the finite Morley rank context were found by Hrushovski [Hru89],
Nesin et Ali(i) [Nes90a, BDN94, DN95]. But we shall not go this far.

• Jaligot was the first to do something specifically in so-called odd type [Jal00], adapting
computations from [BDN94] (we say a bit more in §4.2 and 4.3).

• Another preprint by Jaligot [Jal01], then at Rutgers University, deals with tame minimal
connected simple groups of Prüfer rank 1. (Tameness is a model-theoretic assumption on
fields arising in a group; it is already used for instance in [DN95].) In this context, either the
group is isomorphic to PSL2(K), or centralisers◦ of involutions are Borel subgroups.
Quite interestingly the tameness assumption, viz. “no bad fields”, appears there in small
capitals and bold font each time it is used; it seems clear that Jaligot already thought about
removing it.

• Jaligot’s time at Rutgers resulted in a monumental article with Cherlin [CJ04] where tame
minimal connected simple groups were thoroughly studied and potential non-algebraic con-
figurations carefully described. The very structure of our Theorem reflects the main result
of [CJ04].

• Using major advances by Burdges, the author then writing his dissertation under the super-
vision of Jaligot could remove the tameness assumption from [CJ04] and reach essentially the
same conclusions ([Del07b], published as [Del07a, Del08]).

• A few months before the author’s PhD completion the present project of classifying ∗-locally◦◦
soluble groups of finite Morley rank was suggested by Borovik, a task the author and Jaligot
undertook with great enthusiasm and which along the years resulted in the series [DJ12,
DJ10, DJ13].
A 2008 preprint [DJ08] was close to fully porting [Del07b] to the ∗-locally◦◦ soluble context.
Involutions were however confined inside the group. (This amounts to supposing Ĝ = G in
the Theorem.)

• When a post-doc at Rutgers University the author in an unpublished joint work with Burdges
and Cherlin [BCD09] went back to the minimal connected simple case but with external in-
volutions. (This amounts to supposing G minimal connected simple and 2⊥ in the Theorem.)

• Delays and shifts in interests postponed both [DJ08] and [BCD09]. In the Spring of 2013 the
author tried to convince Jaligot that time had come to redo [DJ08] in full generality, that is
with external involutions. The present Theorem was an ideal statement we vaguely dreamt
of but we never discussed nor even mentioned to each other anything beyond as it looked
distant enough. In April and May we were trying to fix earlier proofs with all possible repair
patches, and unequal success.
The author remembers how Jaligot was taking notes in a small red “Rutgers” notebook when
visiting Paris. He only recovered a file of little relevance [DJ] but none of the above mentioned
handwritten sketches after Jaligot’s untimely death.

And this is how a project started with great enthusiasm was completed in grief and sorrow;
nonetheless completed. The author feels he is now repaying his debt for the care he received as a
student, for an auspicious dissertation topic, and for all the friendly confidence his advisor trusted
him with.

In short I hope that the present work is the kind of monument Éric’s shadow begs for. I dare
write that the article is much better than last envisioned in the Spring of 2013. Offended reader,
understand – that there precisely lies my tribute to him.

Such a reconstruction would never have been even imaginable without the hospitality of the
Mathematics Institute of NYU Shanghai during the Fall of 2013. The good climate and supportive
staff made it happen. Last but not least and despite the author’s lack of taste for mixing genres,
Lola’s immense patience is most thankfully acknowledged.
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2 Prerequisites and Facts
One word on general terminology: the author supports linguistic minorities.

Definition ([DJ12, Definition 3.1(4)]). A group G of finite Morley rank is ∗-locally◦◦ soluble if
N◦G(A) is soluble for every nontrivial, definable, abelian, connected subgroup A ≤ G.

Remark (and Definition). An extreme case of ∗-local◦◦ solubility is when all definable, connected,
proper subgroups of G are soluble; G is then said to be minimal connected simple. As opposed to
past work (see §1.3) the present article does not rely on minimal connected simplicity.

We have tried to make the article as self-contained as possible, an uneasy task as the study of
groups of finite Morley rank has grown to a substantial body. Reading the other articles in the
series [DJ12, DJ10, DJ13] is however not necessary to understand this one. In the introduction
we already mentioned three general references [Poi87, BN94b, ABC08]. Yet we highly recommend
the preliminaries of a research article, [ABF13, §2]; the reader may wish to first look there before
picking a book from the shelves.

We denote by d(X) the definable hull of X, i.e. the smallest definable group containing X. If
H is a definable group, we denote by H◦ its connected component. If H fails to be definable we
then set H◦ = H ∩ d◦(H).

As one imagines, involutions will play a major role. We denote by I(G) the set of involutions
in G; i, j, k, ` will stand for some of them. We also use ι, κ, λ for involutions of the bigger, ambient
group Ĝ. We are not very happy with this notation. When a group has no involutions, we call it
2⊥. We shall refer to the following as “commutation principles”.

Fact 1. Suppose that there exists some involutive automorphism ι of a semi-direct product HoK,
where K is 2-divisible, and that ι centralises or inverts H, and inverts K. Then [H,K] = 1.

2.1 Semi-simplicity
The principle below may be the only general statement one can make about torsion in groups of
finite Morley rank; p stands for a prime number.

Fact 2 (torsion lifting, [BN94b, Exercise 11 p.98]). Let G be a group of finite Morley rank, H E G
be a normal, definable subgroup and x ∈ G be such that xH is a p-element in G/H. Then d(x)∩xH
contains a p-element of G.

Apart from the above principle, most of our knowledge of torsion relies either on the assumption
that p = 2, on some solubility assumption, or on a U⊥p -ness assumption explained below.

• To emphasize the first aspect (p = 2), recall that in groups of finite Morley rank, maximal
2-subgroups (also known as Sylow 2-subgroups) are conjugate [BN94b, Theorem 10.11]. As a
matter of fact, their structure is known [BN94b, Corollary 6.22]. If S is a Sylow 2-subgroup
then S◦ = T ∗ U2 where T is a 2-torus and U2 a 2-unipotent group. Let us explain the
terminology:

– T is a sum of finitely many copies of the Prüfer 2-group, T ' Zd2∞ , and d is called
the Prüfer 2-rank of T , Pr2(T ) = d. By conjugacy, Pr2(G) = Pr2(T ) is well-defined.
Interestingly enough, N◦G(T ) = C◦G(T ) [BN94b, Theorem 6.16, “rigidity of tori”]; this
actually holds for any prime.

– U2 in turn has bounded exponent. We shall mostly deal with groups having no infinite
such subgroups, and we call them U⊥2 groups.

The 2-rank m2(G) is the maximal rank of an elementary abelian 2-subgroup of G; again this
is well-defined by conjugacy. A U⊥2 assumption implies finiteness of m2(G); one always has
Pr2(G) ≤ m2(G); see [Del12] for some reverse inequality.

• Actually the same holds for any prime p provided the ambient group of finite Morley rank
is soluble [BN94b, Theorem 6.19 and Corollary 6.20]. In case the ambient group is also
connected, then Sylow p-subgroups are connected [BN94b, Theorem 9.29]. We call this fact
the structure of torsion in definable, connected, soluble groups.
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• A group of finite Morley rank is said to be U⊥p (also: of p⊥-type) if it contains no infinite,
elementary abelian p-group. A word on Sylow p-subgroups of U⊥p groups is said in §2.2.

For the moment we give another example of how we often rely either on some specific assumption
on involutions, or on solubility.

Fact 3 (special case of [BC08, Theorem 2.1]). Let Ĝ be a U⊥p group of finite Morley rank. Suppose
that Ĝ contains a non-trivial, definable, connected, normal subgroup G E Ĝ and some elementary
abelian p-group of rank 2 V̂ ≤ Ĝ. If G is soluble, or if p = 2 and G has no involutions, then
G = 〈C◦G(v) : v ∈ V \ {1}〉.

We finish with a property of repeated use.

Fact 4 (Steinberg’s torsion theorem; [Del09]). Let G be a connected, U⊥p group of finite Morley
rank and ζ ∈ G be a p-element such that ζpn ∈ Z(G). Then CG(ζ)/C◦G(ζ) has exponent dividing
pn.

As the argument essentially relies on the connectedness of centralisers of inner tori obtained
by Altınel and Burdges [AB08, Theorem 1], one should not expect anything similar for outer
automorphisms of order p, not even for outer toral automorphisms.

2.2 Sylow Theory
Recall that by definition, a Sylow p-subgroup of some group of finite Morley rank is a maximal,
soluble p-subgroup. It turns out that for p-subgroups of groups of finite Morley rank, solubility is
equivalent to local solubility (in the classical sense of finitely generated subgroups being soluble)
[BN94b, Theorem 6.19], so every soluble p-subgroup is contained in some Sylow p-subgroup alright.
But the solubility requirement is not for free: even if the ambient group of finite Morley rank G is
assumed to be U⊥p , it is not known whether every p-subgroup of G is soluble; as a matter of fact
it is apparently not known whether G can embed a Tarski monster. In short, a Sylow p-subgroup
is not necessarily a maximal p-subgroup, even in the U⊥p case.

Fact 5 ([BC09, Theorem 4]). Let G be a U⊥p group of finite Morley rank. Then Sylow p-subgroups
of G are conjugate.

Remarks. Let Ĝ be a U⊥p group of finite Morley rank and G E Ĝ be a definable, normal subgroup.

• The Sylow p-subgroups of G are exactly the traces of the Sylow p-subgroups of Ĝ.
A Sylow p-subgroup of G is obviously the trace of some Sylow p-subgroup of Ĝ. The opposite
direction is immediate by conjugacy of the Sylow p-subgroups in the U⊥p group Ĝ.

• The Sylow p-subgroups of Ĝ/G are exactly the images of the Sylow p-subgroups of Ĝ. The
following argument was suggested by Gregory Cherlin.
Let ϕ be the projection modulo G. Suppose that Ŝ is a Sylow p-subgroup of Ĝ but ϕ(Ŝ) is not
a Sylow p-subgroup of Ĝ/G. Then there is a p-element α ∈ NĜ/G(ϕ(Ŝ))\ϕ(Ŝ), which we lift
to a p-element a of Ĝ. Observe that α ∈ NĜ/G(ϕ(Ŝ◦)), so ϕ([a, Ŝ◦G]) = [α,ϕ(Ŝ◦)] ≤ ϕ(Ŝ◦G)
and a normalises Ŝ◦G.
NowN = NĜ(Ŝ◦G) is definable since it is the inverse image ofNĜ/G(ϕ(Ŝ◦)) which is definable
as the normaliser of a p-torus by the rigidity of tori. In particular, N conjugates its Sylow
p-subgroups, and a Frattini argument yields N ≤ Ŝ◦G · NĜ(Ŝ) ≤ GNĜ(Ŝ). Write a = gn

with g ∈ G and n ∈ NĜ(Ŝ); n is a p-element modulo G, so lifting torsion there is a p-element
m ∈ nG ∩ d(n). Now m ∈ NĜ(Ŝ) and therefore m ∈ Ŝ. Hence a = gn ∈ nG = mG ⊆ ŜG

and α = ϕ(a) ∈ ϕ(Ŝ), a contradiction.
As a consequence any Sylow p-subgroup of Ĝ/G is the image of a Sylow p-subgroup of
Ĝ. For the converse fix a Sylow p-subgroup Σ of Ĝ/G. Then NĜ/G(Σ◦) is definable; let
Ŝ2 ≤ ϕ−1(NĜ/G(Σ◦)) be a Sylow p-subgroup of ϕ−1(NĜ/G(Σ◦)) and Ŝ ≤ Ĝ be a Sylow
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p-subgroup of Ĝ containing Ŝ2. Then by the first part of the argument ϕ(Ŝ) is a Sylow
p-subgroup of Ĝ/G. So by conjugacy in the latter there is ĝ ∈ Ĝ with ϕ(Ŝĝ) = Σ. Hence
Ŝĝ2 ≤ Ŝĝ ≤ ϕ−1(NĜ/G(Σ◦)) and by definition of Ŝ2, Ŝĝ2 = Ŝĝ is a Sylow p-subgroup of Ĝ,
mapping onto Σ.

• Without the U⊥p assumption this remains quite obscure. The reader will find in [PW93,
PW00] a model-theoretic discussion.

We shall refer to the many consequences of the following fact as “torality principles”.

Fact 6 ([BC09, Corollary 3.1]). Let p be a set of primes. Let G be a connected group of finite
Morley rank with a p-element a such that C(a) is U⊥p . Then a belongs to any maximal p-torus of
C(a).

We add some unrelated remarks, just for the sake of it.

Remarks.

• Let Ĝ be a connected, U⊥p group of finite Morley rank and G E Ĝ be a definable, connected
subgroup. Let T̂ ≤ Ĝ be a maximal p-torus of Ĝ. Then T = T̂ ∩G is a maximal p-torus of
G.
Let Ŝ ≥ T̂ be a Sylow p-subgroup of Ĝ. Then S = Ŝ ∩G is a Sylow p-subgroup of G. So T =
G∩ T̂ ≤ G∩ Ŝ◦ ≤ CS(S◦) = S◦ by torality principles. Hence T ≤ S◦ ≤ Ŝ◦ ∩G = T̂ ∩G = T .

• This is not true for an arbitrary p-torus τ̂ ≤ Ĝ: take two copies T1, T2 of Z2∞ with respective
involutions i and j; now let Ĝ = (T1 × T2)/〈ij〉 and G be the image of T1. Then the
intersection of (the image of) T2 with G is 〈i〉.

• The question deserves to be asked for so-called maximal decent tori.

2.3 Unipotence
For a complete exposition of Burdges’ unipotence theory, see Burdges’ Ph.D. [Bur04b], its first
formally published expositions [Bur04a, Bur06], or the first article in the present series [DJ12].

Notation. We order unipotence parameters as follows:

(2,∞) � (3,∞) � · · · � (p,∞) � . . . (0, rk(G)) � · · · � (0, 0)

We denote unipotence parameters by ρ, σ, τ .

Notation.

• For any group of finite Morley rank H, ρH will denote the greatest unipotence parameter it
admits, i.e. with UρH (H) 6= 1; we simply call it the parameter of H.

• For ι a definable involutory automorphism of some group of finite Morley rank, we let ρι =
ρC◦(ι).

With these notations at hand let us review a few classical properties. Bear in mind that by
definition, a ρ-group is always definable, connected, and nilpotent. The reader should be familiar
with the following before venturing further.

Fact 7.

(i) If N is a connected, nilpotent group of finite Morley rank then N = ∗ρUρ(N) (central product)
where ρ ranges over all unipotent parameters (Burdges’ decomposition: [Bur04b, Theorem
2.31], [Bur06, Corollary 3.6], [DJ12, Fact 2.3]);

(ii) if H is a connected, soluble group of finite Morley rank, one has UρH (H) ≤ F ◦(H) ([Bur04b,
Theorem 2.21], [Bur04a, Theorem 2.16], [DJ12, Fact 2.8]);
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(iii) if a σ-group Vσ normalises a ρ-group Vρ with ρ � σ then VρVσ is nilpotent ([Bur04b, Lemma
4.10], [Bur06, Proposition 4.1], [DJ12, Fact 2.7]);

(iv) the image and preimage of a ρ-group under a definable homomorphism are ρ-groups (push-
forward and pull-back: [Bur04b, Lemma 2.12], [Bur04a, Lemma 2.11]);

(v) if G is a soluble group of finite Morley rank, S ⊆ G is any subset, and H E G is a ρ-subgroup,
then [H,S] is a ρ-group ([Bur04b, Lemma 2.32], [Bur06, Corollary 3.7]);

(vi) generalising the latter Frécon obtained a remarkable homogeneity result we shall not use (to
our surprise):
if G is a connected group of finite Morley rank acting definably on a ρ-group then [G,H]
is a homogeneous ρ-group, i.e. all its definable, connected subgroups are ρ-groups ([Fré06,
Theorem 4.11], [DJ12, Fact 2.1]).

Recall that a Sylow ρ-subgroup is a maximal ρ-subgroup. Also recall from Burdges’ decidedly
inspiring thesis ([Bur04b, §4.3], oddly published only in [FJ08, §3.2]) that if π denotes a set
of unipotence parameters, then a Carter π-subgroup of some ambient group G is a definable,
connected, nilpotent subgroup L which is Uπ-self-normalising, i.e. with Uπ(N◦G(L)) = L. Carter
subgroups, i.e. definable, connected, nilpotent, quasi-self-normalising subgroups are examples of
the latter where π is the set of all unipotence parameters. All this is very well-understood in a
soluble context [Wag94, Fré00a].

So we now move to another topic: intersections of Borel subgroups of a ∗-locally◦◦ soluble group
(a Borel subgroup is a definable, connected, soluble subgroup which is maximal as such). We shall
refer to the following as “uniqueness principles”.

Fact 8 ([DJ12, Corollary 4.3]). Let G be a ∗-locally◦◦ soluble group of finite Morley rank, ρ be
a unipotence parameter and B be a Borel subgroup of G with ρB = ρ. Let U1 ≤ Uρ(B) be a ρ-
subgroup containing some subset X with ρC◦

G
(X) � ρ. Then Uρ(B) is the only Sylow ρ-subgroup of

G containing U1. Furthermore B is the only Borel subgroup of G containing U1 with parameter ρ.

In particular, if G E Ĝ where Ĝ is another (not necessarily ∗-locally◦◦ soluble) group of finite
Morley rank, NĜ(U1) ≤ NĜ(B).

2.4 The Bender Method
For reference we list below the facts from Burdges’ monumental rewriting of Bender’s Method
[Bur04b, §9], [Bur07] that we shall use.

The method was devised to study intersections of Borel subgroups; unfortunately it is very
technical. It will play an important role throughout the proof of our main “Maximality” Proposition
6. As a matter of fact it does not appear elsewhere in the present article with the only exception
of Step 2 of Proposition 3.

It must be noted that the Bender method does not finish any job; it merely helps treat non-
abelian cases on the same footing as the abelian case. This will be clear during Step 7 of Proposition
6. So the reader who feels lost here must keep in mind the following:

• non-abelian intersections complicate the details but do not alter in the least the skeleton of
the proof of Proposition 6;

• the utter technicality is, in Burdges’ own words [Bur04b], “motivated by desperation”;

• non-abelian intersections are not supposed to exist in the first place.

Since Burdges’ original work was in the context of so-called “minimal connected simple groups”
we need to quote [DJ12] which merely reproduced Burdges’ work in the ∗-locally◦◦ soluble case.

Fact 9 ([DJ12, 4.46(2)]). Let G be a ∗-locally◦◦ soluble group of finite Morley rank. Then any
nilpotent, definable, connected subgroup of G contained in two distinct Borel subgroups is abelian.
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Yet past the nilpotent case it is not always possible to prove abelianity of intersections of
Borel subgroups. The purpose of the Bender method is at least to extract as much information
as possible from non-abelian intersections. Unfortunately, “as much as possible” means much
more than reasonable. This is the analysis of so-called maximal pairs [DJ12, Definition 4.12], a
terminology we shall avoid.

Fact 10 (from [DJ12, 4.50]). Let G be a ∗-locally◦◦ soluble group of finite Morley rank. Let B 6= C
be two distinct Borel subgroups of G. Suppose that H = (B ∩ C)◦ is non-abelian.

Then the following are equivalent:

[DJ12, 4.50(1)] B and C are the only Borel subgroups of G containing H;

[DJ12, 4.50(2)] H is maximal among connected components of intersections of distinct Borel sub-
groups;

[DJ12, 4.50(3)] H is maximal among intersections of the form (B ∩D)◦ where D 6= B is another
Borel subgroup;

[DJ12, 4.50(6)] ρB 6= ρC .

In the following, subscripts ` and h stand for light and heavy, respectively.

Fact 11 (from [DJ12, 4.52]). Let G,B`, Bh, H be as in the assumptions and conclusions of Fact
10. For brevity let ρ′ = ρH′ , ρ` = ρB` , ρh = ρBh ; suppose ρ` ≺ ρh.

Then the following hold:

[DJ12, 4.52(2)] any Carter subgroup of H is a Carter subgroup of Bh;

[DJ12, 4.38, 4.51(3) and 4.52(3)] Uρ′(F (Bh)) = (F (Bh) ∩ F (B`))◦ is ρ′-homogeneous; ρ′ is the
least unipotence parameter in F (Bh);

[DJ12, 4.52(6)] Uρ′(H) ≤ F ◦(B`) and N◦G(Uρ′(H)) ≤ B`;

[DJ12, 4.52(7)] Uσ(F (B`)) ≤ Z(H) for σ 6= ρ′;

[DJ12, 4.52(8)] any Sylow ρ′-subgroup of G containing Uρ′(H) is contained in B`.

And we finish with an addendum.

Lemma A. Let Ĝ be a connected group of finite Morley rank and G E Ĝ be a definable, connected,
non-soluble, ∗-locally◦◦ soluble subgroup. Let B1 6= B2 be two distinct Borel subgroups of G such
that H = (B1 ∩ B2)◦ is maximal among connected components of intersections of distinct Borel
subgroups and non-abelian. Let Q ≤ H be a Carter subgroup of H. Then:

• NĜ(H) = NĜ(B1) ∩NĜ(B2);

• NĜ(Q) ≤ NĜ(B1) ∪NĜ(B2).

Proof. By [DJ12, 4.50 (1) and (6)], B1 and B2 are the only Borel subgroups of G containing H,
and they have distinct unipotence parameters. This proves the first item. Let ρ′ be the parameter
of H ′ and Qρ′ = Uρ′(Q). Then NĜ(Q) ≤ NĜ(Qρ′) ≤ NĜ(N◦G(Qρ′)) and three cases can occur,
following [DJ12, 4.51].

• In case (4a), NĜ(Q) ≤ NĜ(H) = NĜ(B1) ∩NĜ(B2); we are done.

• In case (4b), B1 is the only Borel subgroup of G containing N◦G(Qρ′), so NĜ(Q) ≤ NĜ(B1).

• Case (4c) is similar to case (4b) and yields NĜ(Q) ≤ NĜ(B2).

3 Requisites (General Lemmas)
Our theorem requires extending some well-known facts, so let us revisit a few classics. All lemmas
below go beyond the ∗-locally◦◦ soluble setting.
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3.1 Normalisation Principles
The results in the present subsection are folklore; it turns out that none was formally published.
They originate either in [Del07b, Chapitre 2] or in [Bur09]. We shall use them with no reference,
merely invoking “normalisation principles”.

Lemma B (cf. [Del07b, Lemmes 2.1.1 and 2.1.2] and [Del07a, §3.4]). Let Ĝ be a group of finite
Morley rank, G ≤ Ĝ be a definable subgroup, P ≤ G be a Sylow p-subgroup of G, and Ŝ ≤ NĜ(G)
be a soluble p-subgroup normalising G. If p 6= 2 suppose that Ĝ is U⊥p . Then some G-conjugate of
Ŝ normalises P .

Proof. Since G is definable, d(Ŝ) ≤ NĜ(G), so we may assume Ĝ = G · d(Ŝ) and G E Ĝ. We may
assume that Ŝ is a Sylow p-subgroup of Ĝ. Recall that S = Ŝ ∩G is then a Sylow p-subgroup of G
(see for instance §2.2). Since G is definable and U⊥p if p 6= 2, it conjugates its Sylow p-subgroups;
there is g ∈ G with P = Sg. Hence Ŝg normalises Ŝg ∩G = Sg = P .

Remarks. The argument is slightly subtler than it looks.

• The original version [Del07b, Lemmes 2.1.1 and 2.1.2] made the unnecessary assumption that
Ŝ, there denoted K, be definable. Its proof used only conjugacy in Ĝ; but when K ĝ ≤ NĜ(P )
for some ĝ ∈ Ĝ, why should K ĝ be a G-conjugate of K? [Del07b] then used definability of K
to continue: we may assume Ĝ = G ·K ≤ G ·NĜ(K), so K ĝ is actually a G-conjugate of K.
Alas it is false in general that d(Ŝ) ≤ NĜ(Ŝ) (consider the Sylow 2-subgroup of PSL2(C)).
So without definability of Ŝ one is forced to conjugate in G like we do here.

• In particular, ifG is not supposed to be definable (and one then needs to assumeG E Ĝ to save
the beginning of the proof), the statement is not clear at all. An arbitrary subgroup of a U⊥p
group of finite Morley rank need not conjugate its Sylow p-subgroups, take PSL2(Z[

√
3]) ≤

PSL2(C) for instance. But for a normal subgroup, I do not know. This could even depend
on the Cherlin-Zilber conjecture.

Lemma C ([Del07b, Corollaires 2.1.5 and 2.1.6]). Let Ĝ be a group of finite Morley rank, H ≤ Ĝ
be a soluble, definable subgroup, π be a set of unipotence parameters, L ≤ H be a Carter π-subgroup
of H, and Ŝ ≤ NĜ(H) be a soluble p-subgroup normalising H. Suppose that H is U⊥p . Then some
H-conjugate of Ŝ normalises L.

Proof. We first deal with the case where L = Q is a Carter subgroup of H; the last paragraph will
handle the general case. We may suppose that H is connected; we may suppose that Ĝ = H · d(Ŝ)
is soluble and that H E Ĝ; we may suppose that Ŝ is a Sylow p-subgroup of Ĝ. Since H is soluble
it conjugates its Carter subgroups, so Ĝ = H ·NĜ(Q).

First assume that H is p⊥. Let R̂ ≤ NĜ(Q) be a Sylow p-subgroup of NĜ(Q). Since H is p⊥,
R̂ ' R̂H/H is a Sylow p-subgroup of NĜ(Q)H/H = Ĝ/H. Hence R̂ is in fact a Sylow p-subgroup
of Ĝ: by conjugacy of Sylow p-subgroups in the definable, soluble group Ĝ, Ŝ normalises some
Carter subgroup of H.

If we no longer assume that H is p⊥, then since H is U⊥p the structure of torsion in definable,
connected, soluble groups implies that Sylow p-subgroups of H are tori. By Lemma B, Ŝ normalises
a Sylow p-subgroup P of H; by the rigidity of tori it centralises it, so it centralises d(P ) as well. Up
to conjugacy in H, Q contains P and then again centralises d(P ). So we may work in CĜ(d(P ))
and factor out d(P ), which reduces to the first case. Then Ŝ normalises some Carter subgroup C
of H/d(P ), and normalises its preimage ϕ−1(C) ≤ H which is a Carter subgroup of H [Fré00a,
Corollaire 5.20].

The reader has observed that for the moment, Ŝ normalises some Carter subgroup of H. But
by conjugacy of such groups in H, there is an H-conjugate of Ŝ normalising Q.

We now go back to the general case of a Carter π-subgroup L of H. By [FJ08, Corollary
5.9] there is a Carter subgroup Q of H with Uπ(Q) ≤ L ≤ Uπ(Q) · Uπ(H ′); by what we just
proved and up to conjugating over H we may suppose that Q is Ŝ-invariant. So we consider
the generalised centraliser E = EH(Uπ(Q)) [Fré00a, Définition 5.15], a definable, connected, and
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Ŝ-invariant subgroup of H satisfying Uπ(Q) ≤ F ◦(E) [Fré00a, Corollaire 5.17]; by construction
of E and nilpotence, 〈L,Q〉 ≤ E. If E < H then noting that L is a Carter π-subgroup of E
we apply induction. So we may suppose E = H. But in this case Uπ(Q) ≤ F ◦(H) so actually
L ≤ Uπ(F ◦(H)) and equality holds as the former is a Carter π-subgroup of H. It is therefore
Ŝ-invariant.

The following Lemma is entirely due to Burdges who cleverly adapted the Frécon-Jaligot con-
struction of Carter subgroups [FJ05]. We reproduce it here with Burdges’ kind permission. The
lemma is not used anywhere in the present article but included for possible future reference.

Lemma D ([Bur09]). Let Ĝ be a U⊥2 group of finite Morley rank, G ≤ Ĝ be a definable subgroup,
and Ŝ ≤ NĜ(G) be a 2-subgroup. Then G has a Ŝ-invariant Carter subgroup.

Proof. We may assume that every definable, Ŝ-invariant subquotient of G of smaller rank has a
Ŝ-invariant Carter subgroup; we may assume that CŜ(G) = 1; we may assume that G is connected.

We first find an infinite, definable, abelian, Ŝ-invariant subgroup. Let ι ∈ Z(Ŝ) be a central
involution; then C◦G(ι) < G. If C◦G(ι) = 1 then G is abelian and there is nothing to prove. So
we may suppose that C◦G(ι) is infinite and find some Ŝ-invariant Carter subgroup of C◦G(ι) by
induction; it contains an infinite, definable, abelian, Ŝ-invariant subgroup.

Let ρ be the minimal unipotence parameter such that there exists a non-trivial Ŝ-invariant
ρ-subgroup of G (possibly ρ = (0, 0)); this makes sense since there exists an infinite, definable,
abelian, Ŝ-invariant subgroup. Let P ≤ G be a maximal Ŝ-invariant ρ-subgroup; P 6= 1. Let
N = N◦G(P ).

If N < G then induction applies: N has a Ŝ-invariant Carter subgroup Q. So far PQ is soluble;
moreover for any parameter σ, Uσ(Q) is Ŝ-invariant as well. So by definition of ρ and [DJ12, Fact
2.7], PQ is actually nilpotent, hence PQ = Q, P ≤ Q, and P ≤ Uρ(Q). By maximality of P ,
P = Uρ(Q) is characteristic in Q so N◦G(Q) ≤ N◦N (Q) = Q and Q is a Carter subgroup of G.

Now suppose that N = G, that is, P is normal in G. By induction, G = G/P has a Ŝ-invariant
Carter subgroup C. Let H be the preimage of C in G; H is soluble. By Lemma C, H has a
Ŝ-invariant Carter subgroup Q. Here again PQ is soluble and even nilpotent, so P ≤ Q. Since H
is soluble, Q/P = PQ/P is a Carter subgroup of H/P = C [Fré00a, Corollaire 5.20], so Q/P = C
and Q = H. Now N◦G(Q)/P ≤ N◦

G
(C) = C = Q/P , so N◦G(Q) = Q and Q is a Carter subgroup of

G.

Remarks.

• Burdges left the assumption that Ĝ is U⊥2 implicit from the title of his prepublication and the
original statement must therefore be taken with care: the Sylow 2-subgroup of (F2)+o (F2)×
certainly does not normalise any Carter subgroup.

• The assumption that p = 2 is used only to find an infinite, definable, abelian Ŝ-invariant
subgroup. It is not known whether all connected groups of finite Morley rank having a
definable automorphism of order p 6= 2 with finitely may fixed points are soluble, a classical
property of algebraic groups though.

3.2 Involutive Automorphisms
The need for the present subsection is the following. [DJ10, Section 5] collected various well-
known facts in order to provide a decomposition for a connected, soluble group of odd type under
an inner involutive automorphism. But in the present article we shall consider the case of “outer”
automorphisms, more precisely the action of abstract 2-tori on our groups. So the basic discussion
of [DJ10] must take place in a broader setting; this is what we do here.

Notation. If α is an involutory automorphism of some group G, we let G+ = CG(α) = {g ∈ G :
gα = g} and G− = {g ∈ G : gα = g−1}. We also let {G,α} = {[g, α] : g ∈ G} (in context there is
no risk of confusion with the usual notation for unordered pairs).
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If G and α are definable, so are G+, G−, and {G,α}; in general only the first need be a group.
{G,α} is nevertheless stable under inversion, since [gα, α] = [g, α]−1. Observe that {G,α} ⊆ G−

but equality may fail to hold: for instance if α centralises G and G contains an involution i, then
i ∈ G+ ∩ G− but i /∈ {G,α} = {1}. Notice further that G = G+ · G− iff {G,α} ⊆ (G−)∧2 and
G = G+ · {G,α} iff {G,α} ⊆ {G,α}∧2, where X∧2 denotes the set of squares of X. Finally remark
that deg{G,α} = degαGα = degαG ≤ degG.

Lemma E (cf. [DJ10, Theorem 19]). Let G be a group of finite Morley rank with Sylow 2-
subgroup a (possibly trivial) central 2-torus S, and α be a definable involutive automorphism of
G. Then G = G+ · {G,α} where the fibers of the associated product map are in bijection with
I({G,α}) ∪ {1} = Ω2([S, α]). Furthermore one has G = (G+)◦ · {G,α} whenever G is connected.

Proof. The proof follows that of [DJ10, Theorem 19] closely and for some parts a minor adjustement
would suffice. We prefer to give a complete proof and discard [DJ10]. Bear in mind that if ab = a−1

for two elements of G, then a has order at most 2 (this is [DJ10, Lemma 20], an easy consequence
of torsion lifting). Also remember from [DJ10, Lemma 18] that G is 2-divisible: merely because
2-torsion is divisible and central.

Step 1. S ∩ {G,α} = [S, α].

Proof of Step. This is the argument from [DJ10, Theorem 19, Step 1] with one more remark. One
inclusion is trivial. Now let ζ ∈ S∩{G,α}, and write ζ = [g, α]. Since G is 2-divisible we let h ∈ H
satisfy h2 = g. Let n = 2k be the order of ζ. Then [h2, α] = [h, α]h[h, α] = ζ ∈ Z(G) so [h, α] and
[h, α]h commute. Hence 1 = ζn = [h, α]n[h, α]nh. It follows that h inverts [h, α]n which must have
order at most 2: so ξ = [h, α]−1 is a 2-element inverted by α, and since it is central it commutes
with h. Finally [ξ, α] = ξ−2 = [h, α]2 = [h2, α] = ζ. ♦

It immediately follows that I({G,α}) ∪ {1} = Ω2([S, α]).

Step 2. {G,α} is 2-divisible and G = G+ · {G,α}.

Proof of Step. Here again this is the argument from [DJ10, Theorem 19, Step 2]; 2-divisibility of
{G,α} was announced but not explicitly proved.

Let x = [g, α] ∈ {G,α}. Like in [DJ10, Theorem 19, Step 2], write the definable hull of x as
d(x) = δ⊕〈γ〉 where δ is connected and γ has finite order; rewrite γ = εζ where ε has odd order and
ζ is a 2-element; let ∆ = δ ⊕ 〈ε〉, so that d(x) = ∆⊕ 〈ζ〉 where ∆ is 2-divisible and inverted by α.
Now let y ∈ ∆ satisfy y4 = xζ−1. Then [gy2, α] = [g, α]y2 [y2, α] = xy−4 = ζ ∈ S ∩ {G,α} = [S, α]
by Step 1, so there is ξ ∈ S with [ξ2, α] = ζ. Now [y−1ξ, α] = [y−1, α]ξ[ξ, α] = y2[ξ, α] squares
to y4[ξ, α]2 = xζ−1[ξ2, α] = x. The set {G,α} is therefore 2-divisible; as observed this implies
G = G+ · {G,α}. ♦

Step 3. Fibers in Step 2 are in bijection with Ω2([S, α]).

Proof of Step. Let k = [s, α] have order at most 2, where s ∈ S. Fix any decomposition γ = a·[g, α]
with a ∈ G+ and g ∈ G. Since α inverts (hence centralises) k, one has ka+ ∈ G+. Moreover
[sg, α] = [s, α]g[g, α] = kg[g, α] = k[g, α] ∈ {G,α}. So a[g, α] = (ka) · (k[g, α]) is yet another
decomposition for γ.

Conversely work like in [DJ10, Theorem 19, Step 3]: suppose that ax = by are two decompo-
sitions, with a, b ∈ G+ and x = [g, α], y = [h, α] ∈ {G,α}. Then (a−1b)y = (xy−1)y = y−1x =
(yx−1)α = (b−1a)α = b−1a = (a−1b)−1 so a−1b has order at most 2, say k = a−1b. More precisely,
k = xy−1 = [g, α][h, α]−1 = [g, α]h−αh is central, so k = h[g, α]h−α = [gh−1, α] ∈ {G,α}; it follows
from Step 1 that k ∈ Ω2([S, α]). ♦

Step 4. Left G+-translates of the set (G+)◦ · {G,α} are disjoint or equal.

Proof of Step. Like in [DJ10, Theorem 19, Step 4]: suppose that a(G+)◦ · {G,α} meets b(G+)◦ ·
{G,α}, in say ag+[g, α] = bh+[h, α] with natural notations. By Step 3, k = (ag+)−1(bh+) is in
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Ω2([S, α]), therefore central in G and inverted (hence centralised) by α. So k = (bh+)(ag+)−1 =
(ag+)(bh+)−1. Hence for any bγ+[γ, α] ∈ b(G+)◦ · {G,α} one finds:

bγ+[γ, α] = k2bγ+[γ, α] = a(g+h
−1
+ γ+)([γ, α]k)

Since k ∈ Ω2([S, α]), there is s ∈ S with k = [s, α]. So [γs, α] = [γ, α]s[s, α] = [γ, α]k ∈ {G,α}:
hence bγ+[γ, α] ∈ a(G+)◦ · {G,α}. This shows b(G+)◦{G,α} ⊆ a(G+)◦{G,α} and the converse
inclusion holds too. ♦

Step 5. Exactly degG left G+-translates of (G+)◦ ·{G,α} cover G. In particular, if G is connected,
then G = (G+)◦ · {G,α}.

Proof of Step. We consider such left translates. They all have rank rkG by Step 3 and their degree
is 1. As they are disjoint or equal by Step 4, exactly degG of them suffice to cover G. ♦

This ends the proof of Lemma E.

Remarks.

• If G is a connected group of finite Morley rank of odd type whose Sylow 2-subgroup S is
central, then S is a 2-torus as S = CS(S◦) = S◦ by torality principles.

• The Lemma fails if S is not 2-divisible, even at the abelian level: let α invert Z/4Z.

As a consequence we deduce another useful decomposition. It will be used repeatedly.

Lemma F (cf. [DJ10, Lemma 24]). Let H be a U⊥2 , connected, soluble group of finite Morley
rank, and α be a definable involutive automorphism of H. Suppose that {H,α} ⊆ F ◦(H). Then
H = (H+)◦ · {H,α} with finite fibers.

Proof. By normalisation principles, H admits an α-invariant Carter subgroup Q; by the theory
of Carter subgroups of soluble groups, H = Q · F ◦(H) [Fré00a, Corollaire 5.20]. Now both Q
and F ◦(H) are definable, connected, nilpotent, and U⊥2 : so Lemma E applies to them. Hence
Q = (Q+)◦ · {Q,α} ⊆ (H+)◦ ·F ◦(H), and H = Q ·F ◦(H) ⊆ (H+)◦ ·F ◦(H) ⊆ (H+)◦ · (F ◦(H)+)◦ ·
{F ◦(H), α} ⊆ (H+)◦ · {H,α}.

The fibers are finite: this works like in [DJ10, Lemma 24] since if c1b1 = c2b2 with ci ∈
H+, bi ∈ {H,α}, then c−1

2 c1 = b2b
−1
1 ∈ H+ so b2b−1

1 = b−1
2 b1 and b21 = b22, but by assumption

bi ∈ {H,α} ⊆ F ◦(H) so b1 and b2 differ by an element of Ω2(F ◦(H)). Unlike in Lemma E we
cannot be too precise about the cardinality of the fiber.

Remarks.

• We can show {H,α} ⊆ Ω2(F ◦(H)) · {F ◦(H), α}. For let h ∈ H; then [h, α] ∈ {H,α} ⊆
F ◦(H). Applying Lemma E in F ◦(H), we write [h, α] = f+[f, α] with f+ ∈ F ◦(H)+ and
f ∈ F ◦(H). Taking the commutator with α we find [h, α]2 = [f, α]2. But in F ◦(H), the
equation x2 = y2 results in x−1 · x−1y · x = y−1x = (x−1y)−1 and x−1y has order at most 2.
Hence [h, α] = k[f, α] for some k ∈ Ω2(F ◦(H)).

• Without the crucial assumption that {H,α} ⊆ F ◦(H) one still hasH = {H,α}·(H+)◦·{H,α}
and therefore H = H− ·H+ ·H−, but one can hardly say more.
Consider two copies A1 = {a1 : a ∈ C}, A2 = {a2 : a ∈ C} of C+ and let Q = {t : t ∈ C×} '
C× act on A1 by at1 = (t2a)1 and on A2 by at2 = (t−2a)2. Form the group H = (A1⊕A2)oQ.
Let α be the definable, involutive automorphism of H given by:

(a1b2t)α = b1a2t
−1

that is, “α swaps the ±2 weight spaces while inverting the torus”. The reader may check that
α is an automorphism of H, and perform the following computations:

– [a1b2t, α] = (t2b− t2a)1(t−2a− t−2b)2t
−2 (so {H,α} 6⊆ F ◦(H));

– H+ = {a1a2 · ±1 : a ∈ C+} (incidently (H+)◦ ≤ F ◦(H));
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– H− = {a1(−t2a)2t : a ∈ C+, t ∈ C×} (incidently H− = {H,α});
– H+ ·H− = {(a+ b)1(a− t2b)2 ·±t : a, b ∈ C+, t ∈ C×} does not contain 01a2 · i for a 6= 0

(here i is a complex root of −1).

• Rewriting [DJ10, Theorem 19] is necessary for the argument; one can’t simply use the idea
of Lemma F together with the original decomposition.
Let Q = C× act on A = C+ by at = (t2 · a) and form H = AoQ. Consider α the involutive
automorphism doing (at)α = (−a)t (α inverts the Fitting subgroup while centralising the
Carter subgroup). The reader will check that H+ = Q, H− = A · ±1, {H,α} = A, and of
course H = H+ ·H−.
Running the argument in Lemma F using the (naive) G = G+ ·G− decomposition of [DJ10,
Theorem 19], one finds Q = (Q+)◦ · Q−, but Q− is not in F ◦(H). One could then wish to
apply the decomposition to F (H) instead, but the Sylow 2-subgroup of the latter is not a
2-torus!
Extending [DJ10, Theorem 19] into Lemma E was therefore needed for Lemma F.

3.3 U⊥
p actions and centralisers

Let p denote a set of prime numbers.

Notation. If A and B are two subgroups of some ambient abelian group, we write A(+)B to
denote the quasi-direct sum, i.e. in order to mean that A ∩B is finite.

Lemma G (cf. [ABC08, Corollaries 9.11 and 9.14 on pp.87-88] and [CD12, Facts 1.15 and 1.16]).
In a universe of finite Morley rank let A be a definable, abelian, connected, U⊥p group and R be
a definable, soluble p-group acting on A. Then A = [A,R](+)C◦A(R). Moreover if A0 ≤ A is a
definable, connected, R-invariant subgroup, then ([A,R]∩A0)◦ = [A0, R]; C◦A(R) covers C◦A/A0

(R),
and CR(A) = CR(A0, A/A0).

The author does not consider the proof to be necessary as it follows [CD12, Facts 1.15 and 1.16]
closely. Here it goes anyway.

Proof. By connectedness of A and using Zilber’s indecomposibility theorem, [A, r] is connected for
all r ∈ R. By the ascending chain condition on definable, connected subgroups, there is a finite
set X ⊆ R such that [A,R] = [A,X]; by the descending chain condition on centralisers there is
another finite set Y ⊆ R such that C◦A(R) = C◦A(Y ). But R is a soluble, periodic group, whence
locally finite; so taking 〈X ∪ Y 〉 we may as well assume that R is finite.

We show that A = [A,R] + C◦A(R) by induction on the order of R. By solubility, there exist
S /R and r ∈ R with R = 〈S, r〉. By induction, A = [A,S] +C◦A(S). But r normalises C = C◦A(S)
which is a U⊥p -group. Consider the definable homomorphisms adr : C → C and Trr : C → C
respectively given by:

adr(a) = [a, r], Trr(a) =
∑
ri∈〈r〉

ar
i

Since adr ◦Trr = Trr ◦ adr = 0, one has im adr ≤ ker Trr and im Trr ≤ ker adr. But since
ker Trr ∩ ker adr consists of elements of order dividing |r|, it is finite by assumption. It follows that
rkC ≥ rk ker Trr + rk ker adr ≥ rk im adr + rk ker adr = rkC. Hence rk im adr = rk ker Trr and
[C, r] = im adr = im◦ adr = ker◦Trr, which implies C = ker◦Trr + ker◦ adr = im◦ adr + ker◦ adr =
[C, r] + C◦C(r). This shows that A = [A,S] + C◦A(S) = [A,R] + [C, r] + C◦C(r) = [A,R] + C◦A(R).

We now prove that [A,R]∩C◦A(R) is finite. Consider the definable homomorphism TrR : A→ A
given by:

TrR(a) =
∑
r∈R

ar

Since TrR vanishes on any [A, r], it vanishes on [A,R]; notice that it coincides with multiplication
by |R| on CA(R). It follows that [A,R] ∩ CA(R) consists of elements of order dividing |R|, so by
assumption it is finite.
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We shall say a bit more: ker◦ TrR = [A,R] and im TrR = C◦A(R). Indeed A = [A,R] +
C◦A(R) and [A,R] ≤ ker◦TrR, so ker◦TrR ≤ [A,R] + C◦ker◦ TrR(R). But Cker TrR(R) consists of
elements of order dividing |R|, therefore it is finite. It follows that ker◦ TrR = [A,R]. Similarly,
im TrR ≤ CA(R); by connectedness, im TrR ≤ C◦A(R). From ([A,R] ∩ C◦A(R))◦ = 1 one knows
rkA ≥ rk[A,R] + rkC◦A(R) ≥ rk ker◦TrR + rk im TrR, so we have equalities and im TrR = C◦A(R).

We turn our attention to the definable, connected, R-invariant subgroup A0 ≤ A; for our
purpose R may still be taken to be finite. One sees that:

([A,R] ∩A0)◦ = (ker◦ TrR ∩A0)◦ = ker◦(TrR)|A0 = [A0, R]

and letting ϕ stand for projection modulo A0:

ϕ(C◦A(R)) = ϕ ◦ TrR(A) = TrR ◦ϕ(A) = TrR(A/A0) = C◦A/A0
(R)

Finally let S = CR(A0, A/A0). We apply our results to the action of S on A and find A ≤
[A,S] + C◦A(S) ≤ C◦A(S) so S = CR(A).

Remark. The Lemma does not hold for non-connected A since it fails at the finite level: let
R = Z/2Z act by inversion on A = Z/4Z; one has CA(R) = 2A = [A,R].

After obtaining the following Lemma the author realised it was already proved by Burdges and
Cherlin using a different argument.

Lemma H ([BC08, Lemma 2.5]). Let G be a group of finite Morley rank, R be a soluble p-group
acting on G, and let H E G be a definable, connected, soluble, U⊥p , R-invariant subgroup. Then
C◦G/H(R) = C◦G(R)H/H.

Proof. As in Lemma G, using chain conditions and local finiteness, we may assume that R is
finite. Let L = ϕ−1(C◦G/H(R)), where ϕ denotes projection modulo H. Since ϕ is surjective,
ϕ(L) = C◦G/H(R) which is connected and a finite extension of ϕ(L◦) which is connected as well:
so ϕ(L) = ϕ(L◦) and L = L◦H = L◦ by connectedness of H. Hence L itself is connected. We now
proceed by induction on the solubility class of H.

First suppose that H is abelian; we proceed by induction on the solubility class of R.

• First suppose that R = 〈r〉. Be careful that the definable map Trr : G→ G given by:

Trr(g) =
|r|−1∏
i=0

gr
i

is not a group homomorphism, but (Trr)|H is one.

Since [L, r] ≤ H ∩Tr−1
r (0) = ker(Trr)|H , one has by connectedness and Zilber’s indecomposi-

bility theorem [L, r] ≤ ker◦(Trr)|H = [H, r] by the proof of Lemma G. Bear in mind that H
is abelian; it follows that L ≤ HCG(r), so by connectedness L ≤ HC◦G(r) as desired.

• Now suppose R = 〈S, r〉 with S / R. By induction, L ≤ HC◦G(S) and since H ≤ L, one
has L ≤ HC◦L(S). Let GS = C◦G(S) and HS = C◦H(S); also let ϕS be the projection
GS → GS/HS , and LS = ϕ−1

S (C◦GS/HS (r)).

By the cyclic case, LS ≤ HSC
◦
GS

(r) ≤ HC◦G(R). But [C◦L(S), r] ≤ H ∩ C◦G(S) so by
connectedness [C◦L(S), r] ≤ C◦H(S) = HS . It follows that C◦L(S) ≤ LS ≤ HC◦G(R) and
L ≤ HC◦L(S) ≤ HC◦G(R).

We now let K = H ′, which is a definable, connected, R-invariant subgroup normal in G. Let
ϕK : G → G/K and ψ : G/K → G/H be the standard projections, so that ϕ = ψϕK . By
induction, ϕK(C◦G(R)) = C◦ϕK(G)(R). But ϕK(H) E ϕK(G) and ϕK(H) is abelian, so by the
abelian case we just covered, ψ(C◦ϕK(G)(R)) = C◦ψϕK(G)(R). Therefore:

ϕ(C◦G(R)) = ψ(ϕK(C◦G(R)) = ψ(C◦ϕK(G)(R)) = C◦ψϕK(G)(R) = C◦ϕ(G)(R)
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Let ρ denote a unipotence parameter. We wish to generalise [Bur04a, Lemma 3.6] relaxing
the p⊥ assumption to U⊥p . This will considerably simplify some arguments; in particular we shall
no longer care whether Burdges’ unipotent radicals of Borel subgroups contain involutions or not
when taking centralisers. This will spare us the contortions of [Del07b, Lemmes 5.2.33, 5.2.39,
5.3.20, 5.3.23].

Lemma I (cf. [Bur04a, Lemma 3.6]). Let G be a group of finite Morley rank, R be a soluble
p-group acting on G, and let U E G be a U⊥p , R-invariant ρ-subgroup. Then C◦U (R) is a ρ-group.

The author does not consider the proof to be necessary as it follows [Bur04a, Lemma 3.6]
closely. Here it goes anyway.

Proof. The proof is by induction on the nilpotence class of U . First suppose that U is abelian.
Then by Lemma G one has U = [U,R](+)C◦U (R). Let K stand for the finite intersection. Then
C◦U (R)/K ' U/[U,R] which by push-forward [Bur04a, Lemma 2.11] is a ρ-group. It follows that
C◦U (R) itself is a ρ-group. (Since we could not locate a proof of this trivial fact in the literature,
here it goes: let V = C◦U (R) and ϕ : V → V/K be the standard projection. By pull-back [Bur04a,
Lemma 2.11], ϕ(Uρ(V )) = V/K = ϕ(V ), and since ϕ has finite kernel, rkUρ(V ) = rk V . By
connectedness, V = Uρ(V ).)

Now let 1 < A / U be an abelian definable, connected, characteristic subgroup. By induction,
C◦A(R) and C◦U/A(R) are ρ-groups. Now by Lemma H,

C◦U/A(R) ' C◦U (R)A/A
' C◦U (R)/(A ∩ C◦U (R))
' (C◦U (R)/C◦A(R)) / ((A ∩ C◦U (R))/C◦A(R))
= (C◦U (R)/C◦A(R)) /L

where L = (A ∩ C◦U (R))/C◦A(R) is finite. Since C◦U/A(R) is a ρ-group, so is C◦U (R)/C◦A(R). But
C◦A(R) is a ρ-group, so by pull-back, so is C◦U (R).

One could of course do the same with a set of unipotence parameters instead of a single pa-
rameter ρ.

Remark. As opposed to the usual setting of p⊥ groups [Bur04a, Lemma 3.6], connectedness of
CU (R) is not granted in the U⊥p case.

As a consequence, if inside a group of odd type some involution i acts on a σ-group H with
ρC(i) ≺ σ, then i inverts H. We shall use this fact with no reference.

3.4 Carter π-subgroups
The maybe not-so-familiar notion of a Carter π-subgroup was reminded in §2.3.

Lemma J. Let H be a connected, soluble group of finite Morley rank, π be a set of parameters
such that Uπ(H ′) = 1, and L ≤ H be a (nilpotent) π-subgroup. Then there is a Carter subgroup
Q ≤ H of H containing L.

Proof. Induction on |π|. If |π| = 1 then we are actually dealing with a single unipotence parameter
ρ, and the result follows from the theory of Sylow ρ-subgroups ([Bur04b, Lemma 4.19], [Bur06,
Theorem 5.7]).

For the inductive step, write Burdges’ decomposition of L = Lρ ∗M , where M is a (nilpotent)
(π \ {ρ})-group. By induction there is a Carter subgroup Q of H containing M . Now X =
(M ∩ Z◦(Q))◦ 6= 1 satisfies C◦H(X) ≥ 〈L,Q〉 and there are two cases.

• If C◦H(X) < H then by induction on the Morley rank L is contained in some Carter subgroup
of C◦H(X). Since Q ≤ C◦H(X), the former also is a Carter subgroup of H.

• If C◦H(X) = H then we go modulo X: there by push-forward L = Uπ(L) and Uπ(H ′) = 1.
By induction on the Morley rank again, there is a Carter subgroup Q of H containing L.
The preimage Q of Q is a Carter subgroup of H containing L [Fré00a, Corollaire 5.20].
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3.5 W⊥
p Groups

Notation. Let G be a U⊥p group of finite Morley rank. Let Wp(G) = S/S◦ for any p-Sylow
subgroup S of G (these are conjugate by [BC09, Theorem 4], our Fact 5, so this is well-defined).

Lemma K. Let G be a U⊥p group of finite Morley rank.

• If H ≤ G is a definable, connected subgroup, then Wp(H) ↪→Wp(G).

• If H E G is a definable, connected, normal subgroup, then Wp(G/H) 'Wp(G)/Wp(H).

Proof.

• Let SH be a Sylow p-subgroup of H and extend it to a Sylow p-subgroup SG of G. To
w ∈ Wp(H) associate hS◦G ∈ Wp(G) where h ∈ SH is such that hS◦H = w. This is a
well-defined group homomorphism as S◦H ≤ S◦G. It is injective since if h ∈ SH ∩ S◦G, then
h ∈ CSH (S◦H) = S◦H by torality principles and connectedness of H.

• Let SH ≤ SG be as above and denote projection modulo H by ; we know that Σ = SG '
SG/SH is a Sylow p-subgroup of G/H. To w ∈ Wp(G) associate gΣ◦ ∈ Wp(G/H) where
g ∈ SG is such that gS◦G = w. This is a well-defined group homomorphism as S◦G = Σ◦. It is
clearly surjective. Now if w is in the kernel then g ∈ S◦GH, and we may suppose g ∈ H (the
converse is obvious). Hence the kernel coincides with the image of Wp(H) in Wp(G).

We wish to suggest a bit of terminology.

Definition. A U⊥p group of finite Morley rank is W⊥p if its Sylow p-subgroup is connected.

As a consequence of Lemma K, when H E G where both are definable and connected, if H
and G/H are W⊥p then so is G. We aim at saying a bit more about extending tori. The following
result is not used anywhere in the present article.

Lemma L. Let Ĝ be a connected, U⊥p group of finite Morley rank and G E Ĝ be a definable,
connected subgroup. Suppose that Ĝ/G is W⊥p . Let Ŝ ≤ Ĝ be a Sylow p-subgroup and S = Ŝ ∩G.
Then there exist:

• a p-torus T̂ ≤ Ĝ with Ŝ = S o T̂ (semi-direct product);

• a p-torus Θ̂ ≤ Ĝ with Ŝ = S(×)Θ̂ (central product over a finite intersection).

Proof. We know that S is a Sylow p-subgroup of G and that Ŝ/S ' ŜG/G is a Sylow p-subgroup of
Ĝ/G; as the latter is W⊥p it is a p-torus. In particular Ŝ = Ŝ◦S. Note that S ∩ Ŝ◦ ≤ CS(S◦) = S◦

by torality principles.
Bear in mind that p-tori are injective as Z-modules. Inside Ŝ◦ take a direct complement T̂ of

S◦, so that Ŝ◦ = S◦ ⊕ T̂ . Then Ŝ = SŜ◦ = ST̂ , but S ∩ T̂ ≤ S ∩ Ŝ◦ ∩ T ≤ S◦ ∩ T = 1. Hence
Ŝ = S o T̂ .

We now consider the action of Ŝ on Ŝ◦; observe that Ŝ as a pure group has finite Morley rank,
so Lemma G applies and yields Ŝ◦ = [Ŝ◦, Ŝ](+)C◦

Ŝ◦
(Ŝ). Since Ŝ/S is a p-torus, it is abelian, so

[Ŝ◦, Ŝ] ≤ Ŝ′ ≤ S, and by Zilber’s indecomposibility theorem [Ŝ◦, Ŝ] ≤ S◦. Inside C◦
Ŝ◦

(Ŝ) take a
direct complement Θ̂ of C◦S◦(Ŝ), so that C◦

Ŝ◦
(Ŝ) = C◦S◦(Ŝ)⊕ Θ̂. Then Ŝ = SŜ◦ = SC◦

Ŝ◦
(Ŝ) = SΘ̂,

and Θ̂ ≤ C◦
Ŝ◦

(Ŝ) commutes with S. Moreover (S ∩ Θ̂)◦ ≤ (CS(Ŝ) ∩ Θ̂)◦ ≤ C◦S◦(Ŝ) ∩ Θ̂ = 1 by
construction, so Ŝ = S(×)Θ̂.

Remark. One may not demand that Ŝ = S× T̂ (direct product). Consider the two groups SL2(C)
with involution i and C× with involution j. Let Ĝ = (SL2(C)×C×)/〈ij〉 and ϕ : SL2(C)×C× → Ĝ
be the standard projection. Let G = ϕ(SL2(C)) ' SL2(C) and Θ̂ = ϕ(C×) ' C×. Fix any Sylow
2-subgroup Ŝ of Ĝ. Then with S = Ŝ ∩G one has SΘ̂ = S(×)Θ̂ = Ŝ, and S ∩ Θ̂ = 〈ϕ(i)〉.

If one asks for a semi-direct complement T̂ , the latter must contain its own involution, which
will be ϕ(ab) (or possibly ϕ(iab), a similar case), where a ∈ ϕ−1(S) ≤ SL2(C) satisfies a2 = i and
b2 = j in C×. Remember that inside a fixed Sylow 2-subgroup of SL2(C), every element of order

17



four (be it toral inside the fixed Sylow 2-subgroup or not) is inverted by another element of order
four. So let ζ ∈ ϕ−1(S) invert a. Then:

ϕ(ζab) = ϕ(ζa) = ϕ(iζ) 6= ϕ(ζ)

so the action of T̂ on S is always non-trivial.
One may not demand Ŝ = S × T̂ , and in any case nothing can apparently prevent d(T̂ ) from

intersecting G non-trivially, so why bother?

3.6 A Counting Lemma
The following quite elementary Lemma was devised in Kapadokya in 2007 as an explanation of
[Del07b, Corollaire 5.1.7] (or [Del08, Corollaire 4.7]).

Lemma M (Göreme). Let G be a connected, U⊥2 , W⊥2 group of finite Morley rank. Then the
number of conjugacy classes of involutions is odd (or zero).

Proof. By torality principles, every class is represented in a fixed Sylow 2-subgroup S = S◦. We
group involutions of S◦ by classes γk, and assume we find an even number of these: I(S◦) = t2m

k=1γk.
Since the number of involutions in S◦ is however odd, some class, say γ, has an even number of
involutions. Now N = NG(S) acts on γ; by definition of a conjugacy class and by a classical fusion
control argument [BN94b, Lemma 10.22], N acts transitively on γ. Hence [N : CN (γ)] = |γ| is even.
Lifting torsion, there is a non-trivial 2-element ζ in N \CN (γ). Since S E N , ζ ∈ S = S◦ ≤ CN (γ),
a contradiction.

The author hoped to be able to use this Lemma without any form of bound on the Prüfer
2-rank. He failed as one shall see in Step 8 of the Theorem. The general statement remains as a
relic of happier times past.

4 The Proof – Before the Maximality Proposition
Theorem. Let Ĝ be a connected, U⊥2 group of finite Morley rank and G E Ĝ be a definable,
connected, non-soluble, ∗-locally◦◦ soluble subgroup.

Then the Sylow 2-subgroup of G is isomorphic to that of PSL2(C), isomorphic to that of SL2(C),
or is a 2-torus of Prüfer 2-rank at most 2.

Suppose in addition that for all ι ∈ I(Ĝ), C◦G(ι) is soluble.
Then m2(Ĝ) ≤ 2, G or Ĝ/G is 2⊥, and involutions are conjugate in Ĝ. Moreover one of the

following cases occurs:

• PSL2: G ' PSL2(K) in characteristic not 2; Ĝ/G is 2⊥;

• CiBo∅: G is 2⊥; m2(Ĝ) ≤ 1; for ι ∈ I(Ĝ), CG(ι) = C◦G(ι) is a self-normalising Borel subgroup
of G;

• CiBo1: m2(G) = m2(Ĝ) = 1; Ĝ/G is 2⊥; for i ∈ I(Ĝ) = I(G), CG(i) = C◦G(i) is a self-
normalising Borel subgroup of G;

• CiBo2: Pr2(G) = 1 and m2(G) = m2(Ĝ) = 2; Ĝ/G is 2⊥; for i ∈ I(Ĝ) = I(G), C◦G(i)
is an abelian Borel subgroup of G inverted by any involution in CG(i) \ {i} and satisfies
rkG = 3 rkC◦G(i);

• CiBo3: Pr2(G) = m2(G) = m2(Ĝ) = 2; Ĝ/G is 2⊥; for i ∈ I(Ĝ) = I(G), CG(i) = C◦G(i) is a
self-normalising Borel subgroup of G.

The proof consists of eight Propositions all strongly relying on the ∗-local◦◦ solubility assumption,
the deepest of which will be the maximality Proposition 6. Let us briefly describe the global outline.
More detailed information will be found before each proposition.

In Proposition 1 (§4.1) we determine the 2-structure of ∗-locally◦◦ soluble groups by elementary
methods. Proposition 2 (§4.2) is a classical rank computation required both by the Algebraicity
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Proposition 3 (§4.3) which identifies PSL2(K) through reconstruction of its BN-pair, and by the
Maximality Proposition 6 which shows that in non-algebraic configurations centralisers◦ of involu-
tions are Borel subgroups. The latter will take all of §5 but actually requires two more technical
preliminaries: Propositions 4 (§4.4) and 5 (§4.5), which deal with actions of involutions and tor-
sion, respectively. After Proposition 6 things go faster. We study the action of an infinite dihedral
group in Proposition 7 (§6.1) and a strong embedding configuration in Proposition 8 (§6.2). Both
are rather classical, methodologically speaking; Proposition 7 is more involved than Proposition 8;
they can be read in any order but both rely on Maximality. The final assembling takes place in
§6.3 where all preliminary propositions 1, 2, 4 and 5 reappear as independent themes.

The resulting outline surprised us. In the original, minimal connected simple setting one
proceeded by first bounding the Prüfer 2-rank [BCJ07] and then studying the remaining cases
[Del07a, Del08]. There maximality propositions had to be proved three times in order to complete
the analysis. The reason for such a clumsy treatment, with one part of the proof being repeated
over and over again, was that torsion arguments were systematically based on some control on
involutions. Here we do the opposite. By providing careful torsion control in Proposition 5 and
relaxing our expectations on conjugacy classes of involutions we shall be able to run maximality
without prior knowledge of the Prüfer 2-rank. This seems to be the right level both of elegance
and generality. Bounding the Prüfer 2-rank then follows by adapting a small part of [BCJ07].

Before the curtain opens one should note that bounding the Prüfer 2-rank of Ĝ a priori is
possible if one assumes G to be 2⊥ as Burdges noted for [BCD09]. We do not follow this line.

4.1 The 2-structure Proposition
The following Proposition comes directly from [Del07b, Chapitre 4 and Addendum], published as
[Del08, §2]. It is the most elementary of our propositions, and together with the Strong Embedding
Proposition 8 one of the two not requiring quasi-solubility of centralisers of involutions.

Proposition 1 (2-structure). Let G be a connected, U⊥2 , ∗-locally◦◦ soluble group of finite Morley
rank. Then the Sylow 2-subgroup of G has the following form:

• connected, i.e. a possibly trivial 2-torus;

• isomorphic to that of PSL2(C);

• isomorphic to that of SL2(C), in which case C◦G(i) is non-soluble for any involution i of G.

Proof. If the Prüfer rank is 0 this is a consequence of the analysis of degenerate type groups
[BBC07]. If it is 1, this is well-known, see for reference [DJ10, Proposition 27]. Notice that if the
Sylow 2-subgroup is like in SL2(C) and i is any involution, then by torality principles all Sylow
2-subgroups of CG(i) are in C◦G(i), but none is connected: this, and the structure of torsion in
connected, soluble groups of finite Morley rank prevents C◦G(i) from being soluble.

So we suppose that the Prüfer 2-rank is at least 2 and show that a Sylow 2-subgroup S of G
is connected. Let G be a minimal counterexample to this statement. Then G is non-soluble. By
∗-local◦◦ solubility Z(G) is finite, but we actually may suppose that G is centreless. For if the result
holds of G/Z(G), then SZ(G)/Z(G) is a Sylow 2-subgroup of G/Z(G), and therefore connected,
so that S ≤ S◦Z(G) ∩ S ≤ CS(S◦) = S◦ by torality principles. So we may assume Z(G) = 1.

Still assuming that the Prüfer 2-rank is at least 2 we let ζ ∈ S \ S◦ have minimal order,
so that ζ2 ∈ S◦. Let Θ1 = C◦S◦(ζ). If Θ1 6= 1 then 〈S◦, ζ〉 ≤ CG(Θ1) which is connected by
[AB08, Theorem 1] and soluble by ∗-local◦◦ solubility. The structure of torsion in such groups
yields ζ ∈ S◦, a contradiction. So Θ1 = C◦S◦(ζ) = 1 and ζ therefore inverts S◦. In particular
it centralises Ω = Ω2(S◦), and Ω normalises C◦G(ζ). By normalisation principles Ω normalises
therefore a maximal 2-torus T of C◦G(ζ); by torality, ζ ∈ T and T has the same Prüfer 2-rank as
S. Now |Ω| ≥ 4 so there is i ∈ Ω such that Θ2 = C◦T (i) is non-trivial. Then 〈T, i〉 ≤ CG(Θ2)
which is soluble and connected as above, implying i ∈ T . This is not a contradiction yet, but
now ζ ∈ T ≤ C◦G(i) and of course S◦ ≤ C◦G(i). Hence C◦G(i) < G is a smaller counterexample, a
contradiction. Connectedness is proved.
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Remark. One can show that if α ∈ G is a 2-element with α2 6= 1, then CG(α) is connected.
For let α ∈ G have order 2k with k > 1. By Steinberg’s torsion theorem, CG(α)/C◦G(α) has

exponent dividing 2k. Using torality, fix a maximal 2-torus T of G containing α. If the Sylow
2-subgroup of G is connected, then T is a Sylow 2-subgroup of G included in C◦G(α): hence
CG(α) = C◦G(α). If the Sylow 2-subgroup of G is isomorphic to that of PSL2(C) or of SL2(C),
then any 2-element ζ ∈ CG(α) normalising T centralises α of order at least 4, so it also centralises
T . It follows from torality principles that ζ ∈ T ≤ C◦G(α), and CG(α) is connected again.

We shall not use this remark.

4.2 The Genericity Proposition
Considerations concerning the distribution of involutions in the cosets of a given sub-
group are often useful in the study of groups of even order.

So wrote Bender in the beginning of [Ben74b]. The first instance of this method in the finite
Morley rank context seems to be [BDN94, after Lemma 7] which with [BN94a] aimed at identifying
SL2(K) in characteristic 2. Jaligot brought it to the odd type setting [Jal00]. This subsection is
the cornerstone of Propositions 3 and 6 and is used again when conjugating involutions in Step 7
of the final argument.
Notation. For κ an involutory automorphism and H a subgroup of some ambient group, we let
TH(κ) = {h ∈ H : hκ = h−1}. (This set is definable as soon as κ and H are.)

The following is completely classical; the proof will not surprise the experts and is included for
the sake of self-containedness. It will be applied only when H is a Borel subgroup of G.
Proposition 2 (Genericity). Let Ĝ be a connected, U⊥2 group of finite Morley rank and G E Ĝ be
a definable, connected, non-soluble, ∗-locally◦◦ soluble subgroup.

Suppose that Ĝ = G · d(Ŝ◦) for some maximal 2-torus Ŝ◦ of Ĝ.
Let ι ∈ I(Ĝ) and H ≤ G be a definable, infinite, soluble subgroup of G. Then KH = {κ ∈

ιĜ \NĜ(H) : rk TH(κ) ≥ rkH − rkCG(ι)} is generic in ιĜ.

Proof. The statement is invariant under conjugating Ŝ◦ so by torality principles we may assume
ι ∈ Ŝ◦; in particular ιĜ = ιG. We shall first show that ιĜ \NĜ(H) is generic in ιĜ. [DJ12, Lemmas
2.16 and 3.33] were supposed to do it instantly, but they only apply when ι ∈ G. Minor work
remains to be done.

Suppose that ιĜ \ NĜ(H) is not generic in ιĜ. Then by a degree argument, ιĜ ∩ NĜ(H) is
generic in ιĜ. Inside Ĝ apply [DJ12, Lemma 2.16] with X = ιĜ and M = NĜ(H): X ∩M contains
a definable, Ĝ-invariant subset X1 which is generic in X. Note that X is infinite as otherwise ι
inverts Ĝ, so X1 is infinite as well. We cannot directly apply [DJ12, Lemma 3.33] as Ĝ itself need
not be ∗-locally◦◦ soluble. So let X2 = {κλ : κ, λ ∈ X1}, which is an infinite, Ĝ-invariant subset
of NĜ(H). Since X1 ⊆ ιĜ = ιG ⊆ ιG = Gι, X2 is actually a subset of G. Hence X2 ⊆ NG(H).
The latter need not soluble but is a finite extension of N◦G(H), which is. Since X2 is infinite and
has degree 1, there is a generic subset X3 of X2 which is contained in some translate nN◦G(H)
of N◦G(H), where n ∈ NG(H). Then X3 ⊆ N◦G(H) · 〈n〉 which is a definable, soluble group we
denote by M2; X3 itself may fail to be G-invariant. But X2 is a G-invariant subset such that
X3 ⊆ X2 ∩M2 is generic in X2. By [DJ12, Lemma 3.33] applied in G = G◦ to X2 and M2, G is
soluble: a contradiction.

The end of the proof is rather worn-out. Consider the definable function ϕ : ιĜ \ NĜ(H) →
G · 〈ι〉/H which maps κ to κH. The domain has rank rk ιĜ = rk ιG = rkG− rkCG(ι). The image
set has rank at most rkG− rkH. So the generic fiber has rank at least rkH− rkCG(ι). But if κ, λ
are in the same fiber, then κH = λH and κλ ∈ TH(κ). So for generic κ, rk TH(κ) ≥ rkϕ−1(ϕ(κ)) ≥
rkH − rkCG(ι).

Notation. For κ an involutory automorphism and H a subgroup of some ambient group, we let
TH(κ) = {h2 ∈ H : hκ = h−1} ⊆ TH(κ). (This set is definable as soon as κ and H are.)

The T sets were denoted τ in [Del07b]; interestingly enough, they were already used in [BCJ07,
Notation 7.4]. There is no a priori estimate on rkTH(κ), and Proposition 5 will remedy this.
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4.3 The Algebraicity Proposition
Proposition 3 below is the historical core of the subject.

Identifying SL2(K) is a classical topic in finite group theory. So Proposition 3 is a very weak
form of the Brauer-Suzuki-Wall Theorem [BSW58] in odd characteristic. However [BSW58] heavily
relied on character theory, a tool not available in and perhaps not compatible in spirit with the
context of groups of finite Morley rank. A character-free proof of outstanding elegance was found
by Goldschmidt. Yet his article [Gol75] dealt only with the characteristic 2 case, and ended on the
conclusive remark:

Finally, some analogues of Theorem 2 [Goldschmidt’s version of BSW] may hold for
odd primes but [. . . ] this problem seems to be very difficult.

Bender’s investigations in odd characteristic [Ben74a] and [Ben81] both require some character
theory.

In the finite Morley rank context various results identifying PSL2(K) exist, starting with Cher-
lin’s very first article in the field [Che79] and Hrushovski’s generalisation [Hru89]. For groups of
even type, [BDN94, BN94a] provide identification using heavy rank computations. In a different
spirit, the reworking of Zassenhaus’ classic [Zas35] by Nesin [Nes90a] and its extension [DN95]
identify PSL2(K) among 3-transitive groups; the latter gives a very handy statement.

Most of the ideas in the proof hereafter are in [Del07a] and in many other articles before. Only
two points need be commented on.

• First, we shift from the tradition as in [CJ04, Del07a] of invoking the results on permutation
groups Nesin had ported to the finite Morley rank context ([DN95], see above).
We decided to use final identification arguments based on the theory of Moufang sets instead.
At that point of the analysis the difference may seem essentially cosmetic but the Moufang
setting is in our opinion more appropriate as it focuses on the BN-pair. We now rely on
recent work by Wiscons [Wis11].
(Incidently, Nesin had started thinking about BN-pairs [Nes90b] but stopped before reaching
an identification theorem for PSL2(K) in this context; not returning to jail he apparently
never returned to the topic.)

• Second, we refrained from using Frécon homogeneity, just for the thrill of it. This makes the
proof only marginally longer in Step 6.

Proposition 3 (Algebraicity). Let Ĝ be a connected, U⊥2 group of finite Morley rank and G E Ĝ
be a definable, connected, non-soluble, ∗-locally◦◦ soluble subgroup. Suppose that for all ι ∈ I(Ĝ),
C◦G(ι) is soluble.

Suppose that there exists ι ∈ I(Ĝ) such that C◦G(ι) is included in two distinct Borel subgroups.
Then G has the same Sylow 2-subgroup as PSL2(K). If in addition ι ∈ G, then G ' PSL2(K),
where K is an algebraically closed field of characteristic not 2.

Proof. Since Ĝ is connected, every involution ι is toral: say ι ∈ Ŝ◦ a 2-torus. We may therefore
assume that Ĝ = G · d(Ŝ◦), so that the standard rank computations of the Genericity Proposition
2 apply. Moreover, Ĝ/G is connected and abelian, hence W⊥2 .

Notation 1.

• Let B ≥ C◦G(ι) be a Borel subgroup maximising ρB; let ρ = ρB.

• Let KB = {κ ∈ ιĜ \NĜ(B) : rk TB(κ) ≥ rkB − rkC◦G(ι)}; by the Genericity Proposition 2,
KB is generic in ιĜ.

• Let κ ∈ KB.

Step 2. Uρ(C◦G(ι)) = 1. If U ≤ B is a non-trivial ρ-group, H ≤ G is a definable, connected
subgroup of G containing U , and λ ∈ ιĜ normalises H, then λ normalises B.
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Proof of Step. Suppose Uρ(C◦G(ι)) 6= 1. Let D 6= B be a Borel subgroup containing C◦G(ι) and
maximising H = (B ∩ D)◦: such a Borel subgroup exists by the assumption on C◦G(ι). If H is
not abelian then by [DJ12, 4.50(3) and (6) (our Fact 10)] ρB 6= ρD, but by construction ρD �
ρι = ρB � ρD, a contradiction. Hence H is abelian, and in particular C◦G(ι) ≤ H ≤ C◦G(Uρ(H))
which is a soluble group; by definition of B, the parameter of C◦G(Uρ(H)) is ρ. It follows from
uniqueness principles that Uρ(H) is included in a unique Sylow ρ-subgroup of G. This must be
Uρ(B) = Uρ(D), so B = D: a contradiction.

We just proved ρι ≺ ρ. It follows that for any σ � ρ, any ι-invariant σ-group is inverted by ι.
Now let U , H, and λ be as in the statement. There is a Sylow ρ-subgroup V of H containing U .
By normalisation principles λ has an H-conjugate µ normalising V : so µ inverts V ≥ U .

Let C = C◦G(U), a definable, connected, soluble group. Since U ≤ Uρ(B), Uρ(Z(F ◦(B))) ≤ C.
So there is a Sylow ρ-subgroup W of C containing Uρ(Z(F ◦(B))). As µ inverts U it normalises C;
by normalisation principles µ has a C-conjugate ν normalisingW : so ν invertsW ≥ Uρ(Z(F ◦(B))).
Now ν also inverts UρC (C), and commutation principles yield [UρC (C), Uρ(Z(F ◦(B)))] = 1, whence
UρC (C) ≤ C◦G(Uρ(Z(F ◦(B)))) ≤ B. At this point it is clear that ρC = ρ and Uρ(Z(F ◦(B))) ≤
UρC (C). Moreover Uρ(B) is the only Sylow ρ-subgroup of G containing U by uniqueness principles.

On the other hand µ inverts UρH (H) and U , so by commutation principles [UρH (H), U ] = 1
and UρH (H) ≤ C, meaning that ρH = ρ as well. Hence λ inverts UρH (H) = Uρ(H) ≥ U . Since
Uρ(B) is the only Sylow ρ-subgroup of G containing U , λ normalises B. ♦

Notation 3. Let Lκ = B ∩Bκ and Θκ = {` ∈ Lκ : ``κ ∈ L′κ}.

Step 4. Lκ and Θκ are infinite, definable, κ-invariant, abelian-by-finite groups. Moreover Θ◦κ ⊆
TB(κ) ⊆ Θκ.

Proof of Step. L′κ is finite since we otherwise let H = N◦G(L′κ) ≥ Uρ(Z(F ◦(B))) which is definable,
connected, and soluble by ∗-local◦◦ solubility: Step 2 shows that κ normalises B, contradicting
its choice in Notation 1. It follows that L◦κ is abelian and Lκ is abelian-by-finite. Θκ is clearly a
definable, κ-invariant subgroup of Lκ, so it is abelian-by-finite as well. By construction TB(κ) ⊆ Θκ,
and Θκ is therefore infinite.

We now consider the action of κ on Θ◦κ and find according to Lemma G the decomposition
Θ◦κ = C◦Θ◦κ(κ)(+)[Θ◦κ, κ]. Now the definable function ϕ : C◦Θ◦κ(κ)→ L′κ which maps t to ttκ = t2 is
a group homomorphism, so by connectedness and since L′κ is finite, C◦Θ◦κ(κ) has exponent 2: it is
trivial. So κ inverts Θ◦κ, meaning Θ◦κ ⊆ TB(κ). ♦

Notation 5. Let U ≤ [Uρ(Z(F ◦(B))),Θ◦κ] be a non-trivial, Θ◦κ-invariant ρ-subgroup minimal with
these properties.

Step 6. U does exist and C◦U (ι) = 1; CΘ◦κ(U) is finite and there exists an algebraically closed field
structure K with U ' K+ and Θ◦κ/CΘ◦κ(U) ' K×. Moreover G has the same Sylow 2-subgroup as
PSL2(K).

Proof of Step. If Θ◦κ centralises Uρ(Z(F ◦(B))) then the κ-invariant, definable, connected, soluble
group C◦G(Θ◦κ) contains Uρ(Z(F ◦(B))) and Step 2 forces κ to normalise B, against its choice
in Notation 1. Hence [Uρ(Z(F ◦(B))),Θ◦κ] 6= 1; it is a ρ-group (Fact 7 (v); no need for Frécon
homogeneity here).

We show that C◦U (ι) = 1; be careful that ι need not normalise U nor even B a priori. Yet
if C◦U (ι) is infinite then Step 2 applied to C◦G(C◦U (ι)) ≥ Uρ(Z(F ◦(B))) forces ι to normalise B,
whence ι inverts Uρ(B) ≥ U ≥ C◦U (ι): a contradiction.

Suppose that CΘ◦κ(U) is infinite; Step 2 applied to C◦G(CΘ◦κ(U)) ≥ U forces κ to normalise
B: a contradiction. We now wish to apply Zilber’s Field Theorem. It may look like we fall
short of Θ◦κ-minimality but fear not. Follow for instance the proof in [BN94b, Theorem 9.1]. It
suffices to check that any non-zero r in the subring of End(U) generated by Θ◦κ is actually an
automorphism. But by push-forward [Bur04a, Lemma 2.11] im r ' U/ ker r is a non-trivial, Θ◦κ-
invariant ρ-subgroup. By minimality of U as such, r is surjective. In particular ker r is finite.
Suppose it is non-trivial and form, like in [BN94b, Theorem 9.1], the chain (ker rn). Each term is
Θ◦κ-central by connectedness, so C◦U (Θ◦κ) contains an infinite torsion subgroup A. If there is some
torsion unipotence then A = U by minimality as a ρ-group, and Θ◦κ centralises U : a contradiction.
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So A contains a non-trivial q-torus for some prime number q. This means that there is a q-torus in
[Uρ(Z(F ◦(B))),Θ◦κ] ≤ B′ which contradicts, for instance, [Fré00b, Proposition 3.26]. Hence every
r ∈ 〈Θ◦κ〉End(U) is actually an automorphism of U : field interpretation applies (it also follows, a
posteriori, that U is Θ◦κ-minimal).

A priori Θ◦κ/CΘ◦κ(U) simply embeds into K×. But one has by Step 4 and the definition of κ:

rk Θ◦κ/CΘ◦κ(U) = rk Θ◦κ = rk TB(κ) ≥ rkB − rkC◦G(ι) = rkB − rkC◦B(ι) = rk ιB

≥ rk ιU = rkU − rkCU (ι) = rkU = rkK+

It follows that Θ◦κ/CΘ◦κ(U) ' K×. At this point Θ◦κ contains a non-trivial 2-torus. By the 2-
structure Proposition 1 and in view of the assumption on centralisers of involutions, the Sylow
2-subgroup of G is either connected or isomorphic to that of PSL2(K). Suppose it is connected.
Then G is W⊥2 ; since Ĝ/G is as well, so is Ĝ by Lemma K. This contradicts the fact that κ inverts
the 2-torus of Θ◦κ. ♦

For the remainder of the proof we now suppose that ι is already in G. So we may assume
Ĝ = G. Bear in mind that since the Prüfer 2-rank is 1 by Step 6, all involutions are conjugate.

Notation 7.

• Let for consistency of notations i = ι ∈ G and k = κ ∈ G. (By torality principles, i ∈
C◦G(i) ≤ B.)

• Let jk be the involution in Θ◦k.

Since i, jk are in B they actually are B-conjugate. In particular C◦G(jk) ≤ B.

Step 8. Θ◦k = C◦G(jk). Moreover rkU = rkC◦G(i) = rk Θk, rkB ≤ 2 rkU , and rkG ≤ rkB+ rkU .

Proof of Step. One inclusion is clear by abelianity of Θ◦k obtained in Step 4. Now let N =
N◦G(C◦G(k, jk)). Since L◦k is abelian by Step 4, so are C◦G(jk) ≤ L◦k and its conjugate C◦G(k).
Hence Θ◦k ≤ C◦G(jk) ≤ N and by torality k ∈ C◦G(k) ≤ N . So N contains a non-trivial 2-torus and
an involution inverting it: by the structure of torsion in definable, connected, soluble groups, N is
not soluble. ∗-Local◦◦ solubility of G forces C◦G(k, jk) = 1, so k inverts C◦G(jk). Hence C◦G(jk) ≤ Θ◦k.

We now compute ranks. By Steps 6 and 8, rkC◦G(i) = rk Θ◦k = rkK× = rkK+ = rkU . By
definition of k ∈ KB and Step 4, rk Θ◦k = rk TB(k) ≥ rkB − rkCB(i), so rkB ≤ 2 rkU .

Now remember that k varies in a set KB generic in iG. Let f : KB → iB be the definable
function mapping k to jk. If jk = j` then ` ∈ CG(jk) and the latter has the same rank as CG(i) so
we control fibers. Hence:

rkG− rkCG(i) = rk iG = rkKB ≤ rk iB + rkCG(i) = rk iB + rkCB(i) = rkB

that is, rkG ≤ rkB + rkCG(i). ♦

For the end of the proof k will stay fixed; conjugating again in B we may therefore suppose
that jk = i.

Notation 9. Let N = CG(i) and H = B ∩N .

Step 10. H = B ∩N ; (B,N,U) forms a split BN-pair of rank 1.

Proof of Step. We must check the following:

• G = 〈B,N〉;

• [N : H] = 2;

• for any ω ∈ N \H, H = B ∩Bω, G = B tBωB, and Bω 6= B;

• B = U oH.
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First, H = B ∩ N = CB(i) = C◦B(i) by Steinberg’s torsion theorem and the structure of torsion
in B. By the structure of the Sylow 2-subgroup obtained in Step 6, H < N , so using Steinberg’s
torsion theorem again [N : H] = 2. Hence for any ω ∈ N \H = Hk one has Bω = Bk ≥ Hk = H
and H ≤ B ∩ Bk. Now by the structure of torsion in B, B ∩ Bk centralises the 2-torus in the
abelian group (B ∩Bk)◦ = L◦k so B ∩Bk ≤ CB(i) = H.

Recall that the action of H = C◦G(i) = Θ◦k on U induces a full field structure; in particular
H∩U ≤ CU (Θ◦k) = 1. So U ·H = UoH has rank 2 rkU ≥ rkB by Step 8 and therefore B = UoH.

It remains to obtain the Bruhat decomposition. But first note that if CNG(B)(i) > CB(i) then
CNG(B)(i) = N contains k, which contradicts k /∈ NG(B) from Notation 1. So CNG(B)(i) = CB(i)
and since B conjugates its involutions a Frattini argument yields NG(B) ⊆ B · CNG(B)(i) = B.

Finally let g ∈ G \ B; g does not normalise B. Let X = (U ∩ Bg)◦ and suppose X 6= 1. In
characteristic p this contradicts uniqueness principles. In characteristic 0, U ' K+ is minimal
[Poi87, Corollaire 3.3], so X = U ; at this point U = Uρ(Bg) = Ug, a contradiction again. In any
case X = 1. In particular UgB has rank rkU + rkB = rkG by Step 8 and UgB is generic in G.
This also holds of UkB so g ∈ BkB and G = B t BkB = B t BωB for any ω ∈ N \ H. This
certainly implies G = 〈B,N〉. ♦

We finish the proof with [Wis11, Theorem 1.2] or [DMT08, Theorem 2.1], depending on the
characteristic. If U has exponent p, then Up(H) = 1 as H ' K×, so [Wis11, Theorem 1.2]
applies. If not, then U is torsion-free: we use [DMT08, Theorem 2.1] instead. In any case,
G/∩g∈G Bg ' PSL2(K) for some field structure K which on the face of it need not be the same as
in Step 6 but could easily be proved to. Since ∩g∈GBg is a normal, soluble subgroup, it is finite and
central by ∗-local◦◦ solubility. But central extensions of finite Morley rank of quasi-simple algebraic
groups are known [AC99, Corollary 1], so G ' SL2(K) or PSL2(K), and the first is impossible by
assumption on the centralisers of involutions.

Remark. In order to prove non-connectedness of the Sylow 2-subgroup of G, one only needs
solubility of C◦G(ι) regardless of how centralisers of involutions in other classes may behave. But
in order to continue one needs much more.

• One cannot work with jκ as all our rank computations rely on the equality rkCG(jκ) =
rkCG(ι), for which there is no better reason than conjugacy with ι. This certainly implies
ι ∈ G to start with.

• One cannot entirely drop ι and focus on jκ, since there is no reason why C◦G(jκ) should be
soluble.

4.4 The Devil’s Ladder
The following comes from [Del07b, Proposition 5.4.9] with first clear appearances in [DJ08] and
[BCD09]. This technical statement will be used three times: in order to control torsion which is the
very purpose of Proposition 5, at a rather convoluted moment in Step 9 of Maximality Proposition
6, and in order to conjugate involutions in the very end of the proof of our Theorem, Step 7. It
may be viewed as an extreme form of Proposition 3, Step 2; the effective contents of the proof are
not perfectly clear but it suffices to hold on longer than the group.

The argument was found and named in 2007 after a Ligeti study and greatly simplified since:
in [DJ] the proof still took three pages.

Proposition 4 (The Devil’s Ladder). Let Ĝ be a connected, U⊥2 , W⊥2 group of finite Morley rank
and G E Ĝ be a definable, connected, non-soluble, ∗-locally◦◦ soluble subgroup. Suppose that for all
ι ∈ I(Ĝ), C◦G(ι) is soluble.

Let κ, λ ∈ I(Ĝ) be two involutions. Suppose that for all µ ∈ I(Ĝ) such that ρµ � ρκ, C◦G(µ) is
a Borel subgroup of G.

Let B ≥ C◦G(κ) be a Borel subgroup of G and 1 6= X ≤ F ◦(B) be a definable, connected subgroup
which is centralised by κ and inverted by λ.

Then C◦G(X) ≤ B and B is the only Borel subgroup of G of parameter ρB containing C◦G(X);
in particular κ and λ normalise B.
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Proof. First observe that κ ∈ CĜ(X) which is λ-invariant, so by normalisation principles λ has a
CĜ(X)-conjugate λ′ which normalises some Sylow 2-subgroup of CĜ(X) containing κ. By the W⊥2
assumption the Sylow 2-subgroup of Ĝ is abelian, so [κ, λ′] = 1; also observe that λ′ inverts X.
Let C = C◦G(X), a definable, connected, and soluble group by ∗-local◦◦ solubility.

First suppose ρC � ρκ. Then κ inverts UρC(C), which is therefore abelian. Since the four-group
〈κ, λ′〉 normalises UρC (C), one of the two involutions λ′ or κλ′, call it µ, satisfies Y = C◦UρC (C)(µ) 6=
1. Note that Y is a ρC-group. Let D = C◦G(Y ) ≥ UρC (C); it is a definable, connected, soluble,
κ-invariant subgroup. Since ρD � ρC � ρκ, κ inverts D. On the other hand, Y ≤ C◦G(µ) so
ρµ � ρκ and by assumption, C◦G(µ) is a Borel subgroup of G, say Bµ. Since κ and µ commute, κ
normalises Bµ and inverts Uρµ(Bµ) E Bµ. It also inverts Y ≤ Bµ, so by commutation principles
[Uρµ(Bµ), Y ] = 1 and Uρµ(Bµ) ≤ C◦G(Y ) = D.

We are still assuming ρC � ρκ. The involution κ inverts UρD (D) E D and Uρµ(Bµ) ≤ D; so by
commutation principles [Uρµ(Bµ), UρD (D)] = 1 and UρD (D) ≤ N◦G(Uρµ(Bµ)) = Bµ. At this stage
it is clear that ρD = ρµ and Uρµ(Bµ) = UρD (D). In particular D ≤ N◦G(Uρµ(Bµ)) = Bµ. As a
conclusion,

X ≤ C◦G(UρC (C)) ≤ C◦G(Y ) = D ≤ Bµ = C◦G(µ)

against the fact that µ inverts X.
This contradiction shows that ρC � ρκ. Now X ≤ F ◦(B), so UρB (Z(F ◦(B))) ≤ C◦G(X) = C;

hence ρB � ρC � ρκ � ρB and equality holds. Since by uniqueness principles UρB (B) is the only
Sylow ρB-subgroup of G containing UρB (Z(F ◦(B))), it also is unique as such containing UρC (C).
Hence NĜ(C) ≤ NĜ(UρB (B)) = NĜ(B). Therefore κ and λ normalise B.

4.5 Inductive Torsion Control
It will be necessary to control torsion in the TB(κ)-sets. In [Del07b] this was redone for each
conjugacy class of involutions by ad hoc arguments which could, in high Prüfer rank, get involved
(the “Birthday Lemmas” [Del07b, Lemmes 5.3.9 and 5.3.10] published as [Del08, Lemmes 6.9 and
6.10]). We proceed more uniformly although some juggling is required. Like in [Del08] the argument
will be applied twice: to start the proof of the Maximality Proposition 6, and later to conjugate
involutions in Step 7 of the final argument. This accounts for the disjunction in the statement.

There was nothing equally technical in [BCD09] as controlling involutions there was trivial. An
“inner” version of the argument was found in Yanartaş in the Spring of 2007 and added to [DJ08].
Externalising involutions is no major issue.

Proposition 5 (Inductive Torsion Control). Let Ĝ be a connected, U⊥2 , W⊥2 group of finite Morley
rank and G E Ĝ be a definable, connected, non-soluble, ∗-locally◦◦ soluble subgroup. Suppose that
for all ι ∈ I(Ĝ), C◦G(ι) is soluble.

Let ι ∈ I(Ĝ) and B ≥ C◦G(ι) be a Borel subgroup. Suppose that for all µ ∈ I(Ĝ) such that
ρµ � ρι, C◦G(µ) is a Borel subgroup of G. Let κ ∈ I(Ĝ) \NĜ(B) be such that TB(κ) is infinite.

Suppose either that B = C◦G(ι) or that ι and κ are Ĝ-conjugate. Then TB(κ) has the same rank
as TB(κ), and contains no torsion elements.

Proof. First remember that since Ĝ is W⊥2 , if some involution ω ∈ I(Ĝ) inverts a toral element
t ∈ Ĝ, then t2 = 1. One may indeed take a maximal decent torus [Che05] T̂ of Ĝ containing t;
then ω normalises C◦

Ĝ
(t) which contains T̂ and its 2-torus T̂2, so by normalisation principles ω

has a C◦
Ĝ

(t)-conjugate ω′ normalising T̂2. By the W⊥2 assumption, the latter already is a Sylow
2-subgroup of Ĝ, whence ω′ ∈ T̂2 ≤ C◦

Ĝ
(t). It follows that ω centralises t; it also inverts it by

assumption, so t2 = 1. The proof starts here.
We first show that B has no torsion unipotence. The argument is a refinement of Step 4 of

Proposition 3. Suppose that there is a prime number p with Up(B) 6= 1. Let Lκ = B∩Bκ (be careful
that we do not consider the connected component). Since C◦G(L′κ) contains both Up(Z(F ◦(B)) and
Up(Z(F ◦(Bκ), uniqueness principles imply that L′κ is finite. Unfortunately Lκ need not quite be
abelian so let us introduce:

Θκ = {` ∈ Lκ : ``κ ∈ L′κ}
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which is a definable, κ-invariant subgroup of B containing TB(κ); in particular it is infinite. Also
note that Θ◦κ is abelian. Now let A ≤ Up(B) be a Θ◦κ-minimal subgroup. Θ◦κ cannot centralise A
since otherwise C◦G(Θ◦κ) ≥ 〈A,Aκ〉, against uniqueness principles. So by Zilber’s field theorem the
action induces an algebraically closed field of characteristic p structure. By Wagner’s theorem on
fields [Wag01, consequence of Corollary 9] Θ◦κ contains a q-torus Tq for some q 6= p. Up to taking
the maximal q-torus of Θ◦κ we may assume that κ normalises Tq. Write if necessary Tq as the sum
of a κ-centralised and a κ-inverted subgroup; by the first paragraph of the proof, κ centralises Tq.
So for any t ∈ Tq one has ttκ = t2 ∈ L′κ, therefore Tq ≤ L′κ against finiteness of the latter.

We have disposed of torsion unipotence inside B, and every element of prime order in B is toral
by the structure of torsion in definable, connected, soluble groups. By the first paragraph of the
proof, no element of finite order 6= 2 of B is inverted by any involution (this will be used in the
next paragraph with an involution not κ). In particular d(t2) is torsion-free for any t ∈ TB(κ);
hence the definable hull of any element of TB(κ) is torsion-free.

We now show that TB(κ) can contain but finitely many involutions (possibly none). Suppose
that it contains infinitely many. Since B has only finitely many conjugacy classes of involutions,
there are i, j ∈ TB(κ) which are B-conjugate. Now i ∈ B so {B, i} ⊆ F ◦(B); by Lemma F
(although [DJ10, Lemma 24] would do here) B = B+i · {B, i} so there is x ∈ {B, i} ⊆ (F ◦(B))−i
with j = ix. Since i inverts x, d(x2) is torsion-free. Also, 1 6= ij = iix = x2 ∈ F ◦(B). Let
X = d(x2) which is an abelian, definable, connected, infinite subgroup; like ij it is centralised by
κ and inverted by i. There are two cases.

• If B = C◦G(ι) then ι centralises X whereas κi inverts it (yes, κ and i do commute). Since
X ≤ F ◦(B) with C◦G(ι) ≤ B, the Devil’s Ladder (Proposition 4) applied to the pair (ι, κi)
leads to κi ∈ NĜ(B) and κ ∈ NĜ(B): a contradiction.

• If κ is Ĝ-conjugate to ι, say κ = ιγ for some γ ∈ Ĝ, we work in Bγ ≥ C◦G(κ). Since κ
centralises X, X ≤ Bγ . Since i ∈ CĜ(κ) ∩ B ≤ CG(κ), and by connectedness of the Sylow
2-subgroup of Ĝ, one has i ∈ C◦G(κ) ≤ Bγ . Since i inverts X, X ≤ F ◦(Bγ). Finally by
conjugacy ρκ = ρι so climbing the Devil’s Ladder for the pair (κ, i) we find C◦G(X) ≤ Bγ =
Bγκ. Since X ≤ F ◦(B) this implies UρB (Z(F ◦(B))) ≤ C◦G(X) ≤ Bγ . Uniqueness principles
now yield B = Bγ . Hence κ ∈ NĜ(B): a contradiction.

We conclude to rank equality. Let i1, . . . , in be the finitely many involutions in TB(κ) (possibly
n = 0) and set i0 = 1. If t ∈ TB(κ) then the torsion subgroup of d(t) is some 〈im〉, so d(imt) is
2-divisible, and imt ∈ TB(κ). Hence TB(κ) ⊆ ∪imTB(κ), which proves rkTB(κ) = rk TB(κ).

Remarks.

• One needs TB(κ) to be infinite only to show Up(B) = 1; if one were to assume the latter, the
rest of the argument would still work with finite TB(κ), and yield TB(κ) = {1}.

• The fact that Up(B) = 1 is a strong indication of the moral inconsistency of the configuration.

5 The Proof – The Maximality Proposition
The following Proposition forms the technical core of the present article; we woud be delighted to
learn of a finite group-theoretic analogue. It was first devised in the context of minimal connected
simple groups of odd type [Del07b], then ported to ∗-locally◦◦ soluble groups of odd type [DJ08],
and to actions on minimal connected simple groups of degenerate type [BCD09]. The main idea
and the final contradiction have not changed but every generalisation has required new technical
arguments. So neither of the above mentioned adaptations was routine; nor was combining them.
We can finally state a general form.

Proposition 6 (Maximality). Let Ĝ be a connected, U⊥2 group of finite Morley rank and G E Ĝ be
a definable, connected, W⊥2 , non-soluble, ∗-locally◦◦ soluble subgroup. Suppose that for all ι ∈ I(Ĝ),
C◦G(ι) is soluble.

Then for all ι ∈ I(Ĝ), C◦G(ι) is a Borel subgroup of G.
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Proof. The proof is longer and more demanding than others in the article, but one should be careful
to distinguish two levels.

• At a superficial level, all arguments resorting to local analysis in G and to the Bender method
(Steps 5 and 7) would be much shorter and more intuitive if one knew that Borel subgroups
of G have abelian intersections. The assumption is of course for the mere sake of exposition
as there is no hope to prove such a thing, but it may be a good idea to have a quick look at
the structure of the proof in this ideally-behaved case.

• At a deeper level, assuming abelianity of intersections does not make the statement of the
proposition obvious and the reader is invited to think about it. Even with abelian inter-
sections of Borel subgroups there would still be something to prove; this certainly uses the
TB(κ) sets and rank computations of §4.2 as nothing else is available. As a matter of fact,
even under abelian assumptions, we cannot think of a better strategy than the following.

The long-run goal (Step 10) is to collapse the configuration by showing that G-conjugates of some
subgroup of G generically lie inside B. This form of contradiction was suggested by Jaligot to the
author then his PhD student for [Del07a]. It is typical of Jaligot’s early work in odd type [Jal00,
Lemme 2.13]. (The author’s original argument based on the distribution of involutions was both
doubtful and less elegant; even recently he could feel the collapse in terms of involutions, but failed
to write it down properly.)

Controlling generic G-conjugates of an arbitrary subgroup is not an easy task. The surprise
(Step 9) is that the TB(κ) sets (or more precisely, the TB(κ) sets) form the desired family. Seeing
this requires a thorough analysis of TB(κ), and embedding it into some abelian subgroup of B
with pathological rigidity properties (Step 7). The crux of the argument involves some intersection
of Borel subgroups. Interestingly enough, abelian intersections could be removed from [Del07b,
Del07a, Del08, DJ08] by a somehow artificial observation on torsion; abelian intersections started
playing a non-trivial role in [BCD09] but as a result the global proof then divided into two parallel
lines. We could find a more uniform treatment, although the proof of Step 7 still divides into two
along the line of abelianity.

The beginning of the argument (Steps 5, 4, 2) simply prepares for the analysis, showing that
TB(κ) behaves like a semi-simple group. Of course controlling torsion with Proposition 5 is essential
in the first place; studying torsion separately thus allowing inductive treatment was the main
success of [DJ08]. The proof starts here.

5.1 The Reactor
Since Ĝ is connected, by torality principles every involution has a conjugate in some fixed 2-torus
Ŝ◦. We may therefore assume that Ĝ = G · d(Ŝ◦), so that the standard rank computations of the
Genericity Proposition 2 apply. Moreover, Ĝ/G is connected and abelian, hence W⊥2 . Since G is
W⊥2 as well, so is Ĝ by Lemma K.

We then proceed by descending induction on ρι and fix some involution ι0 ∈ I(Ĝ) such that for
any µ ∈ I(Ĝ) with ρµ � ρι0 , C◦G(µ) is a Borel subgroup. Notice that induction will not be used as
such in the current proof but merely in order to apply Propositions 4 and 5.

Be warned that there will be some running ambiguity on ι0 starting from Notation 3 onwards.

Notation 1.

• Let B ≥ C◦G(ι0) be a Borel subgroup; we suppose B > C◦G(ι0). Let ρ = ρB.

• Let KB = {κ ∈ ιĜ0 \NĜ(B) : rk TB(κ) ≥ rkB − rkC◦G(ι0)}; by the Genericity Proposition 2,
KB is generic in ιĜ0 .

• Let κ ∈ KB.

• For the moment we simply write T = TB(κ).

By Inductive Torsion Control (Proposition 5), one has rkT ≥ rkB− rkC◦G(ι0), and T contains
no torsion elements.
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Step 2 (uniqueness). (i) B is the only Borel subgroup of G containing C◦G(ι0); (ii) NĜ(B) contains
a Sylow 2-subgroup Ŝ0 of Ĝ. (iii) In particular if λ ∈ I(Ĝ) ∩ NĜ(B), then [B, λ] ≤ F ◦(B) and
B = B+λ · (F ◦(B))−λ with finite fibers. (iv) Moreover (NG(B))−λ ⊆ B.

Proof of Step. Since G is W⊥2 , by Algebraicity Proposition 3 there is a unique Borel subgroup
containing C◦G(ι0); in particular CĜ(ι0) normalises B. By torality principles, NĜ(B) contains a full
Sylow 2-subgroup Ŝ0 of Ĝ, which is a 2-torus as Ĝ isW⊥2 . Now let λ ∈ I(Ĝ)∩NĜ(B). Conjugating
in NĜ(B) we may suppose λ ∈ Ŝ0. Then B̂ = B · d(Ŝ0) is a definable, connected, soluble group, so
B̂′ ≤ F ◦(B̂). Using Zilber’s indecomposibility theorem, [B, λ] ≤ [B, Ŝ0] ≤ (B ∩F ◦(B̂))◦ ≤ F ◦(B).
So Lemma F yields B = (B+)◦ · {B, λ}. Of course {B, λ} ⊆ (F ◦(B))−λ .

It remains to prove (iv). The 2-torus Ŝ0 also acts on NG(B), so it centralises the finite set
NG(B)/B. It follows that if n ∈ (NG(B))−λ , then nB = nλB = n−1B, that is, n2 ∈ B. If G
has no involutions then neither does NG(B)/B by torsion lifting. But if G does have involutions,
then by torality principles B ≥ C◦G(ι0) already contains a maximal 2-torus of G, which is a Sylow
2-subgroup of G: hence in that case again, NG(B)/B has no involutions. In any case n ∈ B, which
proves (NG(B))−λ ⊆ B. ♦

The most important points for the moment are (i) and (iii). Point (iv) will play no role before
the final Step.

5.2 The Fuel
Controlling ιG0 ∩NĜ(B) was claimed to be essential in [Del08, after Corollaire 5.37]. We can actually
do without but this will result in some interesting ambiguity on involutions which will rise to a
diverting polyphony at the very end of the proof of Step 9.

Notation 3. Let IB = {ι ∈ ιĜ0 : C◦G(ι) ≤ B}.

Remarks. IB = ι
NG(B)
0 and any maximal 2-torus Ŝ ≤ NĜ(B) intersects IB , two facts we shall use

with no reference. A proof and an observation follow.

• If ι ∈ IB then there is x ∈ Ĝ = G · d(Ŝ0) with ι = ιx0 , where Ŝ0 is a 2-torus containing ι0;
one may clearly assume x ∈ G. Now by Uniqueness Step 2 (i) and definition of IB , Bx is the
only Borel subgroup of G containing C◦G(ι) ≤ B, whence x ∈ NG(B) and IB ⊆ ι

NG(B)
0 . The

converse inclusion is obvious.
By Step 2 (ii), NĜ(B) contains a Sylow 2-subgroup of Ĝ so any maximal 2-torus Ŝ ≤ NĜ(B)
is in fact a Sylow 2-subgroup of NĜ(B), and contains an NĜ(B)-conjugate ι of ι0; then
ι ∈ Ŝ ∩ IB .

• On the other hand it is not clear at all whether equality holds in IB ⊆ ιG0 ∩ NĜ(B). As a
matter of fact we cannot show that B is self-normalising in G; this is easy when G is 2⊥ but
not in general. At this point, using C◦G(ι) < B, there is a lovely little argument showing that
CG(ι) is connected (which is not obvious if G < Ĝ as Steinberg’s torsion theorem no longer
applies), but one cannot go further. Moreover, self-normalisation techniques à la [ABF13] do
not work in the ∗-locally◦◦ soluble context.
The first claim below will remedy this.

Step 4 (action).

(i) If λ ∈ ιG0 ∩NĜ(B) but λ /∈ IB, then λ inverts Uρ(Z(F ◦(B))).

(ii) [Uρ(Z(F ◦(B))),T] 6= 1.

Proof of Step. Let λ be as in the statement and suppose that X = C◦Uρ(Z(F◦(B)))(λ) is non-trivial.
Then X is a ρ-group. By uniqueness Step 2 (iii), B = B+λ · (F ◦(B))−λ ; obviously both terms
normalise X so X E B. It follows from uniqueness principles that Uρ(B) is the only Sylow ρ-
subgroup of G containing X. Since X ≤ C◦G(λ) is contained in some conjugate Bx of B, Uρ(Bx) =
Uρ(B) so C◦G(λ) ≤ B and λ ∈ IB : a contradiction.
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We move to the second claim. Suppose that T centralises Uρ(Z(F ◦(B))). Let C = C◦G(T), a
definable, connected, soluble, κ-invariant subgroup; let U be a Sylow ρ-subgroup of C containing
Uρ(Z(F ◦(B))). By normalisation principles κ has a C-conjugate λ normalising U . Since Uρ(B) is
the only Sylow ρ-subgroup of G containing Uρ(Z(F ◦(B))), λ normalises B. We see two cases.

First suppose λ /∈ IB . Then by claim (i), λ inverts Uρ(Z(F ◦(B))). If ρC = ρ, then apply unique-
ness principles: Uρ(B) is the only Sylow ρ-subgroup of G containing Uρ(Z(F ◦(B))), so it also is
the only Sylow ρ-subgroup of G containing Uρ(C). As the latter is κ-invariant, so is B: a contra-
diction. Therefore ρC � ρ. It follows that λ inverts UρC (C), whence [UρC (C), Uρ(Z(F ◦(B)))] = 1
by commutation principles. This forces UρC (C) ≤ C◦G(Uρ(Z(F ◦(B)))) ≤ B, against ρC � ρ.

So λ ∈ IB , i.e. C◦G(λ) ≤ B. But by uniqueness, Step 2 (iii), T ⊆ (F ◦(B))−λ , so T ⊆
F ◦(B) ∩ F ◦(B)κ. Since all elements in T are torsion-free by the Torsion Control Proposition 5,
one even has T ⊆ (F ◦(B) ∩ F ◦(B)κ)◦. The latter is abelian by [DJ12, 4.46(2) (our Fact 10)], and
T is therefore a definable, connected, abelian subgroup. Now always by the Torsion Control and
Genericity Propositions 5 and 2, and by the decomposition of B obtained in Step 2 (iii), one has:

rkT = rk TB(κ) ≥ rkB − rkC◦G(ι0) = rkB − rkC◦G(λ) = rk(F ◦(B))−λ

A definable set contains at most one definable, connected, generic subgroup, so T is the only
definable, connected, generic group included in (F ◦(B))−λ: hence NĜ((F ◦(B))−λ) ≤ NĜ(T) and
B+λ normalises T. Moreover T∩B+λ = 1 since λ inverts T and T contains no torsion elements. So
T ·B+λ = ToB+λ is a definable subgroup of rank ≥ rk(F ◦(Bλ))−λ +rkB+λ = rkB by Step 2 (iii).
Hence B = T o B+λ normalises T; B = N◦G(T) by ∗-local◦◦ solubility. In particular κ normalises
B: a contradiction. ♦

Claim (i) will be used only once more, in the next Step.

5.3 The Fuel, refined
Step 5 (abelianity).

(i) If ι ∈ IB then T ∩ CG(ι) = 1.

(ii) There is no definable, connected, soluble, κ-invariant group containing Uρ(Z(F ◦(B))) and T.

(iii) T is a definable, abelian, torsion-free group.

Proof of Step. The first claim is easy. Let ι ∈ IB and t ∈ T\{1} be such that tι = t. Then ι ∈ CĜ(t)
which is κ-invariant; by normalisation principles and abelianity of the Sylow 2-subgroup, κ has a
CĜ(t)-conjugate λ commuting with ι (we do not use that by ∗-local◦◦ solubility and lack of torsion of
T, Proposition 5, CĜ(t) is soluble-by-finite). By uniqueness Step 2 (i), B is the only Borel subgroup
of G containing C◦G(ι), so λ normalises B. Recall from Inductive Torsion control Proposition 5
that t is torsion-free. By uniqueness Step 2 (iii), tλ = tκ = t−1 forces t2 = [t−1, λ] ∈ F ◦(B) and
t ∈ F ◦(B). We then apply the Devil’s Ladder, Proposition 4, to the action of 〈ι, κ〉 on d(t) and
find that κ normalises B: a contradiction.

As the proof of the second claim is a little involved let us first see how it entails the third one.
Suppose that X = (F ◦(B) ∩ F ◦(B)κ)◦ is non-trivial and let H = N◦G(X); then ∗-local◦◦ solubility
and the second claim yield a contradiction. Hence X = 1 which proves abelianity of (B ∩ Bκ)◦.
Then, since elements of T ⊆ B ∩ Bκ contain no torsion in their definable hulls by Proposition 5,
one has T ⊆ (B ∩ Bκ)◦ and T is therefore an abelian group, obviously definable and torsion-free.
So we now proceed to proving the second claim.

Let L be a definable, connected, soluble, κ-invariant group containing Uρ(Z(F ◦(B))) and T.
We shall show that Uρ(Z(F ◦(B))) and T commute, which will contradict Step 4 (ii). To do this
we proceed piecewise in the following sense. Bear in mind that for t ∈ T, d(t) is torsion-free by
inductive torsion control, Proposition 5, so one may take Burdges’ decomposition of the definable,
connected, abelian group d(t). As a result, the set T is a union of products of various abelian
τ -groups for various parameters τ . We shall show that each of them centralises Uρ(Z(F ◦(B))),
which will be the contradiction.

29



So we let τ be a parameter and Θ be an abelian τ -group included in the set T. If τ = ρ then
we are done as Θ ≤ Uρ(B). So suppose τ ≺ ρ and prepare to use the Bender method (§2.4). Since
L ≥ 〈Uρ(Z(F ◦(B))),T〉, L is not abelian by Step 4 (ii).

Let C ≤ G be a Borel subgroup of G containing N◦G(L′) ≥ L and maximising ρC . Notice that

UρC (Z(F ◦(C))) ≤ C◦G(F ◦(C)) ≤ C◦G(C ′) ≤ C◦G(L′) ≤ N◦G(L′)

so by uniqueness principles and definition of C, C is actually the only Borel subgroup of G contain-
ing N◦G(L′). As the latter is κ-invariant, so is C; in particular C 6= B. Moreover Uρ(Z(F ◦(B))) ≤ C
so uniqueness principles force ρC � ρ, and H = (B ∩ C)◦ ≥ 〈Uρ(Z(F ◦(B))),T〉 is non-abelian. So
we are under the assumptions of Fact 11 with B` = B and Bh = C.

We determine the linking parameter ρ′, i.e. the only parameter of the homogeneous group H ′
[DJ12, 4.51(3)]. But Fact 7 (v) (no need for Frécon homogeneity here) shows that the by Step 4
(ii) non-trivial commutator [Uρ(Z(F ◦(B))),T] is a ρ-subgroup of H ′, hence ρ′ = ρ.

We now construct a most remarkable involution. Let Vρ ≤ C be a Sylow ρ-subgroup of C
containing Uρ(Z(F ◦(B))). Since κ normalises C, it has by normalisation principles a C-conjugate
λ normalising Vρ. By uniqueness principles, Uρ(B) is the only Sylow ρ-subgroup of G containing
Uρ(Z(F ◦(B))), so λ normalises B. If λ /∈ IB then by Step 4 (i) λ inverts Uρ(Z(F ◦(B))); since ρC �
ρ it certainly inverts UρC (C) as well, whence by commutation principles [Uρ(Z(F ◦(B))), UρC (C)] =
1 and UρC (C) ≤ C◦G(Uρ(Z(F ◦(B)))) ≤ B, contradicting ρC � ρ. Hence λ ∈ IB ; it normalises B
and C (hence H).

We return to our abelian τ -group Θ included in the set T, with τ ≺ ρ. Let Vτ ≤ H be a Sylow
τ -subgroup of H containing Θ. By normalisation principles λ has an H-conjugate µ normalising
Vτ . We shall prove that µ actually centralises Vτ ; little work will remain after that. Observe that
Vτ is a definable, connected, nilpotent group contained in two different Borel subgroups of G so by
[DJ12, 4.46(2) (Fact 9)] it is abelian. By Fact 7 (v) (no need for Frécon homogeneity here), [Vτ , µ]
is a τ -group inverted by µ.

Now note that µ, like λ, is in IB , and normalises B and C. Moreover by Step 2 (iii), [Vτ , µ] ≤
F ◦(B). We shall prove that [Vτ , µ] ≤ F ◦(C) as well by making it commute with all of F ◦(C),
checking it on each term of Burdges’ decomposition of F ◦(C). Keep Fact 11 in mind.

First, by [DJ12, 4.38], ρ′ = ρ is the least parameter in F ◦(C); we handle it as follows. Recall
that [Vτ , µ] ≤ F ◦(B) is a τ -group, so [Vτ , µ] ≤ Uτ (F ◦(B)). By [DJ12, 4.52(7)] and since ρ′ = ρ 6= τ ,
the latter is in Z(H). But by [DJ12, 4.52(3)], Uρ(F ◦(C)) = Uρ′(F ◦(C)) = (F ◦(B)∩F ◦(C))◦ ≤ H,
so [Vτ , µ] does commute with Uρ(F ◦(C)). Now let σ � ρ be another parameter. Remember that
µ normalises C; since µ ∈ ιĜ0 , σ � ρµ and µ inverts Uσ(F ◦(C)). It inverts [Vτ , µ] as well so
commutation principles force [Vτ , µ] to centralise Uσ(F ◦(C)).

As a consequence [Vτ , µ] ≤ C centralises F ◦(C). Unfortunately this is not quite enough to apply
the Fitting subgroup theorem as literally stated in [BN94b, Proposition 7.4] due to connectedness
issues. The first option is to note that with exactly the same proof as in [BN94b, Proposition 7.4]:
in any connected, soluble group K of finite Morley rank one has C◦K(F ◦(K)) = F ◦(K). Another
option is to observe that by [DJ12, 4.52(1)], F ◦(C) has no torsion unipotence: in particular, the
torsion in F (C) is central in C [DJ12, 2.14]. All together [Vτ , µ] commutes with F (C) and we then
use the Fitting subgroup theorem stated in [BN94b, Proposition 7.4] to conclude [Vτ , µ] ≤ F (C).
Either way we find [Vτ , µ] ≤ F ◦(C), and we already knew [Vτ , µ] ≤ F ◦(B). By connectedness
[Vτ , µ] ≤ (F ◦(B) ∩ F ◦(C))◦. But the latter as we know [DJ12, 4.51(3)] is ρ′ = ρ-homogeneous:
since ρ � τ , this shows [Vτ , µ] = 1.

In particular µ ∈ IB centralises Θ ≤ Vτ . By claim (i), Θ = 1 which certainly commutes with
Uρ(Z(F ◦(B))). This contradiction finishes the proof of claim (ii). ♦

Remark. It is possible to avoid using the Devil’s Ladder in the proof of claim (i). Postpone and
finish the proof of claim (ii) as follows:

µ ∈ IB centralises Θ, so µ ∈ CĜ(Θ) which is κ-invariant. By normalisation principles
and abelianity of the Sylow 2-subgroup, κ has a CĜ(Θ)-conjugate ν commuting with
µ. Since µ ∈ IB , by uniqueness Step 2 (i) ν normalises B. By Step 2 (iii) Θ = [Θ, ν] ≤
F ◦(B) commutes with Uρ(Z(F ◦(B))). Hence all of T commutes with Uρ(Z(F ◦(B))),
against Step 4 (ii).
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Then prove claim (i):

Now let t ∈ T \ {1} be centralised by ι ∈ IB . Like in the previous paragraph, t ∈
F ◦(B); t has infinite order and is inverted by κ. But we prove in the third claim that
(F ◦(B) ∩ F ◦(B)κ)◦ = 1, a contradiction.

Both claims (i) and (iii) are crucial. Claim (ii) is a gadget used in the proof of claim (iii) and
in the next step.

5.4 The Core
Notation 6.

• Let π be the set of parameters occurring in T.

• Let Jκ = Uπ(C◦B(T)) (one has T ≤ Jκ) by Step 5 (iii)).

We feel extremely uncomfortable with the next step. The question of why to maximise over
C◦B(T) is a mystery and always was. Nine years before writing these lines, the author then a
PhD student produced an incorrect study of some similar maximal intersection configuration, and
after noticing a well-hidden flaw had to reassemble his proof by trying all possible maximisations.
Exactly the same happened to him again. We feel like one piece of the puzzle is still missing, or
more confusingly that we are playing with incomplete sets of pieces from distinct puzzles. There
are many ways to get it wrong and the step works by miracle.

Step 7 (rigidity). Jκ is an abelian Carter π-subgroup of B. There is a maximal 2-torus Ŝ of Ĝ
contained in NĜ(B) ∩NĜ(Jκ), and for any ι ∈ IB ∩ Ŝ, one has: C◦Uπ(N◦

G
(Jκ))(ι) ≤ C◦G(T).

Proof of Step. First of all, observe that by torality principles there is a maximal 2-torus Ŝ0 of Ĝ
containing ι0; by uniqueness Step 2 (i) Ŝ0 normalises B. Bear in mind that any maximal 2-torus
in NĜ(B) contains an involution in IB .

We need more stucture now, so let C 6= B be a Borel subgroup of G containing C◦B(T) and
maximising H = (B ∩ C)◦. There is such a Borel subgroup indeed since C◦G(T) is κ-invariant
whereas B is not. As one expects there are two cases and we first deal with the abelian one. The
other will be more involved (but morally speaking less likely).

Suppose that H is abelian. Since H ≥ C◦B(T) ≥ T by abelianity of the latter, Step 5 (iii), and
since H is supposed to be abelian too, H = C◦B(T) ≤ N◦G(Jκ). We now consider N◦G(Jκ). It is not
clear at all whether B contains N◦G(Jκ) but one may ask.

If (H is abelian and) B happens to be the only Borel subgroup of G containing N◦G(Jκ), then

Uπ

(
N◦C◦

G
(T)(Jκ)

)
≤ Uπ

(
N◦C◦

B
(T)(Jκ)

)
= Uπ (C◦B(T)) = Jκ

and Jκ ≤ C◦G(T) is a Carter π-subgroup of C◦G(T). As the latter is κ-invariant, by normalisation
principles κ has a C◦G(T)-conjugate λ normalising Jκ. But our current assumption that B is the
only Borel subgroup of G containing N◦G(Jκ) forces λ to normalise B as well. By Step 2 (iii) and
since λ like κ inverts the 2-divisible group T, T = [T, λ] ≤ F ◦(B) which certainly contradicts Step
4 (ii).

So (provided H is abelian) B is not the only Borel subgroup of G containing N◦G(Jκ): let D 6= B
one such. Then C◦B(T) = H ≤ N◦B(Jκ) ≤ (B∩D)◦ so by maximality of H, H = (B∩D)◦ = N◦B(Jκ)
and Jκ = Uπ(C◦B(T)) = Uπ(H) is a Carter π-subgroup of B. By normalisation principles there is
a B-conjugate Ŝ of Ŝ0 normalising Jκ. For ι ∈ Ŝ ∩ IB one has C◦G(ι) ≤ B and

C◦
Uπ(N◦G(Jκ))(ι) ≤ N◦B(Jκ) = H ≤ C◦G(T)

It is not easy to say more as N◦G(Jκ) need not be nilpotent, but we are done with the proof in the
abelian case.

We now suppose that H is not abelian. However H ≥ C◦B(T) so if D 6= B is a Borel subgroup
of G containing H, one has by definition of the latter H = (B ∩D)◦. By [DJ12, 4.50(3) and (6),
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our Fact 10], we are under the assumptions of Fact 11. Keep it at hand. Let Q ≤ H be a Carter
subgroup of H. Let ρ′ denote the parameter of the homogeneous group H ′. Studying Jκ certainly
means asking about ρ′ and π.

Here is a useful principle: if σ is a set of parameters not containing ρ′, Vσ ≤ H is a nilpotent
σ-subgroup of H, and Ŝ ≤ NĜ(B) ∩ NĜ(Vσ) ∩ NĜ(C) is a 2-torus, then Ŝ centralises Vσ. It
is easily proved: let B̂ = B · d(Ŝ), a definable, connected, soluble subgroup of Ĝ. Then by
Zilber’s indecomposibility theorem, [B, Ŝ] ≤ (F ◦(B̂) ∩ B)◦ ≤ F ◦(B) and likewise in C. Hence
[Vσ, Ŝ] ≤ (F ◦(B)∩F ◦(C))◦ which is ρ′-homogeneous [DJ12, 4.52(3)]. As ρ′ /∈ σ, we have [Vσ, Ŝ] = 1
by push-forward (Fact 7), and Ŝ centralises Vσ.

The argument really starts here. First, ρ′ ∈ π. Otherwise by lemma J, T is included in a Carter
subgroup of H; we may assume T ≤ Q, and in particular by abelianity of Q (Fact 9) Q ≤ C◦G(T).
By Lemma A, NĜ(Q) ≤ NĜ(B) ∪NĜ(C). So there are two cases (yes, this does work for groups).

• First suppose (ρ′ /∈ π and) NĜ(Q) ≤ NĜ(C). In particular N◦B(Q) ≤ N◦H(Q) = Q and Q is
a Carter subgroup of B. By normalisation principles, Ŝ0 has a B-conjugate Ŝ in NĜ(B) ∩
NĜ(Q) ≤ NĜ(B) ∩ NĜ(Uπ(Q)) ∩ NĜ(C). As we noted Ŝ must centralise Uπ(Q) ≥ T. But
there is an involution ι ∈ Ŝ ∩ IB , and this contradicts Step 5 (i).

• Hence (still assuming ρ′ /∈ π) one has NĜ(Q) ≤ NĜ(B). Then N◦C◦
G

(T)(Q) ≤ N◦C◦
B

(T)(Q) ≤
N◦H(Q) = Q and Q ≤ C◦G(T) is a Carter subgroup of C◦G(T). As the latter is κ-invariant,
by normalisation principles κ has a C◦G(T)-conjugate λ normalising Q. Now since NĜ(Q) ≤
NĜ(B), λ normalises B. Then T is inverted by λ and 2-divisible, whence T = [T, λ] ≤
[B, λ] ≤ F ◦(B) by Step 2 (iii), contradicting Step 4 (ii).

So we have proved ρ′ ∈ π. On the other hand ρB = ρ /∈ π as otherwise C◦G(Uρ(T)) would
contradict Step 5 (ii). Suppose for a second ρC � ρB ; then since ρ 6= ρ′, one has Uρ(Z(F ◦(B))) ≤
Z(H) ≤ C◦G(T) [DJ12, 4.52(7)], against Step 4 (ii) again. Since parameters differ [DJ12, 4.50(6)]
one has ρB � ρC . In particular [DJ12, 4.52(2)], Q is a Carter subgroup of B.

We now show that T is ρ′-homogeneous, i.e. π = {ρ′}. Let σ = π \ {ρ′}. Since H ′ is ρ′-
homogeneous, by Lemma J we may assume that Uσ(T) ≤ Q. Now Uρ′(H) = Uρ′(F ◦(H)) is a
Sylow ρ′-subgroup of B [DJ12, implicit but clear in 4.52(6)]. By normalisation principles Ŝ0 has
a B-conjugate Ŝ in NĜ(B) ∩NĜ(Uρ′(H)) ≤ NĜ(B) ∩NĜ(C) [DJ12, 4.52(6)]. Hence Ŝ normalises
H. But Q is a Carter subgroup of H so by normalisation principles over H, Ŝ has an H-conjugate
Ŝ1 in NĜ(B) ∩NĜ(C) ∩NĜ(Q). By our initial principle, Ŝ1 centralises Uσ(Q) ≥ Uσ(T). Since Ŝ1
contains an involution in IB , Uσ(T) = 1 by Step 5 (i), as desired. Hence T is ρ′-homogeneous.

As a conclusion π = {ρ′} and Jκ = Uρ′(C◦B(T)) ≤ Uρ′(H). The latter is an abelian Sylow ρ′-
subgroup of B [DJ12, implicit but clear in 4.52(6) and noted above]. Also, T ≤ Uρ′(H) ≤ C◦B(T)
and Jκ = Uρ′(H). We constructed a maximal 2-torus Ŝ ≤ NĜ(B) ∩NĜ(Jκ) a minute ago.

Finally fix ι ∈ Ŝ ∩ IB . We aim at showing that C◦Uρ′ (N◦G(Jκ))(ι) ≤ C◦G(T). Recall that Ŝ
normalises C. By normalisation principles Ŝ normalises some Sylow ρ′-subgroup Vρ′ of C. Then
with Lemma E under the action of ι, Vρ′ = (V +

ρ′ )◦ · {Vρ′ , ι}. Now (V +
ρ′ )◦ is a ρ′-subgroup of

(B ∩ C)◦ = H, so (V +
ρ′ )◦ ≤ Jκ ≤ F ◦(C) [DJ12, 4.52(6)]. Letting Ĉ = C · d(Ŝ) one easily sees (as

we already did) that {Vρ′ , ι} ⊆ F ◦(C). So Vρ′ ≤ F ◦(C) and Vρ′ ≤ Uρ′(F ◦(C)). Conjugating Sylow
ρ′-subgroups in C this means that Uρ′(F ◦(C)) is actually the only Sylow ρ′-subgroup of C. But
by [DJ12, 4.52(8)] any Sylow ρ′-subgroup of G containing Uρ′(H) is contained in C. This means
that Uρ′(F ◦(C)) is the only Sylow ρ′-subgroup of G containing Uρ′(H) = Jκ.

As a conclusion, any Sylow ρ′-subgroup of N◦G(Jκ) lies in Uρ′(F ◦(C)). Hence, paying attention
to the fact that ι normalises the nilpotent ρ′-group Uρ′(F ◦(C)):

C◦
Uπ(N◦G(Jκ))(ι) ≤ C◦U ′ρ(F◦(C))(ι) ≤ Uρ′(H) = Jκ ≤ C◦G(T) ♦

5.5 The Reaction
Notation 8.

• We now write Tκ for TB(κ), as the involution κ will vary in KB.
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• Let Y = {B, ι0}.

Step 9 (conjugacy). (i) Y is a normal subgroup of B; (ii) rkB = rkCG(ι0) + rk Y , and (iii) any
element of Y \{1} lies in finitely many conjugates of Y . (iv) Moreover, Tκ and Y are G-conjugate.

Proof of Step. As a matter of fact we let Yι = {B, ι} for any ι ∈ IB . Since IB = ι
NG(B)
0 , such sets

are NG(B)-conjugate to Y .
Let ι ∈ Ŝ ∩ IB ; do not forget that there is such an involution alright. Under the action of ι we

may write Jκ = J+
κ (+)[Jκ, ι]. By Step 5 (i), Tκ ∩ J+

κ = 1. So using the very definition of κ ∈ KB

this yields the rank estimate:

rk[Jκ, ι] = rk Jκ − rk J+
κ ≥ rkTκ ≥ rkB − rkC◦G(ι0) = rkB − rkC◦B(ι) = rk ιB ≥ rk ιJκ = rk[Jκ, ι]

Equality follows. In particular [Jκ, ι] ⊆ Yι is generic in Yι. Since a definable set of degree 1 contains
at most one definable, generic subgroup, one has CB(ι) ≤ NG(Yι) ≤ NB([Jκ, ι]). On the other
hand since Ĝ is W⊥2 , [Jκ, ι] has no involutions; it is disjoint from CB(ι). Hence [Jκ, ι] · CB(ι) =
[Jκ, ι] o CB(ι) is a generic subgroup of B. It follows B = [Jκ, ι] o CB(ι). At this stage it is clear
that Yι = [Jκ, ι] is a normal subgroup of B contained in F ◦(B), and the same holds of Y by
NG(B)-conjugacy. Moreover rk Yι = rkTκ; we are not done.

Consider the definable function f : Tκ → Yι which maps t to [t, ι]; as Jκ is abelian, it is a group
homomorphism. Bearing in mind that Tκ ∩ CJκ(ι) = 1 by Step 5 5 and by rank equality, f is
actually a group isomorphism; we are not done.

We claim that Jκ ≤ C◦G(Tκ) is a Carter π-subgroup of C◦G(Tκ). For let N = Uπ(N◦G(Jκ)) and
N1 = Uπ(N ∩C◦G(Tκ)). We wish to decompose under the action of ι. Be very careful however that
ι need not normalise N1. But since Ŝ normalises Jκ it also normalises N . Then N̂ = N · d(Ŝ) is
yet another definable, connected, soluble group, so {N, ι} ⊆ (N̂ ′ ∩ N)◦ ≤ F ◦(N), and Lemma F
applies to N . Now take n1 ∈ N1 and write its decomposition n1 = pn in N, with p ∈ (N+)◦ and
n ∈ {N, ι}. Then p ∈ C◦Uπ(N◦

G
(Jκ))(ι) ≤ C◦G(Tκ) by Step 7. So n ∈ C◦G(Tκ). On the other hand, for

any t ∈ Tκ one has using a famous identity:

1 = [[ι, n−1], t]n · [[n, t−1], ι]t · [[t, ι], n]ι

= [n−2, t]n · [[t, ι], n]ι

= [[t, ι], n]ι

Hence n commutes with [Tκ, ι] = Yι and n ∈ NG(N◦G(Yι)) = NG(B). So n1 = pn ∈ NG(B),
meaning N1 ≤ N◦G(B) = B. Now N1 ≤ Uπ(N◦B(Jκ)) and since Jκ is a Carter π-subgroup of B,
N1 = Jκ. Therefore Jκ is a Carter π-subgroup of C◦G(Tκ).

This extra rigidity has devastating consequences. By normalisation principles, κ has a C◦G(Tκ)-
conjugate λ normalising Jκ. If λ normalises B then Tκ ≤ [Jκ, λ] ≤ F ◦(B) by Step 2 (iii), which
contradicts [Uρ(Z(F ◦(B))),Tκ] 6= 1 from Step 4 (ii). So λ does not normalise B. On the other
hand Tλ(B) contains Tκ so λ ∈ KB . In particular, everything we said so far of κ holds of λ: by
rank equality, Tλ = Tκ.

By conjugacy of Sylow 2-subgroups, λ has an NĜ(Jκ)-conjugate µ in Ŝ. Remember that we
took Ĝ = G ·d(Ŝ◦), so NĜ(Jκ) = NG(Jκ) ·d(Ŝ) and µ = λn for some n ∈ NG(Jκ). Moreover µ ∈ Ŝ
commutes with the involution ι we fixed earlier in the proof. Let X = C◦Yι(µ) ≤ F ◦(B).

• Suppose X = 1. Then µ inverts Yι, so:

Yι ≤ [Jκ, µ] = [Jκ, λn] = [Jκ, λ]n ≤ Tnλ = Tnκ
and equality follows from the equality of ranks.

• Suppose X 6= 1. We apply the Devil’s Ladder, Proposition 4, to the action of 〈µ, ι〉 on X
inside Bµ, the only Borel subgroup of G containing C◦G(µ) by Uniqueness Step 2 (i). We
find that Bµ is the only G-conjugate of B containing C◦G(X) ≥ Uρ(Z(F ◦(B))). Uniqueness
principles force Bµ = B, which means µ ∈ IB ∩ Ŝ. In particular, everything we said so far of
ι holds of µ, and

Yµ = [Jκ, µ] = [Jκ, λn] = [Jκ, λ]n ≤ Tnλ = Tnκ
and equality follows from the equality of ranks.
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In any case, Tκ is G-conjugate to Y .
It remains to show that any non-trivial element of Y lies in finitely many conjugates. For if

a ∈ Y \ {1} then by the isomorphism Tκ ' Y and inductive torsion control, Proposition 5, a has
infinite order: C = C◦G(a) ≥ 〈Uρ(Z(F ◦(B))), Y 〉 is therefore soluble, and ι0-invariant. If ρC � ρB
then ι0 inverts both UρC (C) and Y , and commutation principles yield [UρC (C), Y ] = 1 whence
UρC (C) ≤ N◦G(Y ) = B, a contradiction. Hence ρC � ρB and uniqueness principles show that B is
the only Borel subgroup of G containing C. If a ∈ Y g then Bg is the only Borel subgroup of G
containing C likewise. Since B ≤ NG(Y ) ≤ NG(B), this can happen only for a finite number of
conjugates of Y . ♦

5.6 Critical Mass
Step 10 (the collapse).

We first determine rk{Tκ : κ ∈ KB}. The set under consideration is definable alright as a
subset of {Y g : g ∈ G} = G/NG(Y ) by Step 9 (iii). If Tκ = Tλ then there is g ∈ G with Tκ = Y g.
In particular, κ and λ lie in NĜ(N◦G(Y g)) = NĜ(Bg) by Step 9 (i). Since κ and λ are G-conjugate,
κλ ∈ NG(Bg). Now κ inverts κλ so by Step 2 (iv), κλ ∈ Bg, and λ ∈ κTBg (κ). The latter has the
same rank as Y by Proposition 5 and Step 9 (iii). It follows that rk{Tκ : κ ∈ KB} ≥ rkKB−rk Y =
rkG− rkCG(ι)− rk Y .

We move to something else. Let F be a definable family of conjugates of Y . Since an element
in Y lies in only finitely many conjugates by Step 9 (iv), rk

⋃
F = rkF + rk Y . We first apply this

to F1 = {Tκ : κ ∈ KB}, finding:

rk
⋃

κ∈KB

Tκ ≥ rkG− rkCG(ι0)− rk Y + rk Y = rkG− rkCG(ι0)

We now apply it to F2 = {Y g : g ∈ G/NG(Y )}, finding:

rk Y G = rkG− rkNG(B) + rk Y = rkG− rkB + rk Y

Both agree by Step 9 (ii), so
⋃
F1

is generic in
⋃
F2

. However
⋃
F1
⊆
⋃
F2
∩B, which contradicts

[DJ12, Lemma 3.33].
This concludes the proof of Proposition 6.

6 The Proof – After the Maximality Proposition
6.1 The Dihedral Case
The following is a combination of two different lines of thought: the study of a pathological “W = 2”
configuration in [Del07b, Chapitre 4] (published as [Del08, §3]) and the final argument in [BCD09].
Since we can quickly focus on the 2⊥ case only a few details need be adapted in order to move
from minimal connected simplicity to ∗-local◦◦ solubility, so we feel that the resulting proposition
owes much to Burdges and Cherlin. The final contradiction is by constructing two disjoint generic
subsets of some definable subset of G.

Proposition 7 (dihedral case). Let Ĝ be a connected, U⊥2 group of finite Morley rank and G E Ĝ
be a definable, connected, non-soluble, ∗-locally◦◦ soluble subgroup. Suppose that for all ι ∈ I(Ĝ),
C◦G(ι) is soluble.

Suppose that the Sylow 2-subgroup of Ĝ is isomorphic to that of PSL2(C). Suppose in addition
that for ι ∈ I(Ĝ), C◦G(ι) is included in a unique Borel subgroup of G.

Then Ĝ/G is 2⊥ and Bι = C◦G(ι) is a Borel subgroup of G inverted by any involution ω ∈
CG(ι) \ {ι}.

Proof. First observe that by torality principles, all involutions in Ĝ are conjugate; it follows that
G or Ĝ/G is 2⊥.

Notation 1.
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• Let V = {1, ι, ω, ιω} ≤ Ĝ be a four-group.

• Let T̂ι be a 2-torus containing ι and inverted by ω, and T̂ω likewise.

• Let Bι be the only Borel subgroup of G containing C◦G(ι), and Bω likewise (observe that by
uniqueness of Bι over C◦G(ι), ω normalises Bι and vice-versa).

• Let ρ = ρBι .

Here is a small unipotence principle we shall use with no reference: if L ≤ G is a definable,
connected, soluble, V -invariant subgroup, then ρL � ρ. This is obvious by bigeneration, Fact 3,
which will play a growing role.

Step 2. Bι 6= Bω.

Proof of Step. Suppose not. If G is 2⊥, then it is W⊥2 : by the Maximality Proposition 6, Bι is a
Borel subgroup of G. Hence C◦G(ι) = Bι = Bω = C◦G(ω), and therefore Bι = C◦G(ιω) as well. Yet
bigeneration, Fact 3, applies to the action of V on the 2⊥ group G: a contradiction.

If G is not 2⊥ then bigeneration might fail. But then all involutions are in G; by torality
principles ι ∈ C◦G(ι) ≤ Bι = Bω so Bω contains T̂ω o 〈ι〉, which contradicts the structure of torsion
in connected, soluble groups. ♦

Notation 3. Let H = (Bι ∩Bω)◦.

Since ω normalises Bι and vice-versa, H is V -invariant.

Step 4. H is abelian and 2⊥. Moreover ι centralises Uρ(Bι) and ω inverts it; V centralises H and
N◦G(H) = C◦G(H).

Proof of Step. If H = 1 then C◦Bι(ω) = 1 and ω inverts Bι; since ω inverts T̂ι which normalises
Bι, commutation principles yield [T̂ι, Bι] = 1 and Bι ≤ C◦G(ι). So Bι = C◦G(ι) is an abelian Borel
subgroup inverted by ω and by ιω. Hence all our claims hold if H = 1. We now suppose H 6= 1.

Suppose that H is not abelian and let L = N◦G(H ′), a definable, connected, soluble, V -invariant
group. Then ρL � ρ but since L contains Uρ(Z(F ◦(Bι))) and Uρ(Z(F ◦(Bω))), equality holds.
Hence Uρ(Z(F ◦(Bι))) ≤ Uρ(L); by uniqueness principles Uρ(Bι) is the only Sylow ρ-subgroup of
G containing Uρ(L). The same holds of Uρ(Bω), proving equality and Bι = Bω, against Step 2.
So H is abelian.

Now suppose that Uρ(H) 6= 1 and let L = N◦G(Uρ(H)). Same causes having the same effects,
we reach a contradiction again. Hence Uρ(H) = 1, and it follows that ω inverts Uρ(Bι). The same
argument works for ιω, so ι centralises Uρ(Bι).

We now claim that V centralises H. For let K = [H, ι]; since H is abelian, using Zilber’s
indecomposibility theorem we see that K is a definable, connected, abelian group inverted by ι; in
particular it is 2-divisible. Since ι centralises Uρ(Bι) and inverts Uρ(Bω), commutation principles
yield 〈Uρ(Bι), Uρ(Bω)〉 ≤ C◦G(K) and the latter is V -invariant. Uniqueness principles and Step 2
forbid solubility of C◦G(K): this means K = 1, and ι centralises H. The same holds of ω.

Suppose that H has involutions: since it is V -invariant, so is its Sylow 2-subgroup T (no need
for normalisation principles here). If ι ∈ T , then ι ∈ H ≤ Bι and ω ∈ Bω by conjugacy; hence Bω
contains T̂ω o 〈ι〉, against the structure of torsion in connected, soluble groups. So ι /∈ T , and by
assumption on the structure of the Sylow 2-subgroup of Ĝ, ι inverts T ; the same holds of ω and
ιω, a contradiction.

It remains to show that N◦G(H) = C◦G(H). Let N = N◦G(H). First assume that G is 2⊥. Then
using Lemma E under the action of ι we write N = (N+ι)◦ · {N, ι} where {N, ι} is 2-divisible.
Since ι centralises H, commutation principles applied pointwise force {N, ι} ⊆ CG(H). We turn
to the action of ω on N1 = (N+ι)◦; with Lemma E again N1 = (N+ω

1 )◦ · {N1, ω}, and here again
{N1, ω} ⊆ CG(H). Finally (N+ω

1 )◦ ≤ C◦G(ι, ω) ≤ H ≤ CG(H) by abelianity, so N ≤ CG(H) and
we conclude by connectedness of N .

Now suppose that Ĝ/G is 2⊥: as a consequence V ≤ G. It is not quite clear whether N has
involutions and whether {N, ι} is 2-divisible, so we argue as follows. By normalisation principles,
there is a V -invariant Carter subgroupQ ofN . The previous argument applies toQ, soQ ≤ C◦G(H);
it also applies to F ◦(N), so F ◦(N) ≤ C◦G(H), and N = F ◦(N) ·Q ≤ C◦G(N). ♦
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Step 5. We may suppose that G is 2⊥.

Proof of Step. Suppose that G contains involutions, i.e. V ≤ G. We shall prove that H = 1. So
suppose in addition that H 6= 1. For the consistency of notations, we i = ι ∈ G and w = ω ∈ G,
and Ti = T̂i, Tw = T̂w.

We claim that w does not invert F ◦(Bi). For if it does, then w inverts Ti ≤ Bi and F ◦(Bi), so
by commutation principles [Ti, F ◦(Bi)] = 1. Let Q ≤ Bi be a Carter subgroup of Bi containing Ti;
then Bi = F ◦(Bi) ·Q centralises Ti, and Tw ≤ Z(Bw) by conjugacy. Hence Ti o 〈w〉 ≤ 〈Ti, Tw〉 ≤
C◦G(H), against the structure of torsion in connected, soluble groups and ∗-local◦◦ solubility.

Hence Yi = C◦F◦(Bi)(w) 6= 1. Since Uρ(Bi) is abelian by Step 4, Uρ(Bi) ≤ C◦G(Yi); since Yi is
V -invariant, our small unipotence principle and general uniqueness principles force C◦G(Yi) ≤ Bi.
Hence by Step 4:

N◦Bw(H) = C◦Bw(H) ≤ C◦Bw(Yi) ≤ H
which proves that H is a Carter subgroup of Bw. It therefore contains involutions, against Step 4.

This contradiction shows that if G has involutions then H = 1. Hence, like in the beginning of
Step 4, w inverts Bi = C◦G(i) and so does any other involution in CG(i) \ {i}: we are done. ♦

From now on, we suppose that G is 2⊥; we are after a contradiction. Since G isW⊥2 , Maximality
Propostion 6 applies and C◦G(ι) = Bι is a Borel subgroup of G. Moreover since G is 2⊥, it admits
a decomposition G = G+ι · G−ι by Lemma E, and the fibers are trivial. By connectedness of
G, CG(ι) = G+ is connected. Finally, since the 2-torus T̂ι normalises Bι, it centralises the finite
quotient NG(Bι)/Bι, and so does ι. Now N = NG(Bι) admits a decomposition N = N+ · {N, ι}
as well; we just proved N+ ≤ B and {N, ι} ⊆ B. Hence Bι = CG(ι) is a self-normalising Borel
subgroup of G, which will be used with no reference.

Step 6. For any involution λ ∈ CĜ(ι) \ {ι}, B−λι = F ◦(Bι).

Proof of Step. The claim is actually obvious ifH = 1, an extreme case in which the below argument
remains however valid. Let Xι = C◦F◦(Bι)(ω) and Xω = C◦F◦(Bω)(ι).

Suppose thatXι 6= 1 and Xω 6= 1. By abelianity of Uρ(Bι) from Step 4, Uρ(Bι) ≤ C◦G(Xι) which
is V -invariant; unipotence and uniqueness principles show that Bι is the only Borel subgroup of G
containing C◦G(Xι), and likewise for Bω over C◦G(Xω). It follows that C◦Bω (H) ≤ (Bι ∩ Bω)◦ = H

and H is a Carter subgroup of Bω. The latter is T̂ω o 〈ι〉-invariant, so by normalisation principles
NĜ(H) contains a Sylow 2-subgroup Ŝ of Ĝ. Since V ≤ CĜ(H) by Step 4, we may assume V ≤ Ŝ.

Still assuming that Xι 6= 1 and Xω 6= 1, we denote µ the involution of V which lies in Ŝ◦ = T̂µ
and fix ν ∈ V \ 〈µ〉. Then by assumption on the structure of the Sylow 2-subgroup of Ĝ, ν inverts
T̂µ; it also centralises H, so by commutation principles T̂µ o 〈ν〉 = Ŝ centralises H ≥ 〈Xι, Xω〉.
Since Bι is the only Borel subgroup of G containing C◦G(Xι) (and likewise for ω), Ŝ normalises
both Bι and Bω; up to taking νµ instead of ν, we may suppose that Ŝ normalises Bν . Now ν
inverts T̂µ and centralises Bν , so by commutation principles [T̂µ, Bν ] = 1 and Bν ≤ C◦G(µ) = Bµ:
a contradiction to Step 2.

All this shows that Xι = 1 or Xω = 1; we suppose the first. Then ω inverts F ◦(Bι).Using
Lemma E we write Bι = B+ω

ι · {Bι, ω}. Notice that since Bι is 2⊥, B−ι = {Bι, ω} (the sign
− refers to the action of ω throughout the present paragraph). Since ω inverts the 2-divisible
subgroup F ◦(Bι), one has F ◦(Bι) ⊆ B−ι . Since the set B−ι is 2-divisible, commutation principles
applied pointwise show F ◦(Bι) ⊆ B−ι ⊆ CBι(F ◦(Bι)). Hence B−ι is a union of translates of
F ◦(Bι). Now CBι(F ◦(Bι)) is normal in Bι and nilpotent, so by definition of the Fitting subgroup
CBι(F ◦(Bι)) ≤ F (Bι). As a consequence B−ι ⊆ F (Bι) is a union of finitely many translates of
F ◦(Bι). But degB−ι = deg{Bι, ω} = degωBι = 1, so F ◦(Bι) = B−ι .

The previous paragraph shows that if Xι = 1, then our desired conclusion holds of λ = ω; it
then also holds of λ = ιω. Now any involution λ ∈ CĜ(ι) \ {ι} is a CĜ(ι)-conjugate of ω or ιω, say
λ = ωn with n ∈ CĜ(ι) ≤ NĜ(Bι) ≤ NĜ(F ◦(Bι)), so:

B−λι = B−ωnι =
(
B−ωι

)n = (F ◦(Bι))n = F ◦(Bι)

Similarly, if Xω = 1, then for any λ ∈ CĜ(ω) \ {ω}, B−λω = F ◦(Bω). We conjugate ω to ι and
see that in this case we are done as well. ♦
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Step 7. rkG−ι ≤ 2 rkF ◦(Bι).

Proof of Step. Let κ = ιω and Ǧ = G o V . Observe that in Ǧ the involutions ι, ω, κ are not
conjugate; one has exactly three conjugacy classes, which also are G-classes. So for (ω1, κ1) ∈
ωG × κG, d(ω1κ1) contains a unique involution which must be a conjugate ι1 of ι.

Now consider the definable function from ωG × κG to ιG which maps (ω1, κ1) to ι1; we shall
compute its fibers. If (ω2, κ2) also maps to ι1 then ω1ω2 ∈ CG(ι1) = Bι1 . Hence ω1ω2 ∈
B
−ω1
ι1 = F ◦(Bι1) and fibers have rank at most 2 rkF ◦(Bι). As the map is obviously onto, one

has 2 rkF ◦(Bι) ≥ rkG− rkB = rkG−ι . ♦

Step 8. (F ◦(Bω))F◦(Bι) and (F ◦(Bιω))F◦(Bι) are generic subsets of G−ι .

Proof of Step. Recall from Step 6 that ι inverts F ◦(Bω) and centralises Bι. In particular G is 2⊥
and F ◦(Bω) ∩Bι = 1; moreover (F ◦(Bω))F◦(Bι) ⊆ G−ι . We now compute the rank. Consider the
definable function from F ◦(Bι) × F ◦(Bω) to G which maps (a, x) to xa. Let us prove that it has
finite fibers.

Suppose xa = yb with b ∈ F ◦(Bι) and y ∈ F ◦(Bω); then xab−1 = y, and ab−1 ∈ F ◦(Bι) which
is abelian. Applying ω, y = yω = xab

−1ω = xωa
−1b = xa

−1b = ya
−2b2 . Since G is 2⊥, this results in

a−1b ∈ CG(y) and x = y.
So if xa = yb with notations above, x = y. We shall determine CF◦(Bι)(x). Suppose Y =

C◦F◦(Bι)(x) is infinite. Since Y is 〈ι, ω〉-invariant, so is C◦G(Y ), a definable, connected, soluble
group containing F ◦(Bι). As we know C◦G(Y ) has unipotence parameter at most ρ, so C◦G(Y )
normalises Uρ(Bι) and C◦G(Y ) ≤ Bι; as a matter of fact, by uniqueness principles Bι is the
only Borel subgroup of parameter ρ containing C◦G(Y ). It follows x ∈ NG(Bι). Hence x ∈
NG(Bι) ∩ F ◦(Bω) = CG(ι) ∩ F ◦(Bω) = 1.

As a result, fibers are finite; it follows rk(F ◦(Bω))F◦(Bι) = 2 rkF ◦(Bι) ≥ rkG−ι by Step 7;
inclusion forces equality. The same holds of (F ◦(Bιω))F◦(Bι). ♦

We now finish the proof of Proposition 7. By Step 8, both (F ◦(Bω))F◦(Bι) and (F ◦(Bιω))F◦(Bι)
are generic in G−ι . So there is t ∈ F ◦(Bω) ∩ F ◦(Bιω)f \ {1} for some f ∈ F ◦(Bι). Then the
involution (ιω)f = f−1ιωf = fωιωf = ιωf2 centralises t, whereas ιω inverts it. So f2 ∈ G inverts
t. This creates an involution in G: against Step 5.

6.2 Strong Embedding
Strong embedding is a classical topic in finite group theory [Ben71]. Recall that a subgroup M
of a group G is said to be strongly embedded if M contains an involution but M ∩Mg does not
for any g /∈ M . The reader should also keep in mind a few basic facts about strongly embedded
configurations [BN94b, Theorem 10.19 (checking the apparently missing assumptions would be
almost immediate here)]:

• involutions in M are M -conjugate;

• a Sylow 2-subgroup of M is a Sylow 2-subgroup of G;

• M contains the centraliser of each of its involutions.

We need no more. The study of a minimal connected simple group with a strongly embedded
subgroup was carried in [BCJ07, Theorem 1].

Proposition 8. Let G be a connected, U⊥2 , non-soluble, ∗-locally◦◦ soluble group of finite Morley
rank. Suppose that G has a definable, soluble, strongly embedded subgroup. Then Pr2(G) ≤ 1.

Our proof will be considerably shorter than [BCJ07]: thanks to the Maximality Proposition 6
we need only handle the case of central involutions [BCJ07, §4]. Apart from this, our argument is
a subset of the one in [BCJ07, §4]: we construct two disjoint generic sets. We only hope to have
helped clarify matters in Step 8 below.

(Incidently, an alternative proof of [BCJ07, Theorem 1] was suggested using state-of-the-art
genericity arguments in minimal connected simple groups [ABF13, Theorem 6.1]. Yet this new
proof reproduces [BCJ07, §4] and affects only the case we need not consider by Maximality.)
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Proof. We let G be a minimal counterexample, i.e. G satisfies the assumptions but Pr2(G) ≥ 2.
By the 2-structure Proposition 1, the Sylow 2-subgroups of G are connected.

Notation 1. Let M ≤ G be a definable, soluble, strongly embedded subgroup. Let S ≤ M be a
Sylow 2-subgroup of G and A = Ω2(S◦).

Step 2. For all i ∈ I(G), C◦G(i) is soluble.

Proof of Step. First observe that Z(G) has no involutions by strong embedding, as they would lie
in S ≤M and in any conjugate.

Suppose that there is i ∈ A \ {1} with non-soluble C◦G(i). Fix some 2-torus τi ≤ S of Prüfer
rank 1 containing i; since C◦G(τi) is soluble by ∗-local◦◦ solubility, there exists by descending chain
condition some α ∈ τi with C◦G(α) soluble. We take α with minimal order; then C◦G(α2) is not
soluble, and α2 6= 1 since α 6= i.

Let H = C◦G(α2) and N = M ∩H. Since α2 6= 1 and Z(G) has no 2-elements, H < G. Observe
how α ∈ τi ≤ S ≤ N . Let H = H/〈α2〉 and N = N/〈α2〉. Then N is definable, soluble, and
strongly embedded in H which still has Prüfer rank ≥ 2: against minimality of G as a counter-
example. ♦

Notation 3. Let B = M◦.

Step 4. B is a Borel subgroup of G and A ≤ Z(B); the group M/B is non-trivial and has odd
order. Moreover (i) strongly real elements of G which lie in B actually lie in A; (ii) if i ∈ I(B)
inverts n ∈ NG(B) then n ∈ B. (iii) For any g ∈ G, BgI(G) is generic in G. (iv) Finally
(B ∩Bg)◦ = 1 for g /∈ NG(B).

Proof of Step. By Step 2, connectedness of the Sylow 2-subgroup, and the maximality Proposition
6, C◦G(i) is a Borel subgroup of G for any i ∈ I(G). But for i ∈ A \ {1}, CG(i) ≤ M by strong
embedding of the latter, so C◦G(i) ≤ B and equality follows. In particular, A ≤ Z(B).

By structure of the Sylow 2-subgroup, NG(B)/B has odd order, and so has its subgroup M/B.
But M being strongly embedded conjugates its (more than one) involutions, which are central in
B: this shows B < M .

If b ∈ B is inverted by some k ∈ I(G) then k normalises CG(b) ≥ A; by normalisation principles
and structure of the Sylow 2-subgroup, one has k ∈ CG(b), so b has order at most 2; this is claim
(i). If i ∈ I(B) inverts n ∈ NG(B) then computing modulo B: n−1B = niB = nB, and n2 ∈ B.
Since NG(B)/B has odd order, n ∈ B, proving (ii).

We move to (iii). Consider the definable function B × I(G) which maps (b, k) to bk. If b1k1 =
b2k2 with obvious notations, then b−1

2 b1 is a strongly real element of G lying in B, hence has
order at most 2 by claim (i): this happens only finitely many times, so fibers are finite and
rk(B · I(G)) = rkB + rk I(G) = rkB + rkG− rkB = rkG. Then for any g ∈ G:

rk (BgI(G)) = rk (gBgI(G)g) = rk (g (BI(G))g) = rk (BI(G)) = rkG

It remains to control intersections of conjugates of B, claim (iv). Suppose that H = (B ∩Bg)◦
is infinite. Let Q ≤ H be a Carter subgroup of H; since Ag centralises Bg ≥ H ≥ Q, Ag normalises
the definable, connected, soluble group N◦G(Q). By bigeneration, Fact 3, N◦G(Q) ≤ 〈C◦G(ag) : a ∈
A \ {1}〉 ≤ Bg, so N◦B(Q) ≤ N◦H(Q) = Q and Q is actually a Carter subgroup of B. By solubility
of B, Q contains a Sylow 2-subgroup of B: hence A ≤ Q ≤ Bg, and strong embedding guarantees
g ∈ NG(B). ♦

Notation 5. Let w ∈M \B (denoted σ in [BCJ07, Notation 4.1(2)]).

Step 6. We may assume that w is strongly real, in which case the following applies: (i) CG(w)
has no involutions; (ii) if some involution k ∈ I(G) inverts w, then k inverts C◦G(w); (iii) finally
C◦B(w) = 1.
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Proof of Step. By Step 4 (iii), both BI(G) and BwI(G) are generic in G, so they intersect. Hence
up to translating by an element of B, we may suppose that w is a strongly real element.

Suppose that there is an involution ` ∈ CG(w). Then w ∈ CG(`) = C◦G(`) by Steinberg’s torsion
theorem and connectedness of the Sylow 2-subgroup; C◦G(`) is a conjugate of B (torality principles
suffice here; no need to invoke strong embedding). But w is strongly real, so by Step 4 (i) it is an
involution, against the fact that M/B has odd order.

Let k be an involution inverting w (this exists as noted). Then C◦G(k) is a conjugate Bk of B, and
k ∈ Bk by torality principles. Observe how w /∈ NG(Bk) by Step 4 (ii). So C◦G(k,w) ≤ (Bk ∩Bwk )◦
is trivial by Step 4 (iv), and k inverts C◦G(w).

Finally let H = C◦B(w) and suppose H 6= 1. Bear in mind that A centralises H, so it normalises
the definable, soluble group N◦G(H). By bigeneration, Fact 3, N◦G(H) ≤ B. But k inverts H, so
it normalises N◦G(H) as well. Hence N◦G(H) ≤ B ∩ Bk, and Step 4 (iv) forces k ∈ NG(B). Now
k ∈ B inverts w ∈ NG(B) \B, a contradiction to Step 4 (ii). This shows that C◦B(w) = 1. ♦

Notation 7. Let Č = C◦G(w) \NG(B).

Č is obviously generic in C◦G(w), as C◦NG(B)(w) ≤ C◦B(w) = 1 by Step 6.

Step 8. BČB is generic in G.

Proof of Step. This is the only part where we slightly rewrite the argument in [BCJ07]. Let F =
{(m, `) ∈ Bw × I(G) : m` = m−1}.

Let m ∈ Bw. If m is inverted by some involution in G, then by Step 6 (iii) C◦B(m) = 1 and
mB ⊆ Bm is generic in Bm. So is wB , and m is therefore B-conjugate with w. So let us count
involutions inverting w. First, there is such an involution k by Step 6. If ` is yet another such,
then k` ∈ CG(w) and ` ∈ kCG(w). Moreover, since k inverts C◦G(w) by Step 6 (ii), any element in
kC◦G(w) is an involution inverting w. This together shows:

rkF = rkwB + rkC◦G(w) = rkB + rkC◦G(w)

Since BwI(G) and BI(G) are generic in G by Step 4 (iii), a generic ` ∈ I(G) inverts some
element in Bw. Hence rkF ≥ rk I(G) = rkG− rkB.

Finally consider the definable function which maps (b1, c, b2) ∈ B × Č × B to b1cb2. We claim
that all fibers are finite. Since the fiber over b1c0b2 has same rank as the fiber over c0, we compute
the latter. Suppose b1cb2 = c0 with obvious notations. Then applying w:

c0 = cw0 = bw1 cb
w
2 = [w, b−1

1 ]b1cb2[b2, w] = [w, b−1
1 ]c0[b2, w]

In particular, [w, b−1
1 ]c0 = [b2, w]−1 ∈ B ∩ Bc0 which is finite by Step 4 (iv). Since C◦B(w) = 1 by

Step 6 (iii), there are finitely many possibilities for b1 and b2, and c is then determined. So the
function has finite fibers, and therefore:

rk
(
BČB

)
= 2 rkB + rkC◦G(w) = rkF + rkB ≥ rkG ♦

We now finish the proof of Proposition 8. By Steps 4 (iii) and 8, both BI(G) and BČB are
generic in G. So they intersect; there is an involution k = b1cb2 ∈ BČB. Conjugating by b1, there
is an involution ` = cb ∈ ČB. Now applying w one finds:

`w = cbw = cb[b, w] = `[b, w]

which means that [b, w] ∈ B is a strongly real element. There are two possibilities. If [b, w] 6= 1
then by Step 4 (i) [b, w] ∈ A \ {1} and ` ∈ CG([b, w]), so ` and c lie in B: a contradiction. If
[b, w] = 1 then w centralises b and cb = `: against Step 6 (i).
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6.3 November
Theorem. Let Ĝ be a connected, U⊥2 group of finite Morley rank and G E Ĝ be a definable,
connected, non-soluble, ∗-locally◦◦ soluble subgroup.

Then the Sylow 2-subgroup of G is isomorphic to that of PSL2(C), isomorphic to that of SL2(C),
or is a 2-torus of Prüfer 2-rank at most 2.

Suppose in addition that for all ι ∈ I(Ĝ), C◦G(ι) is soluble.
Then m2(Ĝ) ≤ 2, G or Ĝ/G is 2⊥, and involutions are conjugate in Ĝ. Moreover one of the

following cases occurs:

• PSL2: G ' PSL2(K) in characteristic not 2; Ĝ/G is 2⊥;

• CiBo∅: G is 2⊥; m2(Ĝ) ≤ 1; for ι ∈ I(Ĝ), CG(ι) = C◦G(ι) is a self-normalising Borel subgroup
of G;

• CiBo1: m2(G) = m2(Ĝ) = 1; Ĝ/G is 2⊥; for i ∈ I(Ĝ) = I(G), CG(i) = C◦G(i) is a self-
normalising Borel subgroup of G;

• CiBo2: Pr2(G) = 1 and m2(G) = m2(Ĝ) = 2; Ĝ/G is 2⊥; for i ∈ I(Ĝ) = I(G), C◦G(i)
is an abelian Borel subgroup of G inverted by any involution in CG(i) \ {i} and satisfies
rkG = 3 rkC◦G(i);

• CiBo3: Pr2(G) = m2(G) = m2(Ĝ) = 2; Ĝ/G is 2⊥; for i ∈ I(Ĝ) = I(G), CG(i) = C◦G(i) is a
self-normalising Borel subgroup of G.

Proof.

Step 1. We may suppose that for all ι ∈ I(Ĝ), C◦G(ι) is soluble.

Proof of Step. All we must do for the moment is determine the structure of the Sylow 2-subgroup of
G so we may take Ĝ = G; by the 2-Structure Proposition 1 it suffices to bound the Prüfer 2-rank of
G. Suppose that G has Prüfer rank at least 3, and has minimal rank among such counterexamples.
Note that G/Z(G) has the same properties but is now centreless.

For the current Step we also suppose that there is some involution i ∈ G with C◦G(i) non-
soluble. Then as in Step 2 of Proposition 8 we take a 2-torus of rank 1 τi containing i and α ∈ τi
of minimal order with C◦G(α) soluble; α2 6= 1. Let H = C◦G(α2): by torality principles, it has the
same Prüfer 2-rank as G, hence by minimality of G as a counterexample H = G and α2 ∈ Z(G),
a contradiction. ♦

Step 2. We may suppose that G is W⊥2 .

Proof of Step. Suppose G is not. By the 2-Structure Proposition 1 and since centralisers in G of
involutions are quasi-soluble, the Sylow 2-subgroup of G is isomorphic to that of PSL2(C), that is
Pr2(G) = 1 and m2(G) = 2. Fix i ∈ I(G) an involution of G.

If C◦G(i) is contained in at least two Borel subgroups of G, then by the Algebraicity Proposition
3, G ' PSL2(K) for some algebraically closed field of characteristic not 2. The latter has no outer
automorphisms [BN94b, Theorem 8.4]; by assumption on centralisers of involutions, Ĝ/G is 2⊥
and we are in case PSL2.

So we may assume that C◦G(i) is contained in a unique Borel subgroup of G. We then apply
the Dihedral Proposition 7 inside Ǧ = G to find that C◦G(i) is an abelian Borel subgroup of G
inverted by any involution in CG(i)\{i}. By torality principles in G there exist a Sylow 2-subgroup
Si = S◦i o 〈w〉 with i ∈ S◦i and another Sylow 2-subgroup Sw = S◦wo 〈i〉 likewise. In order to reach
case CiBo2 one first shows that Ĝ/G is 2⊥; only the rank estimate will remain to prove.

If Ĝ/G is not 2⊥ then Si is no Sylow 2-subgroup of Ĝ. Let Ŝ ≤ Ĝ be a Sylow 2-subgroup
containing Si properly; it is folklore that Pr2(Ŝ) ≥ 2. Since Ŝ◦ is 2-divisible and invariant under ω ∈
Ŝ, we may apply Maschke’s Theorem (see for instance [Del12, Fact 2] to find a quasi-complement,
i.e. a w-invariant 2-torus T̂ with Ŝ◦ = S◦i (+)T̂ . Then using Zilber’s indecomposibility theorem,
[T̂ , w] ≤ (T̂ ∩G)◦ = 1, that is, w centralises T̂ . It follows that T̂ normalises both C◦G(i) and C◦G(w);
by the rigidity of tori, it centralises therefore both S◦i and S◦w. Hence S◦i o〈w〉 ≤ 〈S◦i , S◦w〉 ≤ C◦G(T̂ ),
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so by the structure of torsion in connected, soluble groups, C◦G(T̂ ) may not be soluble. This
contradicts the fact that T̂ 6= 1 contains an involution of Ĝ, which has soluble centraliser◦ by
assumption.

Hence Ĝ/G is 2⊥; we finally show rkG = 3 rkC◦G(i). This exactly follows [Del08, Proposition
3.26 and Corollaire 3.27]: since CG(i) is not connected for i ∈ I(G), using the Borovik-Cartan
decomposition one sees that generic, independent j, k ∈ I(G) are such that d(jk) is not 2-divisible,
and we let ` be the only involution in d(jk). Then (j, k) 7→ ` is a well-(generically) defined, definable
function; obvious rank computations yield rkG = 3 rkC◦G(i). ♦

Notation 3. For ι ∈ I(Ĝ) let Bι = C◦G(ι).

By Steps 1 and 2 and the Maximality Proposition 6, Bι is a Borel subgroup of G.

Step 4. Pr2(Ĝ) ≤ 2.

Proof of Step. Suppose Pr2(Ĝ) ≥ 3. We may assume that Ĝ = G · d(Ŝ) for some 2-torus Ŝ of
Ĝ. In particular Ĝ/G is W⊥2 . But so is G by Step 2; by Lemma K, so is Ĝ, i.e. Ŝ is actually a
Sylow 2-subgroup of Ĝ. Let A = Ω2(Ŝ) be the group generated by the involutions of Ŝ; A ≤ Ĝ
is an elementary abelian 2-group with 2-rank Pr2(Ĝ) ≥ 3. Let ρ = max{ρBι : ι ∈ A \ {1}} and
ι ∈ A \ {1} be such that ρBι = ρ.

We show that for any involution λ ∈ A \ {1}, Bλ = Bι. Let κ ∈ A \ 〈ι〉 be such that
C◦Uρ(Z(F◦(Bι)))(κ) 6= 1; this certainly exists as A has rank at least 3. Then X ≤ C◦G(κ) = Bκ,
so ρκ = ρ and X ≤ Uρ(Bκ). Let as always B̂ι = Bι · d(Ŝ); one has {Bι, κ} ⊆ (B̂′ι ∩ B)◦ ≤ F ◦(Bι)
so we may apply Lemma F and write Bι = B+κ

ι · {Bι, κ} ⊆ B+
ι · F ◦(Bι). Now both B+

ι and
F ◦(Bι) normalise X, hence X is normal in Bι. Uniqueness principles imply that Uρ(Bι) is the only
Sylow ρ-subgroup of G containing X. In particular Uρ(Bι) = Uρ(Bκ). Hence C◦G(ι) = Bι = Bκ =
C◦G(κ) = C◦G(ικ). Turning to an arbitrary λ ∈ A \ {1} we apply bigeneration, Fact 3, to the action
of V = 〈ι, κ〉 on the soluble group Bλ, and find Bλ ≤ 〈C◦Bλ(µ) : µ ∈ V \ {1}〉 ≤ Bι. So Bλ = Bι
for any λ ∈ A \ {1}.

We claim that Pr2(G) = 1. First, if G is 2⊥ we contradict bigeneration, i.e. the fact that
G = 〈C◦G(µ) : µ ∈ V \ {1}〉. Therefore G has involutions. In order to bound its Prüfer 2-rank we
shall use the Strong Embedding Proposition 8. We argue that M = NG(Bι) is strongly embedded
in G. For let j be an involution in S = Ŝ ∩G, which is a Sylow 2-subgroup of G; then j ∈ NG(Bι).
But G is W⊥2 and Bι contains a maximal 2-torus of G, so j ∈ Bι. Let V = 〈ι, κ〉; recall that
V centralises Bι. In particular V centralises j, and normalises Bj . As the latter is soluble we
apply bigeneration, Fact 3, and find Bj = 〈C◦Bj (λ) : λ ∈ V \ {1}〉 ≤ Bι. Now if j ∈ Mx with
x ∈ G, then we argue likewise: j ∈ Bxι , V x centralises j, V x normalises Bj , and Bj = Bxι . Hence
x ∈ NG(Bι), and M = NG(Bι) is strongly embedded in G. By the Strong Embedding Proposition
8, Pr2(G) = 1, as desired.

Observe that any two commuting involutions of Ĝ centralise the same Borel subgroup of G:
for if 〈µ, ν〉 is a four-subgroup of Ĝ then up to conjugacy 〈µ, ν〉 ≤ A, so Bµ = Bν . Now any two
non-conjugate involutions of Ĝ commute to a third involution, so they centralise the same Borel
subgroup of G. But there are at least two conjugacy classes of involutions in Ĝ, since Pr2(G) = 1
and Pr2(Ĝ) ≥ 3. So actually any two involutions of Ĝ centralise the same Borel subgroup of G.
This is to mean: for any g ∈ G, Bgι = B; Bι is normal in G, which contradicts ∗-local◦◦ solubility. ♦

Step 5. If i ∈ I(G) then Bi is self-normalising.

Proof of Step. We claim that i is the only involution in Z(Bi). If Pr2(G) = 1 this is clear by the
structure of torsion in connected, soluble groups. If Pr2(G) ≥ 2 (and one has equality by Step 4),
then let k ∈ I(Bi) \ {i}: if k ∈ Z(Bi) then Bk = Bi = Bik is clearly strongly embedded, against
Proposition 8.

In particular, NG(Bi) ≤ Bi · CG(i) ≤ CG(i) = C◦G(i) = Bi by Steinberg’s torsion theorem and
connectedness of the Sylow 2-subgroup of G (Step 2). ♦

Notation 6. For κ, λ ∈ I(Ĝ) let Tκ(λ) = TBκ(λ).
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Before reading the following be very careful that Inductive Torsion Control, Proposition 5,
requires Ĝ to be W⊥2 ; for the moment only G need be by Step 2.

Step 7 (Antalya). If Ĝ is W⊥2 and λ /∈ NĜ(Bκ) then Tκ(λ) is finite.
If in addition Ĝ = G · d(Ŝ◦) for some maximal 2-torus Ŝ◦ ≤ Ĝ, then rkC◦

Ĝ
(κ) = rkC◦

Ĝ
(λ) and

the generic left translate ĝC◦
Ĝ

(λ) contains a conjugate of κ.

Proof of Step. Suppose that Ĝ is W⊥2 and Tκ(λ) is infinite. Then by Inductive Torsion Control,
Proposition 5, Tκ(λ) is infinite and contains no torsion elements. Then λ inverts Tκ(λ) pointwise,
and normalises CĜ(Tκ(λ)); the latter contains κ. By the structure of the Sylow 2-subgroup ofĜ
and normalisation principles, λ has a CĜ(Tκ(λ))-conjugate µ commuting with κ. Now µ inverts
Tκ(λ) and normalises Bκ. Since NĜ(Bκ) already contains a Sylow 2-subgroup of Ĝ which is a
2-torus, µ is toral in NĜ(Bκ) by torality principles. Hence Tκ(λ) ⊆ {B,µ} ⊆ F ◦(B). We now take
any t ∈ Tκ(λ) \ {1} and X = d(t), and we climb the Devil’s Ladder, Proposition 4: Bκ is the only
Borel subgroup of G containing C◦G(X). In particular, λ normalises Bκ, a contradiction.

For the rest of the argument we assume in addition that Ĝ = G·d(Ŝ◦) for some maximal 2-torus
Ŝ◦ ≤ Ĝ; in particular Ĝ is W⊥2 by Lemma K and Step 2.

Let us introduce the following definable maps:

πκ,λ : κĜ \NĜ(Bλ) → Ĝ/C◦
Ĝ

(λ)
κ1 7→ κ1C

◦
Ĝ

(λ)

We shall compute fibers.
Suppose that πκ,λ(κ1) = πκ,λ(κ2). Then using the assumption that Ĝ = G · d(Ŝ◦), G controls

Ĝ-conjugacy of involutions. Hence κ1κ2 ∈ C◦Ĝ(λ) ∩G ≤ CG(λ). Be very careful that we do not a
priori have connectedness of the latter, insofar as there is no “outer” version of Steinberg’s torsion
theorem; as a matter of fact connectedness is immediate only when G is 2⊥ or λ ∈ G, not in
general.

But if c ∈ CG(λ) is inverted by κ, then κ normalises CĜ(c) which contains λ; since Ĝ isW⊥2 and
by normalisation principles, κ as a CĜ(c)-conjugate µ commuting with λ. Now µ ∈ NĜ(CG(λ))
which contains a maximal 2-torus by torality principles; torality principles again provide some
maximal 2-torus Tµ ≤ NĜ(CG(λ)) containing µ. Then by Zilber’s indecomposibility theorem,
[c, Tµ] ≤ C◦G(λ), that is, c2 ∈ C◦G(λ). If G is 2⊥ the conclusion comes easily; if G contains
involutions, then by torality principles C◦G(λ) contains a Sylow 2-subgroup of G which is connected
by Step 2, so c ∈ C◦G(λ).

Turning back to our fiber computation, we do have κ1κ2 ∈ C◦G(λ), that is, κ1κ2 ∈ Tλ(κ). The
latter is finite as first proved. Hence πκ,λ has finite fibers, and it follows, keeping the Genericity
Proposition 2 in mind:

rk κĜ ≤ rk Ĝ− rkC◦
Ĝ

(λ)

that is, rkC◦
Ĝ

(λ) ≤ rkC◦
Ĝ

(κ), and vice-versa. So equality holds. By a degree argument, πκ,λ is
now generically onto. ♦

Step 8. We may suppose that Pr2(Ĝ) = 1.

Proof of Step. Suppose that Pr2(Ĝ) ≥ 2; equality follows from Step 4 and we aim at finding
case CiBo3. There seem to be three cases depending on the values of Pr2(G) and Pr2(Ĝ/G) =
2− Pr2(G). We however give a common argument.

Let Ŝ◦ ≤ Ĝ be a maximal 2-torus of Ĝ and Ǧ = G · d(Ŝ◦). Bear in mind that Ǧ is W⊥2 by Step
2 and Lemma K. In particular, Ŝ◦ is a Sylow 2-subgroup of Ĝ. Let κ, λ, µ be the three involutions
in Ŝ◦.

If κ, λ and µ are not pairwise G-conjugate, then they are not Ǧ-conjugate either. So Ǧ has at
least (hence exactly) three conjugacy classes of involutions by Lemma M: κ, λ and µ are pairwise
not G-conjugate. We now apply Step 7 in Ǧ. The generic left-translate ǧC◦

Ǧ
(λ) contains both a

conjugate κ1 of κ and a conjugate µ1 of µ. Now κ1 and µ1 are not Ǧ-conjugate so d(κ1µ1) contains
an involution ν. By the structure of the Sylow 2-subgroup of Ǧ, ν must be a conjugate λ1 of λ.
Now λ1 ∈ d(κ1µ1) ≤ C◦

Ǧ
(λ). By the structure of the Sylow 2-subgroup of Ǧ again, λ is the only
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conjugate of λ in its centraliser. Hence λ1 = λ. It follows that κ1, µ1 ∈ CǦ(λ), and ǧ ∈ CǦ(λ): a
contradiction to genericity of ǧC◦

Ǧ
(λ) in Ǧ/C◦

Ǧ
(λ).

So involutions in Ǧ are G-conjugate. This certainly rules out the case where Pr2(G) = 1 =
Pr2(Ǧ/G). Actually this also eliminates the case where Pr2(G) = 0 and Pr2(Ǧ/G) = 2. For in
that case, κ, λ, µ remain distinct in the quotient Ǧ/G: so G cannot conjugate them in Ǧ.

Hence Pr2(G) = 2 and Ǧ/G is 2⊥; the latter means Ŝ◦ ≤ G so Ĝ/G is 2⊥ as well. We have
proved that G conjugates its involutions: with a look at Step 5 we recognize case CiBo3. ♦

We shall now finish the proof. If G has involutions then by Steps 2 and 8, m2(G) = Pr2(G) = 1
and Pr2(Ĝ/G) = 0 = m2(Ĝ/G): with a look at Step 5 this is case CiBo1. So we may suppose
that G is 2⊥. Since Pr2(Ĝ) = 1, by Proposition 7 m2(Ĝ) = 1. This is case CiBo∅: only self-
normalisation of Bι in G remains to be proved (although it was covered in Proposition 7, between
Steps 5 and 6). Since N = NG(Bι) ≤ G is 2⊥ it admits a decomposition N = N+ι · N−ι under
the action of ι. But on the one hand so does G: hence G = CG(ι) · G−ι with trivial fibers and
by a degree argument CG(ι) is connected, so N+ ≤ Bι. On the other hand, by torality principles
there exists a 2-torus Ŝ◦ of Ĝ containing ι; Ŝ◦ normalises Bι and NG(Bι). By connectedness,
Ŝ◦ centralises the finite group NG(Bι)/Bι, and so does ι. So N− ⊆ Bι and therefore N = Bι.

In Memoriam
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