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Abstract. We show that if T is any geometric theory having NTP2 then
the corresponding theories of lovely pairs of models of T and of H-structures
associated to T also have NTP2. We also prove that if T is strong then the
same two expansions of T are also strong.

1. Introduction

The family of NTP2 theories has attracted a lot of attention recently. On the one
hand it provides a setting that includes both simple and dependent theories. On
the other hand the family is small enough to have some very nice model-theoretic
properties, such as the equivalence of forking and dividing for types over models
[8]. There are several recent results on natural theories that are NTP2 but are not
simple nor dependent, they include ultraproducts of p-adics [6] and the theory of
the non-standard Frobenius automorphism acting on an algebraically closed valued
field of equicharacteristic 0 [7].

In this paper we study some expansions of geometric NTP2 theories and prove
that NTP2 also holds in those expansions. In technical terms, we prove that expan-
sions of any geometric NTP2 theory with a dense/co-dense predicate are also NTP2,
provided that the predicate defines either an algebraically independent subset or
an elementary substructure.

There are several papers on the preservation of stability and NIP under adding
predicates. For example, there are the work of Casanovas and Ziegler on stability
[5] and a similar result by Chernikov and Simon on NIP theories [9], [10]. A key
fact in both papers is the following result: inside a highly saturated model of T ,
the family of stable (or NIP) formulas is closed under boolean combination and it
suffices to check (under some technical assumptions) that the induced structure on
a predicate is stable (respectively NIP).

On the other hand, for NTP2 and simple theories, there are no results along
the lines of Casanovas-Ziegler, Chernikov-Simon and we require different tools for
analyzing expansions of these theories. In the case of simple theories, one can study
independence relations that characterize forking and simplicity. For NTP2 theories,
the main tool is that the burden is sub-multiplicative [6] and thus it suffices to look
at formulas in a single variable. This is the path followed in [6] to show that any
geometric NTP2 theory with a random predicate is again NTP2. In this paper we
use a similar approach, we concentrate on formulas with a single variable and apply
tools about indiscernible arrays and burden to prove our results.
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Strong theories and burden were first defined by Adler in [1] and they provide
notions analogous to those like superstability and U -rank but in the setting of NTP2

theories. Examples include henselian valued field of equicharacteristic 0 where the
residue field and the valued group are both strong [6], and also the ultraproduct of
p-adics. In this paper we also prove a result on the preservation of strongness: if T
is strong then the expansion by a dense/co-dense predicate is again strong.

Our work is organized as follows. In section 2 we review the notions of H-
structures and lovely pairs and improve some results about the definable sets of
these expansion from [3, 4]. In section 3 we review some key results on NTP2

theories, burden and indiscernible arrays. Finally in section 4 we prove our main
results.

2. H-structures and lovely pairs

In this section, we review the notions of H-structures and lovely pairs of geo-
metric theories. All the essential definitions and results in this section are due
to Berenstein and Vassiliev ([3], [4]), but we also refine some of their results on
definable sets (Propositions 2.10 and 2.11 below).

Recall that a theory is called geometric if (1) it eliminates the quantifier ∃∞ and
(2) the algebraic closure satisfies the exchange property. By ‘independence’ we shall
mean algebraic independence and use the symbol |̂ to denote this independence
relation. Whenever M |= T and ā ∈ M , we write aclT (ā) for the algebraic closure
of ā inside M and tpT (ā) for the type of ā inside M .

Definition 2.1. Given a geometric complete theory T in a language L and a
model M � T , add a new unary predicate symbol H to form an extended language
LH := L∪{H}. Let (M,H(M)) denote an expansion ofM to LH , where H(M) :=
{x ∈M | H(x)}.

(1) (M,H(M)) is called a dense/co-dense expansion if, for any non-algebraic
L-type p(x) ∈ S1(A) where A ⊆ M has a finite dimension, p(x) has real-
izations both in H(M) and in M \ aclT (A ∪H(M)).

(2) A dense/co-dense expansion (M,H(M)) is called a lovely pair if H(M) is
an elementary substructure of M .

(3) A dense/co-dense expansion (M,H(M)) is called an H-structure if H(M)
is an L-algebraically independent subset of M .

Theorem 2.2 ([3], [4]). Given any geometric complete theory T , all the lovely pairs
(resp. H-structures) associated with T are elementarily equivalent to one another.

Notation 2.3. TP and T ind denote the common complete theories of the lovely
pairs and the H-structures, respectively, associated with T . By T ∗ we shall mean
either TP or T ind.

Remark 2.4. Not every model of T ∗ may be an H-structure (resp. lovely pair),
but all the sufficiently saturated ones are. (See [4, Examples 2.11, 2.12].)

Notation/convention
(1) Throughout the rest of the paper, we shall fix a geometric complete theory

T and work inside some fixed, κ̄-saturated model (M,H(M)) � T ∗ for some
sufficiently large cardinal κ̄. When we talk about subsets of M , we shall
mean subsets of cardinality < κ̄ unless stated otherwise.
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(2) For a subset A ⊆M , H(A) := {x ∈ A | H(x)}.
(3) We shall use H-subscripts to distinguish those operations in LH from those

in L. (e.g., aclH(ā), tpH(ā).)

Definition 2.5. A subset A ⊆M is called H-independent if A |̂
H(A)

H(M).

The following proposition is easy to verify.

Proposition 2.6. (1) For any tuple ā, there exists some finite tuple h̄ in
H(M) such that ā |̂

h̄
H(M). And, for such h̄, āh̄ is H-independent.

(2) If ā is any H-independent tuple, then for any finite tuple h̄ in H(M), āh̄
is also H-independent.

Lemma 2.7 ([3], [4]). For any H-independent tuples ā and b̄,

tpH(ā) = tpH(b̄) ⇔ tpT (āH(ā)) = tpT (b̄H(b̄))

Definition 2.8. For any subset A ⊆M ,

scl(A) := aclT (A ∪H(M))

is called the small closure of A. Any subset B ⊆ scl(A) is called A-small.

Remark 2.9. It is easy to check that M \ scl(A) is type-definable (in LH) over A.

In the remainder of the section, we prove Propositions 2.10 and 2.11 which are
refined versions of the original theorems by Berenstein and Vassiliev [4], [3]. (The
original versions do not make explicit references to parameters.) We need these
stronger versions to prove our main results later, so we include their full proofs.

Proposition 2.10. If ϕ(x̄, ā) is any LH-formula where ā is H-independent, then
there exists some L-formula ψ(x̄, ā) such that

� ϕ(x̄, ā) ∧H(x̄) ↔ ψ(x̄, ā) ∧H(x̄)

Proof. Let X ⊆Mn be the set defined by ϕ(x̄, ā). We may assume that H(M)n∩X
and H(M)n \X are both nonempty.

Claim. For any h̄1 ∈ H(M)n ∩ X and any h̄2 ∈ H(M)n \ X, there exists some
L-formula θh̄1h̄2

(x̄, ā) such that h̄1 � θ(x̄, ā) and h̄2 � ¬θ(x̄, ā).

Proof of Claim. Let h̄1 ∈ H(M)n ∩X and h̄2 ∈ H(M)n \X. Then tpH(h̄1ā) 6=
tpH(h̄2ā) since ϕ(x̄, ȳ) ∈ tpH(h̄1ā) \ tpH(h̄2ā). Moreover, h̄1ā and h̄2ā are both
H-independent by Proposition 2.6(2). Hence tpT (h̄1ā) 6= tpT (h̄2ā) by Lemma 2.7.
This completes the proof of Claim.

For each h̄2 ∈ H(M)n \X, consider the following LH -type over ā:

Σh̄2
(x̄) := {H(x̄) ∧ ϕ(x̄, ā)} ∪ {¬θh̄1h̄2

(x̄, ā) | h̄1 ∈ H(M)n ∩X}
which is clearly inconsistent. Hence, since M is saturated, there exist finitely many
tuples h̄1

1, · · · , h̄k1 in H(M)n ∩X such that the L-formula

ψh̄2
(x̄, ā) :=

k∨
i=1

θh̄i
1h̄2

(x̄, ā)

is satisfied by every tuple in H(M)n ∩X. Note h̄2 2 ψh̄2
(x̄, ā).

Next, consider the following LH -type Σ(x̄) over ā:

Σ(x̄) := {H(x̄) ∧ ¬ϕ(x̄, ā)} ∪ {ψh̄2
(x̄, ā) | h̄2 ∈ H(M)n \X}
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which is clearly inconsistent. Hence, since the structure M is saturated, there exist
finitely many tuples h̄1

2, · · · , h̄m2 in H(M)n \X such that the L-formula

ψ(x̄, ā) :=

m∧
i=1

ψh̄i
2
(x̄, ā)

is not satisfied by any tuple in H(M)n \X. But ψ(x̄, ā) is satisfied by every tuple
in H(M)n ∩X, and hence ψ(x̄, ā) is a desired L-formula. �

Proposition 2.11. If ϕ(x, ā) is any LH-formula where x is a single variable and ā
is an H-independent tuple, then there exists some L-formula ψ(x, ā) such that the
symmetric difference ϕ(x, ā)4ψ(x, ā) defines an ā-small set.

Proof. Let X ⊆M be the set defined by ϕ(x, ā). And let

Y1 := {x ∈ X | x /∈ scl(ā)} and Y2 := {x ∈M \X | x /∈ scl(ā)}

We may assume that Y1 and Y2 are both nonempty.

Claim. For any c1 ∈ Y1 and any c2 ∈ Y2, there exists some L-formula θc1c2(x, ā)
such that c1 � θc1c2(x, ā) and c2 � ¬θc1c2(x, ā).

Proof of Claim. Let c1 ∈ Y1 and c2 ∈ Y2. Then tpH(c1ā) 6= tpH(c2ā) since
ϕ(x, ȳ) ∈ tpH(c1ā) \ tpH(c2ā). Moreover, note that c1ā and c2ā are both H-
independent. Hence, tpT (c1ā) 6= tpT (c2ā) by Lemma 2.7. This completes the proof
of Claim.

As was observed in Remark 2.9, both Y1 and Y2 are type-definable (in LH) over
ā. So let Σ1(x) and Σ2(x) be LH -types over ā defining Y1 and Y2, respectively.

For each c2 ∈ Y2, consider the following LH -type over ā:

Σ1(x) ∪ {¬θc1c2(x, ā) | c1 ∈ Y1}

which is clearly inconsistent. Since M is saturated, there exist some finitely many
c11, · · · , ck1 ∈ Y1 such that the L-formula

ψc2(x, ā) :=

k∨
i=1

θci1c2(x, ā)

is satisfied by every element in Y1. Note c2 2 ψc2(x, ā).

Next, consider the following LH -type over ā:

Σ2(x) ∪ {ψc2(x, ā) | c2 ∈ Y2}

which is clearly inconsistent. Again, using that M is saturated, there exist some
finitely many c12, · · · , cm2 ∈ Y2 such that the L-formula

ψ(x, ā) :=

m∧
i=1

ψci2(x, ā)

is not satisfied by any element of Y2. But ψ(x, ā) is satisfied by every element of
Y1, and hence ϕ(x, ā)4ψ(x, ā) defines an ā-small set. �
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3. TP2, burden and indiscernible arrays

In this section, we review some key results on NTP2 theories and burden. All
the definitions and results in this section are in a general setting, and we do not
assume that T is geometric.

Definition 3.1. (1) A theory T has k-TP2 (for some integer k ≥ 2) if there
exist a formula ϕ(x̄, ȳ) and a set of tuples {āi,j | i, j < ω} (in some model of
T ) such that {ϕ(x̄, āi,f(i)) | i < ω} is consistent for every function f : ω → ω
and {ϕ(x̄, āi,j) | j < ω} is k-inconsistent for every i < ω.

(2) TP2 means 2-TP2.
(3) A theory has NTP2 if it does not have TP2.

Remark 3.2. Notice that, if a formula ϕ(x̄, ȳ) witnesses k-TP2 with some array
{āi,j | i, j < ω} then

∧
i<ω ϕ(x̄, āi,f(i)) must have infinitely many realizations for

every function f : ω → ω.

The following definitions of indiscernible array and array-basedness are due to
[2].

Definition 3.3. Consider the Cartesian product ω×ω as a model in the language
Lar := {<1, <2} where <1 and <2 are binary relation symbols interpreted in ω×ω
as follows:

(a, b) <1 (c, d) ⇔ a < c

(a, b) <2 (c, d) ⇔ (a = c) ∧ (b < d)

Let M be any model in some language L.
(1) A set of parameters {āµ | µ ∈ ω × ω} in M is called an indiscernible

array if the L-type of any finite tuple (āµ1
, · · · , āµn

) is determined by the
quantifier-free Lar-type of the tuple (µ1, · · · , µn).

(2) Let A := {āµ | µ ∈ ω × ω} and B := {b̄µ | µ ∈ ω × ω} be any sets of
parameters in M . A is array-based (or simply based) on B if for any L-
formula ϕ(x̄1, · · · , x̄n) and any tuple (µ1, · · · , µn) in ω × ω, there exists
some tuple (ν1, · · · , νn) in ω × ω such that
(a) qftpLar

(µ1, · · · , µn) = qftpLar
(ν1, · · · , νn)

(b) M � ϕ(āµ1
, · · · , āµn

)↔ ϕ(b̄ν1 , · · · , b̄νn)

Theorem 3.4 (Array-modeling [2]). Given any set of tuples A := {āη | η ∈ ω×ω}
(in some sufficiently saturated model), there exists an indiscernible array {b̄η | η ∈
ω × ω} based on A.

Corollary 3.5. If a formula ϕ(x̄, ȳ) witnesses k-TP2 then it may do so with an
indiscernible array.

Corollary 3.6. If a formula ϕ(x̄, ȳ) witnesses k-TP2 then some finite conjunction
ψ(x̄, ȳ1, · · · , ȳn) :=

∧n
i=1 ϕ(x̄, ȳi) witnesses TP2. Hence, if a theory T does not have

TP2 then it does not have k-TP2 for any k ≥ 2.

Proof. An easy application of the array-modeling theorem. See [2] or [?] for details.
�

Proposition 3.7. A theory T has TP2 if there exist a formula ϕ(x, ȳ) and an
indiscernible array {āi,j | i, j < ω} such that



DENSE CODENSE PREDICATES AND NTP2 6

(1)
∧
i<ω ϕ(x, āi,0) has infinitely many realizations,

(2)
∧
j<ω ϕ(x, ā0,j) has at most finitely many realizations.

Proof. Suppose that there exist such a formula ϕ(x, ȳ) and an indiscernible array
A := {āi,j | i, j < ω} in some sufficiently saturated model M � T . Then clearly
there exist some integer N ≥ 1 and some algebraic formula θ(x, b̄0) such that, for
any indices i1 < · · · < iN ,

M �

(
N∧
k=1

ϕ(x, ā0,ik)

)
→ θ(x, b̄0)

Then it’s easy to check that the formula ψ(x, ȳz̄) := ϕ(x, ȳ) ∧ ¬θ(x, z̄) witnesses
N -TP2. Hence T has TP2 by Corollary 3.6. �

Theorem 3.8 (Chernikov [6]). If a theory has TP2, then there exists some formula
ϕ(x, ȳ) (where x is a single variable) witnessing TP2.

Next, we recall the following definition from [?].

Definition 3.9. Given a (partial) type p(x̄), an inp-pattern in p(x̄) consists of
a set of formulas {ϕi(x̄, ȳi) | i < κ} (for some cardinal κ) and a set of tuples
{āi,j | i < κ, j < ω} satisfying the following properties:

(1) For each i < κ, {ϕi(x̄, āi,j) | j < ω} is ki-inconsistent for some integer
ki ≥ 2.

(2) For every function f : κ→ ω, p(x̄) ∪ {ϕi(x̄, āi,f(i)) | i < κ} is consistent.
The cardinal κ is called the depth of the inp-pattern. The burden of a type p(x̄),
denoted by bdn(p(x̄)), is the supremum of the depths of all inp-patterns in p(x̄).
bdn(ā/B) denotes bdn(tp(ā/B)).

Proposition 3.10.
(1) bdn(p(x̄)) = 0 ⇔ p(x̄) is an algebraic type.
(2) bdn(ā/b̄) ≤ bdn(ā) ≤ bdn(āb̄).
(3) If � p(x̄)→ q(x̄) then bdn(p(x̄)) ≤ bdn(q(x̄)).

Proof. Immediate from the definition of burden. �

Proposition 3.11 ([?], [6]). If there exists an inp-pattern {ϕi(x̄, āi,j) | i < κ, j <
ω} in a type p(x̄), then we may assume that the array {āi,j | i < κ, j < ω} is
mutually indiscernible, that is, for each i0 < κ, the sequence {āi0,j | j < ω} is
indiscernible over the parameters {āi,j | i 6= i0, j < ω}.

Remark 3.12 (Indiscernible array vs. mutually indiscernible array). Any indis-
cernible array is necessarily a mutually indiscernible array, but the converse is not
true in general. (Also note that, all the tuples in an indiscernible array have the
same arity by definition, but it is not necessarily the case for mutually indiscernible
array.)

Theorem 3.13 (Sub-multiplicativity of burden, [6]). If there is an inp-pattern of
depth κ1 × κ2 in tp(āb̄) then either there is an inp-pattern of depth κ1 in tp(ā) or
there is an inp-pattern of depth κ2 in tp(b̄/ā). In particular:

(1) For any finitely many tuples ā1, · · · , ān and any infinite cardinal κ, if
bdn(āi) < κ for all i then bdn(ā1 · · · ān) < κ.
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(2) For any finitely many tuples ā1, · · · , ān, if all the inp-patterns in tp(āi)
have finite depths, for all i, then all the inp-patterns in tp(ā1 · · · ān) have
finite depths.

Proposition 3.14 ([6]). Let T be a complete theory. Then the following are equiv-
alent:

(1) There does not exist any formula ϕ(x, ȳ) witnessing TP2.
(2) bdn(b/C) < |T |+ for all b ∈M and all C ⊂M in some saturated model M

of T .

4. Main Results

Throughout this section, we work inside some fixed, sufficiently saturated model
(M,H(M)) � T ∗

Proposition 4.1. Let ϕ(x̄, ȳ) be any LH-formula witnessing k-TP2 for some k ≥ 2.
Then for some dummy variables z̄, the formula ϕ(x̄, ȳz̄) witnesses k-TP2 with some
indiscernible array {c̄i,j | i, j < ω} where each c̄i,j is H-independent.

Proof. By Corollary 3.5, ϕ(x̄, ȳ) witnesses k-TP2 with some indiscernible array
{āi,j | i, j < ω}. (In particular, all āi,j have the same LH -type.) Moreover, by
Proposition 2.6(1), there exists some finite tuple h̄0,0 in H(M) such that ā0,0h̄0,0

is H-independent. For each (i, j) 6= (0, 0), define h̄i,j to be the image of h̄0,0 under
some LH -automorphism sending ā0,0 7→ āi,j . So, in particular, each āi,j h̄i,j is H-
independent. It’s also clear that, for any choice of dummy variables z̄ having the
same arity as h̄i,j , the formula ϕ(x̄, ȳz̄) still witnesses k-TP2 with the array {b̄i,j :=
āi,j h̄i,j | i, j < ω}. Now, by Theorem 3.4, there exists some indiscernible array
{c̄i,j | i, j < ω} based on {b̄i,j | i, j < ω}. Then it is straightforward to check that
each c̄i,j is H-independent and ϕ(x̄, ȳz̄) witnesses k-TP2 with {c̄i,j | i, j < ω}. �

Proposition 4.2. T has TP2 if there exists some LH-formula ϕ(x, ȳ) (where x is
a single variable) such that ϕ(x, ȳ) ∧H(x) witnesses k-TP2 for some k ≥ 2.

Proof. Assume that there exists such an LH -formula ϕ(x, ȳ). We may assume that
ϕ(x, ȳ) ∧H(x) witnesses TP2 with some indiscernible array A := {āi,j | i, j < ω}
where each āi,j is H-independent (by Proposition 4.1 and Corollary 3.6). Then, by
Proposition 2.10, there exists some L-formula ψ(x, ȳ) such that for all i, j < ω,

� ϕ(x, āi,j) ∧H(x) ↔ ψ(x, āi,j) ∧H(x).

Since
∧
i<ω ϕ(x, āi,0) ∧ H(x) has infinitely many realizations (by Remark 3.2),∧

i<ω ψ(x, āi,0) also has infinitely many realizations. Moreover,
∧
j<ω ψ(x, ā0,j) has

at most finitely many realizations. (Otherwise, the density condition for H (Defini-
tion 2.1(1)) implies that ϕ(x, ā0,0)∧ ϕ(x, ā0,1)∧H(x) is consistent, contradiction.)
Hence, T has TP2 by Proposition 3.7. �

Proposition 4.3. If there exists h ∈ H(M) such that bdnH(h) ≥ |T |+ then T has
TP2.

Proof. This is a local version of Lemma 3.14. The existence of such h implies that
there exists some LH -formula ϕ(x, ȳ) such that ϕ(x, ȳ)∧H(x) witnesses k-TP2 for
some k ≥ 2. This follows easily from the pigeon hole principle (i.e., the regularity
of the cardinal |T |+). Hence, T has TP2 by Proposition 4.2. �
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Corollary 4.4. If there exists some LH-formula ϕ(x̄, ȳ) such that ϕ(x̄, ȳ) ∧H(x̄)
witnesses k-TP2 for some k ≥ 2 then T has TP2.

Proof. The existence of such an LH -formula ϕ(x̄, ȳ) implies that bdnH(h̄) ≥ |T |+
for some tuple h̄ in H(M). This follows easily from compactness and the fact that
we can always choose an indiscernible array (Corollary 3.5). Then, by the sub-
multiplicativity of burden (Theorem 3.13), there exists some h ∈ H(M) such that
bdnH(h) ≥ |T |+. Hence T has TP2 by Proposition 4.3 �

Theorem 4.5 (Main Theorem). If T ∗ has TP2 then so does T .

Proof. Assume T ∗ has TP2. So there exists some LH -formula ϕ(x, ȳ) (where x is a
single variable due to Theorem 3.8) witnessing TP2 with some indiscernible array
A := {āi,j | i, j < ω} where each āi,j is H-independent (by Proposition 4.1). There
are two possible cases:

Case 1.
∧
i<ω ϕ(x, āi,0) is realized by some b ∈ scl(A).

Such b is realized by some algebraic L-formula θ(x, c̄, h̄) where c̄ and h̄ are some
tuples in A and H(M), respectively. Clearly we may assume that, for any pa-
rameters c̄′ and h̄′, the formula θ(x, c̄′, h̄′) always has at most k realizations for
some fixed integer k. Choose any N < ω such that c̄ appears in the sub-array
{āi,j | i < N, j < ω} and let d̄i,j := āN+i,j for each i, j < ω. Then ϕ(x, ȳ) still
witnesses TP2 with the array {d̄i,j | i, j < ω} but this array is now indiscernible
over c̄. Then it’s easy to check that the LH -formulas

µ(z̄, c̄, d̄i,j) := H(z̄) ∧ ∃x(θ(x, c̄, z̄) ∧ ϕ(x, d̄i,j))

for i, j < ω, witness (k + 1)-TP2. Hence T has TP2 by Corollary 4.4.

Case 2. All the realizations of
∧
i<ω ϕ(x, āi,0) are in M \ scl(A).

By Proposition 2.11, there exists some L-formula ψ(x, ȳ) such that, for each
i, j < ω, ϕ(x, āi,j)4ψ(x, āi,j) defines an āi,j-small set. Then every realization
of
∧
i<ω ϕ(x, āi,0) must also be a realization of

∧
i<ω ψ(x, āi,0). In particular,∧

i<ω ψ(x, āi,0) has infinitely many realizations.
Moreover,

∧
j<ω ψ(x, ā0,j) has at most finitely many realizations. (Otherwise,

the co-density condition for H (Definition 2.1(1)) implies that ϕ(x, ā0,0)∧ϕ(x, ā0,1)
is consistent, contradiction.) Hence, T has TP2 by Proposition 3.7. �

Now we study how burden behaves in T ∗.

Theorem 4.6. Let p(x) be any partial L-type in a single variable over any subset.
Then for any inp-pattern of LH-formulas in p(x)∧H(x), there exists an inp-pattern
of L-formulas in p(x) having the same depth. In particular, bdnH(p(x) ∧H(x)) ≤
bdnT (p(x)).

Proof. Let {ϕi(x, āi,j) | i < κ, j < ω} be any inp-pattern of LH -formulas in p(x) ∧
H(x) (where κ is some cardinal). Clearly we may assume that � ϕi(x, āi,j)→ H(x)
for all i < κ and j < ω. We may further assume that the array {āi,j | i < κ, j < ω}
is mutually indiscernible (by Proposition 3.11) and that each āi,j is H-independent.
Then, by Proposition 2.10, there exist L-formulas ψi(x, ȳi) such that

� ϕi(x, āi,j) ↔ ψi(x, āi,j) ∧H(x)
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for all i < κ and j < ω. Notice that, for each i < κ,
∧
j<ω ψi(x, āi,j) has at most

finitely many realizations. (Otherwise, the density property of H and compactness
imply that

∧
j<ω ϕi(x, āi,j) is consistent, contradiction.) Let ē0 = {e1, · · · , e`}

be the set of realizations of
∧
j<ω ψ0(x, ā0,j). Note ē0 ∩ H(M) = ∅. Moreover,

by the indiscernibility of {ā0,j | j < ω}, there exists some N0 < ω such that∧
j<ω ψ0(x, ā0,j) =

∧
j∈I ψ0(x, ā0,j) whenever I ⊂ ω has the size N0. Let z̄0 =

(z1, · · · , z`) be a tuple of new variables and consider the L-formula

ψ′0(x, ȳ0, z̄0) := ψ0(x, ȳ0) ∧ (∧k≤`x 6= zk).

Then {ψ′0(x, ā0,j , ē0) | j < ω} is N0-inconsistent. Repeating the same process for
each i < κ, we obtain an array of L-formulas

{ψ′i(x, āi,j , ēi) | i < κ, j < ω}
which is an inp-pattern of depth κ in p(x). This completes the proof. �

Before stating the next result (Theorem 4.8), let us quickly review the notion of
κinp(T ) defined by Shelah [11, Section III.7] and the notion of strong theory defined
by Adler [?].

Given an arbitrary theory T (not necessarily geometric) and any n < ω, κninp(T )
denotes the least cardinal τ such that there is no inp-pattern of depth τ in the type
{x̄ = x̄} where x̄ is a tuple of n variables. And κinp(T ) := supn<ω κ

n
inp(T ). We list

below some basic properties (all of which follow immediately from the definition).
(1) n < κninp(T ) (due to the equality symbol in every language).
(2) n ≤ m ⇒ κninp(T ) ≤ κminp(T ).
(3) κinp(T ) ≥ ℵ0.
(4) κinp(T ) = ℵ0 ⇔ κninp(T ) ≤ ℵ0 for all n < ω.
(5) κninp(T ) ≤ ℵ0 ⇔ Every inp-pattern in x̄ = x̄ (where |x̄| = n) has a finite

depth.

In [?], Adler defines a theory T to be strong if every inp-pattern in x̄ = x̄ has a
finite depth, for every finite tuple of variables x̄. i.e., T is strong iff κinp(T ) = ℵ0.

Theorem 4.7 (Chernikov [6]). In any theory T , either κninp(T ) < ℵ0 for all n < ω,
or there exists some infinite cardinal τ such that κninp(T ) = τ for all n < ω. In
particular, T is strong if and only if κ1

inp(T ) ≤ ℵ0.

Theorem 4.8. For any geometric complete theory T , if T is strong then so is T ∗.

Proof. Assume that T is strong. Then, by Theorem 4.6 and the sub-multiplicativity
of burden (Theorem 3.13), every inp-pattern in tpH(h̄) has a finite depth, for all
finite tuples h̄ in H(M).

Claim. Let p(x) be any partial LH -type in a single variable over any subset. Sup-
pose that all the realizations of p(x) belong to scl(b̄) for some tuple b̄. Then every
inp-pattern of LH -formulas in p(x) has a finite depth.

Proof of claim. Suppose not, i.e., there exists some inp-pattern {ϕi(x, āi,j) |
i, j < ω} of depth ℵ0 in p(x). We may assume that the array {āi,j | i, j < ω} is
mutually indiscernible over b̄. Since M is saturated, we can find some L-formula
θ(x, ȳ, b̄) such that

(1) θ(x, c̄, b̄) is algebraic for all parameters c̄,
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(2) � p(x)→ ∃ ȳ(H(ȳ) ∧ θ(x, ȳ, b̄)).

In particular, there exists some tuple h̄ in H(M) such that

p(x) ∪ {θ(x, h̄, b̄) ∧ ϕi(x, āi,0) | i < ω}

is consistent. Then the LH -formulas

µi(ȳ, b̄, āi,j) := H(ȳ) ∧ ∃x(θ(x, ȳ, b̄) ∧ ϕi(x, āi,j))

for i, j < ω form an inp-pattern of depth ℵ0 in tpH(h̄), contradicting that every
inp-pattern in tpH(h̄) has a finite depth. This completes the proof of Claim.

Now, to prove that T ∗ is strong, it suffices to show that every inp-pattern of LH -
formulas in x = x (where x is a single variable) has a finite depth. Suppose not,
i.e., there exists some inp-pattern {ϕi(x, āi,j) | i, j < ω} of depth ℵ0 in x = x. We
may assume that the array {āi,j | i, j < ω} is mutually indiscernible and that each
āi,j is H-independent. Then, by Proposition 2.11, there exist L-formulas ψi(x, ȳi)
such that

ϕi(x, āi,j)4ψi(x, āi,j)
defines an āi,j-small set, for each i, j < ω. Note that, for each n < ω and any
function f : n→ ω, the formulas

{ϕi(x, āi,j) | n ≤ i < ω, j < ω}

form an inp-pattern of depth ℵ0 in the type {ϕi(x, āi,f(i)) | i < n}. Hence, Claim
above implies that, for each n < ω and any function f : n→ ω, the formula∧

i<n

ψi(x, āi,f(i))

is realized by some infinitely many elements in M \ scl{āi,f(i) | i < n}.
Furthermore, for each i < ω,

∧
j<ω ψi(x, āi,j) has at most finitely many real-

izations. (Otherwise, the co-density property of H and compactness imply that
{ϕi(x, āi,j) | j < ω} is consistent, contradiction.) Hence, we may repeat the same
argument in the latter part of the proof for Theorem 4.6 to obtain an array of
L-formulas

{ψ′i(x, āi,j , ēi) | i < ω, j < ω}
which forms an inp-pattern of depth ℵ0, contradicting that T is strong. We conclude
that every inp-pattern of LH -formulas in x = x has a finite depth, i.e., T ∗ is
strong. �
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