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Abstract. We classify projective planes in algebraic combinatorial geometries in
arbitrary fields of characteristic zero. We investigate the first-order theories of such
geometries and pregeometries. Then we classify the algebraic combinatorial geometries
of arbitrary field extensions of the transcendence degree ≥ 5 and describe their groups
of automorphisms. Our results and proofs extend similar results and proofs by Evans
and Hrushovski in the case of algebraically closed fields.

Introduction

Let K ⊂ L be an arbitrary field extension. We investigate the algebraic combinatorial
geometry G(L/K) and pregeometry G(L/K) in L obtained from algebraic dependence
relation over K. Such a geometry is sometimes called a full algebraic matroid.

In [1] the authors classify projective planes in G(L/K) for algebraically closed K
and L. Using their results, we give such a classification for arbitrary fields K and L
of characteristic zero. We prove a theorem about formulas with one quantifier of the
first-order theory of G(L/K). Assume that the transcendence degree of L over K is at
least 5. When considering G(L/K) we may also assume that L is a perfect field and K
is relatively algebraically closed in L. One of the main results of [2] is the reconstruction
of the algebraically closed field L from G(L/K). We generalize this reconstruction to
arbitrary field extension K ⊂ L (of transcendence degree ≥ 5), and thus we obtain
full classification of combinatorial geometries of fields: G(L1/K1) and G(L2/K2) are
isomorphic if and only if field extensions

K1 ⊂ L1 and K2 ⊂ L2

are isomorphic (here we assume that L1 and L2 are perfect and K1, K2 are relatively
algebraically closed). We also give a description of Aut(G(L/K)).

By F̂ and F̂ r we denote algebraic and purely inseparable closure of F . Throughout
this paper we assume that K ⊂ L is an arbitrary field extension and the transcendence
degree of L over K is at least 3. We take basic definitions of algebraic combinatorial

geometry and pregeometry from [1, 2]. For X ⊆ L, let aclK (X) be K̂(X). We denote

by G(L/K) the pregeometry (L, aclK ). The geometry G(L/K) is obtained from L \ K̂
by factoring out the equivalence relation:

x ∼ y ⇐⇒ K̂(x) = K̂(y).

We can also transfer the closure operation aclK from G(L/K) to G(L/K):

aclK (Y/∼) = aclK (Y )/∼.
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Therefore we can regard the points of G(L/K) as sets aclK (x), where x ∈ L \ K̂,
and aclK as the usual algebraic closure. When considering G(L/K) we assume that
L is a perfect field and K is relatively algebraically closed in L (because G(L/K) =

G(L̂r/K) = G(L̂r/L̂r∩K̂)). Subsets of G(L/K) of the form aclK (X), X ⊆ G(L/K), are
called closed. The rank of a subset of G(L/K) or G(L/K) is its transcendence degree.
We also have notions of independent set (for each x ∈ X, x 6∈ aclK (X \ {x})) and a
basis of a closed subset as a maximal independent set (transcendence basis). Note that
the closure operation aclK satisfies the exchange condition:

x ∈ aclK (A ∪ {y}) \ aclK (A) =⇒ y ∈ aclK (A ∪ {x}).
Closed subset of rank 1 (respectively 2, 3) is a point (respectively line and plane). If
X is a closed subset of G(L/K), and a tuple x ⊂ L satisfies X = aclK (x), then we say
that x is generic in X.

Let F be a skew field (division ring). We will denote by P(F ) the projective plane
over F . It is simply the set F 3 \ {0} factored out by the relation:

(x1, x2, x3) ' (y1, y2, y3) ⇐⇒ (∃ 0 6= λ ∈ F
)

(x1, x2, x3) = λ(y1, y2, y3).

The paper is organized as follows. The first section is devoted to give some preliminary
definitions and results from [1]. In the second section we classify the projective planes
arising in G(L/K). Section 3 contains a theorem about first-order theory of G(L/K) and
formulas with one quantifier. In Section 4 we transfer theorems from [2] to geometries
of arbitrary field extensions and prove a general classification theorem for them.

The reader is referred to [6] for the model-theoretic background and notation, and to
[8] for general background on pregeometries and matroids.

1. Preliminaries

For definitions and proofs in this section we refer the reader to [1]. Throughout this
section we assume that K and L are algebraically closed. Let X be a subset of G(L/K)
and let aclK

X be the relative closure operation: aclK
X(Y ) = aclK (Y ) ∩X for Y ⊆ X.

We say that X is a projective plane of G(L/K) if the geometry (X, aclK
X) is itself a

projective plane, meaning that:
1) the geometry (X, aclK

X) has rank 3;
2) there are three noncollinear points in X;
3) any line has at least three different points;
4) any two lines intersect.
If a projective plane X is isomorphic to P(F ), for some skew field F , then we say

that X is coordinatised by F . It is well known ([3, Chapter 7]) that if the Desargues
theorem is true in X, then X is coordinatised by a unique skew field. The converse is
also true. If X1 and X2 are Desarguesian projective planes coordinatised by F1 and F2

respectively, and X1 ⊆ X2, then F1 is a subskewfield of F2. It is proved in [5] that any
projective plane in G(L/K) is Desarguesian. The aim of the next section is to find all
skew fields coordinatising some projective planes in G(L/K) for arbitrary K ⊂ L of
characteristic zero. The paper [1] describes all such skew fields in the case when L and
K are algebraically closed.

Let (G, ∗) be a one-dimensional irreducible K-definable algebraic group in L. Then
G is isomorphic over K ([1, Section 3.1]), as an algebraic group, to one of the follow-
ing commutative groups: (L, +), (L∗, ·) or an elliptic curve. Since G is commutative,
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the group EndK (G) = HomK (G, G) of definable over K morphisms of G (as an alge-
braic group) may be given a ring structure (EndK (G), +, ◦) and is embeddable into
a skew field of quotients EndK (G)0. If char(L) > 0, then EndK (L, +) is the ring of
p-polynomials over K and we donote by OK̂ the skew field EndK (L, +)0. Let x, y, z ∈ G
be an independent generics over K. We may consider G as an EndK (G) module and
define

P((G, ∗) : x, y, z) = {aclK (a(x) ∗ b(y) ∗ c(z)) : (a, b, c) ∈ EndK (G)3 \ {0}}.
This is a projective plane in G(L/K), coordinatised by EndK (G)0 i.e. elements of
P((G, ∗) : x, y, z) are dependent with respect to EndK (G) exactly if they are aclK -
dependent.

Lemma 1.1. Let x1, x2, x3, x′1, x′2, x′3 ∈ L.
(i) If each triple {x1, x2, x3} and {x′1, x′2, x′3} is algebraically independent over K, and

aclK (x1 + x2) = aclK (x′1 + x′2), aclK (xi) = aclK (x′i), for i = 1, 2, 3,

aclK (x1 + x3) = aclK (x′1 + x′3),

then there exist 0 6= c, c′ ∈ EndK (L, +) and d1, d2, d3 ∈ K such that

c′(x′1) = c(x1) + d1, c′(x′2) = c(x2) + d2, c′(x′3) = c(x3) + d3.

(ii) If each pair {x1, x2} and {x′1, x′2} is algebraically independent over K, and

aclK (x1) = aclK (x′1), aclK (x2) = aclK (x′2), aclK (x1 · x′1) = aclK (x2 · x′2),
then there exist 0 6= n,m ∈ Z and 0 6= a, b ∈ K such that xn

1 = axm
2 , yn

1 = bym
2 .

Proof. First statement follows from [1, Theorem 2.2.2] and the second from [2, Theorem
1.1]. ¤

2. Projective planes in G(L/K)

Throughout this section we assume that K ⊂ L is an arbitrary field extension and

tr degK(L) ≥ 3. The geometry G(L/K) naturally embeds into G(L̂/K̂). Therefore we

can use theorems about G(L̂/K̂) to investigate G(L/K).
From the proof of [1, Theorem 3.3.1] we obtain some maximal projective planes in

G(L̂/K̂) in the following way. Suppose x, y, z ∈ L̂ are algebraically independent over
K. Then the projective plane

P((L̂, +): x, y, z)

is the largest projective plane in G(L̂/K̂) containing the tuple
(
aclK (x),aclK (y),aclK (z),

aclK (x+y),aclK (x+z)
)
, i.e. if a projective plane P ⊂ G(L̂/K̂) contains points

(
aclK (x),

aclK (y), aclK (z), aclK (x + y), aclK (x + z)
)
, then P ⊆ P((L̂, +): x, y, z).

The next theorem generalizes above remark to the geometry G(L/K) in characteristic
zero. The case of positive characteristic requires detailed knowledge of the structure of
OK̂ .

Theorem 2.1. (char(L) = 0) Suppose that x, y, z ∈ L̂ are independent over K̂ and the
tuple

(
aclK (x), aclK (y), aclK (z), aclK (x + y), aclK (x + z)

)
is in G(L/K) (x, y and z do

not need to be in L). Then

P((L̂, +): x, y, z) ∩G(L/K) = {aclK (ax + by + cz) : (a, b, c) ∈ (K̂ ∩ L)3 \ {0}},
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is the projective plane in G(L/K), coordinatised by K̂ ∩L. Moreover the above plane is
the largest projective plane in G(L/K) containing the tuple

(
aclK (x), aclK (y), aclK (z),

aclK (x + y), aclK (x + z)
)
.

Proof. Let f ∈ Aut(L̂/L) be arbitrary. By assumption we have

aclK (x) = f [aclK (x)] = aclK (f(x)),

aclK (y) = aclK (f(y)), aclK (x + y) = aclK (f(x) + f(y)),

aclK (z) = aclK (f(z)), aclK (x + z) = aclK (f(x) + f(z)).

Therefore by Lemma 1.1 we obtain f(x) = c′ ·x+ d1,f(y) = c′ · y + d2,f(z) = c′ · z + d3,

for some d1, d2, d3 ∈ K̂ and 0 6= c′ ∈ K̂.

⊆: Let v ∈ P((L̂, +): x, y, z) ∩ G(L/K). We have v = aclK (ax + by + cz) = aclK (l),

where a, b, c ∈ K̂ and l ∈ L. It follows f [v] = v, so

aclK (ax + by + cz) = aclK (f(a)f(x) + f(b)f(y) + f(c)f(z))

= aclK (c′ · (f(a)x + f(b)y + f(c)z) + d′) = aclK (f(a)x + f(b)y + f(c)z),

for c′, d′ = f(a)d1 + f(b)d2 + f(c)d3 ∈ K̂ (because f [K̂] = K̂). By [1, Example 2,

Section 3.3] there is a nonzero λ ∈ K̂ such that (f(a), f(b), f(c)) = λ(a, b, c). If e.g.
a 6= 0, then f( b

a
) = b

a
and f( c

a
) = c

a
. But f has been arbitrary, so b

a
, c

a
∈ L. Finally

v = aclK (ax + by + cz) = aclK (x + b
a
y + c

a
z), where b

a
, c

a
∈ K̂ ∩ L.

⊇: Let a, b, c ∈ K̂ ∩ L and consider v = aclK (ax + by + cz). It remains to prove that
v ∈ G(L/K). We have f [v] = v, because

f [aclK (ax + by + cz)] = aclK (af(x) + bf(y) + cf(z))

= aclK (c′ · (ax + by + cz) + d′) = aclK (ax + by + cz).

Let w(x) be a minimal monic polynomial for ax + by + cz over L. Then v = aclK (ax +
by + cz) = aclK (roots of w) = aclK (coefficients of w) ∈ G(L/K).

The last part of the theorem follows from the first part and from remarks at the
begining of this section. ¤

From the above we have that the geometries G(C/Q) and G(R/Q) are not isomorphic,

because in G(R/Q) there is a maximal projective plane, coordinatised by Q̂∩R and in
G(C/Q) there is no such plane.

The next result generalizes [1, Corollary 3.3.2] and follows from Theorem 2.1.

Corollary 2.2. (char(L) = 0) If P ⊂ G(L/K) is a projective plane, then P is coordi-

natised by a subfield of one of the following fields: Q(
√−d), d ∈ ω and K̂ ∩ L.

3. The first-order theory of G(L/K)

We can regard G(L/K) (and thus G(L/K)) as a model in the countable first-order
language L = {acln : n < ω}. Namely let

acln(a0, . . . , an) ⇐⇒ a0 ∈ aclK (a1, . . . , an).

We obtain a structure (L,L). The following Theorem 3.2 describes a small part of the
first-order theory of (L,L).
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Proposition 3.1. Let F be an arbitrary field. If F = F1 ∪ · · · ∪ Fn, for some subfields
F1, . . . , Fn of F , then F = Fi for some 1 ≤ i ≤ n.

Proof. It follows from a well known result of B. H. Neumann [7]: if there is a covering
of an abelian group by finitely many cosets of subgroups, then one of these subgroup
has finite index. We leave the proof to the reader. ¤

Theorem 3.2. Let K ⊆ L1 ⊆ L2 be arbitrary field extensions. Assume that tr degK L1 =
tr degK L2 < ℵ0 or tr degK L1, tr degK L2 ≥ ℵ0. Then

(L1,L) ≺1 (L2,L),

i.e. for every L-statement ψ ∈ L(L1) with one quantifier and parameters from L1 we
have (L1,L) |= ψ ⇐⇒ (L2,L) |= ψ.

It is easy to check that without the condition on transcendence degree, the theorem
will not be true.

Proof. We can assume that ψ = ∃xϕ(x, c), where c ⊆ L1 and ϕ is a quantifier free
formula. Using the exchange property for aclK we may assume that ϕ(x, c) is of the
form

∨

k<l

((
x ∈

⋂
i<nk

aclK(Ak,i) \
⋃

j<mk

aclK(Bk,j)
)
∧ (

(in)equality about x, c
))

,

where Ak,i, Bk,j ⊆ c ⊆ L1.
Let {p, q} = {1, 2} and assume that Lp |= ∃xϕ(x, c), then there exists a ∈ Lp with

Lp |= ϕ(a, c). Without loss of generality we may assume that a /∈ c, so

a ∈
⋂
i<n

aclK(Ai) \
⋃
j<m

aclK(Bj).

If n = 0, then by assumptions we have a′ ∈ Lq such that Lq |= ϕ(a′, c). Let n 6= 0. Note
that by Proposition 3.1, Lp |= ∃xϕ(x, c) is equivalent to:

(∀j < m
)
aclK(Bj) ∩

⋂
i<n

aclK(Ai)  
⋂
i<n

aclK(Ai),

i.e. for j < m, K̂(Bj) ∩
⋂

i<n K̂(Ai) ∩ Lp  
⋂

i<n K̂(Ai) ∩ Lp. The next lemma will be
useful in the proof.

Lemma 3.3. Suppose that A and B are finite subsets of L1. Then there exists a finite
subset C ⊆ L1 satisfying

K̂(A) ∩ K̂(B) = K̂(C).

Proof. Let C ′ be a transcendence basis of a K̂(A)∩K̂(B) over K. Write C ′ = {c1, . . . , ck} ⊂
L̂1. Then K̂(A) ∩ K̂(B) = K̂(C ′). Take a minimal monic polynomial wi ∈ L1[X] for ci

over L1 and let C =
⋃

1≤i≤k(coefficients of wi) ⊆ L1. We shall show that K̂(C ′) = K̂(C).

By definition C ′ ⊂ K̂(C), hence ⊆. By symmetric polynomials we obtain

C ⊆ K

( ⋃

1≤i≤k

roots of wi

)
⊆ K̂(C ′).
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We explain the last inclusion: if wi(a) = 0, then there exist f ∈ Aut(L̂1/L1), f(ci) = a,

and thus ci ∈ K̂(C ′). Finally a = f(ci) ∈ f [K̂(C ′)] = f [K̂(A) ∩ K̂(B)]
A,B⊂L1

= K̂(A) ∩
K̂(B) = K̂(C ′). ¤

By Lemma 3.3, to finish the proof it remains to show the following lemma.

Lemma 3.4. For A,B ⊆ L1

K̂(A) ∩ L1  K̂(B) ∩ L1 ⇐⇒ K̂(A) ∩ L2  K̂(B) ∩ L2.

Proof. Implication ⇒ is obvious. ⇐: Suppose, contrary to our claim, that K̂(A)∩L1 =

K̂(B) ∩ L1. Take a ∈ (K̂(B) \ K̂(A)) ∩ L2 and the minimal monic polynomial w(X) =
Xn + an−1X

n−1 + · · ·+ a1X + a0 ∈ K(B)[X] for a over K(B). Then for i < n we have

ai ∈ K(B) ⊆ L1, so by assumption ai ∈ K̂(A) ∩ L1, hence w ∈ (K̂(A) ∩ L1)[X] and

thus a ∈ (K̂(A) ∩ L1)̂ ⊆ K̂(A). But by assumption a /∈ K̂(A) ∩ L2 and a ∈ L2, which
is impossible. ¤

¤

4. The reconstruction L from G(L/K) and corollaries

In this section we generalize some theorems of [2] from the case of algebraically closed
fields to the case of arbitrary field extensions. Throughout this section K ⊂ L will be
an arbitrary field extension, char(L) = p and tr degK(L) ≥ 5.

We begin with important definitions (see [2] Definitions 2.1, 2.3 and 2.6). Let (L\K)(2)

denote the set of pairs (x, y) ∈ L2 such that x and y are algebraically independent over
K. We define the following subsets of G(L/K)4:

Q = {(aclK (x), aclK (y), aclK (x + y), aclK (x/y)) : (x, y) ∈ (L \K)(2)}
= {(aclK (x), aclK (xz), aclK (xz + x), aclK (z)) : (x, z) ∈ (L \K)(2)},
Q′ = {(aclK (x), aclK (y), aclK (x + y), aclK (x · y)) : (x, y) ∈ (L \K)(2)},
J = Im(j),

where j : (L \K)(2) → G(L/K)5 is the function

j(x, a) = (aclK (x), aclK (x + a), aclK (xa), aclK (x + xa), aclK (a)).

Let ψ(A1, A2, B1, B2, C1, C2, D, E, F, G, H, I, P,Q, R, S, T, U,X, Y, Z) be an L-formula
(see Section 3), standing for the assumptions from [2, Lemma 3.1 (1), (2)] and [2, Corol-
lary 3.4] (where A = aclK (A1, A2), etc.).

Theorem 4.1. The sets Q, Q′ and J are definable without parameters in G(L/K).

Proof. When K and L are algebraically closed then the proof of this theorem can be
found in [2, Section 3]. We sketch it in this case.

Let ψQ(P, D, Y, I) =
(∃A1, . . . , Z

)
ψ(A1, . . . , Z) where the quantifier is free from P ,

D, Y , I. Then the formula ψQ defines Q. Now we find a formula for Q′. Lemma 2.2 in
[2] gives us configuration for multiplication: if (x, y) ∈ (L \K)(2) and if the points A′,
B′,C ′,D′,E ′ ∈ G(L/K) are such that the configuration of points and lines in G(L/K)
holds as in Figure 4.1, then

E ′ = aclK (x · y),



COMBINATORIAL GEOMETRIES OF THE FIELD EXTENSIONS 7

Figure 4.1. Configuration for the multiplication

and there exist a ∈ A′ such that A′ = aclK (a), B′ = aclK (ax), C ′ = aclK (ay) and
D′ = aclK (axy). Thus if we know aclK (x), aclK (y) and aclK (x/y), then in G(L/K) we
can construct aclK (xy). Let ψQ′(A,B, C, D) be(∃A′, B′, C ′, D′, V

)
ψQ(A,B, C, V ) ∧ (the configuration in Figure 4.1 holds),

where in Figure 4.1 we put A instead of aclK (x), D instead of E ′, B instead of aclK (y)
and V instead of aclK (x/y). Therefore ψQ′ defines Q′. To find a formula for J we recall
[2, Proposition 2.4]: let X,P ,Q,R,A be in G(L/K). Then

(X, P, Q,R, A) ∈ J ⇐⇒ (X,Q, R, A) ∈ Q ∧ (
(X, A, P, Q), (X, A, P, R) ∈ Q′).

Hence, the formula

ψJ (X,P,Q, R, A) = ψQ(X, Q, R, A) ∧ ψQ′(X, A, P, Q) ∧ ψQ′(X, A, P, R)

defines J in algebraically closed case.
Now we turn to the general case, i.e. when K and L are arbitrary fields. It is suf-

ficient to prove the next Claim, because we have for instance (X,Q, R, A) ∈ Q ⇔(∃P)
(X, P, Q, R,A) ∈ J .

Claim. The formula ψJ defines J in G(L/K).

We will prove that the following conditions are equivalent:

(1) (X,P, Q, R, A) ∈ J G(L/K),

(2) (X,P, Q, R, A) ∈ J G(L̂/K̂) ∧ (X,P,Q, R, A) ⊂ G(L/K),

(3) G(L̂/K̂) |= ψJ (X,P, Q, R, A) ∧ (X,P, Q, R, A) ⊂ G(L/K),
(4) G(L/K) |= ψJ (X,P, Q, R, A).

Implications (i)⇒(ii) and (ii)⇔(iii) are obvious. For (ii)⇒(i) take an arbitrary f ∈
Aut(L̂/L) and write (X, P, Q,R, A) = j(x, a) for some (x, a) ∈ (L̂\K̂)(2). Since j(x, a) ⊂
G(L/K), we have j(x, a) = f(j(x, a)) = j(f(x), f(a)), so by [2, Lemma 2.5] there exist
n ∈ Z such that f(x) = xpn

, f(a) = apn
. We show that f(x) = x and f(a) = a. On the

contrary, suppose that p 6= 0 and n 6= 0. Then f(f(x)) = f(xpn
) = f(x)pn

= xp2n
and

in general fm(x) = xpm·n
. However x ∈ L̂, so the set {fm(x) : m < ω} is finite. Hence,

there is k < ω such that xk = 1, which implies x ∈ K̂, a contradiction.
(iv)⇒(iii): It is sufficient to show that for (A,B,C,D) ⊂ G(L/K)

G(L/K) |= ψQ(A,B,C,D) =⇒ G(L̂/K̂) |= ψQ(A,B, C, D),

G(L/K) |= ψQ′(A,B,C,D) =⇒ G(L̂/K̂) |= ψQ′(A,B,C,D).
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It is immediately seen that we must only prove the following: for X, Y , A1, A2 ∈
G(L/K), if G(L/K) |= (∀A′ ∈ aclK (A1, A2)

)
X 6∈ aclK (A′Y ) then G(L̂/K̂) |= (∀A′ ∈

aclK (A1, A2)
)

X 6∈ aclK (A′Y ). Since G(L̂/K̂) = G(L̂/K), and the above formula has
one quantifier, our statement follows from Theorem 3.2.

(i)∧(iii)⇒(iv): Take an element (x′, a′) ∈ (L \ K)(2) such that (X, P,Q, R, A) =
j(x′, a′). We must show the following (remember that aclK (a′ + 1) = aclK (a′), etc.)

• G(L/K) |= ψQ(aclK (x′), aclK (x′a′), aclK (x′ + x′a′), aclK (x′a′/x′)),
• G(L/K) |= ψQ′(aclK (x′), aclK (a′), aclK (x′ + a′), aclK (x′a′)),
• G(L/K) |= ψQ′(aclK (x′), aclK (a′ + 1), aclK (x′ + (a′ + 1)), aclK (x′(a′ + 1))).

It is an easy consequence of [2, Corollary 3.4]. We give the proof only for the first case,
the other cases are left to the reader. Let

(P, D, Y, I) = (aclK (x′), aclK (x′a′), aclK (x′ + x′a′), aclK (x′a′/x′) = aclK (a′)).

We can find an algebraically independent (over K̂) set {a, b, c, d, x} ∈ L such that

(P, D, Y, I) = (aclK (b), aclK (ax), aclK (ax + b), aclK (ax/b)),

and define points as in thesis of from [2, Corollary 3.4] i.e. A = aclK (a, b), . . . , R =
aclK (cb + d). Finally points A, . . . , Z ∈ G(L/K) satisfy the assumption of [2, Corollary
3.4], and thus they fulfil the formula ψ, so P,D, Y and I fulfil ψQ in G(L/K). ¤

Now we prove the main classification theorem. We recall that F̂ r =
⋃

n∈ω F p−n
is

purely inseparable closure of F .

Theorem 4.2. Suppose that K ⊂ L and K ′ ⊂ L′ are field extensions and tr degK(L),
tr degK′(L′) ≥ 5.

(i) The field L̂r is uniformly interptable in G(L/K), using a formula with one (ar-

bitary) parameter from L \ K̂.

(ii) Every isomorphism F : G(L/K)
∼=−→ G(L′/K ′) is induced by some isomorphism

F̃ : L̂r
∼=−→ L̂′

r
such that F̃

[
L̂r ∩ K̂

]
= L̂′

r ∩ K̂ ′, and for each x ∈ L̂r \ K̂,

F (aclK (x)) = aclK (F̃ (x)). In particular G(L/K) ∼= G(L′/K ′) if and only if field

extensions L̂r ∩ K̂ ⊂ L̂r and L̂′
r ∩ K̂ ′ ⊂ L̂′

r
are isomorphic.

(iii) The natural mapping

H : Aut(L̂r/{L̂r ∩ K̂}) −→ Aut(G(L/K)),

is an epimorphism. If char(L) = 0, then H is an isomorphism of groups and if
char(L) 6= 0 then ker H ∼= Z is generated by the Frobenius automorphism.

Proof. Let ∼= be the following equivalence relation on J ([2, Definition 2.9])

j(x, a) ∼= j(x′, a′) ⇐⇒ (∃n ∈ Z)
a′ = apn

.

Using [2, Lemma 2.8] we obtain that ∼= is a definable (without parameters) equivalence
relation on J . When x,x′ and a are algebraically indepedent (over K), then

j(x, a) ∼= j(x′, a′) ⇔ (∃P ) configuration from Fig. 3 in [2, Lem. 2.8] holds.

Implication ⇐ follows from [2, Lemma 2.8]. For ⇒ assume that a′ = apn
for some 0 ≤

n ∈ Z. We must find a suitable P from G(L/K). We have aclK (ax) = aclK (apn
xpn

) =
aclK (a′xpn

), aclK ((a + 1)x) = aclK ((apn
+ 1)xpn

) = aclK ((a′ + 1)xpn
) and aclK (x) =

aclK (xpn
). Hence P = aclK (xpn

/x′) ∈ G(L/K).
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When x,x′ and a are collinear, then we put ([2, Definition 2.9])

j(x, a) ∼= j(x′, a′) ⇔ there exist j(z, a′′) with z 6∈ aclK (a, x) and the configuration

in Fig. 3 holds between j(x, a), j(z, a′′) and j(z, a′′), j(x′, a′).

Take an arbitrary a ∈ L \ K̂ and let

J1 = [j(x, a)]∼= = {j(x′, a) : x′ ∈ L̂r \ aclK (a)}
be one of the classes of ∼= (here we use the equality j(x′, apn

) = j(x′p
−n

, a) and properties

of L̂r). We repeat the Proof [2, Theorem C]. Let

µ : J1 → L̂r \ aclK (a), µ(j(x, a)) = x

be a bijective map. It follows from [2, Lemma 2.11] that there are generic definable over
a operations ⊕ and ¯ on J1 × J1 which satisfy: if j(x, a), j(y, a) ∈ (L \ K)(2) and
x, x′, a are independent, then

j(x, a)⊕ j(x′, a) = j(x + x′, a)

j(x, a)¯ j(x′, a) = j(x · x′, a).

(the same definition works for non-algebraically closed case). Note that the map µ

respects these operations (when defined). We now interpret the field L̂r in G(L/K).
Define a relation ≡ on J 2

1 by

(j(x1, a), j(x2, a)) ≡ (j(y1, a), j(y2, a)) ⇐⇒ x1

x2

=
y1

y2

.

It is a definable over a equivalence relation. We moreover define the product and the
sum of two classes [j(x1, a), j(x2, a)]≡ and [j(x1, a), j(x2, a)]≡ as in [2], i.e.

[j(x′, a), j(x, a)]≡ · [j(y′, a), j(y, a)]≡ = [j(x′′, a), j(y′′, a)]≡,

for suitable x′′ and y′′ such that x′
x

y′
y

= x′′
y′′ . We need a new class 0≡ to define the sum

of classes in a standard fashion. Finally we extend µ to the isomorphism of fields:

µ : (J 2
1 / ≡) ∪ {0≡}

∼=−→ L̂r, µ(j(x, a), j(x′, a)) =
x

x′
, µ(0≡) = 0,

which establishes (i).

(ii): Let F : G(L/K)
∼=−→ G(L′/K ′). Then

F : J G(L/K)
1 = [j(x, a)]∼=

∼=−→ J G(L′/K′)
1 = [j(y, b)]∼=,

F :
(
J G(L/K)

1

)2

/ ≡ ∪ {0≡}
∼=−→

(
J G(L′/K′)

1

)2

/ ≡ ∪ {0≡},

for some y, b ∈ L′. Hence F induces an isomorphism of fields F̃ : L̂r
∼=−→ L̂′

r
.

First, we show that F̃ [L̂r ∩ K̂] = L̂′
r ∩ K̂ ′. Let c ∈ L̂r ∩ K̂ and x ∈ L̂r \ aclK (a). Then

we may write

F (j(cx, a)) = j(y1, b),(1)

F (j(x, a)) = j(y2, b),(2)

F̃ (c) = µ(F ([j(cx, a), j(x, a)]≡)) = µ([j(y1, b), j(y2, b)]≡) = y1

y2
,(3)
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for some y1, y2 ∈ L̂′
r
. However c ∈ K̂ yields that

j(cx, a) = (aclK (cx), aclK (cx + a), aclK (cxa), aclK (cxa + cx), aclK (a))

= (aclK (x), aclK (cx + a), aclK (xa), aclK (xa + x), aclK (a)).

Thus from (1) and (2) above, we have

F (aclK (x)) = aclK (y1) = aclK (y2),

F (aclK (xa)) = aclK (y1b) = aclK (y2b),

F (aclK (xa + x)) = aclK (y1b + y1) = aclK (y2b + y2).

Hence from Lemma 1.1 (ii) we obtain n,m ∈ Z and d1, d2 ∈ K̂ satisfying yn
1 = d1y

m
2

and (y1b)
n = d2(y2b)

m. It gives that n = m, and y1 = c′y2 for some c′ ∈ K̂. Finally

F̃ (c) = y1

y2
= c′ ∈ L̂′

r ∩ K̂ ′.
Now we show the following

(∀x ∈ L̂r \ K̂
)

F (aclK (x)) = aclK (F̃ (x)).

It follows from the preceding results that for x1, x2 ∈ L̂r \ aclK (a)

F ([j(x1, a), j(x2, a)]≡) = [j(yF̃
(x1

x2

)
, b), j(y, b)]≡,

for some b ∈ L̂′
r

and y ∈ L̂′
r \ aclK (b). Let t =

y

F̃ (x2)
. We obtain

(∀x ∈ L̂r \ aclK (a)
)

F (j(x, a)) = j(F̃ (x)t, b).

Let x1, x2 ∈ L̂r be algebraically independent over aclK (a). Then

j(F̃ (x1x2)t, b) = F (j(x1x2, a)) = F (j(x1, a)¯ j(x2, a)) = F (j(x1, a))¯ F (j(x2, a))

= j(F̃ (x1)t, b)¯ j(F̃ (x2)t, b) = j(F̃ (x1)F̃ (x1)t
2, b).

Hence t = 1 and from the above
(∀x ∈ L̂r \ aclK (a)

)
F (aclK (x)) = aclK (F̃ (x)).

What is left is to show our claim for points from aclK (a) \ K̂. Let a′ ∈ aclK (a) \ K̂.

Take independent points t, s ∈ L̂r \ aclK (a), then

aclK (a′) = aclK (t, ta′) ∩ aclK (s, sa′),

so as ta′, sa′ ∈ L̂r \ aclK (a) from the preceding result we have

F (aclK (a′)) = aclK (F̃ (t)), F̃ (ta′)) ∩ aclK (F̃ (s), F̃ (sa′)) = aclK (F̃ (a′)).

The observation that G(L/K) = G(L̂r/K) finishes the proof of (ii).
(iii) It follows immediately from (ii) that H is an epimorphism. Let f ∈ ker H. Then

j(x, a) = f(j(x, a)) = j(f(x), f(a)), so from [2, Lemma 2.5] there is n ∈ Z such that
f(x) = xpn

and f(a) = apn
. But x and a were arbitrary (independent), so f = Frobn. ¤
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