COMBINATORIAL GEOMETRIES OF THE FIELD EXTENSIONS
JAKUB GISMATULLIN

ABSTRACT. We classify projective planes in algebraic combinatorial geometries in
arbitrary fields of characteristic zero. We investigate the first-order theories of such
geometries and pregeometries. Then we classify the algebraic combinatorial geometries
of arbitrary field extensions of the transcendence degree > 5 and describe their groups
of automorphisms. Our results and proofs extend similar results and proofs by Evans
and Hrushovski in the case of algebraically closed fields.

INTRODUCTION

Let K C L be an arbitrary field extension. We investigate the algebraic combinatorial
geometry G(L/K) and pregeometry G(L/K) in L obtained from algebraic dependence
relation over K. Such a geometry is sometimes called a full algebraic matroid.

In [1] the authors classify projective planes in G(L/K) for algebraically closed K
and L. Using their results, we give such a classification for arbitrary fields K and L
of characteristic zero. We prove a theorem about formulas with one quantifier of the
first-order theory of G(L/K). Assume that the transcendence degree of L over K is at
least 5. When considering G(L/K) we may also assume that L is a perfect field and K
is relatively algebraically closed in L. One of the main results of [2] is the reconstruction
of the algebraically closed field L from G(L/K). We generalize this reconstruction to
arbitrary field extension K C L (of transcendence degree > 5), and thus we obtain
full classification of combinatorial geometries of fields: G(L;/K;) and G(Ly/K3) are
isomorphic if and only if field extensions

Kl C L1 and KQ C L2

are isomorphic (here we assume that L; and Ly are perfect and K, K, are relatively
algebraically closed). We also give a description of Aut(G(L/K)).

By F and F" we denote algebraic and purely inseparable closure of F'. Throughout
this paper we assume that K C L is an arbitrary field extension and the transcendence
degree of L over K is at least 3. We take basic definitions of algebraic combinatorial

—

geometry and pregeometry from [1, 2]. For X C L, let aclg(X) be K(X). We denote
by G(L/K) the pregeometry (L,aclk). The geometry G(L/K) is obtained from L\ K
by factoring out the equivalence relation:

—

r~y <= K(z)=K(y).
We can also transfer the closure operation aclg from G(L/K) to G(L/K):
aclg (Y/~) = aclg(Y)/~.
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Therefore we can regard the points of G(L/K) as sets aclg(z), where z € L\ K,
and aclg as the usual algebraic closure. When considering G(L/K) we assume that
L is a perfect field and K is relatively algebraically closed in L (because G(L/K) =
G(L"/K) = G(L"/L"NK)). Subsets of G(L/K) of the form aclx(X), X C G(L/K), are
called closed. The rank of a subset of G(L/K) or G(L/K) is its transcendence degree.
We also have notions of independent set (for each x € X,z ¢ aclg(X \ {z})) and a
basis of a closed subset as a maximal independent set (transcendence basis). Note that
the closure operation acly satisfies the exchange condition:

xr € aclg(AU{y}) \aclk(A) = y € aclxg(AU{z}).

Closed subset of rank 1 (respectively 2, 3) is a point (respectively line and plane). If
X is a closed subset of G(L/K), and a tuple T C L satisfies X = aclg(T), then we say
that T is generic in X.

Let F' be a skew field (division ring). We will denote by P(F') the projective plane
over F. It is simply the set F®\ {0} factored out by the relation:

(z1, T2, 73) = (Y1, Y2, y3) = (El 0#X€ F) (21,2, 23) = A1, Y2, Y3)-

The paper is organized as follows. The first section is devoted to give some preliminary
definitions and results from [1]. In the second section we classify the projective planes
arising in G(L/K). Section 3 contains a theorem about first-order theory of G(L/K') and
formulas with one quantifier. In Section 4 we transfer theorems from [2] to geometries
of arbitrary field extensions and prove a general classification theorem for them.

The reader is referred to [6] for the model-theoretic background and notation, and to
8] for general background on pregeometries and matroids.

1. PRELIMINARIES

For definitions and proofs in this section we refer the reader to [1]. Throughout this
section we assume that K and L are algebraically closed. Let X be a subset of G(L/K)
and let aclg™ be the relative closure operation: aclg™ (Y) = aclg(Y)N X for Y C X.
We say that X is a projective plane of G(L/K) if the geometry (X, aclg™) is itself a
projective plane, meaning that:

1) the geometry (X, aclg™) has rank 3;

2) there are three noncollinear points in X;

3) any line has at least three different points;

4) any two lines intersect.

If a projective plane X is isomorphic to P(F'), for some skew field F', then we say
that X is coordinatised by F. It is well known ([3, Chapter 7]) that if the Desargues
theorem is true in X, then X is coordinatised by a unique skew field. The converse is
also true. If X; and X, are Desarguesian projective planes coordinatised by F; and Fj
respectively, and X; C Xo, then F is a subskewfield of Fy. It is proved in [5] that any
projective plane in G(L/K) is Desarguesian. The aim of the next section is to find all
skew fields coordinatising some projective planes in G(L/K) for arbitrary K C L of
characteristic zero. The paper [1] describes all such skew fields in the case when L and
K are algebraically closed.

Let (G, *) be a one-dimensional irreducible K-definable algebraic group in L. Then
G is isomorphic over K ([1, Section 3.1]), as an algebraic group, to one of the follow-
ing commutative groups: (L,+), (L*,-) or an elliptic curve. Since G is commutative,
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the group Endg(G) = Homg (G, G) of definable over K morphisms of G (as an alge-
braic group) may be given a ring structure (Endg(G),+,0) and is embeddable into
a skew field of quotients Endg(G)o. If char(L) > 0, then Endg(L,+) is the ring of
p-polynomials over K and we donote by O the skew field Endg (L, +)o. Let 7,7,Z € G
be an independent generics over K. We may consider G as an Endg(G) module and
define

P((G,*): 7,7, %) = {aclg (a(T) * b(7) * ¢(Z)): (a,b,c) € Endg(G)*\ {0}}.
This is a projective plane in G(L/K), coordinatised by Endg(G)o i.e. elements of
P((G,*): 7,7y,Zz) are dependent with respect to Endg(G) exactly if they are aclg-
dependent.

Lemma 1.1. Let xy, xo, 3, o}, o}, x4 € L.
(i) If each triple {x1,x2, x5} and {x], x5, 24} is algebraically independent over K, and
aclg (z1 4+ xg) = aclg (2] +25), aclg(x;) = aclg(z}), fori=1,2,3,
aclg (z1 + x3) = aclg (2] + 2%),
then there exist 0 # ¢, € Endg (L, +) and dy,ds,ds € K such that
d(xh) = c(zy) + dy, d(2h) = c(xg) + da, (x5) = c(x3) + ds.
(i) If each pair {x1,x2} and {z, x4} is algebraically independent over K, and
aclg(z1) = aclg(x]), aclg(ze) = aclg(zy), aclg(zy-x)) = aclg(zq - 17),
then there exist 0 # n,m € Z and 0 # a,b € K such that x} = axy’, yi = byj".

Proof. First statement follows from [1, Theorem 2.2.2] and the second from [2, Theorem
1.1]. O

2. PROJECTIVE PLANES IN G(L/K)

Throughout this section we assume that K C L is an arbitrary field extension and
trdegy (L) > 3. The geometry G(L/K) naturally embeds into G(L/K). Therefore we

can use theorems about G(L/K) to investigate G(L/K).
From the proof of [1, Theorem 3.3.1] we obtaln some maximal projective planes in

(L/ K ) in the following way. Suppose z,y,z € L are algebraically independent over
K. Then the projective plane

P((L,+): z,y, 2)
is the largest projective plane in G(L/K) containing the tuple (aclk (z),aclk (y),aclk (z),
aclg (z+y),aclg (z+2)), ie. if a projective plane P C G(L/K) contains points (aclk (z),
aclk (y), aclg (2), aclg (z + y), aclg (z + 2)), then P C P((L,+): ,y, 2).

The next theorem generalizes above remark to the geometry G(L/K) in characteristic
zero. The case of positive characteristic requires detailed knowledge of the structure of

0.

Theorem 2.1. (char(L) = 0) Suppose that z,y, z € L are independent over K and the
tuple (aclk(z), aclg (y), aclk (2), aclk (z +y), aclk (x + 2)) is in G(L/K) (z, y and z do
not need to be in L). Then

P((L,+): z,y,2) N G(L/K) = {aclk (ax + by + cz): (a,b,c) € (K NL)*\ {0}},
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is the projective plane in G(L/K), coordinatised by K N L. Moreover the above plane s
the largest projective plane in G(L/K) containing the tuple (aclk(z), aclk (y), aclg(z),
aclg (z +y), aclg (z + 2)).

Proof. Let f € Aut(L

aclg (z) = flaclg ()] = aclk (f(2)),

aclg (y) = aclg (f(y)), aclg(z+y) = aclk(f(z) + f(y)),
aclg(z) = aclg(f(2)), aclg(x+ z) = aclg(f(z) + f(2)).

Therefore by Lemma 1.1 we obtain f(x) = -x+dy, f(y) = -y+ds, f(2) = -2+ ds,
for some dy,dy,d3 € K and 0 # ¢ € K.

/ L) be arbitrary. By assumption we have

C: Let v € IP’((L +): x,y,2) NG(L/K). We have v = aclg(ax + by + cz) = aclg(l),

where a,b,c € K and [ € L. It follows flv] = v, so
aclg (ax + by + cz) = aclg (f(a)f(z) + f(0)f(y) + f(c) f(2))
—acli (¢ (fla)z + F(b)y + F(0)2) + &) = acl(f(a)e + F(B)y + F(c)2),

for ¢, d = f(a)dy + f(b)dy + f(c)ds € K (because f[K] = K). By [1, Example 2,
Section 3.3] there is a nonzero A € K such that (f(a), f(b), f(c)) = A(a,b,c). If e.g.
a # 0, then f(2) =2 and f(£) = <. But f has been arbitrary, so 2 ¢ € L. Finally
v = aclg (ax + by + cz) = aclg (z + Ly + £2), where 2, < € KnNL.

D: Let a,b,c € K N L and consider v = aclg (ax + by + cz). It remains to prove that
v € G(L/K). We have f[v] = v, because

flaclg (ax + by + c2)] = aclk(af(z) + bf (y) + cf(2))
= aclg (¢’ - (ax + by + cz) + d') = aclg (ax + by + cz).

Let w(z) be a minimal monic polynomial for ax + by + ¢z over L. Then v = aclk (ax +
by + cz) = aclg (roots of w) = aclk (coefficients of w) € G(L/K).
The last part of the theorem follows from the first part and from remarks at the
begining of this section. O
From the above we have that the geometries G(C/Q) and G(R/Q) are not isomorphic,

because in G(R/Q) there is a maximal projective plane, coordinatised by Q MR and in
G(C/Q) there is no such plane.
The next result generalizes [1, Corollary 3.3.2] and follows from Theorem 2.1.

Corollary 2.2. (char(L) =0) If P C G(L/K) is a projective plane, then P is coordi-
natised by a subfield of one of the following fields: Q(v/—d), d € w and K N L.

3. THE FIRST-ORDER THEORY OF G(L/K)

We can regard G(L/K) (and thus G(L/K)) as a model in the countable first-order
language £ = {acl,,: n < w}. Namely let

acl,(ag, ...,a,) <= ag € aclg(ay,...,a,).

We obtain a structure (L, £). The following Theorem 3.2 describes a small part of the
first-order theory of (L, L).
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Proposition 3.1. Let F' be an arbitrary field. If F = Fy U ---U F,, for some subfields
Fi,....F, of F, then ' = F; for some 1 <1 <n.

Proof. It follows from a well known result of B. H. Neumann [7]: if there is a covering
of an abelian group by finitely many cosets of subgroups, then one of these subgroup
has finite index. We leave the proof to the reader. O

Theorem 3.2. Let K C Ly C Ly be arbitrary field extensions. Assume that tr degy Ly =
trdegy Lo < Ng or trdegy Lq,trdegy Ly > Ny. Then

(Ll, £> =<1 (LQ, /:),

i.e. for every L-statement ¢ € L(Ly) with one quantifier and parameters from Li we

have (L1, L) = ¢ <= (Ls, L) = .

It is easy to check that without the condition on transcendence degree, the theorem
will not be true.

Proof. We can assume that ¢» = Jxp(z,¢), where ¢ C Ly and ¢ is a quantifier free
formula. Using the exchange property for acly we may assume that ¢(x,¢) is of the
form

\/ <(:r € ﬂ aclg (Ari) \ U aclK(BkJ)) A ((in)equality about z, E)),

k<l <ng J<my,

where Ak,ia Bk,j g c g Ll'
Let {p,q} = {1,2} and assume that L, = Jzp(z,¢), then there exists a € L, with
L, = p(a,¢). Without loss of generality we may assume that a ¢ ¢, so

a € (Nack(A)\ | aclk(B;)
i<n j<m
If n = 0, then by assumptions we have o’ € L, such that L, = ¢(a’,¢). Let n # 0. Note
that by Proposition 3.1, L, = 3z¢(z,€) is equivalent to:

(Vj < m)aclg(B;) N ﬂ aclg(4;) & ﬂ aclg (A

<n <n

—

i.e. for j < m, K( ) N Nien ( i) N Ly & Niep K(A;) N Ly, The next lemma will be
useful in the proof

Lemma 3.3. Suppose that A and B are finite subsets of Ly. Then there exists a finite
subset C' C Ly satisfying

KA NEK(B) = K(O).
Proof. Let C' be a transcendence basis of a f(I)ﬂK/(E) over K. Write C" = {cy,..., e} C
Li. Then K(A)N K(B) = K(C"). Take a minimal monic polynomial w; € L[ X] for ¢;
over Ly and let C' = |, ;. (coefficients of w;) C L;. We shall show that K(C") = K(C).
By definition C" C K(C'), hence C. By symmetric polynomials we obtain
C’QK( U rootsofw,-) g@.

1<i<k
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We explain the last inclusion: if w;(a) = 0, then there exist f € Aut(a/Ll), fle) =a,

and thus ¢; € I?(C\’) Finally a = f(¢) € f[[?(C’\’)] = f[f(I) N ?(E)] Aeh ?(I) N
K(B) = K(C"). =

By Lemma 3.3, to finish the proof it remains to show the following lemma.

Lemma 3.4. For A,B C I

Proof. Tmplication = is obvious. <: Suppose, contrary to our claim, that K(A)NL; =

— —_—

K(B)NLy. Take a € (K(B) \ K(A)) N Ly and the minimal monic polynomial w(X) =
X"+ a, X" o+ a1 X +ag € K(B)[X] for a over K(B). Then for i < n we have

a; € K(B) C Ly, so by assumption a; € K(A) N Ly, hence w € (?(X) N L;)[X] and

thus a € (f(?) NL ) C ?(E) But by assumption a ¢ K(A) N Ly and a € Ly, which
is impossible. O
U

4. THE RECONSTRUCTION L FROM G(L/K) AND COROLLARIES

In this section we generalize some theorems of [2] from the case of algebraically closed
fields to the case of arbitrary field extensions. Throughout this section K C L will be
an arbitrary field extension, char(L) = p and trdegy (L) > 5.

We begin with important definitions (see [2] Definitions 2.1, 2.3 and 2.6). Let (L\ K)®
denote the set of pairs (z,y) € L? such that z and y are algebraically independent over
K. We define the following subsets of G(L/K)*:

2 = {(aclg (x), aclg (y), aclg (z +y), aclg (x/y)): (z,y) € (L\ K)@}
= {(aclg(z), aclg (z2), aclg (v2 + 2), aclg (2)): (z,2) € (L \ K)?},
2' = {(aclg(x), acl (y), aclk (x + ), aclg (z - v)): (z,y) € (L\ K)@},
S =1m(j),
where j: (L\ K)® — G(L/K)?® is the function
j(x,a) = (aclg (z), aclg (z + a), aclg (za), aclg (x + xa), aclk (a)).

Let ¢(A, Ay, By, B2, C1,Co, D, E,F,G,H,I, P,Q,R,S,T,U, X,Y, Z) be an L-formula
(see Section 3), standing for the assumptions from [2, Lemma 3.1 (1), (2)] and [2, Corol-
lary 3.4] (where A = aclg(A;, As), etc.).

Theorem 4.1. The sets 2, 2' and ¢ are definable without parameters in G(L/K).

Proof. When K and L are algebraically closed then the proof of this theorem can be
found in [2, Section 3]. We sketch it in this case.

Let ¥o(P,D,Y,I) = (HAl, o Z) (A, ..., Z) where the quantifier is free from P,
D,Y,I. Then the formula 14 defines 2. Now we find a formula for 2’. Lemma 2.2 in
2] gives us configuration for multiplication: if (x,y) € (L \ K)® and if the points A4’
B',C'", D' E" € G(L/K) are such that the configuration of points and lines in G(L/K)
holds as in Figure 4.1, then

E' = aclg(z - y),
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o A’

acl(x) E' acl(y) acl(x/y)
F1cURE 4.1. Configuration for the multiplication

and there exist a € A’ such that A" = aclg(a), B’ = aclg(ax), C' = aclk(ay) and
D" = aclk(azy). Thus if we know aclk (), aclk(y) and aclg(x/y), then in G(L/K) we
can construct aclg (zy). Let 1 o/(A, B,C, D) be

(3A",B',C", D', V) ¥o(A, B,C,V) A (the configuration in Figure 4.1 holds),

where in Figure 4.1 we put A instead of acli (x), D instead of E’, B instead of aclk (y)
and V instead of aclk (z/y). Therefore ¢4 defines 2. To find a formula for # we recall
2, Proposition 2.4]: let X, P,Q, R, A be in G(L/K). Then
(X.P,Q.R A e g +—= (X,QRAc2N(XAPQ),(XAPR)ecZ2).
Hence, the formula
¢f(X7P>Q7R7A) = %ZL@(X, QaRaA) N wg’(XaAa P, Q) N 1/&@’(X,A, PaR)

defines ¢ in algebraically closed case.

Now we turn to the general case, i.e. when K and L are arbitrary fields. It is suf-
ficient to prove the next Claim, because we have for instance (X,Q,R,A) € 2 <
(3P)(X,P,Q,R,A) € 7.

Claim. The formula v , defines ¢ in G(L/K).

We will prove that the following conditions are equivalent:
(1) (X, P,Q, R, A) € #Ew/"),
(2) (X P.Q,R.A)€ g/ A (X P,Q,R,A) C G(L/K),
(4 ) (L/K) =0y (X.P.Q.R A)

Implications (i)=-(ii) and (ii)«>(iii) are obvious. For (ii)=(i) take an arbitrary f €
Aut(L/L) and write (X, P, Q, R, A) = j(z, a) for some (z,a) € (L\K)®. Since j(z,a) C
G(L/K), we have j(z,a) = f(j(x,a)) = j(f(z), f(a)), so by [2, Lemma 2.5] there exist
n € Z such that f(x) = 2", f(a) = a®". We show that f(z) = x and f(a) = a. On the
contrary, suppose that p # 0 and n # 0. Then f(f(z)) = f(z*") = f(z)”" = 2" and
in general f™(z) = 27™". However z € L, so the set {f™(x) : m < w} is finite. Hence,

there is k < w such that ¥ = 1, which implies € K, a contradiction.
(iv)=-(iii): It is sufficient to show that for (A, B,C,D) C G(L/K)

(L/K)):wQ(A78707D) = G(L/K)):wQ(AaB7caD)v
G(L/K) Evo(A B,C,D) = G(L/K)E=¢o(A, B,C,D).
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It is immediately seen that we must only prove the following: for X, Y, Ay, Ay €
G(L/K), if G(L/K) = (VA € aclg(A;, A3)) X ¢ aclg(A'Y) then (G(Z/IA() = (VA €
aclg (A1, A2)) X & aclg(A'Y). Since G(L/K) = G(L/K), and the above formula has
one quantifier, our statement follows from Theorem 3.2.
(i)A(iii)=(iv): Take an element (2/,a’) € (L \ K)® such that (X,P,Q, R, A) =
j(@',a’). We must show the following (remember that aclg(a’ 4+ 1) = aclg(a’), etc.)
e G(L/K) E vag(aclg(z'), aclg(2'd’), aclg (2’ + 2'd’), aclk (2'a’ /2)),
e G(L/K) Eva(aclg(x),aclg(a’), aclg (2’ + '), aclk (2'a’)),
o G(L/K) Eva(aclg(a'),aclk(a + 1),aclg(x' + (¢’ + 1)), aclg (2'(a’ + 1))).
It is an easy consequence of [2, Corollary 3.4]. We give the proof only for the first case,
the other cases are left to the reader. Let
(P,D,Y,I) = (aclg(2'),aclg (z'a"), aclg (2’ + 2'd"), aclk (x'a’ /2") = aclk(a')).
We can find an algebraically independent (over K ) set {a,b,c,d,x} € L such that
(P,D,Y,I) = (aclk(b), aclk (ax), aclg (ax + b), aclg (ax /b)),

and define points as in thesis of from [2, Corollary 3.4] i.e. A = aclg(a,b),...,R =
aclg (cb + d). Finally points A, ..., Z € G(L/K) satisfy the assumption of [2, Corollary
3.4], and thus they fulfil the formula v, so P, D,Y and I fulfil ¥ in G(L/K). O

-_n .

Now we prove the main classification theorem. We recall that Fro= Uneo F?
purely inseparable closure of F.

Theorem 4.2. Suppose that K C L and K' C L' are field extensions and tr degy (L),
trdegy/ (L") > 5.

(i) The field L" is uniformly interptable in G(L/K), using a formula with one (ar-
bitary) parameter from L\ K.

(ii) Every isomorphism F: G(L/K) = G(L'/K') is induced by some isomorphism
F:I" S L' such that F[/L\T N [?] = I'n K', and for each v € Lr \ I?,
F(aclg(x )) = aclK(F( ). In partzcular G(L/K) G(L'/K'") if and only if field
extensions L' N K C L" and I'' "K' c I are 1somorphic.

(iii) The natural mapping

H: Aw(L"/{L" N K}) — Awt(G(L/K)),
is an epimorphism. If char(L) = 0, then H is an isomorphism of groups and if
char(L) # 0 then ker H = 7. is generated by the Frobenius automorphism.
Proof. Let = be the following equivalence relation on _# ([2, Definition 2.9])
j(z,0) 2 j(a',d) <= (In€l)d=d".

Using [2, Lemma 2.8] we obtain that = is a definable (without parameters) equivalence
relation on #. When z, 2’ and a are algebraically indepedent (over K), then

j(z,a) 2 j(2',d") < (3P) configuration from Fig. 3 in [2, Lem. 2.8] holds.

Implication < follows from [2, Lemma 2.8]. For = assume that a’ = a”" for some 0 <
n € Z. We must find a suitable P from G(L/K). We have acly (azx) = aclg(a?"2?") =
aclg(a'z?"), aclg((a + 1)z) = aclg((a?" + 1)2P") = aclg((a’ + 1)2P") and aclg(z) =
aclg (2P"). Hence P = aclg (2?" /') € G(L/K).
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When z, 2" and a are collinear, then we put (]2, Definition 2.9])
J(z,a) 2 j(a';a") & there exist j(z,a”) with z € aclg(a,z) and the configuration
in Fig. 3 holds between j(z,a),j(z,a") and j(z,a"), j(z',a’).

Take an arbitrary a € L'\ K and let

1= j(w,a)l= = {j(@,a) : o' € L"\ aclg(a)}

be one of the classes of 2 (here we use the equality j(z’,a?") = j(2’?"", a) and properties
of L"). We repeat the Proof [2, Theorem C]. Let

e S1— L\ acg(a),  pljle,a) =
be a bijective map. It follows from [2, Lemma 2.11] that there are generic definable over
a operations @ and ® on ¢, x _#; which satisfy: if j(z,a),j(y,a) € (L\ K)® and
x, 2, a are independent, then
j(x,a) @ j(2',a) = j(x + 2, a)
j(x,a) © j(@',a) = j(x - 2, a).
(the same definition works for non-algebraically closed case). Note that the map pu

respects these operations (when defined). We now interpret the field L" in G(L/K).
Define a relation = on _#¢ by

. . . . z Y
(j(21,0), j(22,0) = (j(y1,0), (g2, @) =  — ==
) Y2
It is a definable over a equivalence relation. We moreover define the product and the
sum of two classes [j(x1,a), j(x2,a)]= and [j(x1,a), j(za,a)]= as in [2], i.e.

(2" a),i(,a))= - (Y, a),d(y, 0)l= = [i(=",a),5(y", a)l=,

for suitable 2 and y” such that %% = Z;—,, We need a new class O= to define the sum
of classes in a standard fashion. Finally we extend p to the isomorphism of fields:

pe (A2 200} S 10 ulie,a), i@ 0) = =, u(0=) =0,
which establishes (i).
(ii): Let F': G(L/K) = G(L'/K'). Then
F: /1 (B = =[j(z,a)]lx — /1 (KD = = [j(y,b)]=,

O ) WENTN (N S k) WERTR (W

for some y,b € L. Hence F' induces an isomorphism of fields FIr =51

First, we show that F[L'NK| =L NK'. Let c€ L'NK and « € L"\ aclg(a). Then
we may write
(1) F(](CJ},CL)) :](ylvb)
(2) F(j(x,a)) = j(y2,b),
(3) Fe) = p(F([j(cx,a), j(x,a)]=)) = p(li(y1,0),5(y2,0)]=) = 5,

IR
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for some y1, 1y, € L’ However c € K yields that
j(ex,a) = (aclg(cx), aclg (cx + a), aclk (cza), aclk (cxa + cx), aclk(a))

= (aclg(z), aclg (cx + a), aclg (za), aclg (za + ), aclk (a)).

Thus from (1) and (2) above, we have
F(aclg(z)) = aclg (y1) = aclg (y2),
F(aclg(za)) = aclg (y1b) = aclg (y2b),

F(aclg(za + x)) = aclg (y1b + y1) = aclg (y2b + y2).
Hence from Lemma 1.1 (ii) we obtain n,m € Z and d;,dy € K satisfying Yy = diyy’
and (y10)" = da(yeb)™. It gives that n = m, and y; = 'y, for some ¢ € K. Finally
Fle)=2%2=¢ el nK'

Now we show the following

(Ve e L'\ K) F(aclg(x)) = aclg (F(x)).

It follows from the preceding results that for x;, s € L \ aclg (a)

Flj(ay,a), i a)l2) = LiWF (3).6).5(b))=

2

for some b€ L' and y € L' \ aclg (b). Let t = ﬁ(y 3 We obtain
T2

(Vo € L" \ acl(a))  F(j(z,a)) = j(F(x)t,b).

Let 1,29 € L" be algebraically independent over aclk (a). Then

J(E (st b) = P(j(a122,0) = F(j(a1,) © (w2, 0)) = P(j{a1, @) © F(j(z,0))
= J(F ()t 0) © ()t b) = §(F () Fen),b).
Hence ¢ = 1 and from the above
(Vo € L" \ aclg(a))  F(aclg(x)) = aclg (F(z)).
What is left is to show our claim for points from acl(a) \ K. Let d € aclg(a) \ K.
Take independent points ¢, s € L" \ aclk(a), then
aclg(a') = aclg(t,ta’) Naclg (s, sa’),

so as ta', sa’ € L' \ aclg (a) from the preceding result we have

F(aclg(a')) = aclg (F(t)), F(ta')) Naclkg (F(s), F(sa")) = aclg (F(a)).

The observation that G(L/K) = G(Z”/K) finishes the proof of (ii).

(iii) It follows immediately from (ii) that H is an epimorphism. Let f € ker H. Then
Jj(x,a) = f(j(z,a)) = j(f(x), f(a)), so from [2, Lemma 2.5] there is n € Z such that
f(x) = 2" and f(a) = a?". But x and a were arbitrary (independent), so f = Frob”. [

Acknowledgements. 1 would like to thank Ludomir Newelski for introducing me to this
subject and for guidance in preparing this paper.
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