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Introduction

Groups of finite Morley rank

A group of finite Morley rank is a group equipped with a notion of dimension
satisfying various natural axioms [BN94, p. 57]; These groups arise naturally in
model theory, expecially geometrical stability theory. The main examples are
algebraic groups over algebraically closed fields, where the notion of dimension
is the usual one, as well as certain groups arising in applications of model theory
to diophantine problems, where the notion of dimension comes from differential
algebra rather than algebraic geometry.

The structural analysis of groups of finite Morley rank is dominated by the
Algebraicity Conjecture (Cherlin/Zilber), which states that a simple group of
finite Morley rank should, in fact, be a Chevalley group over an algerbaically
closed field, i.e., an algebraic group. This is a strong conjecture, which asserts
that the classification of the simple algebraic groups can be carried out using
only their coarsest properties.

It is known that a counterexample to the Algebraicity Conjecture containing
at least one involution (i.e., element of order two) must have odd type. This
means that the connected component of a Sylow 2-subgroup is a 2-torus (i.e.,
a divisible abelian group). This reduction to odd type is a result of a large
body of work presented in [ABC07]. An equivalent condition is that the Sylow
subgroups have finite 2-rank, where the 2-rank m2(G) is the supremum of the
ranks of elementary abelian 2-subgroups of G.

∗Supported by NSF postdoctoral fellowship DMS-0503036, a Bourse Chateaubriand post-
doctoral fellowship, and DFG grant Te 242/3-1.

†Supported by NSF grant DMS-0100794 and DMS-0600940

1



Generic vs. thin

Our aim in the present work is to lay the foundations of the theory of generic
simple groups of finite Morley rank as broadly as possible, taking all groups
with mp(G) ≥ 3 as generic. A larger goal, not reached here, is the following.

Generic Algebraicity Conjecture. Let G be a simple K∗-group of finite
Morley rank with m2(G) ≥ 3. Then G is a Chevalley group over an algebraically
closed field, of Lie rank at least two.

A K∗-group is one whose proper definable simple sections are algebraic. A
minimal nonalgebraic simple group of finite Morley rank would be a K∗-group.

The point of stating this conjecture separately under the hypothesis m2(G) ≥
3 is that this is the natural target for methods of a general character. Some
results of this type are already known, but under more restrictive assumptions.
Building on this work, we aim to broaden the class of groups which may be
treated as generic to its widest natural limit, leaving over as little as possible
for separate consideration on a case by case basis.

The philosophy in the study of finite simple groups, which has been trans-
ferred also to the case of simple groups of finite Morley rank, is that large
groups are those which can be handled by reasonably general methods, and
small groups are those which require close analysis by ad hoc methods. The
terms in use in finite group theory for “large” and “small” are “generic” and
“thin”, with an intermediate category, “quasithin”. The precise definitions even
in finite group theory remain in flux; they are chosen to match the details of
specific proof strategies, and in the two generations of the classification of finite
simple groups there has been considerable variation in the treatment of bor-
derline cases. But tinkering aside, these are robust notions: generic groups are
for the most part groups which turn out to be Chevalley groups of Lie rank at
least 3, quasithin more or less Lie rank 2, and the thin groups are populated by
Lie rank 1 and more pathological groups which offer comparably little internal
structure.

Our goal here is to treat a group G as generic if m2(G) ≥ 3; thus also covering
some quasithin cases. Stricter notions of genericity are defined by considering
the structure of the Sylow 2-subgroup S, whose normal 2-rank n2(S) and Prüfer
2-rank pr2(S) are defined by taking the maximal rank of a normal elementary
abelian 2-subgroup, or a 2-subgroup contained in a divisible abelian 2-subgroup,
respectively. One sets n2(G) = n2(S), pr2(G) = pr2(S), which by conjugacy of
2-Sylow subgroups is well-defined. It is easy to see that

m2(G) ≥ n2(G) ≥ pr2(G)

Generic groups and Uniqueness Cases

The following excellent approximation to the Generic Algebraicity Conjecture
is proved in [Bur07]; an earlier version, assuming the absence of “bad fields”, is
due to Borovik.
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High Prüfer rank Case. A simple K∗-group of finite Morley rank with Prüfer
2-rank at least three is algebraic.

Pushing the same result through in the case of m2(G) ≥ 3 must involves sub-
stantial technical complications. The general thrust of the argument in [Bur07]
is to first exclude a “uniqueness case” involving the 2-generated core, and then
to apply systematic methods—signalizer functor theory and the Curtis-Tits the-
orem, primarily—to carry through the necessary structural analysis and recog-
nition process.

Broadly speaking, a uniqueness subgroup of a simple group G is a very large
definable subgroup which does not interact much with other subgroups of G. A
typical example is the Borel subgroup of PSL2. In generic type groups one aims
to show that there can be no proper uniqueness subgroup in one or another
sense. This then becomes the point of departure for a systematic study of
interactions between subgroups, and eventually for the recognition of the group,
or a geometry on which the group acts.

In our context there are four notions of uniqueness subgroup that come into
play:

1. The groups ΓV where V is elementary abelian 2-subgroup of rank 2 are

〈C◦(v) : v ∈ V #〉

2. The weak 2-generated core, denoted Γ0
S,2: for S ≤ G a Sylow 2-subgroup

of G, this is the definable hull of the group generated by all subgroups

N(A)

where A varies over rank 2 elementary abelian subgroups of S which are
contained in rank 3 elementary abelian subgroups of S.

3. The 2-generated core, denoted ΓS,2, is defined similarly, but taking into
account all elementary abelian subgroups A of S of rank 2, including those
that are maximal in S.

4. Strongly embedded subgroups: a proper definable subgroup M of G is
strongly embedded if M contains an involution while M ∩Mg contains no
involution for g /∈ M .

In the definition of the weak 2-generated core, the superscript 0 is not a
reference to the connectedness of any group, but rather an allusion to a con-
nected component in an associated graph of elementary abelian p-subgroups.
This graph is introduced explicitly in §2.

The results we aim at are the following. The second turns out to be a
corollary of the first.

Generation Theorem I. Let G be a simple K∗-group of finite Morley rank
and odd type, with m2(G) ≥ 3. Then ΓV = G whenever V is an elementary
abelian subgroup of rank 2.
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2-Generated Core Theorem I. Let G be a simple K∗-group of finite Morley
rank and odd type, with m2(G) ≥ 3. Then Γ0

S,2 = G for any Sylow 2-subgroup
S of G.

These results will be given in a more general form as Theorem 6.4, and in
the forms just stated as Corollary 6.5.

The first of these results is a generation theorem: G is generated by the
connected components of centralizers C◦(v) when v varies over involutions in
an elementary abelian 2-subgroup of order 4. This points the way toward the
identification of the group G in terms of the structure of centralizers of involu-
tions. The meaning of the second result is less transparent, but using signalizer
functor theory it can be shown that a proper weak 2-generated core Γ0

S,2 arises
whenever the centralizer C(i) of in involution is “not sufficiently reductive”
(meaning that O(C(i)) is “large” enough to be “unipotnet”). So for generic
G, these statements give both a generation property by related centralizers of
involutions, and a weak reductivity condition applying to those centralizers.
Combined, in Prüfer rank at least three these lead eventually to generation of
G by quasisimple components of centralizers of involutions, and then to a full
description of G. Here the Curtis-Tits theorem simplifies matters considerably;
in Prüfer rank two other methods come into play (one may consider this a qu-
asithin case: generic arguments carry one some distance, then one must enter
into the consideration of a certain number of special configurations).

In the proofs of our results we follow the line of [BBN06], showing that our
hypothetical counterexample G is a minimal simple group of Prüfer 2-rank at
least two, with a strongly embedded subgroup. Since such a configuration is
impossible by [BCJ07], this suffices. The line of argument goes as follows: if ΓV

is the offending uniqueness subgroup (namely, ΓV < G) then N(ΓV ) turns out
to be strongly embedded; this is the archetypal uniqueness condition. Further
analysis then shows that G is a minimal simple group, reaching a contradiction
to [BCJ07].

A technical point of considerable importance is some new information about
“semisimple torsion” (e.g., 2-elements in odd type groups) which has become
available only recently. This development begins with [BBC07] and has been
developed further in [BC08], with particular attention to results which are useful
in the present analysis. We are able to put aside a number of pathological
configurations on this basis, greatly simplifying the flow of the argument.

Variation: p

We will take some pains to place our two main theorems in a substantially
broader context. In the first place, we will replace the prime 2 by a general
prime p. This requires some additional work, some of it already carried out
in [BC08]. Our two uniqueness case theorems take on the following forms in
general.

Theorem 6.4. Let G be a simple K∗-group of finite Morley rank and p⊥ type,
with mp(G) ≥ 3 and pr2(G) ≥ 2. Then ΓV = G for any elementary abelian
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p-subgroup of rank two. In particular, Γ0
S,2 = G for any Sylow p-subgroup S of

G.

Two important technical points which come up here are the following.

Theorem 1.1. Let G be a connected group of finite Morley rank and p⊥ type
with mp(G) ≥ 3. Then prp(G) ≥ 2.

This is particularly important for p = 2.

Theorem 1.2. Let G be a connected group of finite Morley rank and odd type.
with mp(G) ≥ 3. Then mp(V ) ≥ 3 for any maximal elementary abelian p-
subgroup V ≤ G.

Theorem 1.1 should always be borne in mind. We would not relish being
forced to treat cases of Prüfer rank 1 within the “generic” framework.

Variation: L∗

Returning to the case p = 2, we would also like to dispense with the restriction
to K∗-groups. If all simple K∗-groups are algebraic, then the same follows for
all groups of finite Morley rank. But we would prefer to deal with groups of
odd type in a way which does not require a prior analysis of groups of degen-
erate type. So the natural class of groups to consider, called L∗-groups, are
those whose proper definable connected simple sections are either algebraic or
of degenerate type (hence without involutions by [BBC07]). The analysis of
L∗-groups then presupposes some prior analysis of L-groups, where an L-group
satisfies the same condition for all definable connected simple sections.

Versions of our main results may be proved under the L∗ hypothesis in a
form that then yields the stated results immediately under the stronger K∗-
hypothesis. We give this with an eye to the future—we are a long way from
having the same kind of theory in an L∗ context that we have for K∗-groups,
but at least the present chapter has a satisfactory development at that level of
generality.

Theorem 4.3. Let G be a simple L∗-group of finite Morley rank and odd type,
with m2(G) ≥ 3. Suppose that

ΓV < G for some V ≤ G with m2(V ) ≥ 2

Then N(ΓV ) is a strongly embedded subgroup of G. Furthermore N(ΓV ) =
ΓS,2(G) and ΓV = ΓS,2

◦.

Actually, the statement of Theorem 4.3 below is slightly more general. We
replace the L∗ condition by a an assumption that a generation statement applies
to proper connected sections of G. This is done simply to lay out more plainly
the structure of the argument. The corresponding generation statement for
L-groups, which is needed to justify the result as phrased above, is found in
Theorem 2.1.
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This result may be elaborated on further. We will call a group of finite Mor-
ley rank a D-group if all its definable connected simple sections are of degenerate
type, and a D∗-group if the same applies to all proper definable connected sim-
ple sections. In the context of K∗ groups of odd type, a D∗ group would be a
minimal connected simple group.

Theorem 6.6. Let G be a simple L∗-group of finite Morley rank and odd type,
with m2(G) ≥ 3. Let V be an elementary abelian 2-group of 2-rank two with
ΓV < G. Then

1. G is a D∗-group.

2. N(ΓV ) is a strongly embedded subgroup of G.

3. The Sylow 2-subgroups of G are connected.

4. If r is the least prime divisor of |M/M◦|, then G contains a nontrivial
unipotent q-subgroup for some q ≤ r.

In this formulation, the result as stated is very close to the version given
in [BBN06] under more restrictive conditions. In the K∗ case one reaches a
contradiction by applying [BCJ07], which says that minimal connected simple
groups of finite Morley rank and odd type with pr2(G) ≥ 2 never have strongly
embedded subgroups. The corresponding result is not known in the D∗ context,
and should be difficult.

Finally, to close the gap between ΓV and ΓS,2, one more result is required.

Corollary 4.2. Let G be a simple L∗-group of finite Morley rank and odd type,
with m2(G) ≥ 3. Then ΓV ≤ ΓS,2.

Again, the statement actually given as Corollary 4.2 replaces the L∗-group
hypothesis by an inductive condition on sections.

We have the following “characteristic zero” corollary.

Corollary. Let G be a simple L∗-group of finite Morley rank with m2(G) ≥ 3,
which has no unipotent torsion. Then

1. ΓV = G whenever m2(V ) ≥ 2; equivalently,

2. Γ0
S,2 = G for any Sylow 2-subgroup S of G.

At this stage it is natural to focus on the K∗ case, and to ignore the further
subtleties that intervene at a more general level, but even in that case something
very much like our version II must be proved on the way toward a contradiction
via [BCJ07].
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Contents

We begin by proving Theorems 1.1 and 1.2. These come quickly out of the
general theory developed in [BBC07], We also give some L-group theory which
is parallel to what is known in the K-group case, in preparation for the proof
of our generation theorems.

After that we give a preparatory generation theorem for L-groups when
p = 2, and for K-groups when p 6= 2. This takes considerable analysis, involving
a reduction to the simple algebraic case. The statement runs as follows.

Theorem 2.1. Fix a prime p. Let H be a connected group of finite Morley
rank. If p = 2 suppose that H is an L-group of 2⊥ type; if p > 2 suppose that
H is a K-group of p⊥ type. Let E be a finite elementary abelian p-group acting
definably on H. Then

H = 〈CH
◦(E0) : E0 ≤ E, [E : E0] = p〉.

After that we turn to the generation theorem for simple K∗-groups and L∗-
groups. We also show that the corresponding results for the weak 2-generated
core Γ0

S,2 follow from the ΓV versions.
The first result is strong embedding for N(ΓV ) when ΓV < G. In section §5

we prove that a strongly embedded subgroup of our group G is a D-group. The
argument is based in part on one given by Christine Altseimer in [Alt] in the
K∗ context.

Theorem 5.1. Let G be a simple L∗-group of finite Morley rank and odd type.
Then a strongly embedded subgroup M of G is either a D-group, or else satisfies
M◦/O(M◦) ∼= SL2.

In the last section we complete our analysis by combining Theorems 4.3 and
5.1, finally proving that G is a D∗-group. Then [BCJ07] provides a contradiction
in the K∗ case, proving the generation theorem in that case.

1 Preliminaries

We will prove the following two results in the present section.

Theorem 1.1. Let G be a connected group of finite Morley rank and p⊥ type
with mp(G) ≥ 3. If p > 2 then prp(G) ≥ 3. If p = 2 then pr2(G) ≥ 2.

Theorem 1.2. Let G be a connected group of finite Morley rank and p⊥ type
with mp(G) ≥ 3. Then any maximal elementary abelian p-subgroup V ≤ G has
p-rank at least 3.

We will also develop some general L-group theory which comes into play in
our analysis.
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1.1 Semisimple torsion

We will rely on results on p-torsion in groups of p⊥ type developed in [BC08],
notably the following.

Fact 1.3 ([BC08]). Let G be a connected group of finite Morley rank of p⊥

type. Let a ∈ G be a p-element, and T ≤ C(a) a maximal p-torus in C(a).
Then a ∈ T .

This is commonly applied in two different ways. First and foremost, any p-
element will be toral (lie in a p-torus). Secondly, any p-element in the centralizer
of a maximal p-torus T of G will lie in T , or in other words any p-element in
N(T )\T will act nontrivially on T (in the latter formulation, this is a statement
about the Weyl group N(T )/C(T )).

We also have a conjugacy theorem for Sylow p-subgroups in the p⊥ case. By
definition, a Sylow p-subgroup of a group of finite Morley rank is a maximal
solvable p-subgroup (equivalently, a maximal locally finite p-subgroup—which
makes existence clearer).

Fact 1.4 ([BC08, Theorem 4]). Let G be a group of finite Morley rank of p⊥

type. Then Sylow p-subgroups of G are conjugate.

For p = 2 this is known for arbitrary groups of finite Morley rank.
We will also require some elementary facts about automorphisms of p-tori.

Fact 1.5 ([Ber01, BB04, §3.3]). Let T be a p-torus of Prüfer p-rank d. Then
End(T ) can be faithfully represented as the ring Md(Zp) of d× d matrices over
the p-adic integers Zp.

Underlying this fact is a duality between T and its so-called Tate module,
which is a free Zp-module of rank d naturally associated with T . We remark
that the action of M2(Zp) on T is natural if T is represented as Cn

p with Cp

quasicylic (the direct limit of cyclic groups Z/pnZ); multiplication of elements
of Cp by elements of Zp is well defined, since Zp/pnZp = Z/pnZ for any n.

Lemma 1.6. Let T be a nontrivial 2-torus and let i be an involution acting on
T . Then either i inverts T or CT (i) is infinite.

Proof. Viewing i as given by a matrix E in Md(Zp), if E − I is noninvertible
then E − I has a kernel in its natural action on Zd

p. Fixing a nonzero vector
v ∈ Zd

p annihilated by E − I and working modulo pn for large n, we obtain
arbitrarily large cyclic subgroups of T centralized by i. So in this case CT (i) is
infinite.

On the other hand if E − I is invertible then since (E − I)(E + I) = 0 we
have E = −I and i acts by inversion.

This proof can be given just as easily in the language of finite group theory,
but as we have a description of End(T ) available we prefer to use it.
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Lemma 1.7. Let G be a connected group of finite Morley rank, p an odd prime,
T a maximal p-torus of G, and a ∈ N(T ) a p-element centralizing Ω1(T ). Then
a centralizes T .

Proof. Suppose that a /∈ C(T ). Passing to a power of a we may suppose that ap

centralizes T . So a induces an automorphism of T of order p. Now the action
of a on T is represented by a matrix M over Zp which acts trivially on Ω1(T )
and therefore is congruent to the identity I modulo p. Write

M = I + pkA

with k maximal and A a matrix over Zp. Now Mp = I, so as p > 2 we have by
the binomial theorem

I ≡ I + pk+1A mod p2k+1

This forces A to be divisible by p, a contradiction.

Lemma 1.8. Let T be a p-torus of Prüfer rank 1 (a quasicyclic p-group), with
p > 2. Then Aut(T ) contains no element of order p.

Proof. Such an element would correspond to a primitive p-th root of unity in
Zp, and by the usual argument the cyclotomic polynomial of degree p − 1 is
irreducible over Zp, forcing p− 1 ≤ 1.

Fact 1.9. Let P be an infinite solvable p-subgroup of a group G of finite Morley
rank and Q a normal subgroup of P . Then Q ∩ Z(P ) > 1.

Proof. The group P is nilpotent by finite [BN94], and the claim is easily proved
for nilpotent by finite p-groups.

1.2 Prüfer rank

We treat the two claims of Theorem 1.1 separately.

Lemma 1.10. Let G be a connected group of finite Morley rank and p⊥ type,
with mp(G) ≥ 3 and p > 2. Then prp(G) ≥ 3.

Proof. We let T be a maximal p-torus of G and S a Sylow p-subgroup of G
containing T . By the conjugacy of Sylow p-subgroups of G, S contains an
elementary abelian p-subgroup E with mp(E) = 3. We choose E so as to
maximize A = E ∩ Ω1(T ). Suppose toward a contradiction that mp(T ) ≤ 2.

Suppose first that A < Ω1(T ). Fix t ∈ Ω1(T ) \ A such that the image of t
in (Ω1(T )E)/A is in the center of this group. Looking at the commutator map
[t, ·] : E → A, since A has p-rank at most 1 we find mp(CE(t)) ≥ 2. Thus we
may replace E by a subgroup of p-rank 3 containing A and t, contradicting the
maximality of A.

So A = Ω1(T ). Hence E acts trivially on Ω1(T ), and by Lemma 1.7 E
centralizes T . Then by Fact 1.3 we have E ≤ T , and our claim follows.

9



Lemma 1.11. Let G be a connected group of finite Morley rank and odd type,
with m2(G) ≥ 3. Then pr2(G) ≥ 2.

Proof. As in the previous argument we begin with T a maximal 2-torus of G
and E ≤ N(T ) an elementary abelian 2-subgroup of 2-rank 3, chosen so as to
maximize A = E ∩ Ω1(T ).

If T = 1 then we contradict Fact 1.3 (as well as older results of [BBC07]
on which the proof of this fact depends), so we need only consider the case in
which

m2(T ) = 1

Now each element of E either centralizes or inverts T by Lemma 1.6. So
|CE(T )| ≥ 4. On the other hand CE(T ) ≤ T by Fact 1.3, so |CE(T )| ≤ 2, a
contradiction.

So Theorem 1.1 is proved.

1.3 Maximal elementary abelian subgroups

Proof of Theorem 1.2. We have a connected group G of finite Morley rank and
p⊥ type, with mp(G) ≥ 3. We claim that any elementary abelian p-subgroup is
contained in one of p-rank at least three. We know that prp(G) ≥ 2.

Suppose toward a contradiction that some maximal elementary abelian p-
subgroup V of G has mp(V ) ≤ 2. Let S be a Sylow p-subgroup of G containing
V . Let T = S◦. By the conjugacy of Sylow p-subgroups, we have mp(S) ≥ 3.

Let A = Ω1(Z(S)). By maximality of V , we have A ≤ V . If mp(A) ≥ 2 we
then have V = A ≤ Z(S), and as mp(S) ≥ 3 we reach a contradiction to the
maximality of V . So A is cyclic of order p. As Ω1(T ) ∩ Z(S) > 1 by Lemma
1.9, we have Ω1(T ) ∩ Z(S) = A ≤ V .

If V ≤ T , then by maximality of V we have V = Ω1(T ) C S. Choose E ≤ S
elementary abelian with p-rank 3. Then [E, V ] ≤ A and viewing this as a
bilinear map from E × V to A, we find that CE(V ) has p-rank at least 2. By
maximality of V we have CE(V ) ≤ V and thus V = CE(V ) ≤ E, which again
contradicts the maximality of V .

So we find

(∗) V 6≤ T

Choose v ∈ V \T . Then V = 〈A, v〉. If mp(T ) ≥ 3 then looking at commutation
with v as a map from Ω1(T )/A to A, we find an element t ∈ Ω1(T )\A centralizing
V and contradict the maximality of A. So mp(T ) = 2 and in particular p = 2
by Theorem 1.1.

By maximality of V , v does not centralize Ω1(T ), and hence v does not
invert T . By Fact 1.6, T0 := CT

◦(v) is nontrivial. Note that A = Ω1(T0). Let
T1 be a maximal torus of C(v) containing T0. By Theorem 1.3, v ∈ T1. So
V = 〈A, v〉 ≤ T1.

We have shown that V lies inside a p-torus of G. But then we could take T
to be such a p-torus, contradicting (∗).
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1.4 Structure of L-groups

In this section, we give some variations on [Bor95, Thm. 5.12], adapted to an
L-group context. We use the notation Ô(H) for the largest definable connected
normal subgroup of H without involutions, E(H) for the product of the qua-
sisimple subnormal subgroups L of H, F (H) for the Fitting subgroup, and
F ∗(H) = F (H)E(H) for the generalized Fitting subgroup. By [BN94, Lemmas
7.9, 7.10, 7.13], the product F (H)E(H) is a central product, the group E(H)
is a central product of finitely many normal quasisimple factors, each definable
in G, and

CH(F ∗(H)) ≤ F ∗(H)

Lemma 1.12. Let H be a connected L-group of finite Morley rank and odd
type with Ô(H) = 1. Let Ealg(H) be the product of the algebraic components of
E(H). Then

H = Ealg(H) ∗H0

where H0 = CH
◦(Ealg(H)), and Ealg(H0) = 1.

Proof. If L is a component of E(H) with L/Z(L) algebraic, then L is alge-
braic by [AC99]. Furthermore, a definable group of automorphisms of a qua-
sisimple algebraic group, in a finite Morley rank context, must itself consist of
algebraic automorphisms, that is graph automorphisms combined with inner
automorphisms ([BN94, Thm. 8.4]). So H, being connected, induces only inner
automorphisms on Ealg(H), and this yields

H = Ealg(H) ∗H0

with H0 = CH
◦(Ealg(H)). It is clear that Ealg(H0) ≤ Ealg(H) ∩H0 ≤ Z(H0),

so Ealg(H0) = 1.

Theorem 1.13. Let H be a connected L-group of finite Morley rank and odd
type, with no normal definable connected solvable subgroup and no normal de-
finable connected subgroup of degenerate type. Then H = H1 ∗ · · · ∗ Hn is
isomorphic to a central product of quasisimple algebraic groups H1, . . . ,Hn over
algebraically closed fields of characteristic not equal to 2.

Proof. In this context we have E(H) = Ealg(H) and H has no nontrivial defin-
able connected solvable subgroup, so F ∗(H) = F (H)Ealg(H) with F ◦(H) = 1.
Thus CH(Ealg(H)) = CH(F ∗(H)) = Z(F ∗(H)) is finite and CH

◦(Ealg(H)) =
1. So by the preceding lemma, H = Ealg(H).

Lemma 1.14. The Sylow 2-subgroup of a connected D-group G of finite Morley
rank is connected.

Proof. We proceed by induction on the rank of G. Suppose first that G has a
definable connected normal subgroup H with 1 < H < G. Let S be a Sylow
2-subgroup of H and S1 a Sylow 2-subgroup of G containing S. By [Wag97,
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Corollary 1.5.5], the image of S1 in G/H is a Sylow 2-subgroup of G/H, and
hence connected by induction. Hence this is also the image of S1

◦ in G/H. So
S1 ≤ S1

◦H, and S1 = S1
◦(S1 ∩ H). But S1 ∩ H is a Sylow 2-subgroup of H,

and is therefore connected. So S1 is connected.
Now suppose G has no definable connected proper and nontrivial normal

subgroup. If G is abelian, our claim is straightforward (and more generally if G
is solvable it falls under known results). So we may suppose Z(G) is finite, and
then G/Z(G) is simple. By the definition of D-group, G/Z(G) has degenerate
type, and hence so does G. But groups of degenerate type contain no involutions,
so again the Sylow 2-subgroup is connected.

2 p-Generation

The proof of our generation result for simple K∗-groups and L∗-groups will
be inductive, and depends therefore on generation results for K-groups and
L-groups. The latter can be put in a stronger form. The full result runs as
follows.

Theorem 2.1. Let G be a connected group of finite Morley rank, p a prime.
Suppose that G has p⊥ type and V is an elementary abelian p-group of rank 2
acting definably on G. Suppose further that one of the following holds.

1. G is a K-group;

2. G is an L-group, and p = 2;

Then ΓV = G.

This generation theorem can be strengthened further, but the argument for
this is purely formal. Consider the following property.

Definition 2.2. A group G of finite Morley rank has the p-generation property
if for every elementary abelian p-group E of rank 2 acting definably on G, we
have

G = 〈CG(v) : v ∈ E#〉

We observe that this property is trivial when the action of V is not faithful,
so we concern ourselves only with faithful actions.

Lemma 2.3. Let G be a group of finite Morley rank such that every connected
definable subgroup of G has the p-generation property, and let E be a nontrivial
elementary abelian p-group of definable automorphisms of G. Then

G = 〈CG
◦(E0) : E0 ≤ E, [E : E0] = p〉

Proof. If E is cyclic this is vacuous. For E of p-rank at least 2, fix V ≤ E of
p-rank 2. Then

G = 〈CG
◦(v) : v ∈ V #〉

12



For v ∈ V # let E = 〈v〉 ⊕ Ev. Inductively,

CG
◦(v) = CG

◦(〈v,E1〉 : E1 ≤ Ev, [Ev : E1] = p)

and our claim follows.

Note that in a counterexample to Theorem 2.1 of minimal Morley rank, all
proper definable connected subgroups and all quotients by nontrivial definable
connected normal subgroups will have the p-generation property.

The aim of the present section is to reduce the treatment of Theorem 2.1 to
the simple algebraic case, and to show that the elementary abelian p-groups V
involved can be taken to be contained in the original group G.

Reductions

We first treat a “base case” of Theorem 2.1.

Lemma 2.4. Let G be a connected group of finite Morley rank of p⊥ type and V
an elementary abelian p-group of rank 2 consisting of definable automorphisms
of G. Suppose that one of the following holds.

1. G is abelian and contains no nontrivial proper definable connected V -
invariant subgroup;

2. G has degenerate type and p = 2.

Then G = ΓV (G).

Proof. If G has degenerate type and p = 2, this is [BBC07, Theorem 4].
So suppose G is abelian. If G contains no p-torsion, the result is given as

[Bur04, Fact 3.7].
Now suppose that G contains p-torsion. Being of p⊥ type, connected, and

minimal V -invariant, G is then the definable closure of a p-torus T . It suffices
to show that T ≤ ΓV .

Now V ≤ End(T ) ∼= Mn(Zp) acts on a vector space W over Qp and in this
representation the action of V is completely reducible. Consider an irreducible
summand W0 of W . The image of V in End(W0) is cyclic, by Schur’s lemma.
Thus W0 is centralized by some nontrivial v ∈ V . In matrix terms, this means
that the identity matrix I can be expressed as a sum of projection matrices Pi

with coefficients in Qp, each annihilated by an element corresponding to the
endomorphism 1−v for some v ∈ V #. Thus some multiple pnI can be similarly
expressed in Mn(Zp). In T this says that every element of T = pnT can be
expressed as a linear combination of elements annihilated by 1 − v for various
v ∈ V # and thus T ≤ ΓV .

The next result prepares for an inductive argument relative to normal sub-
groups.
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Lemma 2.5. Let G be a group of finite Morley rank, p a prime, v a definable
automorphism of G of order a power of p, and K a definable normal p-invariant
connected subgroup of p⊥ type. Suppose one of the following holds.

1. K is solvable.

2. K is of degenerate type and p = 2.

Then CG
◦(v mod K) = CG

◦(v)K/K.

Here we use the notation CG
◦(v mod K) for the connected component of the

preimage in G of CG/K(v).

Proof. We may suppose that G = CG
◦(v mod K). Then G is connected, and v

acts trivially on G/K. Furthermore it suffices to treat the case in which v has
order p, since we can then argue inductively, replacing G by CG

◦(vp) and v by
its restriction to CG

◦(vp).
Now in the case p = 2 with K of degenerate type, this is essentially [BBC07,

Lemma 9.3], together with the fact that connected groups of degenerate type
have no involutions ([BBC07, Theorem 1]).

So we may suppose K is solvable. Proceeding by induction on rk(K), we
may suppose that K contains no proper nontrivial definable and definably char-
acteristic connected subgroup. Then K is abelian.

If K contains no p-torsion, then 〈v〉 is a Sylow p-subgroup of K〈v〉, and
as [G, v] ⊆ K we find K〈v〉 C G〈v〉. As Sylow p-subgroups are conjugate in
K〈v〉, the Frattini argument gives G ≤ K〈v〉 · NG(〈v〉). But v normalizes G,
so NG(〈v〉) = CG(v). Thus G ≤ KCG(v)〈v〉 = KCG〈v〉(v), and therefore G =
KCG(v).

Finally, suppose that K contains nontrivial p-torsion. By the minimality
of K, as K is contains no p-unipotent subgroup, it is the definable closure of
a p-torus. As G is connected, we have K ≤ Z(G). So the commutation map
h 7→ [v, h] is a homomorphism from G into K. If v centralizes K then the
image of this map has exponent p and is connected, hence trivial. Otherwise,
our hypothesis on K implies that CK(v) is finite, and thus commutation with
v is surjective from K to K. Then for h ∈ G there is k ∈ K with [v, h] = [v, k],
and hence hk−1 ∈ C(v), h ∈ KCG(v).

Now we may carry out an inductive argument.

Lemma 2.6. Let G be a connected group of finite Morley rank of p⊥ type, for
some prime p. Suppose that G contains a nontrivial definable connected normal
definably characteristic subgroup K satisfying one of the following conditions.

1. K is solvable.

2. K has degenerate type, and p = 2.

If G/K has the p-generation property, then so does G.
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Proof. Fix V a p-group of rank 2 consisting of definable automorphisms of G. By
Lemma 2.4 we have K ≤ ΓV . By hypothesis G = 〈CG

◦(v mod K) : v ∈ V #〉,
and by the previous lemma CG

◦(v) ≤ KΓV (G) for v ∈ V #. So putting this all
together, G = ΓV .

We need a variation of this lemma to handle finite normal subgroups.

Lemma 2.7. Suppose that G is a connected group of finite Morley rank with
Z(G) finite, p a prime, and V an elementary abelian p-group of rank 2 acting
definably on G. If ΓV (G/Z(G)) = G/Z(G), then ΓV (G) = G.

Proof. For v ∈ V #, let Gv = CG
◦(v mod Z(G)) Then G = 〈GvZ(G)〉 and it

suffices to show that Gv ≤ ΓV .
Now [v,Gv] ≤ Z(G) is connected, hence trivial. So Gv ≤ C◦(v) ≤ ΓV .

Summing up the reductions so far, we have the following.

Lemma 2.8. Let G be a connected group of finite Morley rank of p⊥ type for
some prime p. Suppose that every proper definable connected section of G has
the p-generation property, and G does not. Then F ∗(G) = E(G) is a direct
product of simple groups, and if G 6= E(G) then E(G) contains no p-torsion,
and p > 2.

Proof. Fix an elementary abelian p-group V of rank 2 acting definably on G for
which ΓV < G.

By Lemmas 2.6 and 2.7 we have

Z(G) = 1

Then by Lemma 2.6 again, we have F (G) = 1 and F ∗(G) = E(G) is a direct
product of connected simple groups.

Now suppose
E(G) < G

Then by hypothesis E(G) ≤ ΓV .
If E(G) contains p-torsion, then as E(G) is connected of p⊥ type, E(G)

contains a nontrivial p-torus. Let S be a Sylow p-subgroup of GV . As GV
has p⊥ type its Sylow p-subgroups are conjugate. Therefore S contains some
maximal p-torus T of E(G). By the Frattini argument G = E(G)N(T ), and as
G is connected we find

G = E(G)N◦(T )

As N◦(T ) is V -invariant and N◦(T ) < G we also have N◦(T ) ≤ ΓV , so G = ΓV ,
a contradiction. So E(G) contains no p-torsion.

Now if p = 2 then E(G) has degenerate type and we violate Lemma 2.6.

This amounts to a substantial reduction of the proof of Theorem 2.1. Indeed,
if G is a counterexample of minimal Morley rank, then Z(G) is finite by Lemma
2.6, and G/Z(G) is again a counterexample to the same theorem by Lemma
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2.7. Then replacing G by Ḡ = G/Z(G) we find Z(Ḡ) = 1 and every proper
connected section of G has lower rank, so the previous lemma applies to Ḡ.

Furthermore, under the hypotheses of Theorem 2.1, if E(G) < G then either
E(G) is a K-group, hence a product of simple algebraic groups, and therefore
contains p-torsion for all primes p, or else p = 2. In either case Lemma 2.8
is violated. So in this context, we come down to the case G = E(G) with
Z(G) = 1.

2.1 Replacement

An important tool in the proof of Theorem 2.1 will be our ability to replace one
elementary abelian p-group V by another, as follows.

Lemma 2.9. Let G be a connected centerless group of finite Morley rank and p⊥

type for some prime p. Suppose that every proper definable connected subgroup
of G has the p-generation property, and let E, V be two elementary abelian p-
groups of p-rank at least two, acting definably on G in such a way that the
actions commute. Then

ΓE(G) = ΓV (G)

Proof. For v ∈ V # we have CG
◦(v) < G and E acts on CG

◦(v), so by hypothesis
CG

◦(v) ≤ ΓE , and hence ΓV ≤ ΓE . Similarly ΓE ≤ ΓV .

We note that if G is both of p⊥-type and q⊥ type for two primes p, q then the
same result holds with V an elementary abelian p-groups and W an elementary
abelian q-group. This can be useful with p > 2 and q = 2.

It is natural at this point to look at the graph Ep,2 whose vertices are the
elementary abelian p-groups acting definably on G (and for definiteness, living
in the normalizer of G in some larger group), and whose edges are commuting
pairs of such groups. Then ΓV is associated to a connected component of this
graph, rather than to a single vertex. This graph is frequently connected, in
which case ΓV is a canonical normal subgroup of G—which is not surprising, as
we expect it to be the group G itself in the cases of interest to us. We will write
Ep,2(X) for the corresponding graph with vertices contained in X where X is a
fixed group normalizing G.

The following is [Bur07, Fact 1.20].

Fact 2.10. Let S be a locally finite p-group. Then

1. The induced subgraph E0
p,2(S) := {X ∈ Ep,2(S) : mp(CS(X)) > 2} is

connected, i.e., all nonsingleton vertices of Ep,2(S) are linked by paths.

2. E0
p,2(S) contains Ω1(S◦).

3. If np(S) > p then S is 2-connected, i.e. if S contains an abelian normal
subgroup of p-rank at least p + 1 then Ep,2(S) is connected.

This has the following immediate consequence.
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Lemma 2.11. Let G be a connected semisimple group of finite Morley rank
(that is, a direct product of connected simple groups) of p⊥ type for some prime
p, and suppose that G does not have the p-generation property, but every proper
definable connected subgroup of G does. Then one of the following holds:

1. G is simple;

2. G is the product of exactly p isomorphic simple components, and each
component has an automorphism of order p which normalizes no nontrivial
proper definable connected subgroup of L. In particular, G contains no p-
torsion.

Proof. Let V = 〈a, b〉, be an elementary abelian p-group of p-rank 2 acting
definably on G so that ΓV < G. Suppose G contains a proper nontrivial normal
V -invariant subgroup H. Then G = H×CG(H) and by hypothesis both H and
CG(H) are contained in ΓV , so G = ΓV , a contradiction.

Accordingly V acts transitively on the simple components of G. Suppose
first that V acts regularly on the set of components. Let L be a component of
G, and let H,K be the normal closures of L under the action of 〈a〉 and 〈b〉
respectively. Then CH(a), CK(b) are diagonally embedded copies of L in H
and K respectively, and H ∩K = L. It follows that [CH(a), CK(b)] = L. Thus
L ≤ ΓV and so G = ΓV , a contradiction.

So V does not act regularly on the components of G and hence we may
suppose the component L of G is normalized by a. If L is normalized by V
then G = L is simple. So we remain with the case in which G is the product
of precisely p conjugates of L. Now suppose a normalizes a nontrivial proper
definable connected subgroup L0 of L. Then the product of the conjugates
of L0 under V lies in ΓV by hypothesis, and in particular L0 ≤ ΓV . On the
other hand, CG

◦(b) is a diagonal subgroup of G covering L in this case and
[CG

◦(b), L0] = L and so L ≤ ΓV and then G = ΓV , a contradiction.
So a normalizes no nontrivial proper definable connected subgroup of L. In

particular L contains no p-torsion, as otherwise L would contain an a-invariant
maximal p-torus, using the conjugacy of Sylow p-subgroups in L〈a〉. So G
contains no p-torsion.

Corollary 2.12. For the proof of Theorem 2.1 it suffices to treat the case of
simple groups G, under the hypothesis that every proper definable connected
section of G has the p-generation property.

Proof. Indeed, we have already seen that after minimization and factoring out
the center, the group G will be semisimple. If G is not simple, then the previous
lemma shows that G contains no p-torsion. On the other hand, under the
hypotheses of Theorem 2.1, G is either a K-group, or an L-group with p = 2.
In the former case as the factors of G are algebraic, G contains p-torsion for all
p, and we contradict the lemma. In the latter case as p = 2 and G contains no
p-torsion, G is of degenerate type and Lemma 2.4 applies.

Finally, we argue that we may move the elementary abelian p-groups under
consideration inside the group G.
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Lemma 2.13. Let G be a simple algebraic group of p⊥ type, possibly in an
enriched language, such that all proper definable connected sections of G have
the p-generation property. Let V be an elementary abelian p-group of rank two
acting definably and faithfully on G, with ΓV < G. Then there is an elementary
abelian p-group U of rank two contained in G such that ΓV = ΓU .

Proof. By Fact 2.10, if the Lie rank of G is at least p + 1 and S is a Sylow
p-subgroup of GV , then the graph Ep,2(S) is connected. Then by Lemma 2.9
we have ΓV = ΓU for any U ≤ Ω1(S◦) of rank two.

On the other hand, if G has no graph automorphisms of order p then any
definable automorphism of G of order p will be inner, by [BN94, Thm. 8.4], in
which case we have nothing to prove. As the graph automorphisms have orders
2, 3 we consider the two cases p = 2, 3.

If p = 3 we are dealing with the group D4 which has Lie rank p + 1, and as
noted we are done in this case.

If p = 2 we need to deal only with groups of Lie rank at most two and the
only one with a graph automorphism is A2, namely PSL3. In this case a graph
automorphism v ∈ V is conjugate to the inverse-transpose automorphism, with
centralizer and CG(v) ∼= PSL2, by [GLS98, Table 4.3.1 p. 145 & Table 4.3.3 p.
151]. On the other hand V must also contain an element u inducing an inner
automorphism; taking u without loss of generality to be an element of G we have
u ∈ CG(v). Now u belongs to a 4-group U in CG(v), and then U commutes
with V , so by Lemma 2.9 ΓV = ΓU .

3 p-Generation in simple algebraic groups

Our goal now is to prove Theorem 2.1 for simple algebraic groups. As we have
seen, we may suppose that all proper definable connected subgroups satisfy p-
generation, and we may restrict our attention to ΓV for V contained in the given
group.

It will be convenient to dispose of PSL2 at the outset.

Lemma 3.1. If G = PSL2 over a field of characteristic other than p, then G
satisfies p-generation.

Proof. We are dealing with an elementary abelian p-group V of rank 2 with
V ≤ G. Each element of V belongs to a maximal torus of G and if these tori
do not lie in a Borel subgroup they generate G. But if they do lie in a Borel
subgroup then so does V , contradicting the structure of Borel subgroups in this
case.

Now we undertake some structural analysis. The following extreme case
arises frequently.

Lemma 3.2. Let G be an algebraic group of p⊥ type such that every proper
connected Zariski closed subgroup has the p-generation property. Let V be an
elementary abelian subgroup of rank 2 contained in a Borel subgroup of G. Then
ΓV = G.

18



Proof. As G is not PSL2, the maximal parabolic subgroups of G containing
B generate G, and by hypothesis each such subgroup is contained in ΓV . So
G = ΓV .

Lemma 3.3. Let G be a simple algebraic group of p⊥ type, and V ≤ G an
elementary abelian p-subgroup of p-rank two. Suppose that every proper con-
nected Zariski closed subgroup of G has the p-generation property. Then ΓV is
a Zariski closed reductive subgroup of G containing a maximal torus of G, and
with finite center; the center has order relatively prime to p.

Proof. Every element of V lies in a maximal torus of G and thus ΓV contains
a maximal torus of G. Let H be the subgroup of ΓV generated by maximal
tori of G. Then H is Zariski closed and ΓV ≤ N◦(H) < G. By generation
ΓV = N◦(H), a Zariski closed subgroup.

If U is the unipotent radical of ΓV then for v ∈ V # we have U ∩ C◦(v)
contained in the unipotent radical of C◦(v); but v being a semisimple element,
C◦(v) is reductive [Car93, Thm. 3.5.4], and thus CU

◦(v) = 1. But by hypothesis
U = 〈CU

◦(v) : v ∈ V #〉 and thus U = 1, ΓV is reductive.
Now we claim that Z(ΓV ) contains no element of order p. As G is of p⊥

type it then follows that Z(ΓV ) contains no torus, and hence Z(ΓV ) is finite of
order prime to p. So this will complete the analysis.

So suppose toward a contradiction that u ∈ Z(ΓV ) has order p. We can
replace V by a subgroup of 〈V, u〉 containing u. So we may suppose u ∈ V ,
say V = 〈u, v〉. Now v belongs to a p-torus T of ΓV and u commutes with T .
Take a maximal p-torus T1 of C(u) containing T . Then v ∈ T1 by definition
and u ∈ T1 by Fact 1.3.

Thus V is contained in a torus of G, and in particular in a Borel subgroup
of G, so ΓV = G, and Z(ΓV ) = 1, a contradiction.

Now Lemma 3.3 puts us in a position to control ΓV even more tightly.

Lemma 3.4. Let G be a simple algebraic group of p⊥ type, and V ≤ G an
elementary abelian p-subgroup of p-rank two. Suppose that every proper con-
nected Zariski closed subgroup of G has the p-generation property. Then ΓV is
quasisimple.

Proof. We know that ΓV is a central product of quasisimple factors, and that the
center of ΓV contains no elements of order p. Therefore the Sylow p-subgroup
of ΓV is the direct product of the Sylow p-subgroups of the factors.

Now as every element of V belongs to a torus we have V ≤ ΓV and thus V is
contained in a Sylow p-subgroup of ΓV . Let V = 〈u, v〉 and choose quasisimple
components Lu, Lv of G so that the projection u′ of u into Lu and v′ of v into
Lv is nontrivial. Let U = 〈u′, v′〉. Then U, V commute and we may replace V
by U . Evidently ΓU = G unless Lu = Lv. In this case writing L = Lu = Lv, we
have U ≤ L and if L < G then by assumption L ≤ ΓU , so again G = ΓV . We
are left with the possibility L = G.
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Now we require some precise numerical information relating to the universal
cover of a simple algebraic group.

Lemma 3.5. Let Ĝ be the universal central extension of a quasisimple algebraic
group G. Then for any semisimple element s ∈ G we have

[CG(s) : CG
◦(s)] divides |Z(Ĝ)|/|Z(G)|

Proof. A maximal torus of Ĝ covers a maximal torus of G, and hence there is a
semisimple element t ∈ Ĝ corresponding to s under the quotient map Ĝ → G.
In simply connected quasisimple algebraic groups the centralizers of semisimple
elements are connected ([Car93, Theorem 3.5.6]). Thus CĜ(t) is connected.

Let Z be the kernel of the map Ĝ → G. Then |Z| = |Z(Ĝ)|/|Z(G)|. Now
K = CG(s) pulls back to the subgroup K̂ = CĜ mod Z(t) of Ĝ. Taking the
commutator with t we get a homomorphism K̂ → Z with kernel CĜ(t). As CĜ(t)
is connected we have K̂◦ = CĜ(t) and |K̂/K̂◦| divides |Z| = |Z(Ĝ)|/|Z(G)|.

Now as Z(Ĝ) ≤ K̂◦ we have |K/K◦| = |K̂/K̂◦| and our claim follows.

The Schur multiplier of a finite simple group is the center of its universal
central extension.

Lemma 3.6. Let G be an algebraic group of p⊥ type, and assume that proper
Zariski closed subgroups of G have the p-generation property. If p does not
divide the order of the Schur multiplier then G has the p-generation property.

Proof. As we have shown this comes down to the case of an elementary abelian p-
group of p-rank two contained in G. We show that V is contained in a torus of G.
Write V = 〈u, v〉 and consider C◦(u). By Lemma 3.5, the index [C(u) : C◦(u)]
is not divisible by p and therefore v ∈ C◦(u). Now v belongs to a maximal torus
T of C◦(u) and u also belongs to T by Fact 1.3, so V is contained in a torus of
G.

The orders of the Schur multipliers of simple algebraic groups are given in
[Car93, §1.11, p. 25–26]. Namely: n + 1 for An; either 2 or 4 for each of Bn,
Cn, Dn, and E7; 3 for E6; and finally, 1 for G2, F4, and E8.

Proof of Theorem 2.1. After considering a minimal case, factoring out the cen-
ter, and using our replacement lemma, we arrive at the following situation:

1. G is a simple algebraic group of p⊥ type.

2. V ≤ G is an elementary abelian p-subgroup of p-rank two.

3. Every proper definable connected section of G has the p-generation prop-
erty.

4. ΓV < G.
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Furthermore ΓV contains a maximal torus of G and is quasisimple. By con-
siderations of dimension this already eliminates the groups of type An (PSLn+1).

Furthermore the prime p involved has to divide the order of the Schur mul-
tiplier of G, and by the calculations of Schur multipliers in the remaining cases
this brings us down to the cases p = 2, 3.

On the other hand, by Fact 2.10, if the Lie rank of G is at least p + 1 we
can replace V by a subgroup of a torus and conclude by Lemma 3.2. So looking
at the orders of the Schur multipliers again we eliminate the case p = 3 and
for p = 2 we come down to type B2. But then as ΓV is itself quasisimple of
Lie rank two, the only possibility compatible with the dimensions would be an
embedding of SL3 into B2, which does not occur (for example, in view of the
Weyl groups).

4 Generation in K∗-group and L∗-groups

We turn now to the proof of our main generation results.

Lemma 4.1. Let G be a connected simple group of finite Morley rank of p⊥ type.
Suppose that any proper definable connected subgroup of G has the p-generation
property and that V is an elementary abelian p-subgroup of G of rank two. Let
S be a Sylow p-subgroup of G containing V , and suppose that mp(CS(V )) ≥ 3.
Then

1. N(ΓV ) = Γ0
S,2

2. ΓV = (Γ0
S,2)

◦.

Proof. Let M = N(ΓV ). Then V normalizes M◦. If M◦ < G then M◦ satisfies
p-generation and hence M◦ ≤ ΓV . If M◦ = G then ΓV C G and hence ΓV = G.
So in either case M◦ ≤ ΓV . Thus

M◦ = ΓV

We show next
ΓV ≤ Γ0

S,2

We take v ∈ V # and we take E ≤ S an elementary abelian p-group of rank
three, and write E = 〈v〉 ⊕ Ev with Ev elementary abelian of rank two. Then
by p-generation we have

C◦(v) = 〈C◦(〈v, w〉) : w ∈ Ev〉

and as C◦(v, w) ≤ N(〈v, w〉) ≤ Γ0
S,2 for such pairs v, w we find ΓV ≤ Γ0

S,2.
On the other hand by Lemma 2.10 we have ΓV = ΓW for W ≤ Ω1(S) and

in particular we find S ≤ ΓV . So by the Frattini argument N(ΓV ) ≤ ΓV ·N(S)
and as N(S) ≤ N(Ω1(S)) ≤ Γ0

S,2 we find

N(ΓV ) ≤ Γ0
S,2
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Now we show Γ0
S,2 ≤ N(ΓV ). We take W ≤ S an elementary abelian p-group

with mp(CS(W )) ≥ 3 and observe that ΓV = ΓW by Lemma 2.9. Therefore
N(W ) ≤ N(ΓV ) for all such W , and Γ0

S,2 ≤ N(ΓV ). With this all claims are
proved.

Corollary 4.2. Let G be a connected simple group of finite Morley rank of p⊥

type with mp(G) ≥ 3. Suppose that any proper definable connected subgroup
of G has the p-generation property and the 2-generation property. Then the
following are equivalent.

1. For some elementary abelian p-subgroup V of G of p-rank two, ΓV < G.

2. For S a Sylow p-subgroup of G, we have Γ0
S,2 < G.

Proof. By the conjugacy of Sylow p-subgroups and Lemma 1.2, every elementary
abelian p-subgroup V of p-rank two in G is contained in a Sylow p-subgroup S
satisfying mp(CS(V )) ≥ 3, and every Sylow p-subgroup S of G contains such an
elementary abelian p-subgroup V . Since N(ΓV ) = Γ0

S,2 under these conditions,
our claim follows.

Now we state the key result.

Theorem 4.3. Let G be a connected simple group of finite Morley rank of
p⊥ type with mp(G) ≥ 3 and m2(G) ≥ 2. Suppose that any proper definable
connected subgroup of G has the p-generation property and the 2-generation
property. Suppose that V is an elementary abelian p-subgroup of G and ΓV < G.
Then N(ΓV ) is strongly embedded in G.

By Theorem 2.1, our condition on the sections of G will hold if G is a K∗-
group, or if it is an L∗-group with p = 2, giving the two cases of concrete
interest.

We record a standard criterion for strong embedding ([BN94, Thm. 10.20]).

Fact 4.4. A subgroup M of a group G is strongly embedded if and only if M
satisfies the following two conditions.

1. M contains the normalizer of a Sylow 2-subgroup of G;

2. M contains C(i) for each involution i ∈ M .

Proof of Theorem 4.3. Let M = ΓV .
If G is not of odd type then it is algebraic by [ABC07], and this falls under

our previous results. So we assume G has odd type.
Now we may suppose V ≤ S with S a Sylow p-subgroup chosen so that

mp(CS(V )) ≥ 3.
We show first that ΓV contains a Sylow◦ 2-subgroup of G. Let T be a

maximal divisible abelian torsion subgroup of G, and Tp, T2 the p-torsion and
2-torsion subgroups of T . The maximal divisible abelian torsion subgroups of G
are conjugate [ABC07] and thus Tp and T2 are respectively a maximal p-torus
and a maximal 2-torus of G. We may suppose after conjugating that Tp ≤ S.
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Take A ≤ Ω1(Tp) and B ≤ Ω1(T2) elementary abelian subgroups of rank 2.
Then by Fact 2.10 and Lemma 2.9 we have ΓV = ΓA. By the variant of Lemma
2.9 mentioned after its proof, we also have ΓA = ΓB .

Embed T2 in a Sylow 2-subgroup P of G. Then P ◦ = T2 and N(P ) ≤
N(B) ≤ N(ΓB) = N(ΓV ). Thus N(P ) ≤ M .

Next we show that for i an involution of M , we have C◦(i) ≤ M . We may
suppose that i normalizes T2. If i centralizes B, then i lies in an elementary
abelian 2-subgroup U of 2-rank two that commutes with B, and hence ΓV =
ΓB = ΓU and C◦(i) ≤ ΓU ≤ M . So suppose that i does not centralize B and
hence does not invert T2. Therefore i centralizes a nontrivial 2-torus T0 ≤ T2

by Lemma 1.6. By Lemma 1.3 if T̂0 is a maximal 2-torus in C(i), then i ∈ T̂0.
Now T̂0 ≤ ΓV since T̂0 contains an involution of T2. Hence after conjugation
in ΓV we may suppose T̂0 ≤ T2 and thus i ∈ T2. But then as above our claim
follows.

Now for i an involution of M it remains to show that C(i) ≤ M . By Lemma
1.3 the element i lies in some maximal 2-torus Ti of G, and then Ti ≤ C◦(i) ≤ ΓV

and after conjugation we may suppose Ti = T2. Then by the Frattini argument

C(i) ≤ C◦(i) ·N(T2)

and as N(T2) ≤ N(ΓV ) = M our claim follows.

5 Strongly Embedded Subgroups

We next treat the structure of strongly embedded subgroups of L∗-groups, by
a method used by Altseimer [Alt] in the K∗ context.

Theorem 5.1. Let G be a simple L∗-group of finite Morley rank and odd type.
Then a strongly embedded subgroup M of G is either a D-group, or else satisfies
M◦/O(M◦) ∼= SL2.

We begin by recalling an elementary property of groups with strongly em-
bedded subgroups.

Fact 5.2 ([BN94, Theorem 10.19]). Let G be a group of finite Morley rank with
a proper definable strongly embedded subgroup M . Then G and M each have
only one conjugacy class of involutions.

For the proof, one shows first that any involution in M is conjugate to any
involution not in M , after which the conjugacy in G is clear and the conjugacy
in M follows from the definition of strong embedding.

Lemma 5.3. Let M be an L-group of finite Morley rank and odd type with
exactly one conjugacy class of involutions. Let H = M◦/Ô(M). Then either

1. M is a D-group, and H/Z(H) contains no involutions; or else

2. H is quasisimple, and and H/Z(H) is one of the following: PSL2, PSL3,
or G2.
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Proof. We need a few facts about algebraic groups. First, it is well known,
and can be extracted from Theorem 1.12.5d of [GLS98], that SL2 is the only
quasisimple algebraic group whose involutions all lie in its center. Second, as
can be seen in Table 4.3.1 on p. 145 of [GLS98], any algebraic group which is
simple as an abstract group and has a unique conjugacy class of involutions
must be one of the following: PSL2, PSL3, or G2. All others contain involutions
with nonisomorphic centralizers, and hence have distinct conjugacy classes of
involutions that do not even fuse under the action of Aut(G).

Now suppose first that

(I) H contains no nontrivial connected normal definable D-subgroup.

Then by Theorem 1.13 H = Ealg(H).
If Z(H) contains an involution then all involutions in H are central and

the components are all of the form SL2. Then using once more the fact that
all involutions lie in Z(H), it follows easily that there is a unique component
and H = SL2. For example, in the case in which the central involutions of
two components coincide, a product of two elements of order 4 from the two
components will produce a noncentral involution. As the case H ∼= SL2 is one
of those envisioned, we may put this aside.

So suppose Z(H) contains no involution. Then each component contains
noncentral involutions and hence every involution lies in a unique component.
This again implies that there is only one component. Furthermore, all of its
involutions are conjugate. So H is again one of those listed.

Now suppose

(II) H contains some nontrivial connected normal definable D-subgroup K.

We may take K minimal. Note that Ô(K) = 1. If F ◦(K) = 1 then E(K)
must be nontrivial, and for each quasisimple component L of E(K) we have
L/Z(L) of degenerate type. But also Z(L) ≤ F (K) is finite, and thus L is of
degenerate type, and connected. So L contains no involutions and L ≤ Ô(K) =
1, a contradiction. Accordingly

F ◦(K) > 1

Again, O(F ◦(K)) = 1, so the 2-torsion in F ◦(K) forms a nontrivial 2-torus T .
As N◦(T ) = C◦(T ), this 2-torus is central in H. Furthermore every involution
of H lies in T . It then follows that all 2-elements of H lie in T , and thus H/Z(H)
contains no involutions, and H is a D-group.

This moves us substantially in the direction of Theorem 5.1. But we still
need to eliminate the configurations in which M◦/Ô(M) is PSL2, PSL3, SL3, or
G2. For this we must further exploit strong embedding in the manner of [Alt,
§5], and also (in a different direction) [AC03, §5].

A powerful idea in this context is to study the distribution of involutions in
cosets of M (or M◦). This leads to the following.
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Fact 5.4 ([Alt96, Lemma 3.8]). Let G be a group of finite Morley rank with a
strongly embedded subgroup M . Then there is an involution w ∈ G \ M such
that rk(I(wM)) ≥ rk(I(M)).

Fix such an involution w, set Y := {uw | u ∈ I(wM)}, and let K := d(Y ).

Fact 5.5 (see [Alt96, Propositions 3.9,3.10]). Let G be a group of finite Morley
rank with a strongly embedded subgroup M . Then the group K contains no
involutions, and for any involution i ∈ M , we have

M◦ = C◦(i)K◦

This decomposition will then pass to the quotient M◦/O(M), or for that
matter a further quotient by the center, if the center has odd order. So we
require the following.

Lemma 5.6. Let H be one of the groups PSL2, PSL3, or G2, over a field of
characteristic not 2. Then there is no connected definable subgroup K of H
without involutions for which we have a decomposition

H = C(i)K

for each involution i ∈ H.

The following general fact will be useful in our analysis.

Lemma 5.7. Any definable unipotent subgroup U in an algebraic group H over
a field k of finite Morley rank and characteristic zero is Zariski closed.

We note that the language in which U is supposed to be definable (the
language of k) is arbitrary, subject to the finite rank hypothesis.

Proof. The additive group of a field k of finite Morley rank and characteristic
zero has no proper (infinite) definable subgroup [Poi87, Cor. 3.3]. It follows that
a definable endomorphism α of (k, +) is given by multiplication in k. Indeed, if
α(1) = a then α− a has a nontrivial kernel, which must then be k.

Since any such group U would be nilpotent, we may assume, proceeding
inductively, that U is abelian, and minimal. Let Û be the Zariski closure of
U . Then Û can be identified with a vector space over k (cf. [Hum75, Lemma
15.1C]). Consider a projection into any 1-dimensional subspace V of Û . Since
Û is the Zariski closure of U , U is not contained in the kernel. Hence U maps
injectively into V . So the projection gives an isomorphism. Writing Û = ⊕iVi,
we can identify the Vi with k and view U as being given by a series of definable
automorphisms of (k, +). These are represented by multiplication maps on k
and thus U is defined by linear equations.

Proof of Lemma 5.6. We make use of rank computations for algebraic sub-
groups of H. If r is the rank of the base field, the rank of such a subgroup
is just r times its dimension. So we may work directly with dimensions.

25



Suppose first that K is solvable, and let B be a Borel subgroup of H con-
taining K. (We remark that the model theoretic and algebraic notions of Borel
subgroup coincide here, but in any case we will need the structure theory of
algebraic groups, so the algebraic sense is dominant.) Taking i in B, and dis-
counting the overlap caused by a maximal torus T of B containing i, we find

dim(H) ≤ dim(C(i)) + dim(B)− dim(T )

where one may replace dim(B)−dim(T ) by dim(U) with U the unipotent radical
of B, so that this term is the number of positive roots. The relevant numbers
are found in the following table.

H Lie rank dim(C(i)) dim(U) Sum dim(H)

PSL2 1 1 1 2 3
(P)SL3 2 4 3 7 8

G2 2 6 6 12 14

Table 1: Dimensions of some subgroups

Looking at the last two columns, we see that our conditions are not met. So we
conclude

The group K is not solvable.

By a subtle result of Poizat, if the base field for H has positive characteristic
then every connected definable simple section of H is algebraic (cf. [AC03, 4.19]
for the form quoted here). This then forces K to contain involutions and gives
a contradiction. So the base field has characteristic 0.

Now let K̂ be the Zariski closure of K. Observe that K̂ inherits from H the
key property:

If i is an involution in K̂ then K̂ = CK̂(i)K.

Furthermore K̂/U(K̂) (factoring out the unipotent radical) inherits this prop-
erty. This is a reductive group. There are two possibilities: either it is qua-
sisimple of Lie rank 2, or every quasisimple component, modulo its center, is
PSL2.

In the latter case, look at the image of K in K̂/U(K̂) and then projected
into the simple components modulo the center. These give subgroups of PSL2

containing no involutions, which are solvable by Poizat’s result. In this case K
itself is solvable and we have a contradiction. Thus

K̂/U(K̂) is quasisimple of Lie rank 2.

Replacing H by K̂/U(K̂) and K by its image in K̂/U(K̂), we may therefore
suppose that K is Zariski dense in H.

As H is simple, K contains no nontrivial abelian normal subgroup. Hence
F ∗(K) = E(K).
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We claim that K contains no nontrivial Zariski closed subgroup A of H.
Supposing the contrary, [E(K), A] would be a Zariski closed and connected
subgroup of H normal in E(K). Such a group, if nontrivial, would contain an
involution, giving a contradiction. So [E(K), A] = 1. But as CK(F ∗(K)) ≤
Z(F ∗(K)), this shows A = 1.

In particular, since the characteristic is zero and unipotent subgroups are
therefore Zariski closed, all elements of K are semisimple. So a Borel subgroup
of K is contained in a maximal torus T of H.

If B is a Borel subgroup of H containing T , then rk(K/T ) ≤ rk(H/B).
Consider an involution i ∈ T . Then H = KCH(i), so

rk(H) ≤ rk(CH(i)) + rk(H/B)

After cancellation and rearrangement, and replacement of rk(B) by 2 + rk(U),
this says

dim(U) ≤ dim(CH(i))− 2

contradicting Table 1.

Proof of Theorem 5.1. We have G a simple L∗-group of finite Morley rank and
odd type, with M strongly embedded. By Fact 5.2 and Lemma 5.3 we find one
of the following

1. M is a D-group;

2. M◦/Ô(M) is quasisimple, with central quotient of the form PSL2, PSL3,
or G2.

In the first case, or in the second case with M◦/Ô(M) of the form SL2, we
have what we claim. We are left therefore with the following possibilities for
the structure of H = M◦/O(M):

PSL2,PSL3,SL3,G2

By Fact 5.5 we have a decomposition of H of the type refuted in Lemma 5.6
in the cases H = PSL2,PSL3,G2, and if H = SL3 we can pass to PSL3 by
factoring out the center (of odd order). So in all of these remaining cases we
arrive at a contradiction.

6 Strong embedding and D-groups

We aim now at the following. Recall that in the context of K∗-groups of odd
type, a simple D∗-group is a minimal simple connected group.

Theorem 6.1. Let G be a simple L∗-group of finite Morley rank and p⊥ type,
with pr2(G) ≥ 2. Suppose that G has a strongly embedded subgroup M . Then
the following hold.

1. G is a D∗-group
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2. Sylow 2-subgroups of G are connected.

We break the proof into two lemmas.

Lemma 6.2. Let G be a simple L∗-group of finite Morley rank and p⊥ type,
with pr2(G) ≥ 2. Suppose that G has a strongly embedded subgroup M . Then
M is a D-group, and Sylow 2-subgroups of G are connected.

Proof. There is a Sylow 2-subgroup S contained in M by Fact 4.4. For any
t ∈ S, there is a 2-torus T of G containing t by Fact 1.3. So T ≤ M by Fact 4.4,
and t ∈ M◦. Thus S ≤ M◦ and pr2(M◦) ≥ 2. So M◦/O(M) cannot be SL2.
Therefore M is a D-group by Theorem 5.1. Now S is connected by Lemma
1.14.

Lemma 6.3 (compare [BBN06, Claim 5.5]). Let G be an L∗-group of finite
Morley rank and odd type. Suppose that G has a strongly embedded subgroup M
which is a D-group. Then G is a D∗-group.

Proof. Suppose toward a contradiction that G has a proper definable connected
algebraic simple section, and consider a minimal proper definable subgroup K
of G which has such an algebraic section. Then K is not a D-group, so K
is not contained in M and K contains involutions. So after conjugation we
may suppose that M0 := M ∩ K contains an involution. Then M0 is strongly
embedded in K.

If K = M0Ô(K) then K is a D-group. So K > M0Ô(K). We pass to
K̄ = K/Ô(K). Since M0Ô(K) is strongly embedded in K, it follows that M̄0

is strongly embedded in K̄. So replacing K by K̄ we may suppose

Ô(K) = 1

Suppose Z◦(K) > 1. As Ô(K) = 1 and K has odd type, the 2-torsion in
Z◦(K) forms a nontrivial 2-torus T . But K has a strongly embedded subgroup,
so all involutions are conjugate, and hence all involutions of K belong to T ≤
Z(K). It follows easily that T is a Sylow 2-subgroup of K. But then K is a
D-group after all. So we will suppose

Z◦(K) = 1

Now suppose F ◦(K) 6= 1. As Ô(K) = 1, the 2-torsion in F ◦(K) forms a
nontrivial 2-torus T , normalized by the connected group K. So Z◦(K) > 1 and
we have a contradiction. So we now have

F ◦(K) = 1

Thus F (K) is finite and CK(E(K)) = CK(F ∗(K)) = Z(K). In particular
E(K) is nontrivial. Let L be a quasisimple component of E(K). Then Z(L)
is finite, so if L/Z(L) is of degenerate type then L is of degenerate type, hence
L ≤ Ô(K) = 1, a contradiction. So L/Z(L) is algebraic and L is algebraic by
[AC99]. By minimality of K, we have K = L quasisimple and algebraic. But
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then K contains a subgroup of the form SL2 or PSL2, and we may suppose
this group meets M after conjugation. As M is a D-group this intersection is
proper. So, by minimality of K, the group K is itself of the form SL2 or PSL2.

Now if K = SL2 then K ≤ C◦
G(i) for i an involution, and we contradict

strong embedding. Similarly if K = PSL2 then M ∩ K < K contains a Sylow
2-subgroup of K, but, for each involution in M , the corresponding torus is in
M . So M◦ contains K, which is again a contradiction.

Conclusion

We may now deduce our main results.

Theorem 6.4 (K∗ Generation Theorem). Let G be a simple K∗-group of finite
Morley rank and p⊥ type, with mp(G) ≥ 3 and pr2(G) ≥ 2. Let V be an
elementary abelian p-group of p-rank two. Then ΓV = G. In particular Γ0

S,2 = G
for any Sylow p-subgroup S of G.

Proof. Suppose ΓV < G. By Theorem 4.3, N(ΓV ) is strongly embedded in G.
By Theorem 6.1, G is a D∗-group, hence in this context a minimal connected
simple group. By the main result of [BCJ07], a minimal connected simple group
of finite Morley rank and odd type with a proper definable strongly embedded
subgroup has Prüfer 2-rank one. This contradiction proves

ΓV = G

Now by Corollary 4.2 we have also Γ0
S,2 = G for any Sylow 2-subgroup S of

G.

We state the most important case separately.

Corollary 6.5. Let G be a simple K∗-group of finite Morley rank and odd type,
with m2(G) ≥ 3. Let V be an elementary abelian 2-group of 2-rank two. Then
ΓV = G. In particular Γ0

S,2 = G for any Sylow 2-subgroup S of G.

Proof. We have pr2(G) ≥ 2 by Theorem 1.1 and now Theorem 6.4 applies.

We continue the analysis further in the L∗ case.

Theorem 6.6. Let G be a simple L∗-group of finite Morley rank and odd type,
with m2(G) ≥ 3. Let V be an elementary abelian 2-group of 2-rank two with
ΓV < G. Then

1. G is a D∗-group.

2. M := N(ΓV ) is a strongly embedded subgroup of G.

3. The Sylow 2-subgroups of G are connected.

4. G contains a nontrivial unipotent r-subgroup where r is the least prime
divisor of the Weyl group W , which is nontrivial.
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For the final point we define and use the Weyl groups as in [BC08].

Definition 6.7. The Weyl group W of a group G of finite Morley rank is the
abstract group W = N(T )/C◦(T ) where T is a maximal decent torus, which
can be viewed as a group of automorphisms of T .

As all maximal decent tori are conjugate by [Che05], the Weyl group is well
defined up to conjugacy.

Fact 6.8 ([BC08, Theorem 5]). Let G be a connected group of finite Morley
rank. Suppose the Weyl group is nontrivial and has odd order, with r the smallest
prime divisor of its order. Then G contains a unipotent r-subgroup.

Here one might prefer M/M◦ over the Weyl group W . Let T denote a
Sylow 2-subgroup of M . By a Frattini argument, WT := N(T )/C◦(T ) naturally
embeds into W . But |W | > |WT | seems plausible if M is not solvable. In
particular the minimal prime divisor of |W | might be strictly less than that of
|M/M◦|. Of course, one may argue that NM

◦(T )/C◦
M
◦(T ) = 1 because M◦ is

still a D-group. A pair of Frattini arguments then shows that M/M◦ ∼= WT . So
one may prove that M/M◦ is nontrivial using Fact 5.2. However, Fact 6.8 seems
tricky to localize. Fortunately one cares most about such detailed information
when pr2(G) = 2, and 3 is the minimal prime divisor everywhere.

Proof of Theorem 6.6. By Theorem 1.1 we have pr2(G) ≥ 2. By Theorem 4.3,
M := N(ΓV ) is strongly embedded in G. By Theorem 6.1, G is a D∗-group and
the Sylow 2-subgroups of G are connected.

We now turn our attention to the final point. Let T be a maximal 2-torus
of M . By Fact 5.2, M has only one conjugacy class of involutions. So WT :=
N(T )/C◦(T ) is nontrivial. By a Frattini argument using [Che05], WT naturally
embeds into W . Hence W is nontrivial as well. Now |W | has odd order because
T is a Sylow 2-subgroup of G. So the last point follows from Fact 6.8.
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