
LA FUSION LIBRE : LE CAS SIMPLE

MARTIN HILS

Résumé. Nous construisons la fusion libre de deux théories géométriques T1

et T2, au-dessus d’un réduit commun T0 qui est supposé fortement minimal
et ω-catégorique. Si T1 et T2 sont supersimples de rang SU 1 (et sous une
hypothèse supplémentaire qui est satisfaite si les Ti sont stables ou si T0 a une
géométrie triviale), nous montrons que les complétions de la fusion libre sont
supersimples de rang SU au plus ω.

1. Introduction

En variant la méthode d’amalgamation de Fräıssé, Hrushovski a réussi dans
[Hr92] à fusionner deux théories fortement minimales (ayant des langages sont dis-
joints) en une seule. En 1988, il avait déjà emprunté la même méthode d’amalga-
mation pour construire une théorie fortement minimale non-localement modulaire
qui n’interprète pas de groupe infini. Cette théorie est un contre-exemple extrême à
la Conjecture de la trichotomie de Zilber selon laquelle la géométrie d’un ensemble
fortement minimal est triviale ou linéaire si elle ne provient pas d’un corps algé-
briquement clos. Poizat a établi deux étapes pour la méthode de construction par
amalgamation : après la construction d’une structure générique ω-stable de rang
ω (appelée fusion libre dans le cas de la fusion) suit le collapse sur une théorie
fortement minimale.

Hrushovski, dans son article sur la fusion [Hr92], a fait remarquer qu’une fusion
en une théorie fortement minimale devrait également se faire si les deux théories
fortement minimales à fusionner s’intersectaient dans la théorie d’un espace vectoriel
sur un corps fini. Plus généralement, le problème d’une fusion au-dessus d’un sous-
langage se pose, c’est à dire la fusion de deux théories fortement minimales T1

et T2 au-dessus d’une troisième T0 (qui est un réduit commun). Pour des raisons
techniques, il vaut mieux supposer que T0 est ω-catégorique.

Nous avons étudié la fusion libre au-dessus d’un sous-langage dans un travail
en commun avec Assaf Hasson [HH06], sous l’hypothèse supplémentaire que les
multiplicités soient préservées dans l’une des expansions T0 ⊆ Ti (i = 1, 2). La
théorie de la fusion libre qui en résulte est ω-stable avec un unique type de rang ω,
et le collapse est établi sur une théorie fortement minimale dans le cas particulier
où T1 et T2 sont localement modulaires. Baudisch, Martin-Pizarro et Ziegler ont
finalement pu montrer le collapse au-dessus d’un espace vectoriel sur un corps fini
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en toute généralité. Comment on peut, en se servant de ce résultat, obtenir un
collapse pour T0 quelconque, nous l’avons expliqué dans [Hi06].

Si l’on lève l’hypothèse sur les multiplicités, on n’obtient plus systématiquement
une théorie ω-stable en fusionnant librement. En effet, il y a même des exemples
avec T1 et T2 localement modulaires et T0 triviale tel qu’aucune complétion de
T1 ∪ T2 ne soit stable (voir l’Exemple 5.8). Nous montrons néanmoins dans cet
article que l’on peut toujours fusionner librement T1 et T2 au-dessus de T0 en une
théorie supersimple et que cela reste même vrai si nous démarrons dans la catégorie
des théories supersimples (de rang SU 1).

Il s’avère que le bon contexte pour une telle fusion libre (pas forcément stable)
est bien plus général : au niveau de la construction, il suffit de supposer que T1

et T2 soient des théories prégéométriques, et que T0 soit fortement minimale et
modulaire. Pour pouvoir axiomatiser la théorie de la fusion libre obtenue, il nous
faudra mettre quelques gouttes d’uniformité.

L’article est organisé comme suit : d’abord, dans la Section 2, nous rappelons
quelques résultats concernant les théories simples et les théories prégéométriques
(des théories dans lesquelles la clôture algébrique induit une prégéométrie). Puis,
nous construisons la fusion libre de deux théories prégéométriques T1 et T2 au
dessus de leur réduit commun T0 qui est supposé fortement minimal et modulaire
(Section 3), en considérant la théorie Tω des structures riches d’une certaine classe
d’amalgamation. Sous des hypothèses de définissabilité — élimination de ∃∞ dans
T1 et T2 ainsi que ω-catǵoricité de T0 — nous donnons dans la Section 4 une
axiomatisation explicite de Tω, et nous déduisons que la fusion libre ainsi construite
a modèle-théoriquement un sens, car alors tout modèle suffisamment saturé de Tω
est riche. À l’aide des notions d’indépendance présentes dans les théories Ti et de
la notion d’un plongement fort, nous exhibons une notion d’indépendance |̂ ∗ dans
(toute complétion de) Tω.

Dans la Section 5, nous supposons que T1 et T2 soient supersimples de rang
SU égal à 1 (et T0 toujours ω-catégorique). Sous une hypothèse supplémentaire
(satisfaite si les Ti sont stables ou si T0 a une géométrie triviale), nous montrons
que toute complétion de Tω est supersimple de rang SU au plus ω et que |̂ ∗
cöıncide avec la relation de non-déviation. C’est le contenu du Théorème 5.5, l’un
des résultats principaux de l’article. Ensuite, nous étudions les paires magnifiques
de modèles de Tω et nous obtenons comme résultat que toute complétion de Tω a
la propriété faible du non-recouvrement fini (wnfcp).

Enfin, dans la dernière section, nous discutons brièvement comment on peut utili-
ser les mêmes techniques pour étendre la construction d’une courbe générique plane
dans la théorie des corps algébriquement clos [CHKP02] ainsi que la construction
de corps bicolores due à Poizat [Po99, Po01] aux théories supersimples de rang SU
1 et même aux théories (pré-)géométriques.

Je voudrais remercier Bruno Poizat pour son inspiration constante, fruit de sa
curiosité inassouvissable et de sa façon de poser des questions.

2. Préliminaires

Dans ces préliminaires, nous rappelons quelques résultats connus ; la section nous
sert également pour fixer la terminologie ainsi que des notations. Nous utilisons
librement des résultats sur les théories stables. On pourra consulter [Pi96] ou [Sh90].
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Nos notations sont plutôt standard. Nous écrivons AB pour A ∪ B, et A ⊆ω B
signifie que A est un sous-ensemble fini de B. En général, nous ne distinguons pas
la structure M et l’ensemble de base sous-jacent M et écrivons donc M pour les
deux. Par un modèle monstre d’une théorie complète T , nous entendons un modèle
C |= T qui est κ-saturé et fortement κ-homogène pour un cardinal régulier κ très
grand. Quand nous utilisons un tel modèle monstre, tous les modèles considérés
seront des sous-structures élémentaires de C et petits (i.e. de cardinalité < κ), c’est
à dire C sert comme domaine universel pour T . Tout sous-ensemble de C que nous
considérons sera également petit dans ce sens.

2.1. Théories simples. La classe des théorie simples a été introduite par She-
lah dans [Sh80], puis développée par Kim [Ki98] et Kim-Pillay [KP97]. À part le
graphe aléatoire, les premiers exemples naturels sont les corps pseudofinis et les
corps algébriquement clos avec automorphisme générique (voir [Hr02] et [CH99]).

Nous remarquons que des expansions génériques (prédicat générique, automor-
phisme générique) étudiées par Chatzidakis-Pillay [CP98] sont des sources de nou-
velles théories simples et en général instables. Pour une introduction aux théories
simples on peut consulter [Wa00].

Si tp(a/BA) ne dévie pas au-dessus de A, on écrit a |̂
A
B. Par définition, une

théorie (complète) est simple si la relation de non-déviation a un caractère local,
c’est à dire si pour tout ensemble de paramètres B et tout uplet (fini) a il existe
A ⊆ B avec |A| ≤ |T | et a |̂

A
B. Si l’ensemble A en question peut toujours être

choisi fini, on dit que T est supersimple. Toute théorie stable est simple, et une
théorie stable est supersimple si et seulement si elle est superstable. Comme dans
les théories stables, la relation de non-déviation |̂ a de jolies propriétés dans toute
théorie simple. Notamment, elle fournit une notion d’indépendance dans le sens de
la Définition 2.1, satisfaisant au Théorème d’Indépendance au-dessus d’un modèle.

Définition 2.1. Soit T une théorie complète et C un modèle monstre de T . Puis,
soit Γ une collection de triplets (a,B,A) dans C. Si (a,B,A) ∈ Γ, on écrit a |̂ Γ

A
B.

On dit que Γ est une notion d’indépendance si les propriétés suivantes (i)-(vii) sont
satisfaites :

(i) (invariance) Γ est invariante par automorphismes de C.

(ii) (non-trivialité) Pour tout a,B, a |̂ Γ

B
a si et seulement si a ∈ acl(B).

(iii) (caractère local) Pour tout a et B il existe un sous-ensemble A ⊆ B avec
|A| ≤ |T | tel que a |̂ Γ

A
B.

(iv) (caractère fini) a |̂ Γ

A
B si et seulement si a |̂ Γ

A
B0 pour tout B0 ⊆ω B fini.

(v) (extension) Pour tout a,A et B il existe a′ avec tp(a′/A) = tp(a/A) tel que
a′ |̂ Γ

A
B.

(vi) (symétrie) Pour tout a, b et tout A on a a |̂ Γ

A
b ssi b |̂ Γ

A
a.

(vii) (transitivité) Pour tout a,A,B,C on a a |̂ Γ

A
BC ⇐⇒ a |̂ Γ

A
B et a |̂ Γ

AB
C.

Si Γ est une notion d’indépendance, on notera C |̂ Γ

A
B si pour tout c̄ ∈ C fini

on a c̄ |̂ Γ

A
B.

On dit que Γ satisfait au théorème d’indépendance au-dessus d’un modèle si de
plus, on a
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(viii) Pour tout modèle M 4 C, M ⊆ B1, B2 et a1, a2 tels que tp(a1/M) =
tp(a2/M), ai |̂ Γ

M
Bi pour i = 1, 2 et B1 |̂ Γ

M
B2, il existe un uplet a avec

tp(a/Bi) = tp(ai/Bi) (pour i = 1, 2) et a |̂ Γ

M
B1B2.

Le théorème suivant fournit une caractérisation abstraite de l’indépendance dans
une théorie simple, et il s’avère extrêmement utile dans les applications. Il est
souvent préférable de montrer la simplicité d’une théorie donnée en dévinant une
notion d’indépendance Γ et en passant par ce théorème.

Théorème 2.2 (Théorème de Kim-Pillay [KP97] ). Soit T une théorie complète.
Alors, T est simple si et seulement si T admet une notion d’indépendance Γ satis-
faisant au théorème d’indépendance au-dessus d’un modèle.

De plus, si Γ est une telle notion d’indépendance, on a |̂ = |̂ Γ, où |̂ dénote
la relation de non-déviation dans T .

Le rang U de Lascar a son analogue en simplicité, noté SU. On observe que
SU(p) = 0 si et seulement si p est algébrique. Une théorie simple est supersimple si
et seulement si SU(p) <∞ pour tout type réel p en un nombre fini de variables.

2.2. Propriété de n-amalgamation. La propriété de n-amalgamation a ses ori-
gines dans les travaux de Shelah, et elle a été considérée dans un contexte instable
par Hrushovski, en montrant que les corps pseudofinis ont cette propriété pour
tout n. Dans ce qui suit, nous discutons brièvement une variation, la propriété de
n-amalgamation de modèles.

Définition 2.3. Soit T une théorie simple, M |= T un modèle et soit Y un ensemble
fini. Une famille S := (Cw)w∈P(Y ) de sous-ensembles de Meq satisfaisant, pour tout
w ⊆ Y

(i) Cw ⊆ Cw′ pour tout w ⊆ w′ ⊆ Y et

(ii) Cw |̂ S
w′(w Cw′

⋃
w̃+w Cw̃.

est appelée un Y -système indépendant.
On dit que c’est un Y -système indépendant de modèles si en outre Cw = Mw 4 M

pour tout w ⊆ Y .

Dans [Sh90], Shelah appelle les systèmes indépendants des systèmes stables. Or,
comme cette notion nous intéresse aussi dans des théories simples non-stables, ce
terme prêterait à confusion.

Fait 2.4 ([Sh90, XII.2.5]). Soit T une théorie stable, et (Mw)w∈P(Y ) un Y -système
indépendant de modèles. Supposons que w * w̃i, pour i = 1, . . . , r, et posons w′i :=
w̃i ∩ w.

Si, pour une formule ϕ(zw, zw̃1 , . . . , zw̃r ) et des uplets aw ∈Mw, aw̃i ∈Mw̃i pour
i = 1, . . . r, on a |= ϕ(aw, aw̃1 , . . . , aw̃r ), alors il existe a′w′i ∈ Mw′i

(avec a′w′i = aw̃i

si aw̃i ∈Mw′i
) tels que |= ϕ(aw, a′w′1 , . . . , a

′
w′r

). �

Une fois pour toute, on choisit un ordre total ≺ sur P(Y ) tel que w ( w′ implique
w ≺ w′. Puis, si S = (Cw)w∈P(Y ) est un Y -système indépendant, on introduit les
notations suivantes : on pose ASw :=

⋃
w′(w Cw′ et BSw :=

⋃
w′≺w Cw′ .

Fait 2.5 ([Sh90, XII.2.3]). Supposons que S := (Cw)w∈P(Y ) satisfait (i) et, pour
tout w ⊆ Y , la propriété suivante :
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(ii’) Cw |̂
AS

w

BSw.

Alors, S est un Y -système indépendant. �

Lemme 2.6. Soit T une L-théorie stable, T ′ le réduit de T par rapport à L′ ⊆ L.
Puis, soit S := (Mw)w⊆Y un Y -système indépendant de modèles de T . Alors S′ :=
(M ′

w)w⊆Y est un Y -système indépendant de modèles de T ′, où M ′
w := Mw �L′ .

Preuve. Par 2.5, il suffit de montrer que Mw |̂ ′
AS

w

BSw pour tout w, la propriété (i)

étant trivialement satisfaite. Prenons m ∈ Mw et posons p′ := tpL′(m/ASw). Pour
toute L′(∅)-formule ϕ′(x, y) il existe une L′(ASw)-formule χ′(y) telle que pour tout
c on ait |= χ′(c) ssi ϕ′(x, c) est contenue dans une extension non-déviante de p′ à
ASwc. En particulier on a |= χ′(a) pour tout a ∈ ASw avec ϕ′(x, a) ∈ p′.

On raisonne par l’absurde. On trouve donc b ∈ BSw avec |= ¬χ′(b) ∧ ϕ′(m, b).
Donc, par le Fait 2.4, il existe a ∈ ASw avec |= ¬χ′(a) ∧ ϕ′(m, a). Contradiction.

�

Dans la majorité des cas dans la suite, l’ensemble Y sera n := {0, . . . , n − 1}.
Nous notons P−(n) := P(n)\{n}. Pour i = 0, . . . , n−1, ı̂ dénote l’ensemble n\{i}
(un élément de P−(n)). Pour tout w ∈ P−(n), on se donne un ensemble (infini)
de variables xw tel que xw ∩ xw′ = xw∩w′ pour tout w,w′. Si pw(xw) est un type
complet et Cw |= pw, pour w′ ⊆ w, Cw′ est le sous-ensemble de Cw qui correspond
à l’inclusion xw′ ⊆ xw.

Définition 2.7. Soit T simple, et n un entier naturel.

(1) Un problème de n-amalgamation de modèles est la donnée de types complets
pw(xw) pour w ∈ P−(n) tels que pour tout i ∈ n et tout Mı̂ |= pı̂ on ait :

(Mw)w⊆ı̂ est un ı̂-système indépendant de modèles.

(2) Une solution à un tel problème est la donnée d’un uplet de variables xn

(contenant
⋃n−1
i=0 xı̂) et un type complet pn(xn) tel que pn(xn) ` pı̂(xı̂) pour

tout i et si M̃n |= pn, alors (M̃w)w∈P(n) est un n-système indépendant de
modèles.

(3) On dit que la théorie T a la propriété de n-amalgamation de modèles, si
tout problème de n-amalgamation de modèles (dans T ) admet une solution.

Le fait suivant est bien connu. Les deux parties se montrent simultanément par
induction sur n et ≺, en utilisant 2.4 et 2.5.

Fait 2.8. Soit T stable, et (pw(xw))w∈P−(n) un problème de n-amalgamation de
modèles de T . Alors

(1) Il existe une solution pn(xn) à ce problème.

(2) Cette solution est unique dans le sens suivant : si p′n(x′n) est une deuxième
solution, alors pn �S

xı̂
= p′n �S

xı̂
. �

2.3. Théories prégéométriques. Dans cette section, nous donnons des faits ba-
siques sur les théories (pré-)géométriques (voir la Définition 2.12).

Définition 2.9. Une prégéométrie (combinatoire) est la donnée d’un ensemble X
et d’un opérateur de clôture cl(·) : P(X) → P(X) satisfaisant, pour tout A,B ⊆ X
et pour tout a, b ∈ X (où a et b sont des éléments) :
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(i) (monotonie) A ⊆ cl(A). De plus, A ⊆ B ⇒ cl(A) ⊆ cl(B).
(ii) (transitivité) cl(cl(A)) = cl(A).
(iii) (caractère fini) Si a ∈ cl(A), il existe un sous-ensemble A0 ⊆ A fini tel que
a ∈ cl(A0).

(iv) (propriété d’échange de Steinitz ) Si a ∈ cl(A∪ {b}) \ cl(A), alors b ∈ cl(A∪
{a}).

Les ensembles de la forme A = cl(A) sont appelés clos.

Pour A ⊆ X, on peut localiser (X, cl) à A pour obtenir la prégéométrie (X, clA)
où clA(B) := cl(A ∪B) pour tout B ⊆ X.

Remarque 2.10. Soit (X, cl) une prégéométrie. On dit que l’ensemble B ⊆ X est
indépendant au-dessus de A si b 6∈ clA(B \ {b}) pour tout b ∈ B. On dit que B
est une base pour C ⊇ B au-dessus de A si B est indépendant au-dessus de A et
C ⊆ clA(B).

Par la propriété d’échange de Steinitz, de telles bases existent (tout sous-ensemble
de C qui est indépendant au-dessus de A et maximal avec cette propriété est une
base de C au-dessus de A), et deux bases ont la même cardinalité. Cette cardinalité
est appelée la dimension de C au-dessus de A et notée dim(C/A).

Enfin, on dit que C est indépendant de D au-dessus de A, si dim(C0/A) =
dim(C0/A ∪D) pour tout sous-ensemble fini C0 de C.

Soit (X, cl) une prégéométrie.
– (X, cl) est triviale, si cl(A) =

⋃
a∈A cl({a}) pour tout ∅ 6= A ⊆ X.

– (X, cl) est modulaire, si pour tous ensembles clos A,B ⊆ X, A est indépendant
de B au-dessus de A ∩ B. De manière équivalente, pour tous ensembles clos
A,B de dimension finie, dim(AB) = dim(A) + dim(B)− dim(A ∩B).

– (X, cl) est localement finie si cl(A) est fini pour tout A ⊆ω X.
Notons qu’une prégéométrie triviale est modulaire.

Fait 2.11. Soit (X, cl) une prégéométrie modulaire. Alors, le treillis des sous-
ensembles clos de X est modulaire. Cela signifie : Si C et A ⊆ B sont des ensembles
clos, alors cl(A(B ∩ C)) = B ∩ cl(AC).

Une théorie T élimine le quanteur ∃∞ si pour toute formule ϕ(x, z) il existe une
formule θ(z) telle que T ` ∃∞xϕ(x, z) ↔ θ(z). C’est équivalent à l’existence d’un
entier nϕ satisfaisant, dans tout M |= T : si pour b ∈ M , la formule ϕ(x, b) a plus
de nϕ solutions dans M , alors ϕ(x, b) a une infinité de solutions dans M .

Définition 2.12. – Une théorie complète T est appelée prégéométrique si dans
tout M |= T , la clôture algébrique satisfait à la propriété d’échange de Steinitz.

– Si de plus T élimine ∃∞, on dit que T est géométrique.
– On dit que la structure M est (pré-)géométrique si Th(M) l’est.

Nous avons emprunté la notion d’une théorie prégéométrique de [Ga05], où l’on
peut aussi trouver quelques propriétés de base de ces théories.

Notons que dans toute structure M , l’opérateur acl(−) est monotone, transitif
et de caractère fini. Il induit donc une prégéométrie sur M précisément s’il satisfait
à la propriété d’échange de Steinitz.

Exemples 2.13. (1) Toute théorie fortement minimale (avec dim(A/B) =
RM(A/B) pour tout A fini), plus généralement toute théorie supersimple
de rang SU 1 est géométrique, et on a dim(A/B) = SU(A/B) (si A est
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fini) dans une telle théorie. La propriété d’échange pour ces théories est
une conséquence des inégalités de Lascar ; quant à l’élimination de ∃∞, voir
[Hr98, Lemma 4.2].

(2) La théorie des corps réel-clos, plus généralement toute expansion o-minimale
de Th(Q, <) est géométrique [vdD98].

(3) Qp (le corps des p-adiques) est géométrique. Plus généralement, toute théo-
rie p-minimale est géométrique [HM97].

(4) Si T est géométrique et TP la théorie qu’on obtient en ajoutant un prédicat
aléatoire à T , alors toute complétion de TP est géométrique [CP98].

Un exemple d’une théorie prégéométrique qui n’est pas géométrique est la théorie
d’une relation d’équivalence avec exactement une classe à n éléments, pour tout
n ∈ N. Cette théorie est ω-stable de rang de Morley (et de Lascar) égal à 2.

Définition 2.14. Soit T une théorie prégéométrique et dim la notion de dimension
par rapport à la prégéométrie induite par acl.

– Pour p ∈ Sn(A) on pose dim(p) := dim(a/A), où a |= p.
– Si π(x0, . . . , xn−1) est un type partiel (à paramètres dansA), on pose dim(π) :=

max{dim(p) |π ⊆ p ∈ Sn(A)}.

Soit π(x0, . . . , xn−1) un type partiel. Par induction sur n, on montre

(1) dim(π(x0, . . . , xn−1)) = n ⇐⇒ |= ∃∞x0 . . .∃∞xn−1π(x).

Plus généralement pour r ∈ N quelconque on a dim(π(x0, . . . , xn−1) ≥ r si et
seulement s’il existe un sous-ensemble I ⊆ n de cardinalité r tel que la projection
de π(x) sur les coordonnées xI (donnée par ∃xn\Iϕ(x)) soit de rang r.

Notre définition de dim(π) ne dépend donc pas de l’ensemble de paramètres A
considéré, et l’existence de points génériques en découle (si π est définit sur B, alors
il existe a |= π avec dim(a/B) = dim(π) : on dit qu’un tel uplet a est générique
dans π au-dessus de B). En particulier, si p ∈ S(B) et B ⊆ A, il existe q ∈ S(A)
étendant p avec dim(q) = dim(p). (Un tel q est appelé une extension libre de p.)
Notons également que dim(π(x)) est égal au minimum des dim(ϕ(x)) quand ϕ(x)
parcours les formules dans π(x).

À l’aide de la caractérisation de dim(π(x)) ≥ r donnée ci-dessus, on établit les
résultats suivants :

Fait 2.15. Soit T une L-théorie prégéométrique et T ′ = T � L′ un réduit (pour
L′ ⊆ L). Alors on a :

(a) T ′ est prégéométrique (géométrique si T est géométrique).

(b) Si π′ est un L′-type partiel, alors dimT (π′) = dimT ′(π′).

Preuve. Nous donnons l’argument pour la première partie de (a), car il semble
que ce fait — quoiqu’il admette une preuve élémentaire — n’est pas très connu.
Soit donc T une L-théorie prégéométrique et T ′ = T � L′ un réduit. Soit C un
ensemble de paramètres et a, b des singletons avec a ∈ aclT ′(Cb) \ aclT ′(C). Il faut
montrer que b ∈ aclT ′(Ca). Soit p′(x, y) := tpL′(a, b/C). On déduit des hypothèses
que T ′ 6|= ∃∞y∃∞xp′(x, y), en particulier T 6|= ∃∞y∃∞xp′(x, y). Comme T est
prégéométrique, on a donc T 6|= ∃∞x∃∞yp′(x, y) et enfin T ′ 6|= ∃∞x∃∞yp′(x, y),
c’est à dire b ∈ aclT ′(Ca).
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Autrement dit : une théorie est prégéométrique si et seulement si les quanteurs
∃∞x et ∃∞y commutent, et cette dernière propriété est préservée dans des réduits.

�

Fait 2.16. Soit T une théorie géométrique. Alors, la dimension est définissable
dans T , c’est à dire pour toute formule ϕ(x, z) et tout entier r il existe une formule
θ(z) telle que dim(ϕ(x, b)) = r si et seulement si |= θ(b). �

Définition 2.17. Soit T une théorie prégéométrique et soit p = tp(a/B) ∈ S(B)
un type donné, a = (a0, . . . , an−1). Pour I, J ⊆ n on pose kI/J := dim(aI/aJB).

Soit ϕ(x, z) une formule telle que ϕ(x, b) soit dans p. On dit que ϕ(x, z) est
rang-complète par rapport à p si les conditions suivantes sont satisfaites :

– Si ϕ(x, b
′
) 6= ∅, alors dim(ϕ(x, b

′
)) = dim(a/B).

– |= ϕ(a′, b
′
) implique dim(a′I/a

′
Jb
′
) ≤ kI/J pour tout I, J ⊆ n.

Notons que si |= ϕ(a′, b
′
) et dim(a′/b

′
) = dim(a/b), alors dim(a′I/a

′
Jb
′
) = kI/J

pour tout I, J ⊆ n.
La formule ϕ(x, z) est dite rang-complète s’il existe b et un type p tels que ϕ(x, b)

soit rang-complète par rapport à p.

Lemme 2.18. Soit T une théorie géométrique et soit p = tp(a/B) ∈ S(B) un type
donné. Alors, p contient une formule ϕ(x, b) telle que ϕ(x, z) soit rang-complète par
rapport à p. Plus précisément, ces formules sont cofinales dans p. �

Notons que, par définition, si ϕ(x, b) est rang-complète par rapport à p ∈ S(b),
alors p est générique dans ϕ(x, b).

Notation. Si T est une théorie prégéométrique, nous notons A |̂ alg
B

C le fait
que A et C sont algébriquement indépendant au-dessus de B, c’est à dire que
dim(A0/BC) = dim(A0/B) pour tout A0 ⊆ω A.

Fait 2.19. Dans toute théorie prégéométrique, |̂ alg définit une notion d’indépen-
dance au sens de la Définition 2.1. �

Notons que si |̂ alg est égal à la relation de non-déviation, alors T est supersimple
de rang SU égal à 1.

3. Fusion libre de théories prégéométriques

Dans cette section, nous montrons comment on peut fusionner librement deux
théories prégéométriques, au-dessus d’une théorie fortement minimale et modulaire,
en utilisant la méthode d’amalgamation de Hrushovski. Nous définissons la classe
des fusions (C̃0,≤) (avec une notion de plongement fort ≤), et nous mettons en
place les outils de base pour le travail dans cette classe.

Il est utile d’introduire plusieurs notions de clôtures (ce que nous faisons), dont
chacune aura sa place dans la suite.

Puis, nous montrons l’existence des amalgames libres dans (C̃0,≤), c’est à dire
dans la classe des fusions avec les plongements forts comme plongements. En par-
ticulier, il s’en suit que (C̃0,≤) a la propriété d’amalgamation. Quitte à choisir une
composante connexe de cette classe, cela permet de construire des structures riches
(pour la sous-classe des fusions finiment engendrées (C0,≤)), dans la Proposition
3.19.
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D’abord, nous indiquons le contexte dans lequel nous travaillons, et nous fixons
quelques notations.

On considère des théories complètes T1 et T2, dans des langages L1 et L2, res-
pectivement, ayant un réduit commun T0 := T1 �L0 = T2 �L0, où L0 := L1 ∩ L2.
On suppose :

– Pour i = 1, 2, la théorie Ti est prégéométrique, c’est à dire l’opérateur de
clôture algébrique induit une prégéométrie dans tout modèle de Ti.

– T0 est fortement minimale et modulaire.
Nous écrivons di pour dimTi , et |̂ i pour |̂ alg par rapport à la théorie Ti. Enfin,

acli dénote la clôture algébrique au sens de Ti.
Pour simplifier l’exposition, on supposera que :

Hypothèses 3.1 (Hypothèses sur les langages dans la fusion).
– Pour i = 0, 1, 2, la théorie Ti élimine les quanteurs dans le langage Li, et Li

ne contient pas de symboles de fonctions.
– acli(∅) est infini pour i = 1, 2 .
– Les langages Li sont dénombrables.

Quitte à passer à des morleyisées et quitte à remplacer les fonctions par leurs
graphes, on peut toujours supposer le premier point. Pour satisfaire à la seconde
condition, il suffit d’ajouter — au besoin — des constantes aux langages L1 et L2.

Nous appelons (T0, T1, T2) un contexte de fusion, si T0, T1 et T2 satisfont à toutes
les hypothèses ci-dessus.

3.1. Construction. Afin de fusionner (librement) T1 et T2 au-dessus de T0, nous
procédons comme dans [HH06], l’inspiration originale étant bien sûr [Hr92]. Pour
L := L1 ∪ L2 on définit C̃ comme la classe des L-structures M |= T ∀1 ∪ T ∀2 avec
M = acl1(M) = acl2(M). Comme T1 et T2 éliminent les quanteurs, cette définition
a un sens.

Par convention, toutes les Li-formules considérées seront sans quanteurs (c’est à
dire chaque Li-formule qui apparâıt est remplacée par une Li-formule sans quan-
teurs qui lui est équivalente modulo Ti).

Remarque 3.2. Si M ∈ C̃, alors M |= T0.

Preuve. Soit M ∈ C̃. Comme M est acl1-clos (donc infini par 3.1), en particulier,
M est acl0-clos et infini. Or, on sait que tout ensemble infini algébriquement clos
dans une théorie fortement minimale est un modèle. �

Pour A ⊆M ∈ C̃ on définit 〈A〉 comme le plus petit sous-ensemble de M conte-
nant A qui est algébriquement clos au sens de T1 et T2. D’une manière équivalente,
〈·〉 correspond à la clôture transitive des opérateurs acl1 et acl2. On dit que M est
finiment engendrée (dans le sens de 〈·〉), si M = 〈b〉 pour un uplet b ∈M fini. Soit
C la classe des structures dans C̃ qui sont finiment engendrées.

Définition 3.3. Soient M ∈ C̃, et A,B ⊆M avec d0(A) fini.

(1) δ(A) := d1(A) + d2(A)− d0(A), la prédimension de A.

(2) δ(A/B) := d1(A/B) + d2(A/B)− d0(A/B).

(3) C̃0 := {M ∈ C̃ | δ(A) ≥ 0 ∀A ⊆ω M}, C0 := C̃0 ∩ C . Les structures dans C̃0

seront appelées fusions.
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(4) Si M ∈ C̃0, dM (A) := min{δ(Ã) | A ⊆ Ã ⊆ω M} , la dimension de A
dans M . De manière analogue, on définit la dimension relative dM (A/B) :
min{dM (AB0)− dM (B0) | B0 ⊆ω B}.

(5) Pour M ∈ C0, on pose δ(M) := min{δ(A) | A ⊆ω M et 〈A〉 = M}. De plus,
si M est finiment engendrée au-dessus de A ⊆M , on peut définir δ(M/A).

(6) Soient C ⊆ B deux sous-ensembles acl0-clos d’une structure dans C̃. Alors,
on pose C ≤ B (C est autosuffisant ou fort dans B) si pour tout uplet fini
b de B on a δ(b/C) ≥ 0.

En général, les fusions sont dénotées par K,L etc., tandis que k, l etc. sont réser-
vées pour des fusions finiment engendrées (i.e. les structures dans C0). Remarquons
que δ(A/B) = δ(AB)− δ(B) si d0(B) est fini.

Il est commode d’étendre la notion d’un sous-ensemble autosuffisant aux sous-
ensembles arbitraires C ⊆ B ⊆ K ∈ C̃0. On pose C ≤ B ssi acl0(C) ≤ acl0(B).
Contrairement au cas où B est acl0-clos, cette notion peut dépendre du plongement
particulier de B dans K.

Par définition, on a C̃0 = {M ∈ C̃ | ∅ ≤ M}. Notons également que δ(A) =
δ(acl0(A)).

Remarque 3.4. Si T0 est ω-catégorique, alors C̃0 est une classe élémentaire.

Preuve. Soient ϕi(x) des Li(∅)-formules, pour i = 1, 2, avec dim(ϕi(x)) = mi. Pour
une telle paire on met l’axiome suivant — une condition définissable car T0 est
ω-categorique :

∀x{[ϕ1(x) ∧ ϕ2(x)] → [d0(x) ≤ m1 +m2]}.
�

Définition 3.5. Soit K ∈ C̃0 une fusion et A ⊆ K. On dit que A contrôle K si
〈A〉 = K et A ≤ K. Si B ⊆ K, on dit que A contrôle K au-dessus de B si AB
contrôle K.

On observe que pour A fini on a δ(〈A〉) ≤ δ(A), avec égalité si et seulement si
〈A〉 est contrôlé par A.

Dans le lemme suivant, nous rassemblons les propriétés de base de la prédimen-
sion et de la notion de l’autosuffisance. Ces résultats seront utilisés constamment
dans la suite, la plupart du temps sans référence.

Lemme 3.6 ([HH06, Lemma 3.1]). 1 Soit K ∈ C̃, contenant tous les ensembles et
uplets qui apparaissent dans les énoncés suivants.

(1) (sous-modularité) Soit A ⊆ B. Alors, δ(c/ acl0(Ac) ∩ acl0(B)) ≥ δ(c/B).
En particulier, si B ≤ C et D ⊆ C sont des ensembles acl0-clos, alors
D ∩B ≤ D.

(2) (transitivité) Si A ≤ B et B ≤ C, alors A ≤ C.

1Notre énoncé est plus général que celui montré dans [HH06]. Or, chaque fois que nous citons ce
papier, il est sous-entendu que la même preuve donne le résultat dans notre contexte plus général.
Concernant les notations, il y a une différence considérable avec [HH06], où sont empruntés des
notations qui pouvaient parfois prêter à confusion. Ainsi, nous écrivons cl0(A), clω(A) et cld(A),

parfois avec un superscript K, pour les ensembles notés A, cl(A) et clgeom(A), respectivement,
dans [HH06].
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(3) (continuité) Si (Ai)i∈I est un système filtré de sous-ensembles de C (c’est
à dire pour tout i, j ∈ I il existe k ∈ I avec Ai ∪ Aj ⊆ Ak) tel que Ai ≤ C
pour tout i, alors

⋃
i∈I Ai ≤ C.

(4) Soient A1, A2 ≤ B des sous-ensembles forts et acl0-clos de B. Alors A1 ∩
A2 ≤ B.

Si on suppose en outre que K ∈ C̃0, alors :

(5) Pour tout A ⊆ K il existe un unique ensemble clK0 (A) qui est minimal
parmi les ensembles A′ ayant les propriétés suivantes : A′ ⊇ A, A′ ≤ K et
A′ = acl0(A′). Si d0(A) est fini, alors d0(clK0 (A)) est fini aussi. De plus,
on a dK(A) = δ(clK0 (A)).

(6) Soient A ⊆ B ⊆ C finis. Alors, on a dK(C/A) = dK(C/B) + dK(B/A),
dK(B/A) ≤ dK(C/A) et dK(C/A) ≥ dK(C/B).

(7) dK(a/B) ∈ {0, 1} pour tout singleton a, et l’opérateur de clôture géo-
métrique (aussi appelée d-clôture) clKd (B) := {a ∈ K | dK(a/B) = 0}
définit une prégéométrie. �

Nous introduisons encore un autre opérateur de clôture pour lequel on réserve le
terme de clôture autosuffisante.

Définition 3.7. Soit K une fusion et A ⊆ K. Alors on pose clKω (A) := 〈clK0 (A)〉,
la clôture autosuffisante de A (dans K).

Notons que la clôture autosuffisante de A est égale à la plus petite fusion conte-
nant A qui est contenue dans K de manière autosuffisante.

Dans la suite, on écrira d, cl0 et clω au lieu de dK , clK0 et clKω , si l’on ne risque pas
d’ambigüıté. (Cet usage est justifié par 3.8 ci-dessous.) On observe que acl0(A) ⊆
cl0(A) ⊆ clω(A) ⊆ cld(A).

Puisque cld donne lieu à une prégéometrie, il y a une notion de dimension asso-
ciée. Clairement, cette dimension est égale à la dimension d déjà définie pour les
ensembles finis. Nous étendons donc la définition de d, et à partir de maintenant,
d(A/B) dénote la dimension (au sens de la prégéométrie) pour des ensembles A et
B arbitraires.

Remarque 3.8. Soient K ≤ L des fusions et A ⊆ K. Alors, dK(A) = dL(A),
clK0 (A) = clL0 (A) et clKω (A) = clLω(A).

Preuve. Par transitivité de ≤ et 3.6(4), clK0 (A) = clL0 (A). Le résultat sur clω en
découle. Puis, dK(A) = δ(clK0 (A)) = δ(clL0 (A)) = dL(A), par 3.6(5). �

Voilà un lemme facile que nous utiliserons très souvent :

Lemme 3.9. Soit B ≤ K.

(1) Soit A ⊆ω K avec δ(A/B) ≤ 0. Alors, δ(A/B) = 0 et AB ≤ K.

(2) Pour tout uplet a ∈ acl1(B), on a d2(a/B) = d0(a/B), δ(a/B) = 0 et
Ba ≤ K. En particulier, acli(B) ≤ K pour i = 1, 2 et 〈B〉 ≤ K.

Preuve. Soit A ⊆ω K avec δ(A/B) ≤ 0. Alors, δ(A/B) = 0 suit du fait que
δ(A′/B) ≥ 0 pour tout A′ ⊆ω K par la définition de l’autosuffisance. Puis, soit
C ⊆ω K arbitraire. Donc, 0 ≤ δ(AC/B) = δ(C/AB) + δ(A/B) = δ(C/AB), d’où
AB ≤ K, et (1) est montré.
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La deuxième partie suit de la première, par induction et continuité. Il suffit de
noter que pour toute expansion de théories prégéométriques T ′ ⊆ T et a,B ⊆M |=
T , on a d(a/B) ≤ d′(a/B). �

Lemme 3.10. Soit K ∈ C̃. Supposons que pour i = 1, 2, des Li-types pi(xI) ∈
SI(K) soient donnés, avec p0 := p1 � L0 = p2 � L0 . Alors il existe une extension
L ∈ C̃ de K et A ⊆ L tel que A |= p1 ∪ p2 et L est contrôlée par A au-dessus de K.

Preuve. Par le lemme de consistance de Robinson, il existe A avec KA |= T ∀1 ∪ T ∀2
et A |= p1 ∪ p2.

(∗): Pour tout B |= T ∀1 ∪ T ∀2 il y a un L ∈ C̃ contrôlé par B.
Il suffit de montrer (∗), ce que nous faisons maintenant.
On choisit des Li-plongements ιi : B ⊆ Mi |= Ti (i = 1, 2), où les Mi sont

suffisamment saturés. Quitte à choisir un L0(B)-isomorphisme de acl0(ι1(B)) avec
acl0(ι2(B)), on peut supposer que B = acl0(B). Si B n’est pas acl1-clos, on choisit
b′ dans M1 avec b′ ∈ acl1(B)\B (nous supposons que les ιi sont des inclusions). On
pose B′ := acl0(Bb′), et on fait de B′ un T ∀2 -modèle (une L2-extension de B) en
exigeant que d2(b′/B) = 1. Pour cela, il suffit de choisir un élément b′′ ∈ M2 avec
b′′ 6∈ acl2(B) ; l’application qui envoie b′ sur b′′ s’étend en un L0(B)-isomorphisme
B′ ' B′′ := acl0(Bb′′). En utilisant cette application, on peut équiper B′ d’une
L-structure telle que B′ |= T ∀1 ∪ T ∀2 . Tout uplet a de B′ qui n’est pas entièrement
contenu dans B, est interalgébrique (au sens de L0) au-dessus de B avec b′, et donc
δ(a/B) = δ(b′/B) = 0 + 1− 1 = 0. On en déduit que B ≤ B′.

Maintenant, on continue avec B′ au lieu de B. Posons B0 := B et B1 := B′.
Si B1 n’est pas acl1-clos, on choisit b′ ∈ acli(B1) \ B1, et comme avant on trouve
B1 ≤ B2 = acl0(B1b

′) |= T ∀1 ∪ T ∀2 . Ainsi, prenant la réunion pour les ordinaux
limites, on obtient une suite croissante (Bβ)β de modèles de T ∀1 ∪ T ∀2 , avec Bβ ⊆
acl1(B) pour tout β. Il est clair que cette châıne s’arrête, et il existe donc α tel que
Bα = acl1(Bα). Par transitivité et continuité de l’autosuffisance, B = B0 ≤ Bα.

Posons B1 := Bα. En échangeant les rôles de L1 et L2, on obtient, à l’aide d’une
deuxième châıne, une structure B1 ≤ B2 |= T ∀1 ∪ T ∀2 telle que B2 = acl2(B1). On
continue en alternant L1 et L2 et on obtient donc B ≤ B1 ≤ B2 ≤ . . . ≤ Bn ≤ . . .
tels que B2m+1 = acl1(B2m) et B2m+2 = acl2(B2m+1) pour tout m ∈ N. Soit
L :=

⋃
n<ω B

n. Alors, par construction, on a L = 〈B〉 et B ≤ L, c’est à dire L est
contrôlée par B. �

Définition 3.11. Soient K ⊆ L,M trois structures dans C̃ (nous continuons à
écrire des inclusions au lieu de plongements). On dit que N ∈ C̃ contenant L et
M est un amalgame libre de L et M au-dessus de K s’il satisfait aux conditions
suivantes :

(α) M |̂ i
K
L, pour i = 0, 1, 2 et

(β) N est contrôlée par ML.

Par abus du langage, on écrit N = M ⊗K L si N est un amalgame libre de M
et L au-dessus de K, même si on n’a pas l’unicité de l’amalgame libre.

Lemme 3.12. Dans la classe C̃, les amalgames libres existent.

Preuve. Soit K ⊆ L,M trois structures dans C̃. Notons d’abord que si A |̂ i
B
C

pour un B = acli(B), alors acli(AB) ∩ acli(BC) = B, et donc A |̂ 0

B
C aussi, car

T0 est modulaire.
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Pour i = 1, 2, on choisit une extension libre pi(xI) de tpi(L/K) à M . Par le
paragraphe précédent, pi(xI)�L0 ne dévie pas au-dessus de K au sens de la théorie
T0, et donc p1 �L0 = p2 �L0 , car tp0(L/K) est stationnaire (K étant un modèle de
T0 par 3.2).

Pour terminer, il suffit d’appliquer le Lemme 3.10 à p1 et p2 au-dessus de M . �

En fait, la preuve qu’on vient de donner montre un résultat plus fort :

Remarque 3.13. Soient K ⊆ L,M des structures dans C̃. On pose pi(xI) :=
tpi(L/K). Puis, pour i = 1, 2, soit p̃i une extension libre de pi à M . Alors, il y a
un amalgame libre N = L⊗KM tel que, considérant L et M comme sous-structures
de N , on a tpi(L/M) = p̃i pour i = 1, 2. �

Notation. Soit K une fusion, et B,A,C ⊆ K. Alors on pose A |̂ d

B
C si d(A0/B) =

d(A0/BC) pour tout A0 ⊆ω A, et nous dirons que A et C sont d-indépendants au-
dessus de B.

Ici, nous utilisons d = dK , et nous devrions donc également noter quelque part
le fait que |̂ d dépend (a priori) de K. Cependant, si nous passons de K à K ′ ≥ K,
la signification de |̂ d ne change pas, par 3.8.

Lemme 3.14 ([HH06, Lemma 3.11]). Soient K1,K2 deux fusions qui sont forte-
ment plongées dans K. On pose K0 := K1 ∩K2 et L := 〈K1K2〉. Sont équivalents :

(1) K1 |̂ d

K0
K2

(2) L est isomorphe à un amalgame libre K1⊗K0K2 et L est autosuffisant dans
K.

(3) K1 |̂ i
K0
K2 (i = 1, 2) et K1K2 ≤ K. �

Lemme 3.15 (Lemme d’amalgamation asymétrique,[HH06, Lemma 3.13]). Soient
K,L,M ∈ C̃0 avec K ≤ L et K ⊆ M . Alors, M est autosuffisant dans tout amal-
game libre N := L⊗K M , et N est dans C̃0. �

On combine les Lemmes 3.12 et 3.15 pour obtenir :

Corollaire 3.16. La classe (C̃0,≤) a la propriété d’amalgamation (AP). �

Remarque 3.17. Si on remplace C̃0 par la classe des L-structures acl0-closes M |=
T ∀1 ∪ T ∀2 satisfaisant δ(a) ≥ 0 pour tout a ∈ M fini, on peut perdre la propriété
d’amalgamation. Il y a même de tels exemples avec T1 et T2 fortement minimales
triviales (cf. 5.8(1)).

Définition 3.18. On dit que M ∈ C̃0 est riche si pour tout k ≤ l dans C0, et tout
plongement fort k ≤M il existe un k-plongement fort de l dans M .

La classe (C̃0,≤) a la propriété d’amalgamation, et par le Lemme 3.15, on peut
plonger deux fusions K,L fortement dans une même fusion M ssi on peut établir
un L-isomorphisme entre 〈∅〉K et 〈∅〉L. Donc, (C̃0,≤) n’est pas toujours connexe,
les composantes connexes étant données par les L-types d’isomorphisme de fusions
∅-engendrées.

Cela a pour conséquence que deux fusions riches dans C̃0 n’ont pas forcément la
même théorie élémentaire. Néanmoins, on a le résultat suivant :
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Proposition 3.19. Dans chaque composante connexe de (C̃0,≤), il existe des
structures riches, et cela en cardinalité ≤ 2ℵ0 . Deux fusions riches sont L∞,ω-
équivalentes ssi elles se trouvent dans la même composante connexe de (C̃0,≤).

Preuve. La classe C0 contient au plus 2ℵ0 structures à L-isomorphisme près, de
même la classe C0(k0) := {k0 ≤ l | l ∈ C0} des L-structures dans C0 au-dessus d’un
certain k0 ∈ C0 (à k0-isomorphisme près). On obtient une fusion riche contenant
fortement une fusion M0 ∈ C̃0 en utilisant une construction à la Fräıssé-Hrushovski,
à l’aide d’une induction transfinie.

Pour M0 ∈ C̃0 de cardinalité au plus 2ℵ0 , on construit M0 ≤ M1 avec les pro-
priétés suivantes :

(1) M1 ∈ C̃0 et card(M1) ≤ 2ℵ0 ,

(2) Pour tout k ≤ l ∈ C0 et tout plongement fort ι : k
≤
↪→ M0 il existe un

k-plongement fort de l dans M1 étendant ι.

On énumère l’ensemble des problèmes d’amalgamation ι : k
≤
↪→ M0, k ∈ C0 et

k ≤ l ∈ C0(k) qui apparaissent dans (2), via (ιβ , kβ ≤ lβ)β<α. Il est facile de voir
que α ≤ 2ℵ0 .

Pour obtenir M1, nous construisons une châıne (Nβ ,≤)β<α dans C̃0, avec N0 :=
M0, card(Nβ) ≤ 2ℵ0 pour tout β et telle que (ιβ , kβ ≤ lβ)β<α est résolu au niveau

Nβ+1, c’est à dire on peut plonger fortement lβ dans Nβ+1 au-dessus de ιβ : kβ
≤
↪→

M0 ≤ Nβ .
Si λ < α est un ordinal limite, on pose Nλ :=

⋃
γ<λNγ , et pour β = γ + 1 < α

il suffit de prendre un amalgame libre Nβ = Nγ ⊗kγ lγ , par le Corollaire 3.16. On
pose M1 :=

⋃
β<αNβ .

Pour obtenir une fusion riche M (contenant fortement M0 et avec card(M) ≤
2ℵ0), il suffit de répéter cette construction en remplaçant M0 par M1. Ainsi, on
obtient une châıne (Mi,≤)i<ω. Montrons que M :=

⋃
i<ωMi est riche. Pour cela,

il suffit de noter que l’image de tout plongement fort ι d’un k ∈ C0 est contenue
dans l’un des Mi (car k est finiment engendrée), et tout problème d’amalgamation
au-dessus de ι est alors résolu dans Mi+1, et a fortiori dans M aussi.

Le fait que deux structures riches de la même composante connexe sont L∞,ω-
équivalentes est vrai plus ou moins par définition de la richesse. Il suffit de noter
que si ki = clω(ki) ≤ Mi (où Mi est riche pour i = 1, 2), f : k1

∼= k2 et a1 ∈ M1,
alors k1 ≤ l1 := clM1

ω (k1a1) ∈ C0. Comme M2 est riche, on trouve donc une copie l2
de l1 avec l2 ≤M2, et telle qu’il existe un isomorphime f̃ : l1 ∼= l2 étendant f . �

Le lemme suivant est rassurant :

Lemme 3.20. Soit M une fusion riche. Alors M |= T1 ∪ T2.

Preuve. Par symétrie, il suffit de voir que M |= T1. Considérons M comme sous-
ensemble (acl1-clos) de M1 |= T1, et soit ϕ(x, y) une L1-formule et b ∈ M tel que
M1 |= ∃xϕ(x, b). Par le test de Tarski, il suffit de trouver a ∈M avec M1 |= ϕ(a, b)
pour pouvoir conclure que M 4L1 M1.

Posons k := clMω (b), et choisissons p1(x) ∈ ST1(k) contenant ϕ(x, b). Si p1 est
réalisé dans k = acl1(k), on a rien à faire (car k ⊆ M). Sinon, nécessairement
d1(p1) = 1, et a fortiori p1 �L0 est le type T0-générique au-dessus de k. On choisit
p2(x) ∈ ST2(k) avec d2(p2) = 1 (par conséquent, p2 �L0 est le type générique, aussi).
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On applique le Lemme 3.10 à (p1, p2) pour obtenir a′ |= p1 ∪ p2 avec ka′ ≤
〈ka′〉 =: l. Clairement, k ≤ acl0(ka′) ≤ l ∈ C0. Comme M est riche, on peut k-
plonger l (fortement) dans M . L’image a de a′ par ce plongement est la solution de
ϕ(x, b) cherchée. �

3.2. Décomposition des extensions finiment engendrées. Dans cette sec-
tion, nous expliquons comment on peut décomposer des extensions autosuffisantes
de structures dans C̃0 en des extensions “élémentaires”. Pour cela, nous suivons
entièrement [HH06, Section 4].

Nous travaillons à l’intérieur d’une fusion riche K∗. Les notions cl0, d etc. seront
par rapport à K∗.

Définition 3.21. Soit K ≤ L une extension dans C̃0, avec L ≤ K∗. On dit que
cette extension est

– finiment engendrée si L = 〈Ka〉 pour un uplet a fini,
– générique si L = 〈Ka〉 pour un singleton a avec d(a/K) = 1,
– parasite si elle est finiment engendrée et δ(L/K) = 0,
– primitive si elle est parasite, propre et il n’y a pas de K ′ ∈ C̃0 tel que K $
K ′ $ L et K ′ ≤ L.

Lemme 3.22. Soient K ≤ K ′ ≤ K∗, et K ≤ L ≤ K∗ avec L/K primitive. Alors
ou bien L ⊆ K ′, ou bien L′ := 〈LK ′〉 est égale à un amalgame libre K ′ ⊗K L (et
L′ ≤ K∗).

Preuve. D’abord, L |̂ d

L∩K′ K
′ suit de d(L/K) = 0 et K ⊆ K ′. Si L ∩ K ′ ) K,

alors L ⊆ K ′, car L/K est primitive. Sinon, on conclut par le Lemme 3.14. �

Techniquement, il est pratique de considérer un autre concept de primitivité pour
des extensions de sous-ensembles acl0-clos d’une fusion :

Définition 3.23. Soit B ⊆ A ⊆ K∗ ∈ C̃0. On dit que l’extension A/B est première,
si A et B sont acl0-clos, d0(A/B) est fini et ≥ 2, δ(A/B) = 0 et δ(A′/B) > 0 pour
tout ensemble acl0-clos A′ avec B ( A′ ( A (en particulier B ≤ A).

Le nombre d0(A/B) est appelé la longueur de l’extension.

Remarque. Notre définition exclut les “extensions premières de longueur 1”, qui
correspondraient aux extensions de la forme A := acl0(Bα), où α est dans exacte-
ment un des acli(B), i = 1, 2.

Lemme 3.24 ([HH06, Lemma 4.4]). Soit A/B une extension première de longueur
n (au sein de K∗) et soit B ⊆ B′ ⊆ K∗ avec B′ acl0-clos. On pose A′ := acl0(AB′).
Alors, on a :

(1) Si B′ |̂ i
B
A pour i = 1, 2, alors A′/B′ est première de longueur n. En

particulier, B′ |̂ 0

B
A.

(2) δ(A/B′) = δ(A′/B′) ≤ 0, et on a égalité ssi ou bien A ⊆ B′ ou bien A′/B′

est première (de longueur n).

(3) Si B′ = cl0(B′), alors A ⊆ B′ ou A′/B′ est première de longueur n. �

Maintenant, on introduit des filtrations de 〈·〉 qui seront utilisées dans plusieurs
preuves qui marchent par induction. Les opérateurs 〈·〉n1 , 〈·〉n2 et 〈·〉n (n ∈ N) défi-
nissent des filtrations différentes.
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Définition 3.25. Pour X ⊆ K∗ et n ∈ N, on définit 〈X〉n1 , 〈X〉n2 et 〈X〉n de
manière suivante. D’abord, on pose 〈X〉01 := 〈X〉02 := 〈X〉0 := acl0(X).

Inductivement, on définit 〈X〉m+1
i := acli(〈X〉m) pour i = 1, 2, et finalement

〈X〉m+1 := acl0(〈X〉m+1
1 ∪ 〈X〉m+1

2 ).

Notons que 〈X〉m+1
2 = acl2(〈X〉m1 ) et 〈X〉m+1

1 = acl1(〈X〉m2 ) pour tout m ∈ N.
Cela suit de l’identité acl2(acl1(X)) = acl2(acl0(acl1(X) acl2(X))), par induction
sur m et symétrie.

De plus, si X ≤ K∗, alors 〈X〉mi et 〈X〉m sont forts dans K∗ aussi (par 3.9).

Lemme 3.26. Soient B ⊆ A,C des ensembles forts dans K∗. Supposons que
A |̂ 0

B
C et A |̂ d

B
C. Alors on a :

(a) A |̂ i
B
C pour i = 1, 2, et AC ≤ K∗.

(b) 〈A〉mi |̂ j〈B〉mi 〈C〉
m
i et 〈A〉 |̂ j〈B〉〈C〉, pour i = 1, 2, j = 0, 1, 2 et tout m ∈ N.

Preuve. L’argument dans la preuve de 3.14 pour montrer (1) ⇒ (3) donne (a).
Quant à (b), on a évidemment 〈A〉mi |̂ d

〈B〉mi
〈C〉mi pour tout choix de m et i. Pour

établir (b), par induction (sur m), symétrie, continuité et utilisant (a), il suffit de
montrer acl1(A) |̂ 0

acl1(B)
acl1(C). Or, acl1(A) |̂ 1

acl1(B)
acl1(C) est une conséquence

de A |̂ 1

B
C, et on en déduit acl1(A) |̂ 0

acl1(B)
acl1(C), par modularité de T0. �

Considérons une extension générique L/K avec L = 〈Kg〉 ≤ K∗. Supposons
que a ∈ L avec d(a/K) = 0. Alors, g 6∈ cl0(Ka), car d(g/K) = 1. L’hypothèse
cl0(Ka) |̂ d

K
acl0(Kg) étant trivialement satisfaite, on déduit donc de 3.26(b) que

cl0(Ka) |̂ 0

K
L, et en particulier que a ∈ K. Cela montre

Corollaire 3.27. Soit L/K une extension générique et c ∈ L\K. Alors, d(c/K) =
1. �

Voilà le lien entre les extensions premières et les extensions primitives :

Lemme 3.28 ([HH06, Lemmes 4.8 et 4.11]). (a) Soit K ≤ A1 ≤ K∗ avec K ∈
C̃0 et A1/K première. Alors, 〈A1〉/K est une extension primitive.

(b) Soit L/K une extension primitive. Alors, il y a un unique ensemble minimal
A = cl0(A) ⊃ K contrôlant L/K. L’extension A/K est première, et on
appelle longueur de L/K la longueur de A/K. �

Proposition 3.29 (Lemme de décomposition, [HH06, Cor. 4.9]). Soit K ≤ L une
extension finiment engendrée (avec L ≤ K∗) telle que d(L/K) = d. Alors, il y a
une décomposition K = K0 ≤ K1 ≤ . . . ≤ Kd+n = L, où Ki/Ki−1 est générique
pour i ≤ d et primitive pour i > d.

Si L/K est parasite et si K = K0 ≤ K1 ≤ . . . ≤ Kn = L et K = K ′
0 ≤ K ′

1 ≤
. . . ≤ K ′

n′ = L sont deux décompositions en extensions primitives on a n = n′. �

On finit la section avec quelques lemmes supplémentaires.

Lemme 3.30. Soit k une fusion fortement plongée dans une fusion finiment en-
gendrée. Alors, k est finiment engendrée aussi.

Plus généralement, si K ≤ L′ ≤ L ∈ C̃0 avec L/K finiment engendrée, alors
L′/K est finiment engendrée aussi.
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Preuve. Soit k ≤ l avec l finiment engendrée. En particulier, d(k) ≤ d(l), et ces
deux dimensions sont finies. On choisit B ⊆ω k fini avec d(k/B) = 0. Puis, comme
l est finiment engendrée, on peut choisir B ⊆ A ⊆ω l tel que A contrôle l.

Posons B′ := acl0(A)∩k (donc d0(B′) est fini). Alors, A |̂ 0

B′ k par construction,

de même A |̂ d

B′ k, car d(k/B) = 0 et B ⊆ B′. Il suffit d’appliquer 3.26(b) pour
obtenir 〈A〉 |̂ 0

〈B′〉〈k〉, en d’autres termes l |̂ 0

〈B′〉 k. Donc, k = 〈B′〉 est finiment
engendrée.

La preuve concernant K ≤ L′ ≤ L est similaire. �

Lemme 3.31. Soit K une fusion, K ⊆ A,B ⊆ K∗. On suppose que A = cl0(A),
B = cl0(B), δ(B/A) = 0 et [acl1(B) ∪ acl2(B)] ∩A = K. Alors 〈B〉 ∩A = K.

Preuve. Posons B′ := acl1(B). Par symétrie, raisonnant par induction, il suffit de
montrer que acl2(B′) ∩ A = K. On a B′ |̂ 0

K
A par hypothèse, donc B′ |̂ 0

B
A.

Comme A est fort et δ(B/A) = 0, nécessairement AB ≤ K∗, aussi. Cela donne
δ(B′

0/AB) = δ(B′
0/B) = 0 pour tout B′

0 ⊆ω B′, et alors B′ |̂ 2

B
A. On en déduit

que acl2(B′) ∩A ⊆ acl2(B) ∩A = K. �

4. Axiomatisation

Dans cette section, nous continuons à considérer un contexte de fusion (T0, T1, T2)
comme dans la Section 3. Nous supposons de plus :

Hypothèses 4.1 (Hypothèses de définissabilité).
– Les théories Ti sont géométriques, c’est à dire elles éliminent ∃∞.
– T0 est ω-catégorique.

En particulier (cf. 3.4), C̃0 est une classe élémentaire. Pour des exemples de
théories géométriques, nous référons à 2.13.

Soit Tω la L-théorie (en général incomplète) des fusions riches, dans le contexte
de fusion (T0, T1, T2). Nous étudierons d’abord des questions de définissabilité et
d’uniformité concernant l’autosuffisance et les autres notions jusqu’alors introduites,
ce qui nous permettra de donner des axiomes explicites pour Tω. Nous verrons
ensuite que le fait d’être riche est significatif modèle-théoriquement, puisque tout
modèle ℵ1-saturé de Tω est riche et, réciproquement, toute fusion riche est un
modèle ω-saturé de Tω. Cela est le contenu du Théorème 4.13. En particulier, on
en déduit une description des complétions de Tω et des L-types.

Lemme 4.2. Soit a/b une extension première et ϕ0(x, z) une L0-formule isolant
tp0(a, b). Puis, pour i = 1, 2, soient ϕi(x, z) des Li-formules rang-complètes telles
que tpi(a/b) soit générique dans ϕi(x, b).

Alors, pour tout a′, b
′ ∈ K ′ ∈ C̃0 avec K ′ |=

∧2
i=0 ϕi(a

′, b
′
) on a

– ou bien a′ ∈ clK
′

0 (b
′
),

– ou bien a′/b
′
est une extension première. (Dans ce cas, a′ est générique dans

ϕi(x, b
′
) pour i = 1 et i = 2.)

En particulier, pour tout ensemble B̃′ ⊇ b
′
on a δ(a′/B̃′) ≤ 0.

Preuve. Comme a/b est première et les ϕi sont rang-complètes, pour tout b
′ ( a′1 (

a′ on a δ(a′/a′1) < 0. On rappelle que b
′
, ayant le même L0-type que b, énumère un

ensemble acl0-clos (c’est pareil pour a′).
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Donc, si a′ ∩ cl0(b
′
) ) b

′
, alors a′ ⊆ cl0(b

′
). Par contre, si a′ ∩ cl0(b

′
) = b

′
, alors

b
′

= clK
′

0 (b
′
)∩a′ ≤ a′ par 3.6(1), et donc nécessairement δ(a′/b

′
) = 0. On en déduit

que a′/b
′

est une extension première et l’uplet a′ est Li-générique dans ϕi(x, b
′
)

pour i = 1, 2 (on fait un δ-calcul).
La dernière partie suit directement du Lemme 3.24(2). �

Définition 4.3. Soit τ(x) = ∃yϕ(x, y) une L-formule existentielle (avec ϕ sans
quanteurs). On dit que τ est à quantification bornée , si K |= ϕ(a, b) implique
b ∈ clKω (a) pour tout a, b ∈ K ∈ C̃0.

Lemme 4.4. Soit B ⊆ K ∈ C̃0, et soient α0 ∈ clK0 (B), αω ∈ clKω (B) et αd ∈
clKd (B).

(1) Il existe b ∈ B et a ∈ clK0 (B) (a contenant bα0) et une L-formule sans
quanteurs ϕ(x, y) avec |= ϕ(a, b) telle que pour toute fusion K ′ et tout
b
′
, a′ ∈ K ′, si |= ϕ(a′, b

′
), alors a′ ∈ clK

′

0 (b
′
) et δ(a′/b

′
) ≤ δ(a/b).

(2) Même énoncé que dans (1), en remplaçant α0 par αω et cl0 par clω.

(3) Il existe b ∈ B, a ∈ clKω (bαd) (contenant bαd) et une L-formule sans quan-
teurs ϕ(x, xd, y) avec K |= ϕ(a, αd, b) telle que pour tout b

′
, α′d, a

′ ∈ K ′

avec K ′ |= ϕ(a′, α′d, b
′
) on a a′ ∈ clK

′

d (b
′
) ∩ clK

′

ω (b
′
α′d).

Soit maintenant e un entier ≥ 0, B ⊆ K et α ∈ K. Alors :

(4) Si dK(α/B) ≤ e, il existe b ∈ B et une L-formule existentielle à quanti-
fication bornée τd(x, y) telle que K |= τd(α, b) et si K ′ |= τd(α′, b

′
) pour

α′ ∈ K ′ ∈ C̃0 et b
′ ∈ K ′, alors dK′(α′/b

′
) ≤ e.

Preuve. Dans la preuve, on peut supposer que B = acl0(B).
(1) Comme clK0 (B) est la réunion des clK0 (B0) pour B0 ⊆ω B, il existe b ∈ B

énumérant un ensemble acl0-clos tel que α0 ∈ clK0 (b). On considère une énumération
(finie, car T0 est ω-catégorique) a de clK0 (b), et on choisit, pour i = 1, 2, une formule
ϕi(x, z) rang-complète par rapport à tpi(a/b) (en particulier, |= ϕi(a, b)). On les
choisit telles que ϕi(x, y) ` tp0(a, b) ce qui est possible par le Lemme 2.18. Soient
kiI/J les entiers associés à ϕi et I, J ⊆ n (avec les notations de 2.17, où x =
(x0, . . . , xn−1)). On pose ϕ(x, y) := ϕ1(x, y) ∧ ϕ2(x, y).

Maintenant, soient a′, b
′ ∈ K ′ tels que |= ϕ(a′, b

′
). Prenons I ⊆ n avec a′ 6∈

acl0(a′Ib
′
). Comme aIb 6≤ a — on rappelle que a énumère clK0 (b) — on a 0 >

δ(a/aIb) = k1
n/I + k2

n/I − d0(a/aIb). Or, d0(a′/a′Ib
′
) = d0(a/aIb) (ils ont le même

L0-type) et di(a′/a′Ib
′
) ≤ kin/I pour i = 1, 2, car ϕi est rang-complète. Cela donne

δ(a′/a′Ib
′
) < 0. Par sous-modularité, on a donc a′ ∈ clK

′

0 (b
′
), et (1) est montré.

Quant à (2), il suffit d’expliciter une cascade d’algébricités au sens de L1 et de
L2 dans l’uplet a en question (on utilise (1) et le fait que clω(X) = 〈cl0(X)〉). C’est
facile et on omet les détails.

Montrons (3). On décompose l’extension parasite k = clKω (B) ≤ clKω (Bαd) = l en
primitives (k = l0 ≤ l1 ≤ . . . ≤ ln = l). On se sert constamment de (2) pour pouvoir
utiliser explicitement des éléments se trouvant dans la clôture autosuffisante clω.

Traitons le cas n = 1, où l/k est une extension primitive. (Si n > 1, on raisonne
par induction.) Soit k ≤ A ≤ l comme dans le Lemme 3.28.(b), c.à.d. A/k est
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une extension première, A contrôlant l. On choisit une L0-base a1 de A/k, puis on
choisit b̃ = acl0(b̃) ⊆ k et b ∈ B avec les propriétés suivantes :

(i) a1 |̂ i
b̃
k pour tout i,

(ii) αd ∈ clω(b̃a1).

(iii) b̃ ∈ clω(b).

Alors, posant ã := acl0(b̃a1), on voit facilement que ã/b̃ est une extension pre-
mière. Soit a := ãαd. On utilise (2) pour pouvoir se servir de b̃ et pour expliciter
toutes les autres clω-dépendances, et le Lemme 4.2 garantit qu’on peut trouver une
formule ϕ(x, z) comme requise.

Finalement, sous les hypothèses de (4), on choisit un sous-uplet (αi1 , . . . , αie)
de α de manière que α ∈ cld(Bαi1 , . . . , αie). Puis, on applique (3) à l’ensemble
Bαi1 , . . . , αie et l’uplet α. �

Lemme 4.5 (Définissabilité de l’autosuffisance). Il existe un L-type partiel et uni-
versel Π(y0, . . . , yn−1) tel que pour toute fusion K ∈ C̃0 et tout uplet b ∈ K on ait
K |= Π(b) si et seulement si b ≤ K.

Preuve. Soit b ∈ K avec b 6≤ K, et supposons que a énumère clK0 (b). Par (la preuve
de) 4.4(1), il existe une L-formule sans quanteurs ϕ(x, y) satisfaite par (a, b) telle
que pour tout a′, b

′ ∈ K ′ avec |= ϕ(a′, b
′
) on a δ(a′/b

′
) ≤ δ(a/b) < 0. En particulier,

si K ′ |= ∃xϕ(x, b
′
), alors b

′ 6≤ K ′.
Il suffit de mettre dans Π(y) toutes les formules de la forme ∀x¬ϕ(x, y), où

ϕ(x, y) est comme ci-dessus. �

Définition 4.6. Soit k, l ∈ C0 avec k ≤ l. On suppose qu’il y a des ensembles
finis et acl0-clos B ≤ A tels que B contrôle k et A contrôle l. On demande que
A |̂ i

B
k pour i = 0, 1, 2. Une telle paire A/B est appelée paire de contrôle pour

l’extension k ≤ l. Si d(A/B) = e = d(l/k), on dit que A/B est une paire de contrôle
de dimension e.

Remarque 4.7. Si A/B est une paire de contrôle (pour une extension l/k), alors
B est relativement acli-clos dans A pour i = 0, 1, 2.

Preuve. On a A ∩ acli(B) ⊆ A ∩ k = B, comme B = acl0(B) et A |̂ 0

B
k. �

Lemme 4.8. Soit k ≤ l une extension dans C0 et Λ ⊆ω l. Alors, il existe une paire
de contrôle A/B pour l/k avec Λ ⊆ A.

Preuve. Comme l est finiment engendrée, quitte à agrandir Λ, on peut supposer
que 〈Λ〉 = l. Posons A1 := cl0(kΛ), et choisissons Λ ⊆ A0 ⊆ω A1 avec acl0(A0k) =
A1. Puis, on choisit B = cl0(B) ⊆ω k contrôlant k et satisfaisant A0 |̂ i

B
k pour

i = 0, 1, 2. Finalement, on pose A := acl0(BA0). On vérifie que A/B est une paire
de contrôle pour l/k. �

Pour pouvoir axiomatiser la théorie Tω, il nous faudra étudier des familles de
paires de contrôle. Considérons B ≤ A, une paire de contrôle pour k ≤ l. On
énumère B avec b et A\B avec a, et on pose b0 := Cb(tp0(a/k)), où Cb(·) dénote la
base canonique d’un type. Comme a |̂ 0

b
k, b0 ∈ acleq0 (b). Par ailleurs, b0 ∈ dcleq0 (k).

Soit ψ0(x, z, z0) une L0-formule isolant tp0(a, b, b0).
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Par définissabilité de la dimension dans Ti (cf. 2.16), il existe des Li-formules
ψi(x, z, z0) pour i = 1, 2, satisfaisant :

PC(i) |= ψ1(a, b, b0) ∧ ψ2(a, b, b0).
PC(ii) Ti ` ψi → ψ0 pour i = 1, 2.
PC(iii) La formule ϕi(x, z) := ∃z0ψi(x, z, z0) est une formule rang-complète par

rapport à tpi(a/b) pour i = 1, 2.
PC(iv) Pour tout b

′
, b
′
0, et i = 1, 2, di(ψi(x, b

′
, b
′
0)) = di(ϕi(x, b

′
)).

Définition 4.9. Soit Ψ := (ψ1, ψ2) une paire de formules. On dit que Ψ est une
famille de paires de contrôle (de dimension e) s’il existe une paire de contrôle
A/B de dimension e (pour une extension l/k dans C0), telle que Ψ satisfasse aux
conditions PC(i-iv) données ci-dessus. Gardant les mêmes notations, pour une telle
famille, on pose θΨ(z, z0) := ∃xψ1(x, z, z0) ∧ ∃xψ2(x, z, z0).

Lemme 4.10. Soit k ≤ l ∈ C0. Alors qftpL(l/k) est impliqué par l’ensemble des
ψ1(x, b, b0) ∧ ψ2(x, b, b0), où Ψ = (ψ1, ψ2) est une famille de paires de contrôle,
a ∈ l, b ∈ k, b0 ∈ dcleq0 (k) ∩ acleq0 (b) et ab/b une paire de contrôle de l/k avec
|= ψ1(a, b, b0) ∧ ψ2(a, b, b0).

Preuve. C’est essentiellement le Lemme 4.8, combiné avec le fait que les formules
rang-complètes sont cofinales dans tpi(a/b) pour i = 1, 2. �

Lemme 4.11. Soit Ψ = (ψ1(x, z, z0), ψ2(x, z, z0)) une famille de paires de con-
trôle de dimension e, et soit b

′ ∈ k′ ∈ C0, b
′
0 ∈ dcleq0 (k′), b

′
contrôlant k′, tels que

|= θΨ(b
′
, b
′
0). Alors :

(1) Soit k′ ⊆ L ∈ C̃0 et a′ ∈ L une solution générique de ψi(x, b
′
, b
′
0) au-dessus

de k′ pour i = 1 et i = 2. Supposons de plus que k′a′ ≤ 〈k′a′〉 =: l′ ⊆ L.
Alors, a′b

′
/b
′
est une paire de contrôle pour k′ ≤ l′, de dimension e.

(2) Des extensions L de k′ contenant des uplets a′ comme dans (1) existent.

Preuve. Pour (1), notons que b
′ ≤ a′b

′
suit de PC(iii) et PC(iv). Comme a′ |̂ i

b
′ k′

et a′ |̂ 0

b
′ acli(b

′
) pour i = 1, 2, on a a′ |̂ i

b
′ k′ pour i = 0, 1, 2. Le Fait 2.11 nous

donne que k′ ≤ A′k′ := acl0(A′k′) (on raisonne comme dans la preuve du Lemme
3.12), et donc a′b

′
/b
′

est une paire de contrôle pour k′ ≤ l′ (de dimension e).
Pour montrer (2), il suffit d’appliquer le Lemme 3.10 à (p1, p2), où pi est un

Li-type générique dans ψi(x, b
′
, b
′
0) au dessus de k′. La condition PC(ii) entrâıne

que p1 � L0 = p2 � L0 , car b
′
0 = Cb0(pi � L0) pour i = 1, 2 et pi � L0 ne L0-dévie pas

au-dessus de b
′
. �

Lemme 4.12. Soit Ψ = (ψ1(x, z, z0), ψ2(x, z, z0)) une famille de paires de cont-
rôle (de dimension e), et soient b ⊆ b̃ = cl0(b̃) ≤ K ∈ C̃0, b0 ∈ dcleq0 (〈b〉) tels que
|= θΨ(b, b0). Alors il existe Ψ̃ = (ψ̃1(x̃, z̃, z̃0), ψ̃2(x̃, z̃, z̃0)), une famille de paires de
contrôle (de dimension e), avec x̃ ⊇ x, z̃ ⊇ z et z̃0 ⊇ z0, telle que |= ψ̃i → ψi pour
i = 1, 2 et θψ̃(b̃, b̃0) pour un b0 ⊆ b̃0 ∈ dcleq0 (〈b̃〉).

Preuve. Pour i = 1, 2, soient pi des Li-types génériques dans ψi(x, b, b0) au-dessus
de k := 〈b̃〉. Comme b0 ∈ dcleq0 (k), cela a un sens. Supposons que ai |= pi. Comme
dans la preuve de 4.11, on montre que ai |̂ 0

b
k et p1 �L0 = p2 �L0 , et enfin qu’une

application de 3.10 à (p1, p2) fournit une extension k ≤ l, avec l contrôlée par une
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solution a de p1∪p2 au-dessus de k. Soit ã := acl0(b̃a)\ b̃. Alors ãb̃/b̃ est une paire de
contrôle de l/k. Par le Lemme 4.10, il existe une famille de paires de contrôle Ψ̃ =
(ψ̃1(x̃, z̃, z̃0), (ψ̃2(x̃, z̃, z̃0)) et b̃0 = Cb0(ã/b̃) ⊇ b0 tel que |= ψ̃1(ã, b̃, b̃0)∧ ψ̃2(ã, b̃, b̃0)
et |= ψ̃i(x̃, b̃, b̃0) → ψi(x, b, b0) pour i = 1, 2. Quitte à rétrécir les ψ̃i, on peut
supposer que |= ψ̃i(x̃, z̃, z̃0) → ψi(x, z, z0) pour i = 1, 2. �

Maintenant, on considère la L-théorie T ′ω := T ′ω(1, 2, 3) donnée par les trois
groupes d’axiomes :

T ′ω(1) : Th(C̃0)

T ′ω(2) : T1 ∪ T2

T ′ω(3) : Soit Ψ = (ψ1, ψ2) une famille de paires de contrôle de dimension e. Puis,
soit τ(x, z) une formule existentielle à quantification bornée, telle que K |=
τ(a, b) implique d(a/b) < e. Pour Ψ et τ , on met l’axiome

∀zz0∃x[θΨ(z, z0) → ψ1(x, z, z0) ∧ ψ2(x, z, z0) ∧ ¬τ(x, z)].

Théorème 4.13. Les théories T ′ω et Tω cöıncident. Tout modèle ℵ1-saturé de T ′ω
est une fusion riche. Réciproquement, toute fusion riche est un modèle ℵ0-saturé
de T ′ω.

Preuve. Soit K une fusion riche. On montre d’abord que K |= T ′ω. Il est clair que
K |= T ′ω(1), et le Lemme 3.20 donne K |= T ′ω(2). Quant au schéma d’axiomes T ′ω(3),
supposons que Ψ = (ψ1, ψ2) est une famille de paires de contrôle (de dimension e),
et b, b0 ∈ K avec |= θΨ(b, b0). Puis, soit τ(x, z) une formule comme dans le schéma
(3). Quitte à appliquer le Lemme 4.12, on peut supposer que b ≤ 〈b〉 =: k ≤ K.
On trouve, par le Lemme 4.11, k ≤ l ∈ C0 et a ∈ l tel que ab/b soit une paire de
contrôle (de dimension e) pour l/k et tel que a satisfasse ψ1(x, b, b0) ∧ ψ2(x, b, b0).
Comme K est riche, on peut k-plonger l fortement dans K. Identifiant a avec son
image dans K par un tel plongement, on obtient K |= ψi(a, b, b0) pour i = 1, 2. Or,
on a aussi K |= ¬τ(a, b), car d(a/b) = e. L’axiome correspondant à Ψ et τ dans
T ′ω(3) est donc satisfait par K. En particulier, on a montré la consistance de T ′ω,
car les fusions riches existent.

Ensuite, nous montrons que tout modèle ℵ1-saturé de T ′ω est riche. Une fois que
cela est établi, la proposition entière est prouvée, i.e. toute fusion riche est modèle
ω-saturé de T ′ω (puisque la L∞,ω-équivalence avec un modèle ω-saturé entrâıne
l’ω-saturation) et T ′ω = Tω (puisque toute structure a des extensions é lémentaires
ℵ1-saturées et deux théories ayant les mêmes modèles κ-saturés pour un certain κ
sont équivalentes).

On considère K |= T ′ω, où K est ℵ1-saturé, et k ≤ K une fusion finiment en-
gendrée. Pour tout k ≤ l ∈ C0 (on suppose que d(l/k) = e), on doit trouver un
k-plongement fort de l dans K.

En utilisant le Lemme 4.4.(4), on voit que l’on peut approximer “d(x/z) ≥ e”
par des formules de la forme ¬τ(x, z), où τ(x, z) est une formule existentielle à
quantification bornée forçant d(x/z) < e. On note que l’ensemble de tels τ est
clos par disjonctions finies. Combiné avec 4.10, cela montre que les axiomes dans
T ′ω(3) approximent bien une réalisation de qftpL(l/k) qui est autosuffisante. Par
ℵ1-saturation de K, on peut donc k-plonger fortement l dans K. �

D’un point de vue esthétique, le Théorème 4.13 n’est pas satisfaisant, car il
ne caractérise pas les fusions riches par une propriété modèle-théorique. Si l’on
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exigeait, dans la définition d’une fusion riche, que tout problème d’amalgamation
soit résolu pour tout k ≤ l ∈ C̃0 dénombrable, les fusions riches correspondraient
exactement aux modèles ℵ1-saturés de Tω. Cependant, à l’aide d’une notion adaptée
de saturation, on peut aussi se contenter de la définition de “riche” que nous avons
donnée.

On dira qu’une structure M est ℵε-saturée si pour tout b ⊆ω M , tout type au-
dessus de acl(b) est réalisé dans M . On remarque que d’habitude, dans la définition
de la ℵε-saturation, la clôture algébrique est prise dans Meq, mais nous la prenons
uniquement dans les réels. A posteriori, en utilisant le Corollaire 4.24, on pourra
caractériser les fusions riches de la façon suivante :

Remarque 4.14. Les fusions riches dans C̃0 sont exactement les modèles ℵε-
saturés de Tω. �

En modifiant la preuve du Théorème 4.13 et en utilisant le Lemme de décompo-
sition 3.29, on obtient :

Remarque 4.15. Dans l’axiomatisation de T ′ω, on peut se restreindre aux familles
de paires de contrôle donnant lieu à des extensions primitives ou à des extensions
génériques.

Il y a un cadre où l’on peut se dispenser des extensions génériques :

Définition 4.16. Soit T0 ⊆ T1 une expansion satisfaisant à nos hypothèses gé-
nérales. On dit que l’expansion T0 ⊆ T1 renforce la prégéométrie si pour tout
A ⊆M |= T1 et tout élément a avec d1(a/A) = 1 on a acl1(Aa) ) acl0(Aa).

Notation. Pour B ⊆ A, on pose B ≤n A si et seulement si δ(A′/B) ≥ 0 pour tout
ensemble A′ avec B ⊆ A′ ⊆ A et d0(A′/B) ≤ n.

Lemme 4.17. Supposons que le contexte de fusion (T0, T1, T2) est tel que les deux
expansions T0 ⊆ T1 et T0 ⊆ T2 renforcent la prégéométrie. Alors, toute extension
générique de fusions peut être approximée par des extensions parasites.

Plus précisément, soit K ≤ L ∈ C̃0 une extension générique et a ∈ L avec
δ(a/K) = d(a/K) = 1. Alors, pour tout n ∈ N il existe une extension parasite
L′/K et a′ ∈ L′ avec qftpL(a′/K) = qftpL(a/K) et Ka′ ≤n L′.

Preuve. Soit donc K ≤ L = 〈Ka〉 une extension générique (avec L ≤ K∗ pour K∗

riche). Observons d’abord que pour a′ ∈ K∗ \K on a d(a′/K) = 1 si et seulement
si Ka′ ≤n K∗ pour tout n, c’est à dire a′ satisfait à tous les types partiels suivants :

∀y1 . . . ynδ(xy/K) ≥ 1.
Rappelons que les Li ne contiennent pas de symboles de fonctions. Il suffit alors de

trouver des singletons an ∈ K∗ satisfaisant qftpL(〈Kan〉n/K) = qftpL(〈Ka〉n/K)
et d0(cl0(Kan)/K) ≥ n. On va construire une extension parasite K ≤ Ln =
clω(Kan) avec an comme requis.

Nous renvoyons à 3.25 pour la définition de 〈·〉n. Pour construire Ln, on consi-
dère d’abord A′n := 〈Ka〉n. Par induction sur n, en utilisant l’hypothèse que les
expansions T0 ⊆ Ti renforcent la prégéométrie et que d(a/K) = 1, on voit que
A′n n’est pas acli-clos, pour i = 1, 2. On peut donc choisir (dans L) des élé-
ments ci ∈ acli(A′n) \ A′n. Maintenant, on applique le Lemme 3.10 aux types
pi := tpi(acl0(A′nci)/K) au-dessus de K, et on obtient une extension Ln/K qui
est contrôlée au-dessus de K par une réalisation de p1 ∪ p2. On vérifie sans peine
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que Ln/K est parasite. Soit an ∈ Ln l’élément qui correspond à a dans L. Alors,
An := cl0(Kan) ⊆ 〈Kan〉n+1 et An * 〈Kan〉n (par construction).

A fortiori, d0(cl0(An)/K) ≥ n+ 1, car si An ∩ 〈Kan〉m = An ∩ 〈Kan〉m+1 pour
un m, il s’en suit que An ⊆ 〈Kan〉m (par 3.31). �

Combinant ce résultat avec le Lemme de décomposition, on obtient le corollaire
suivant.

Corollaire 4.18. Soit (T0, T1, T2) un contexte de fusion, où T0 ⊆ Ti renforce la
prégéométrie, pour i = 1, 2. Alors, dans l’axiomatisation de Tω, le schéma (3) prend
la forme

∀zz0∃x[θΨ(z, z0) → ψ1(x, z, z0) ∧ ψ2(x, z, z0)],

où Ψ parcourt les familles de paires de contrôles donnant lieu à des extensions
primitives. �

Exemples 4.19. (1) Soit T0 = EVFp
la théorie d’un espace vectoriel infini sur

Fp, et soit T1 une complétion de la théorie des corps pseudofinis de caracté-
ristique p. La théorie T1 est une expansion de T0 (le L0-réduit est donné par
le groupe additif du corps). Alors, T0 ⊆ T1 renforce la prégéométrie. Cela
est aussi vrai, si T0 est la théorie d’un ensemble infini sans structure et T1

une théorie complète de corps pseudofinis (de caractéristique arbitraire).

(2) Soit T0 la théorie d’un ensemble infini sans structure, et soit T1 le graphe
aléatoire (où une expansion d’une théorie géométrique T0 qu’on peut obtenir
en ajoutant un prédicat aléatoire [CP98]). On a acl1(A) = A = acl0(A), et
donc l’expansion T1 ⊇ T0 ne renforce pas la prégéométrie.

(3) Soit T0 = EVFq , et T1 la théorie d’un espace vectoriel infini sur Fq avec
une forme bilinéaire générique β(·, ·). Alors, T0 ⊆ T1 ne renforce pas la
prégéométrie, car dans cet exemple on a acl1 = acl0 aussi.

Pour pouvoir pleinement exploiter le Théorème 4.13, il est commode de consi-
dérer la classe C̃0 ainsi que la théorie Tω dans une expansion par définitions de
L.

Définition 4.20. Soit L∗ l’expansion par définitions de L donnée par l’ensemble
des L-formules existentielles (sans paramètres) à quantification bornée.

Formellement, ce nouveau langage L∗ est construit ainsi : pour toute formule
existentielle à quantification bornée τ(x) = τ(x0, . . . , xn−1) on introduit un nouveau
symbole de relation n-aire Rτ (x). Puis, on considère Tω (et toute autre théorie qui
implique ThL(C̃0)) dans le langage L∗, en ajoutant aux L-axiomes les “définitions”
des Rτ , c’est à dire pour tout τ on impose

∀x(Rτ (x) ↔ τ(x)).

On écrit T ∗ω pour dénoter la théorie Tω ainsi obtenue dans L∗, de même C̃∗0 dénote
la classe C̃0, considérée dans L∗.

Notation. On écrira tpω au lieu de tpTω
ainsi que aclω au lieu de aclTω .

Théorème 4.21 (Élimination des quanteurs).
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(1) Soient Ai ⊆ Mi |= Tω pour i = 1, 2 des uplets (pas nécessairement finis).
Alors

tpω(A1) = tpω(A2) ssi clM1
ω (A1) ∼=L clM2

ω (A2).

(2) La théorie T ∗ω élimine les quanteurs (dans L∗).
(3) La L-théorie Tω est presque modèle-complète, i.e. toute L-formule est équi-

valente, dans Tω, à une combinaison booléenne de L-formules existentielles.

Preuve. Notons d’abord que (2) est une conséquence de (1), car il y a suffisamment
de L-formules pour décrire uniformément la clôture autosuffisante (c’est la partie
(2) du Lemme 4.4). Puis, (3) suit de (2). Il suffit donc de montrer (1).

On peut supposer que A1 et A2 sont finis. L’implication est claire. Réciproque-
ment, supposons que clM1

ω (A1) ∼=L clM2
ω (A2). Par le Théorème 4.13, les modèles

saturés de Tω sont riches. On peut donc établir un va-et-vient infini au-dessus du
L-isomorphisme donné entre les clMi

ω (Ai), d’où tpω(A1) = tpω(A2). �

Corollaire 4.22. Soient M ⊆ N deux modèles de Tω. Alors M 4 N si et seulement
si M ≤ N . �

Corollaire 4.23. Les complétions de Tω sont données par les L-types d’isomor-
phisme possibles de 〈∅〉 ∈ C0, c’est à dire pour M,N |= Tω on a M ≡ N si et
seulement si 〈∅〉M ∼=L 〈∅〉N . �

Corollaire 4.24. Pour tout A ⊆ M |= Tω on a clMω (A) = aclω(A), i.e. la clôture
algébrique au sens de Tω est donnée par la clôture autosuffisante.

Preuve. L’inclusion clMω (A) ⊆ aclTω (A) suit de 3.8, et il suffit donc de montrer que
K := clMω (A) est algébriquement clos. Soit K ≤M ≤ K∗ |= Tω et α ∈ K∗ \K. On
a K ≤ clω(Kα) =: L ≤ K∗. Pour n ∈ N, soient L1, . . . , Ln des copies isomorphes
de L au-dessus de K. On peut supposer que K∗ est suffisamment saturé, et on peut
alors plonger fortement un amalgame libre L1⊗K . . .⊗KLn dans K∗. En utilisant le
Théorème 4.21, on voit que tpω(α/K) admet un nombre non-borné de réalisations,
d’où α 6∈ aclω(K). �

À la fin de cette section, nous étudions une notion d’indépendance inhérente à
la construction de la fusion libre.

Définition 4.25. Soient A,B,C ⊆ K, où K est une fusion. On pose A |̂ ∗
B
C ssi

clω(BA) ∩ clω(BC) = clω(B) et A |̂ d

B
C.

Le Lemme 3.14 montre :

Remarque 4.26. Soient B ⊆ A,C ⊆ K des sous-ensembles clω-clos de la fusion
K. Alors, sont équivalents :

(1) A |̂ ∗
B
C.

(2) A |̂ i
B
C (i = 1, 2) et AC ≤ K.

(3) D := 〈AC〉 est un amalgame libre de A et C au-dessus de B et D ≤ K. �

Lemme 4.27. La notion |̂ ∗ est symétrique et transitive, c’est à dire pour tout
A,B,C,D on a

Symétrie : A |̂ ∗
B
C si et seulement si C |̂ ∗

B
A.

Transitivité : A |̂ ∗
B
CD si et seulement si A |̂ ∗

B
C et A |̂ ∗

BC
D.
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Preuve. La symétrie est claire par définition. Pour montrer la transitivité, il suffit de
traiter le cas où B ≤ A,C et C ≤ D sont tous clω-clos. Si A |̂ ∗

B
C et A |̂ ∗

C
D, alors

A |̂ ∗
B
D suit de la Remarque 4.26(2). Pour l’autre direction, notons que A |̂ ∗

B
D ⇒

A |̂ ∗
B
C suit de la définition de |̂ ∗, puisque A |̂ d

B
D entrâıne A |̂ d

B
C. Le fait

que A |̂ ∗
B
D implique A |̂ ∗

C
D est une conséquence du Lemme 3.26 : on l’applique

à C ≤ A′, D, où A′ := acl0(AC). Comme A |̂ ∗
B
C, A′ est fort dans K. Les autres

hypothèses de 3.26, en l’occurrence A′ |̂ 0

C
D et A′ |̂ d

C
D, sont satisfaites, et on

déduit donc que clω(AC) ∩D = C, car clω(AC) = 〈A′〉. �

Lemme 4.28 (Caractère local). Soient M une fusion, B ⊆M et α ∈M un uplet
fini. Alors il existe B0 ⊆ω B tel que α |̂ ∗

B0
B.

Preuve. On pose L := clω(Bα) et K := clω(B). Donc, L = 〈Ka〉 pour un uplet fini
a ∈M contrôlant L au-dessus de K, a ⊇ α. Maintenant, on choisit k ≤ K finiment
engendré tel que d(a/K) = δ(a/K) = δ(a/k) = d(a/k), et on pose l := 〈ka〉 (c’est
autosuffisant dans M). Le Lemme 3.14 entrâıne que L est un amalgame libre de K
et l au-dessus de k′ := K∩l. Or, k′ est une fusion contenue de manière autosuffisante
dans une fusion finiment engendrée, et donc finiment engendréee aussi, par le Lemme
3.30. Pour terminer la preuve, il suffit de choisir un ensemble B0 ⊆ B fini tel que
k′ ⊆ clω(B0). �

Proposition 4.29. Dans toute complétion T de Tω, la notion |̂ ∗ définit une no-
tion d’indépendance, c’est à dire elle satisfait aux propriétés (i)-(vii) de la Définition
2.1.

Preuve. L’invariance par automorphisme est claire, et la non-trivialité suit de la
définition de |̂ ∗ et de l’égalité aclω = clω (Corollaire 4.24).

Ensuite, la propriété d’extension suit de l’existence d’un amalgame libre dans C̃0,
combiné avec le fait qu’on peut toujours plonger un amalgame libre de deux fusions
fortes de manière autosuffisante dans un modèle suffisamment saturé (donc riche)
de T .

Le caractère fini est une conséquence immédiate de : clω est un opérateur finitaire,
⊗ ainsi que ≤ passent à la limite.

Enfin, la symétrie et la transitivité sont montrées dans 4.27, tandis que le carac-
tère local est le contenu du Lemme 4.28. �

5. Simplicité

Dans cette section, nous considérons un contexte de fusion (T0, T1, T2) avec T1 et
T2 supersimples de rang SU 1 (et T0 toujours ω-catégorique) et nous montrons —
sous une hypothèse supplémentaire — que toute complétion de Tω est supersimple
(Théorème 5.5).

Soit |̂ Γ une notion d’indépendance. Rappellons qu’une suite (Ai)i<α est |̂ Γ-
indépendante au-dessus de B si pour tout β < α on a Aβ |̂ Γ

B

⋃
i<β Ai. Les suites

|̂ Γ-indépendantes ont des propriétés similaires à celles des suites indépendantes
— c’est à dire |̂ -indépendantes — dans une théorie simple.

Définition 5.1. (1) On dit qu’une expansion de théories simples T0 ⊆ T1

a une algébricité indépendante, si pour tout M |= T1 et toute suite T1-
indépendante A,B,C au-dessus de M avec A,B,C acl1-clos et contenant
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M on a

acl1(AB) acl1(AC)
0

|̂
BC

acl1(BC).

(2) Nous disons que le contexte de fusion (T0, T1, T2) satisfait à l’hypothèse A,
si l’expansion T0 ⊆ Ti a une algébricité indépendante pour i = 1 et i = 2.

Lemme 5.2. Soit T0 fortement minimale et modulaire.

(1) Si T0 a une prégéométrie triviale, alors toute expansion simple T0 ⊆ T1 a
une algébricité indépendante.

(2) Si T1 est stable, alors T0 ⊆ T1 a une algébricité indépendante.

Preuve. C’est clair pour (1). Quant à (2), soit M |= T1 et soit A,B,C une suite T1-
indépendante au-dessus de M telle que A,B,C ⊇ M . Comme T0 est modulaire et
fortement minimale, il suffit de montrer que acl0(acl1(AB) acl1(AC))∩ acl1(BC) =
acl0(BC). Soient a ∈ A, b ∈ B et c ∈ C. Soit f̄ ∈ acl1(BC) \ acl0(BC). Puis,
soit d̄ ∈ acl1(AB) avec |= ϕ1(d̄, a, b), où ϕ1(x, z, b) est une L1-formule à pa-
ramètres dans Mb qui rend d̄ explicitement algébrique au-dessus de Mba. De
même pour ē ∈ acl1(AC) et une formule ϕ′1(y, z, c̄) avec |= ϕ′1(ē, a, c̄). Puis, soit
χ0(w̄, x, y) une L0(M)-formule, explicitant w̄ ∈ acl0(Mxy) avec |= χ0(f̄ , d̄, ē).
Comme tpL1

(a/ acl1(Mbc̄)) est le cohéritier de sa restriction à M , on trouve m̄ ∈M
avec |= ∃xyϕ1(x, m̄, b) ∧ ϕ′1(y, m̄, c̄) ∧ χ0(f̄ , x, y). On en déduit facilement que
f̄ ∈ acl0(BC). �

Remarque. Nous ignorons s’il y a des exemples d’expansions T1 ⊇ T0 (disons
avec T1 supersimple de rang SU 1 et T0 fortement minimale et modulaire) sans
algébricité indépendante.

Lemme 5.3. Supposons l’hypothèse A, et soit K |= T1 ∪ T2 une fusion, K ⊆
A,B,C ⊆ M , où M est riche et A,B,C une suite |̂ ∗-indépendante de sous-
ensembles clω-clos de M . On pose D := 〈BC〉 = clω(BC), E := 〈AB〉 = clω(AB)
et F := 〈AC〉 = clω(AC). Alors, D,E, F est une suite |̂ i-indépendante au-dessus
de ABC, pour i ∈ {0, 1, 2}.

Preuve. Par induction sur m+ n+ p, on va montrer :

(∗)m,n,p: La suite (〈AB〉mj , 〈AC〉nj , 〈BC〉
p
j ) est |̂ i-indépendante au-dessus de

l’ensemble ABC, pour i = 0, 1, 2 et j = 1, 2.

Une fois que (∗)m,n,p est montré, la preuve est terminée. Pour l’établir, il suffit
de montrer que 〈AB〉mj 〈AC〉nj |̂ i

BC
〈BC〉pj pour i = 0, 1, 2, puisque nous avons

〈AB〉 |̂ ∗
B
〈BC〉 par hypothèse, ce qui entrâıne 〈AB〉 |̂ i

B
〈BC〉 par 4.26 et donc

aussi 〈AB〉 |̂ i
BC
〈BC〉 pour tout i.

Les ensembles BC, 〈AB〉mj 〈AC〉nj et 〈BC〉pj étant forts, le Lemme 3.26 montre

〈AB〉mj 〈AC〉nj
0

|̂
BC

〈BC〉pj ⇒ 〈AB〉mj 〈AC〉nj
i

|̂
BC

〈BC〉pj pour i = 1, 2.

On raisonne par l’absurde. Il existe donc m,n, p ∈ N avec m+n+p minimal tels
que (∗)m,n,p soit faux. Par symétrie, on peut supposer que m ≤ n ≤ p et

〈AB〉m1 〈AC〉n1
0

6 |̂
BC

〈BC〉p1.
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Par hypothèse, l’expansion T0 ⊆ T1 a une algébricité indépendante, et donc
nécessairement p ≥ 2 (car m ≤ n ≤ p).

Par minimalité de m + n + p, on a 〈AB〉m2 〈AC〉n2 |̂ 1

BC
〈BC〉p−1

2 ce qui donne
〈AB〉m+1

1 〈AC〉n+1
1 |̂ 1

〈BC〉11
〈BC〉p1 (par la définition des hiérarchies 〈·〉kj ), et en par-

ticulier

(2) 〈AB〉m1 〈AC〉n1
0

|̂
〈BC〉11

〈BC〉p1.

Puisque p ≥ 2, on a 〈AB〉m1 〈AC〉n1 |̂ 0

BC
〈BC〉11, car m+ n+ 1 < m+ n+ p. Par

transitivité et (2) on arrive à 〈AB〉m1 〈AC〉n1 |̂ 0

BC
〈BC〉p1, une contradiction. �

Proposition 5.4 (Théorème d’Indépendance). Supposons l’hypothèse A, et soit
K |= T1 ∪ T2 une fusion, K ≤ A0, A1, A2 ∈ C̃0. Supposons données des fusions
A{0,1}, A{0,2} et A{1,2} ainsi que des K-plongements forts ιwk : Ak ↪→ Aw pour
k ∈ w, tels que A{i,j} soit un amalgame libre des images de Ai et Aj pour les
plongements ι{i,j}i et ι{i,j}j .

Alors il existe une K-fusion A et des K-plongements forts ιw : Aw ↪→ A satis-
faisant

(1) ιw ◦ ιwk = ιw′ ◦ ιw
′

k si k ∈ w ∩ w′ (ce plongement est noté ιk),

(2) ι0(A0), ι1(A1), ι2(A2) est une suite |̂ ∗-indépendante au-dessus de K.

Preuve. L’argument que nous donnerons doit beaucoup à des suggestions de Mas-
soud Pourmahdian qui ont aidé à simplifier la preuve du Théorème d’Indépendance
que nous avions initialement.

On peut supposer que A1, A2 ≤ A{1,2}, c’est à dire ι
{1,2}
1 et ι{1,2}2 sont des

inclusions. D’abord, nous construisons des L1-plongements ι′w : Aw ↪→ M ′ |= T1

satisfaisant la condition (1) ainsi que certaines conditions d’indépendance.
On choisit M ′ ⊇ A{1,2}, un modèle suffisamment saturé de T1 (en particulier,

ι′{1,2} sera donnée par l’inclusion).
Par le théorème d’indépendance dans T1, on trouve A′0 avec

(I): A′0 |̂ 1

K
A1A2, et A′0 ≡1

A1
ι
{0,1}
0 (A0) ainsi que A′0 ≡1

A2
ι
{0,2}
0 (A0).

On peut choisir A′0 de telle manière que

(II): A′0 |̂ 1

K
A{1,2}.

Identifiant A′0 et ι{0,1}0 (A0), on trouve A′{0,1} satisfaisant

(III): A′{0,1} ≡
1
A′0A1

A{0,1} et A′{0,1} |̂ 1

A′0A1
A{1,2}.

De même, identifiant A′0 avec ι{0,2}0 (A0), on trouve A′{0,2} satisfaisant

(IV): A′{0,2} ≡
1
A′0A2

A{0,2} et A′{0,2} |̂ 1

A′0A2
A′{0,1}A{1,2}.

Finalement, par (III) et (IV), nous avons le suivant :

(V): A′{0,1}, A
′
{0,2}, A{1,2} est une suite T1-indépendante au-dessus de l’en-

semble A′0A1A2.
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Les identifications que nous avons faites fournissent des L1-plongements ι′{0,i} :
A′{0,i} ↪→M ′ pour i = 1, 2 qui satisfont évidemment (1).

Voilà les conséquences de (I)-(V) au niveau des L0-réduits : d’abord, par (III) et
(II), on a A′{0,1} |̂ 1

A1
A{1,2}, ce qui donne

(III-0): A′{0,1} |̂ 0

A1
A{1,2}.

Puis, (IV) donne A′{0,2} |̂ 0

acl1(A′0A2)
A′{0,1}A{1,2}. Par ailleurs, on prétend que

(3) acl1(A′0A2)
0

|̂
A′0A2

A′{0,1}A{1,2},

ce qui donnera (IV-0).
Pour montrer (3), notons d’abord que (3) est un énoncé qui ne dépend que de

q1 := tp1(A′{0,1}A{1,2}). Comme A′{0,1} |̂ 1

A1
A{1,2}, par la Remarque 3.13, il existe

un amalgame libre (auxiliaire) Ã = A′{0,1} ⊗A1 A{1,2} tel que tp1(Ã′{0,1}Ã{1,2}) =
q1, où nous écrivons X̃ chaque fois qu’un ensemble X est considéré comme sous-
ensemble de Ã. Les fusions Ã′0, Ã1 et Ã2 forment une suite |̂ ∗-indépendante, avec
Ã′{0,1} = 〈Ã′0Ã1〉 et Ã{1,2} = 〈Ã1Ã2〉.

Or, le Lemme 5.3 implique 〈Ã′0Ã2〉 |̂ 0

Ã′0Ã1Ã2
Ã′{0,1}Ã{1,2}, et donc en particulier

acl1(Ã′0Ã2) |̂ 0

Ã′0Ã2
Ã′{0,1}Ã{1,2}. Comme tp1(Ã′{0,1}Ã{1,2}) = tp1(A′{0,1}A{1,2}), on

a montré (3).

(IV-0): A′{0,2} |̂ 0

A′0A2
A′{0,1}A{1,2}.

On combine (III-0) et (IV-0) pour obtenir

(V-0): Le système (K,A′0, A1, A2, A
′
{0,1}, A

′
{0,2}, A{1,2},M

′), avec les indices
et plongements évidents, est un système indépendant de modèles de T0.

Par le Fait 2.4 et (V-0), tp0(A′{0,1}, A
′
{0,2}, A{1,2}) est complètement déterminé

par le système en question.
Changeant L1 en L2, on peut obtenir des L2-plongements ι′′w : Aw ↪→ M ′′ |= T2

satisfaisant à (1), en considérant A{1,2} ⊆ M ′′ |= T2 suffisamment saturé, et en
trouvant A′′0 , A′′{0,1} et A′′{0,2} vérifiant les analogues de (I)-(V).

Par ce qui est dit plus haut, on a l’égalité

tp0(A′{0,1}A
′
{0,2}A{1,2}) = tp0(A′′{0,1}A

′′
{0,2}A{1,2}).

Il suffit d’appliquer 3.10 à tp1(A′{0,1}A
′
{0,2}A{1,2}) et tp2(A′′{0,1}A

′′
{0,2}A{1,2}) pour

obtenir la fusion A cherchée. Notons que les plongements ιw sont donnés implicite-
ment par notre construction. Puis, (2) suit du fait que A est un amalgame libre de
A′0 et A{1,2} au-dessus de K (on applique 5.3). �

Théorème 5.5. Supposons l’hypothèse A. Alors toute complétion T de Tω est
supersimple, et la relation de non-déviation |̂ dans T est donnée par |̂ ∗.

Le rang SU d’une extension parasite est égal à la longueur d’une décomposition
en extensions primitives, et SU(g/A) ≤ ω pour tout g avec d(g/A) = 1.

Preuve. On utilise le Théorème de Kim-Pillay 2.2. Il a déjà été montré que |̂ ∗ est
une notion d’indépendance dans la Proposition 4.29. Puis, une fois que la simplicité
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de T est établie, 4.28 montre que tout type finitaire ne dévie pas au-dessus d’un
ensemble fini, d’où la supersimplicité de T . Or, le Théorème d’Indépendance suit
de la Proposition 5.4.

Les énoncés concernant le rang SU découlent des Inégalités de Lascar (voir [Wa00,
Ch.5] pour une preuve dans le cas simple), car le rang SU d’une extension primi-
tive est égal à 1 (c’est précisément le contenu du Lemme 3.22). Pour les extensions
parasites, c’est clair. Puis, si g 6 |̂ ∗

B
B′ pour un singleton g avec d(g/B) = 1, forcé-

ment d(g/B′) = 0. On en déduit que SU(g/B′) < ω, car clω(B′g)/ clω(B′) est une
extension parasite. �

En fait, la Proposition 5.4 montre :

Corollaire 5.6. Dans la situation du Théorème 5.5, le Théorème d’Indépendance
est valide au-dessus de toute fusion K = clω(K) |= T1 ∪ T2. �

Remarque 5.7. Si T1 et T2 sont fortement minimales et T0 ω-catégorique, alors
l’hypothèse A est satisfaite par le Lemme 5.2. On peut alors appliquer le Théo-
rème 5.5, ce qui montre que toute complétion T de Tω est supersimple dans ce cas,
avec |̂ = |̂ ∗. Dans [Hi06, Section 2.6], nous obtenons des résultats divers de n-
amalgamation. Nous montrons entre autres que T a la propriété de n-amalgamation
de modèles pour tout n ∈ N (cf. [Hi06, Théorème 2.6.8]).

Voilà un exemple d’un contexte de fusion avec T1 et T2 fortement minimales et
T0 ω-catégorique où aucune complétion de T1 ∪ T2 n’est stable :

Exemple 5.8. Soit T0 la théorie d’une relation d’équivalence E, avec une infinité
de classes à 4 éléments, sauf une classe exceptionnelle contenant un seul élément 0,
T1 := EVF5 , l’expansion étant donnée par : Exy ssi x = αy pour un α ∈ F∗5 =
{1, λ, λ2, λ3} (pour λ = 2, par exemple),
T2 := théorie d’une opération deG2 = Z/2×Z/2 = {1, c, d, cd} agissant trivialement
sur 0 et librement sur le complément de {0}. On trouve T0 comme réduit via Exy
ssi x = g · y pour un g ∈ G2.

On montre qu’aucune complétion de T1 ∪ T2 n’est stable. Car supposons que
M |= T1 ∪ T2 soit stable. En particulier, c’est un groupe stable Γ pour l’addition
dans l’espace vectoriel donné par T1, avec composante connexe Γ0. Soit x générique
dans Γ0. Comme la multiplication avec λ est un automorphisme définissable de Γ,
l’élément λx est générique dans Γ0 aussi, c’est à dire tp(x) = tp(λx). En particulier,
si λx = c·x (par exemple), alors λ(λx) = c·(λx) aussi. On arrive à une contradiction :
x 6= λ2x = λ(λx) = c · (λx) = c · (c · x) = c2 · x = x.

Remarque 5.9. Pour exclure ce genre d’exemples, on peut définir : le contexte de
fusion (T0, T1, T2) (avec Ti fortement minimale) a un bon contrôle si pour tout K ∈
C̃0 et tout A ⊆ K contrôlant K, le L-type d’isomorphisme de K est complètement
déterminé par qftpL(A). On montre que si dans une des expansions Ti ⊇ T0 les
multiplicités sont préservées, alors (T0, T1, T2) a un bon contrôle. En particulier,
c’est donc le cas si dcl0 = acl0, par exemple si T0 est la théorie d’un espace vectoriel
sur un corps fini.

Dans [HH06], il est montré que si on suppose un bon contrôle, alors Tω est
complète et ω-stable avec un unique type générique (de rang ω en général).

Pour conclure la section, nous allons montrer que tout type parasite est mo-
nobasé. Pour cela, le lemme suivant est bien utile, car il permet de comprendre
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facilement la déviation au sein d’un type parasite. On aurait pu énoncer ce lemme
déjà depuis un moment.

Lemme 5.10. Soit L une extension parasite de K = clω(K), et soit M = clω(M)
une extension arbitraire de K. Alors L |̂ ∗

K
M ssi L ∩M = K ssi L |̂ 0

K
M .

Preuve. Il suffit de combiner le Lemme 3.14 avec 4.26, car L |̂ d

K
M est automatique

pour L/K parasite. �

Proposition 5.11. Soit T une complétion de Tω, et supposons que T soit simple
avec |̂ = |̂ ∗. Alors, tout type parasite est monobasé.

Preuve. C’est une conséquence de la caractérisation de la non-déviation pour les
extensions parasites donnée dans le Lemme 5.10. �

6. Paires magnifiques de fusions libres

Dans [BPV03], la notion d’une paire magnifique de modèles de T est introduite et
étudiée, où T est une théorie simple complète. En fait, la définition a un sens dans
toute théorie complète avec une notion d’indépendance |̂ ∗. Dans cette section,
en travaillant dans la classe des paires de fusions, nous montrons que tout modèle
suffisamment saturé de la théorie des paires magnifiques de modèles de Tω est une
paire magnifique (en supposant les hypothèses de définissabilité 4.1). On obtient
comme corollaire que toute complétion T de Tω a la wnfcp si de plus T est simple
avec |̂ = |̂ ∗.

Le concept d’une paire magnifique (d’une théorie simple) est une généralisation
commune des deux notions suivantes :

– les belles paires (de modèles d’une théorie stable) étudiées par Poizat dans
[Po83],

– les paires génériques (de modèles d’une théorie simple de rang SU égal à 1)
étudiées par Vassiliev dans [Va03].

Il est observé dans [BPV03] que pour une théorie stable T , une“paire magnifique”
est (essentiellement) la même chose qu’une “belle paire”.

Supposons que T est une L-théorie simple et complète qui élimine les quanteurs.
Soit LP := L ∪ {P}, où P est un nouveau prédicat unaire. Une LP -structure est
donc de la forme (M,P (M)), pour une L-structure M et P (M) ⊆M .

Définition 6.1. Soit κ ≥ |T |+. Une LP -structure (M,P (M)) est une paire κ-
magnifique si P (M) 4L M |= T et si les propriétés suivantes sont satisfaites :

(i)κ Pour tout sous-ensemble A ⊆M de cardinalité < κ et tout L-type (finitaire)
p ∈ S(A) il existe a ∈M réalisant p tel que a |̂

A
P (M).

(ii)κ Pour tout A ⊆M de cardinalité < κ et tout L-type (finitaire) p ∈ S(A) tel
que p ne dévie pas au-dessus de P (A), il existe a ∈ P (M) avec a |= p.

Fait 6.2 ([BPV03]). Soit T simple et complète. Alors :
(1) Des paires κ-magnifiques existent pour tout κ, plus généralement : toute

paire se plonge dans une paire κ-magnifique (même librement, voir plus
bas pour la définition d’un plongement libre).

(2) Deux paires κ-magnifiques (pour κ ≥ |T |+) sont L∞,ω-équivalentes. En
particulier, elles ont la même LP -théorie élémentaire que l’on note TP.

�
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Si maintenant T est une théorie complète et |̂ ∗ une notion d’indépendance, la
Définition 6.1 d’une paire κ-magnifique dans T (par rapport à |̂ ∗) a un sens. En
effet, le Fait 6.2 reste valable dans ce cadre (les arguments donnés dans [BPV03]
restent valides sans changement).

Disons, par abus de langage, que les paires (κ-)magnifiques de modèles de T
sont axiomatisables si un modèle suffisamment saturé de TP est une paire (κ-
)magnifique. Dans [BPV03], la relation entre l’axiomatisabilité des paires magni-
fiques d’une théorie simple T et certaines propriétés de T est étudiée en détail, et
plusieurs conditions équivalentes à l’axiomatisabilité de TP sont données. Dans le
cas où les paires magnifiques sont axiomatisables, [BPV03] fait une étude systéma-
tique de la théorie TP (si les paires magnifiques ne sont pas axiomatisables, il faut
sortir du cadre des classes élémentaires de structures).

Définition 6.3 ([BPV03]). Une théorie simple a la wnfcp (weak non finite cover
property, une version faible de la propriété du non-recouvrement fini) si pour toutes
formules ϕ(x, z) et ψ(x, y) on a :

(finitude) D(ψ(x, c̄), ϕ) < ω pour tout c̄.
(définissabilité) Pour tout n ∈ N il existe une formule χn(y) telle que D(ψ(x, b), ϕ) =
n si et seulement si |= χn(b).

Notons que si T a la wnfcp, alors T élimine ∃∞.

Fait 6.4 ([BPV03]). Soit T simple et complète.

(1) La théorie TP est axiomatisable si et seulement si T a la wnfcp.

(2) Si TP est axiomatisable, c’est une théorie simple (supersimple si T est
supersimple) et |̂ T

P

a une description concrète en terme de |̂ T .

En général, on doit considérer les paires |T |+-magnifiques mais dans le cadre de
la fusion libre, on peut faire mieux :

Définition 6.5. Soit T une théorie complète et |̂ ∗ une notion d’indépendance
telle que tout type finitaire ne |̂ ∗-dévie pas au-dessus d’un ensemble fini. Une
LP -structure (M,P (M)) est une paire ℵε-magnifique si P (M) 4L M |= T et si les
deux propriétés suivantes sont satisfaites :

(i)ε Pour tout sous-ensemble A ⊆ M tel que A = acl(b) pour un uplet b fini,
et pour tout L-type (finitaire) p ∈ S(A) il existe a ∈M réalisant p tel que
a |̂ ∗

A
P (M).

(ii)ε Pour tout A ⊆M de la forme A = acl(b) pour un uplet b fini, et pour tout
L-type (finitaire) p ∈ S(A) tel que p ne ( |̂ ∗-)dévie pas au-dessus de P (A),
il existe a ∈ P (M) avec a |= p.

Nous allons utiliser des idées de [Be04] pour reformuler la magnificence en terme
de richesse. Pour cela, nous revenons à la fusion libre dans un contexte de fusion
(T0, T1, T2). Soit (C̃P

0 ,≤P) la classe des paires (A,P (A)) de fusions avec P (A) ≤ A,
où (B,P (P )) ≤P (A,P (A)) ssi B ≤ A, P (B) ≤ P (A) et B |̂ ∗

P (B)
P (A). On pose

CP
0 := {(A,P (A)) ∈ C̃P

0 |A ∈ C0}.
Suivant la terminologie de [Be04], on appelle ≤P une extension (un plongement)
libre. Si (B,P (B)) ≤P (A,P (A)), (C,P (C)) sont des paires de fusions, on peut
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choisir un amalgame libre D = A⊗B C et définir P (D) := 〈P (A)P (C)〉 au sein de
D. On effectue un calcul standard de |̂ ∗-indépendance pour vérifier que P (D) =
P (A)⊗P (B)P (C) et (A,P (A)), (C,P (C)) ≤P (D,P (D)), ce qui montre la deuxième
partie du lemme suivant. Quant à la première, il suffit d’utiliser 4.4.

Lemme 6.6. (1) C̃P
0 est une classe élémentaire.

(2) (C̃P
0 ,≤P) (ainsi que (CP

0 ,≤P)) a la propriété d’amalgamation (AP). �

Définition 6.7. Un élément (M,P (M)) ∈ C̃P
0 est appelé une paire riche de fusions

si (M,P (M)) est riche pour la classe (CP
0 ,≤P).

Avant d’arriver à l’égalité “paire riche=paire ℵε-magnifique”, nous allons mon-
trer qu’une extension finiment engendrée dans C̃P

0 peut être obtenue comme suite
d’extensions plus simples et faciles à décrire.

Définition 6.8. Soit (B,P (B)) ≤P (A,P (A)) une extension libre dans C̃P
0 .

– (B,P (B)) ≤P (A,P (A)) est une extension de base, si A = 〈BP (A)〉. Une telle
extension de base est finiment engendrée / parasite / primitive / générique, si
P (A)/P (B) l’est.

– On dit que (B,P (B)) ≤P (A,P (A)) ne change pas la base, si P (A) = P (B).
Dans ce cas, l’extension est appelée finiment engendrée / parasite / primitive /
générique, si A/B est une extension finiment engendrée / parasite / primitive
/ générique.

Soit (B,P (B)) ≤P (A,P (A)) dans C̃P
0 . Au sein deA, on trouveAβ := 〈BP (A)〉 =

clω(BP (A)). Donc, P (Aβ) = P (A), et (B,P (B)) ≤P (Aβ , P (Aβ)) est une extension
de base, alors que (Aβ , P (Aβ)) ≤P (A,P (A)) ne change pas la base. En utilisant le
Lemme de décomposition 3.29 dans la classe (C̃0,≤) et 3.30, on en déduit :

Lemme 6.9. Soit (B,P (B)) ≤P (A,P (A)) dans C̃P
0 avec A/B finiment engendrée.

Alors il existe des fusions A0 = B ≤ A1 ≤ . . . ≤ An = A telles que pour i =
1, . . . , n− 1, (Ai, P (Ai)) ≤ (Ai+1, P (Ai+1)) est d’un des types suivants : extension
de base primitive, extension de base générique, extension primitive qui ne change pas
la base, extension générique qui ne change pas la base. On peut même les arranger
de sorte qu’il existe r ≤ n− 1 tel qu’il s’agisse des extensions de base pour i ≤ r et
des extensions qui ne changent pas la base pour i > r. �

Lemme 6.10. Les paires riches de fusions sont exactement les paires ℵε-magni-
fiques de modèles de Tω.

Preuve. L’argument est similaire à la preuve de [Be04, Prop. 2.3], et nous l’omet-
tons. �

Remarque. En fait, on peut montrer un peu plus : Une paire de fusions (M,P (M))
dans C̃P

0 satisfait à la condition (i)ε ssi elle est riche pour les extensions qui ne
changent pas la base, et elle satisfait à la condition (ii)ε ssi elle est riche pour les
extensions de base. �

Les composantes connexes de (C̃P
0 ,≤P) sont précisément données par les compo-

santes connexes de (C̃0,≤). Évidemment, deux paires riches de fusions (M,P (M))
et (N,P (N)) ont la même LP -théorie ssi elles se trouvent dans la même compo-
sante connexe de (C̃P

0 ,≤P). Dans ce cas, elles sont (LP )∞,ω-équivalentes, car elles
se correspondent par va-et-vient infini.
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Voilà le lien avec les paires κ-magnifiques (toujours par rapport à |̂ ∗) :

Lemme 6.11. Soit (M,P (M)) une paire de fusions ℵε-magnifique, et κ-saturée en
tant que LP -structure. Alors, (M,P (M)) est une paire κ-magnifique.

Preuve. Clair. �

Soit TP
ω la théorie des paires ℵε-magnifiques de modèles de Tω. Nous voulons

axiomatiser cette LP -théorie. Soit TP′

ω la LP -théorie suivante :

TP′

ω (1) : Si (M,P (M)) est un modèle de TP′

ω (1), alors P (M) 4L M |= Tω.

TP′

ω (2) : Soit Ψ = (ψ1(x, z, z0), ψ2(x, z, z0)) une famille de paires de contrôle de
dimension e et τ(x, z, y) une L-formule existentielle à quantification bornée
telle que |= τ(a, b, c) implique d(a/bc) < e. Alors, on met un axiome de la
forme

∀zz0∃x∀y{[θΨ(z, z0) ∧
m∧
i=0

yi ∈ P ]

→ [ψ1(x, z, z0) ∧ ψ2(x, z, z0) ∧ ¬τ(x, z, y) ∧
n−1∧
i=0

xi 6∈ P ]}

TP′

ω (3) : Soit Ψ comme dans le schéma (2), τ(x, z) existentielle à quantification bor-
née forçant d(x/z) < e. Puis, pour x = (x0, . . . , xn−1) ⊆ x̃, z0 ⊆ z̃0 et
z = (z0 . . . , zk−1) ⊆ z̃, soit Ψ̃ = (ψ̃1(x̃, z̃, z̃0), ψ̃2(x̃, z̃, z̃0)) une autre famille
de paires de contrôle (de dimension e), telle que |= ψ̃i → ψi pour i = 1, 2,
et ã ∈ 〈ab̃〉 dès que |= ψ̃1(ã, b̃, b̃0) ∧ ψ̃2(ã, b̃, b̃0). Pour une telle situation, on
met un axiome de la forme

∀z̃z̃0∃x̃{[θΨ̃(z̃, z̃0) ∧
k−1∧
i=0

zi ∈ P ]

→ [ψ̃1(x̃, z̃, z̃0) ∧ ψ̃2(x̃, z̃, z̃0) ∧ ¬τ(x, z) ∧
n−1∧
i=0

xi ∈ P ]}.

Théorème 6.12. Les théories TP
ω et TP′

ω cöıncident. Plus précisément, sont équi-
valents pour (M,P (M)) une paire de fusions :

(a) (M,P (M)) est une paire riche de fusions.

(b) (M,P (M)) est une paire ℵε-magnifique de modèles de Tω.

(c) (M,P (M)) est un modèle ℵε-saturé de TP′

ω .

Preuve. L’équivalence (a) ⇐⇒ (b) est le Lemme 6.10.
On vérifie que le schéma d’axiomes TP′

ω (2) est une version approximative de
(i)ε, tandis que TP′

ω (3) est une version approximative de (ii)ε. Donnons l’argument
concernant TP′

ω (2) et la propriété (i)ε. Soit d’abord (M,P (M)) une paire de modèles
de Tω satisfaisant (i)ε. On montre que (M,P (M)) |= TP′

ω (2). Pour cela, on considère
une famille de paires de contrôle Ψ = (ψ1, ψ2), de dimension e, et τ(x, z, y) comme
dans le schéma d’axiomes TP′

ω (2), et on suppose que M |= θΨ(b, b0) pour des uplets
b, b0 ∈M .
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Par 4.12 on peut supposer que b ≤ 〈b〉 =: k et (k, P (k)) ≤P (M,P (M)), c’est
à dire k ≤ M et k |̂ ∗

P (k)
P (M). Soit p := tpω(a′/k), où a′ est une solution Li-

générique de ψi(x, b, b0) (i = 1, 2) au-dessus de k, telle que k ≤ ka′ ≤ 〈ka′〉 =: l′

et l′ est fortement k-plongée dans K∗ <L M . On applique (i)ε au type p ∈ S(k)
pour trouver a ∈ M réalisant p tel que a |̂ ∗

k
P (M). Posons l := 〈ka〉 = clω(ka).

Comme k |̂ ∗
P (k)

P (M), on a l |̂ ∗
P (k)

P (M), et donc, par la définition de |̂ ∗, P (l) =

l ∩ P (M) = P (k) ainsi que l |̂ d

P (k)
P (M). Le premier point donne que l’uplet a

n’a pas de coordonnée dans P , et le deuxième point montre que e = d(a/k) =
d(a/kc0, . . . , cm−1) pour tout uplet c ∈ P (M) fini. L’axiome correspondant à Ψ et
τ dans (2) est donc vrai dans (M,P (M)).

Réciproquement, soit (M,P (M)) une paire de modèles de Tω satisfaisant TP′

ω (2),
telle que (M,P (M)) soit ℵε-saturé pour sa propre théorie. Soit p ∈ S(k) avec
k ≤M finiment engendrée. Soit a′ ∈ K∗ une solution de p, et posons l′ := clω(ka′).
Il faut trouver a ∈ M tel que a |= p et a |̂ ∗

k
P (M). Or, nous montrons plus :

on peut trouver une k-copie l de l′ dans M , avec l ≤ M et l |̂ ∗
P (k)

P (M). Pour
cela, il suffit que l |= qftpω(l′/k), P (l) = l ∩ P (M) ⊆ P (k) (d’où P (l) = P (k)) et
l |̂ d

k
P (M)). Or, les axiomes (2) montrent que le type décrit est finiment réalisable

dans (M,P (M)). Par ℵε-saturation, on conclut.
L’argument concernant TP′

ω (3) et la propriété (ii)ε est plus facile, et nous l’omet-
tons.

Nous avons alors montré que toute paire riche de fusions est un modèle de TP′

ω

et que tout modèle ℵε-saturé de TP′

ω est une paire riche de fusions.
Finalement, il est facile de voir que si la paire (K,P (K)) est librement plongée

dans (M,P (M)) |= TP′

ω , alors K = aclLP
(K) (on varie légèrement l’argument

donné dans la preuve de 4.24). Avec cela, on montre l’ℵε-saturation d’une paire
riche de fusions, ce qui termine la preuve. �

Corollaire 6.13. Supposons que la complétion T de Tω est simple, et que la non-
déviation dans T est donnée par |̂ ∗. (C’est par exemple le cas sous l’hypothèse A,
pour des expansions T1 et T2 de T0, avec T1 et T2 supersimples de rang SU 1 et T0

fortement minimale modulaire et ω-catégorique.) Alors, on a :

(1) La L-théorie T a la wnfcp.

(2) La LP -théorie TP est supersimple, où TP dénote la théorie d’une paire
riche de fusions dans la composante connexe de (C̃0,≤) associée à T .

Preuve. Comme |̂ ∗ = |̂ dans T par hypothèse, les paires κ-magnifiques par
rapport à |̂ ∗ que nous avons étudiées sont les “vraies” paires κ-magnifiques, c’est
à dire celles par rapport à la relation de non-déviation |̂ . Le corollaire suit donc
du Fait 6.4, car TP est axiomatisable par le Théorème 6.12. �

7. Variations sur la fusion

Dans cette section, nous mentionnons deux constructions qui sont similaires à la
fusion libre. Si T1 est une théorie (pré-)géométrique et T0 ⊆ T1 un réduit fortement
minimal et modulaire, nous considérons des structures bicolores par rapport à l’ex-
pansion T1 ⊇ T0 ; de même, nous construisons la courbe générique au-dessus de T1.
Sous des hypothèses de définissabilité convenables, ces constructions admettent des
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axiomatisations explicites ; si de plus T1 est supersimple de rang SU égal à 1, on
obtient des théories supersimples.

Les preuves sont similaires à celles que nous avons données dans la fusion libre,
mais les arguments sont plus élémentaires en général. Nous ne donnons donc pas
de preuves et nous contentons d’indiquer le type de résultats qu’on obtient. Le cas
où T1 est supersimple de rang SU égal à 1 est traité en détail dans [Hi06, Ch.4].

7.1. Courbe générique. Soit T1 une L1-théorie complète et C un nouveau sym-
bole de relation binaire. Soit L := L1 ∪ {C}. On s’intéresse à des L-structures
(M,CM ), où M |= T1. Soit T1 = ACFp la théorie d’un corps algébriquement clos
de caractéristique p ≥ 0, et soient K |= ACFp, d ≥ 1 et (ai,j) une suite d’éléments
algébriquement indépendants dans K, où 0 ≤ i, j et i+ j ≤ d. La courbe Cd ⊆ K2

donnée par l’équation
∑
i,j ai,jX

iY j = 0 est une courbe générique de degré d. Soit
Td la L-théorie de (K,CKd ). Cette théorie s’interprète dans le type de l’uplet ai,j et
ne dépend donc pas du choix des ai,j . Dans [CHKP02], il est montré :

(1) La suite (Td)d≥1 tend vers une limite Tω dans l’espace des L-théories.

(2) Cette limite Tω est ω-stable de rang de Morley ω.

(3) Si (K,C) |= Tω et (a′, b′) ∈ C, alors posant C ′ := C \ {(a′, b′)}, on a
(K,C ′) |= Tω. De même, il existe (a′′, b′′) ∈ K2 \ C tel que pour C ′′ :=
C ∪ {(a′′, b′′)} on a (K,C ′′) |= Tω.

La construction de Tω se fait par une amalgamation à la Fräıssé-Hrushovski, sans
collapse. La complétude et l’ω-stabilité ainsi que (3) s’obtiennent alors facilement.
La preuve de (1) est plus difficile. Les propriétés (1) et (3) ont de nombreuses
conséquences de non-définissablité. Citons-en deux :

(I) Pour m ≥ 2, soit Rm un nouveau prédicat m-aire. Alors, il n’existe pas
d’énoncé ϕ(Rm) dans le langage des corps augmenté par Rm tel que pour
tout ensemble définissable D ⊆ Km on ait : D est Zariski-clos si et seule-
ment si K |= ϕ(D).

(II) Soit Rm comme dans (I). Alors il n’existe pas d’énoncé ϕ(Rm) tel que
pour tout ensemble Zariski-clos D ⊆ Km on ait : D est irréductible si et
seulement si K |= ϕ(D).

Nous allons généraliser la construction de [CHKP02] au cadre suivant :

Contexte 7.1. T1 est une L1-théorie prégéométrique (complète). Pour simplifier
l’exposition, on suppose aussi que T1 élimine les quanteurs et que L1 = L(T1) est
dénombrable.

Soit L := L1 ∪ {C}, où C est un nouveau symbole de relation binaire. Comme
avant, acl1 dénote la clôture algébrique au sens de T1, et d1 la dimension au sens
de la prégéométrie induite par acl1.

Nous travaillons dans la classe C̃ des L-structures (M,CM ) avec M = acl1(M) |=
T ∀1 . Pour A ⊆ω M ∈ C̃ et B ⊆ M arbitraire on pose δ(A) := d1(A) − |CA| et
δ(A/B) := d1(A/B)− |CAB \CB |. On définit C̃0 := {M ∈ C̃ | δ(A) ≥ 0∀A ⊆ω M},
et C0 est la classe des structures finiment engendrées (au sens de acl1) dans C̃0. Pour
B ⊆ A ⊆M , on définit B ≤ A (B est autosuffisant ou fort dans A) si et seulement
si δ(a/B) ≥ 0 pour tout uplet fini a ∈ A. La dimension d est définie comme dans
la fusion libre, et on a l’analogue du Lemme 3.6.
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La classe C̃0 est élémentaire. Pour être en analogie complète avec la fusion libre,
nous pourrions écrire 〈·〉 au lieu de acl1(·), mais nous gardons la notation acl1. Si
K ∈ C̃0 et B ⊆ K, par conséquent, on dit que B contrôle K si acl1(B) = K et B ≤
K. On a donc B ≤ acl1(B) si et seulement si Cacl1(B) = CB . Pour K ⊆ L,M ⊆ N

dans C̃, on dit que N est un amalgame libre de L et M au-dessus de K, si L |̂ 1

K
M

et N est contrôlé par LM , c’est à dire N = acl1(LM) et CN = CL ∪ CM .
Les amalgames libres existent dans C̃0. En particulier, la classe (C̃0,≤) a la pro-

priété d’amalgamation. De plus, elle est connexe (comme acl1(∅) avec aucun point
dans C se plonge de manière autosuffisante dans toute structure de C̃0). Soit Tω la
L-théorie des structures riches dans C̃0. Avec des arguments similaires à la fusion
libre, on peut montrer :

Proposition 7.2. (1) Si T1 est géométrique, alors la théorie (complète) Tω
admet une axiomatisation explicite, et ses modèles ℵε-saturés sont précisé-
ment les structures riches dans C̃0. En particulier, cela fournit une descrip-
tion des types dans Tω. De plus, il y a une notion d’indépendance naturelle
|̂ ∗ dans Tω.

(2) Si T1 est supersimple de rang SU égal à 1, alors Tω est supersimple de rang
SU égal à ω et la relation de non-déviation dans Tω est donnée par |̂ ∗. �

Corollaire 7.3. On peut construire et axiomatiser la théorie de la courbe géné-
rique dans un corps réel clos, dans un corps p-adiquement clos et dans un corps
pseudofini.

Soit T1 la théorie d’un corps pseudofini. Comme dans un corps algébriquement
clos, le degré fournit une mesure pour décrire la“complexité”d’une courbe plane. On
peut donc espérer pouvoir représenter, de manière naturelle, la théorie Tω comme
limite de théories Td = Th(F,Cd) où F est pseudofini et Cd une courbe plane de
degré d, avec un paramètre générique. Cependant, il n’y a pas de choix unique pour
les paramètres génériques, et la limite de telles théories Td (si elle existe) pourrait
dépendre des choix de paramètres.

D’où les questions suivantes (une réponse positive, même à la première partie,
parâıt probable, mais nous n’avons pas exploré cette question en profondeur ; on ne
peut d’ailleurs pas imaginer une réponse positive à la seconde partie qui ne passerait
pas par la première) :

Questions. – Est-ce que la limite de telles théories Td est égale à Tω, et cela
indépendamment du choix des paramètres génériques pour définir les courbes
Cd ?

– Est-ce qu’il existe un choix de paramètres pour lequel les théories Td aient la
limite Tω ?

7.2. Structures bicolores. Afin de construire un contre-exemple à la conjecture
de Berline-Lascar (qui dit qu le rang U de Lascar d’un corps superstable est toujours
de la forme ωα), Poizat considère des corps algébriquement clos K avec un nouveau
prédicat unaire P , désignant un sous-ensemble distinct PK ⊆ K. Il effectue une
amalgamation à la Hrushovski, à l’aide de la prédimension δ(A) := 2 deg. tr(A) −
dim(PA), où dim est une notion de dimension appropriée sur le prédicat, et il
obtient des corps de rang de Morley (et de Lascar) ω · 2 ; le rang du prédicat est
égal à ω.
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Dans [Po99], on a P = N (l’ensemble des points noirs), et le prédicat désigne
juste un sous-ensemble : on obtient les corps noirs. Si P = R désigne un sous-
groupe du groupe additif du corps, on construit ainsi les corps rouges [Po01]. Enfin,
également dans [Po01], Poizat considère le cas où P = V désigne un sous-groupe
du groupe multiplicatif du corps, pour obtenir les corps verts.

Il y a un cadre naturel qui incorpore deux de ces constructions de corps bicolores :
les corps noirs (en toute caractéristique) et les corps rouges en caractéristique posi-
tive. Nous proposons le cadre des structures bicolores. Au niveau de la construction,
nous supposerons : T1 est complète et prégéométrique, et T0 ⊆ T1 est un réduit for-
tement minimal et modulaire. En ajoutant un nouveau prédicat unaire R (désignant
les points rouges) à L1 = L(T1), nous considérons la classe des modèles de T ∀1 dans
L := L1 ∪{R}, à l’aide de la prédimension δ(A) := 2 d1(A)−d0(RA), où di désigne
la dimension par rapport à Ti. Pour faciliter l’exposition, nous supposons de plus :
les Ti éliminent les quanteurs dans Li, les langages sont dénomobrables et acl1(∅)
est infini. On définit la classe des structures bicolores comme suit :

C̃0 := {(M,RM ) |M = acl1(M) et (M,RM ) |= TP
0 }.

Là, TP
0 désigne la théorie des belles paires de modèles de T0, considérée dans

L0∪{R}. Notons que TP
0 élimine les quanteurs dans ce langage, car T0 est modulaire.

On définit une notion d’autosuffisance ≤ (pour des sous-ensembles acl0-clos de
structures dans C̃0) et de dimension d(·) précisément comme dans la fusion libre,
et on obtient alors des opérateurs de clôture cl0, clω et cld, en remplaçant 〈·〉 par
acl1(·).

On développe la machinerie des amalgames de Hrushovski comme dans la fu-
sion, à l’exception du fait que la fonction d(·) n’induit une prégéométrie que si
l’on la restreint aux points rouges. L’existence d’amalgames libres donne la pro-
priété d’amalgamation dans (C̃0,≤), et cette classe est connexe, aussi. On peut
donc construire des structures bicolores riches dans (C̃0,≤) — riches par rapport à
la classe C0 des structures finiment engendrées au sens de acl1. Soit Tω la théorie
(complète) des structures bicolores riches.

Théorème 7.4. (1) Si T1 est géométrique et T0 ω-catégorique, alors Tω admet
une axiomatisation explicite, et ses modèles ℵε-saturés sont précisément les
structures bicolores riches. En particulier, cela fournit une description des
types dans Tω. De plus, il y a une notion d’indépendance naturelle |̂ ∗ dans
Tω.

(2) Si T1 est supersimple de rang SU égal à 1 et T0 ω-catégorique, alors Tω est
supersimple de rang SU au plus ω · 2 (avec SU(R) ≤ ω) et la relation de
non-déviation dans Tω est donnée par |̂ ∗. �

Dans bien des cas, il est possible d’effectuer des caluls de rang exact :

Exemple 7.5. (1) Soit T1 la théorie d’un corps pseudofini et T0 la théorie d’un
ensemble infini sans structure. Alors SU(Tω) = ω · 2 et SU(R) = ω.

(2) Soit T1 la théorie d’un corps pseudofini de caractéristique p > 0 et T0 =
EVFp . Alors, comme avant, SU(Tω) = ω · 2 et SU(R) = ω.
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génériques, J. Symbolic Logic 67 (2002), 24–34.

[CH99] Z. Chatzidakis et E. Hrushovski, Model Theory of Difference Fields, Trans. AMS 351
(1999), 2997–3071.

[CP98] Z. Chatzidakis et A. Pillay, Generic Structures and Simple Theories, Ann. Pure Appl.
Logic 95 (1998), 71–92.
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