LA FUSION LIBRE : LE CAS SIMPLE
MARTIN HILS

RESUME. Nous construisons la fusion libre de deux théories géométriques T}
et T, au-dessus d’un réduit commun Ty qui est supposé fortement minimal
et w-catégorique. Si T1 et Th sont supersimples de rang SU 1 (et sous une
hypothese supplémentaire qui est satisfaite si les T; sont stables ou si Tp a une
géométrie triviale), nous montrons que les complétions de la fusion libre sont
supersimples de rang SU au plus w.

1. INTRODUCTION

En variant la méthode d’amalgamation de Fraissé, Hrushovski a réussi dans
[Hr92] & fusionner deux théories fortement minimales (ayant des langages sont dis-
joints) en une seule. En 1988, il avait déja emprunté la méme méthode d’amalga-
mation pour construire une théorie fortement minimale non-localement modulaire
qui n’interprete pas de groupe infini. Cette théorie est un contre-exemple extréme a
la Conjecture de la trichotomie de Zilber selon laquelle la géométrie d’un ensemble
fortement minimal est triviale ou linéaire si elle ne provient pas d’un corps algé-
briquement clos. Poizat a établi deux étapes pour la méthode de construction par
amalgamation : apres la construction d’une structure générique w-stable de rang
w (appelée fusion libre dans le cas de la fusion) suit le collapse sur une théorie
fortement minimale.

Hrushovski, dans son article sur la fusion [Hr92], a fait remarquer qu’une fusion
en une théorie fortement minimale devrait également se faire si les deux théories
fortement minimales a fusionner s’intersectaient dans la théorie d’un espace vectoriel
sur un corps fini. Plus généralement, le probleme d’une fusion au-dessus d’un sous-
langage se pose, c’est a dire la fusion de deux théories fortement minimales T}
et Ty au-dessus d’une troisieme Tj (qui est un réduit commun). Pour des raisons
techniques, il vaut mieux supposer que Ty est w-catégorique.

Nous avons étudié la fusion libre au-dessus d’un sous-langage dans un travail
en commun avec Assaf Hasson [HHO6], sous I’hypothése supplémentaire que les
multiplicités soient préservées dans I'une des expansions Ty C T; (i = 1,2). La
théorie de la fusion libre qui en résulte est w-stable avec un unique type de rang w,
et le collapse est établi sur une théorie fortement minimale dans le cas particulier
ou 17 et Ty sont localement modulaires. Baudisch, Martin-Pizarro et Ziegler ont
finalement pu montrer le collapse au-dessus d’un espace vectoriel sur un corps fini
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en toute généralité. Comment on peut, en se servant de ce résultat, obtenir un
collapse pour Ty quelconque, nous 'avons expliqué dans [Hi06].

Si 'on leve ’hypothese sur les multiplicités, on n’obtient plus systématiquement
une théorie w-stable en fusionnant librement. En effet, il y a méme des exemples
avec T et Ty localement modulaires et Ty triviale tel qu’aucune complétion de
T) U T ne soit stable (voir 'Exemple 5.8). Nous montrons néanmoins dans cet
article que ’on peut toujours fusionner librement 77 et 75 au-dessus de T en une
théorie supersimple et que cela reste méme vrai si nous démarrons dans la catégorie
des théories supersimples (de rang SU 1).

Il Savere que le bon contexte pour une telle fusion libre (pas forcément stable)
est bien plus général : au niveau de la construction, il suffit de supposer que T
et Ty soient des théories prégéométriques, et que Ty soit fortement minimale et
modulaire. Pour pouvoir axiomatiser la théorie de la fusion libre obtenue, il nous
faudra mettre quelques gouttes d’uniformité.

L’article est organisé comme suit : d’abord, dans la Section 2, nous rappelons
quelques résultats concernant les théories simples et les théories prégéométriques
(des théories dans lesquelles la cloture algébrique induit une prégéométrie). Puis,
nous construisons la fusion libre de deux théories prégéométriques 17 et T» au
dessus de leur réduit commun 7Ty qui est supposé fortement minimal et modulaire
(Section 3), en considérant la théorie T,, des structures riches d’une certaine classe
d’amalgamation. Sous des hypotheses de définissabilité — élimination de 3*° dans
Ty et T5 ainsi que w-catgoricité de T, — nous donnons dans la Section 4 une
axiomatisation explicite de T,,, et nous déduisons que la fusion libre ainsi construite
a modele-théoriquement un sens, car alors tout modele suffisamment saturé de T,
est riche. A 'aide des notions d’indépendance présentes dans les théories T; et de
la notion d’un plongement fort, nous exhibons une notion d’indépendance | * dans
(toute complétion de) T,,,.

Dans la Section 5, nous supposons que 17 et T5 soient supersimples de rang
SU égal a 1 (et Ty toujours w-catégorique). Sous une hypothese supplémentaire
(satisfaite si les T; sont stables ou si Ty a une géométrie triviale), nous montrons
que toute complétion de T, est supersimple de rang SU au plus w et que | *
coincide avec la relation de non-déviation. C’est le contenu du Théoreme 5.5, I'un
des résultats principaux de l'article. Ensuite, nous étudions les paires magnifiques
de modeles de T, et nous obtenons comme résultat que toute complétion de T, a
la propriété faible du non-recouvrement fini (wnfcp).

Enfin, dans la dernieére section, nous discutons brievement comment on peut utili-
ser les mémes techniques pour étendre la construction d’une courbe générique plane
dans la théorie des corps algébriquement clos [CHKP02] ainsi que la construction
de corps bicolores due a Poizat [P099, Po01] aux théories supersimples de rang SU
1 et méme aux théories (pré-)géométriques.

Je voudrais remercier Bruno Poizat pour son inspiration constante, fruit de sa
curiosité inassouvissable et de sa fagon de poser des questions.

2. PRELIMINAIRES

Dans ces préliminaires, nous rappelons quelques résultats connus ; la section nous
sert également pour fixer la terminologie ainsi que des notations. Nous utilisons
librement des résultats sur les théories stables. On pourra consulter [Pi96] ou [Sh90].
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Nos notations sont plutdt standard. Nous écrivons AB pour AU B, et A C, B
signifie que A est un sous-ensemble fini de B. En général, nous ne distinguons pas
la structure 91 et I’ensemble de base sous-jacent M et écrivons donc M pour les
deux. Par un modéle monstre d’une théorie complete T', nous entendons un modele
¢ = T qui est k-saturé et fortement x-homogene pour un cardinal régulier k treés
grand. Quand nous utilisons un tel modele monstre, tous les modeles considérés
seront des sous-structures élémentaires de € et petits (i.e. de cardinalité < k), c’est
a dire € sert comme domaine universel pour 1. Tout sous-ensemble de € que nous
considérons sera également petit dans ce sens.

2.1. Théories simples. La classe des théorie simples a été introduite par She-
lah dans [Sh80], puis développée par Kim [Ki98] et Kim-Pillay [KP97]. A part le
graphe aléatoire, les premiers exemples naturels sont les corps pseudofinis et les
corps algébriquement clos avec automorphisme générique (voir [Hr02] et [CH99]).

Nous remarquons que des expansions génériques (prédicat générique, automor-
phisme générique) étudiées par Chatzidakis-Pillay [CP98] sont des sources de nou-
velles théories simples et en général instables. Pour une introduction aux théories
simples on peut consulter [Wa00].

Si tp(a/BA) ne dévie pas au-dessus de A, on écrit a J/A B. Par définition, une
théorie (complete) est simple si la relation de non-déviation a un caractere local,
c’est & dire si pour tout ensemble de parametres B et tout uplet (fini) @ il existe
A C Bavec |[A| < |T|eta | , B.Silensemble A en question peut toujours étre
choisi fini, on dit que T est supersimple. Toute théorie stable est simple, et une
théorie stable est supersimple si et seulement si elle est superstable. Comme dans
les théories stables, la relation de non-déviation | a de jolies propriétés dans toute
théorie simple. Notamment, elle fournit une notion d’indépendance dans le sens de
la Définition 2.1, satisfaisant au Théoreme d’Indépendance au-dessus d’un modele.

Définition 2.1. Soit T une théorie complete et € un modele monstre de T'. Puis,
soit I" une collection de triplets (@, B, A) dans €. Si (@, B, A) € T, on écrit a Ll;‘ B.
On dit que I" est une notion d’indépendance si les propriétés suivantes (i)-(vii) sont
satisfaites :

(i) (#nvariance) T' est invariante par automorphismes de €.
(ii) (non-trivialité) Pour tout @, B, @ J/EE si et seulement si @ € acl(B).
(iii) (caractére local) Pour tout @ et B il existe un sous-ensemble A C B avec
T
|Al < [T| tel quea |, B.
(iv) (caractére fini) @ J/l; B si et seulement si @ J/II; By pour tout By C,, B fini.
v) (eztension) Pour tout @, A et B il existe @’ avec tp(a’/A) = tp(a/A) tel que
(v) ( : p p q
— N
a |l ,B.
(vi) (symétrie) Pour tout a,b et tout A on a @ J/EE ssi b J/EE.
(vii) (transitivité) Pour tout a, A, B,C onaa J/E BC <= a JJZ Beta LZB C.
Si I' est une notion d’indépendance, on notera C J/i B si pour tout ¢ € C fini
onac J/l;l B.
On dit que T satisfait au théoreme d’indépendance au-dessus d’un modéle si de
plus, on a
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(viii) Pour tout modeéle M < € M C Bj,Bs et a1,as tels que tp(a; /M) =
tp(az/M), a; J/?VI B; pour i = 1,2 et By J/L B, il existe un uplet @ avec
tp(a/B;) = tp(a;/B;) (pour i = 1,2) et EJ/E/I B Bs.

Le théoreme suivant fournit une caractérisation abstraite de I'indépendance dans
une théorie simple, et il s’avere extrémement utile dans les applications. Il est
souvent préférable de montrer la simplicité d’une théorie donnée en dévinant une
notion d’indépendance I' et en passant par ce théoréme.

Théoréme 2.2 (Théoreme de Kim-Pillay [KP97] ). Soit T une théorie compléte.
Alors, T est simple si et seulement si T admet une notion d’indépendance I' satis-
faisant au théoréme d’indépendance au-dessus d’un modéle.

De plus, si T est une telle notion d’indépendance, ona | = |.*, ou | dénote
la relation de non-déviation dans T .

Le rang U de Lascar a son analogue en simplicité, noté SU. On observe que
SU(p) = 0 si et seulement si p est algébrique. Une théorie simple est supersimple si
et seulement si SU(p) < oo pour tout type réel p en un nombre fini de variables.

2.2. Propriété de n-amalgamation. La propriété de n-amalgamation a ses ori-
gines dans les travaux de Shelah, et elle a été considérée dans un contexte instable
par Hrushovski, en montrant que les corps pseudofinis ont cette propriété pour
tout n. Dans ce qui suit, nous discutons brievement une variation, la propriété de
n-amalgamation de modéles.

Définition 2.3. Soit T une théorie simple, M = T un modele et soit ¥ un ensemble
fini. Une famille S := (Cw)wep(y) de sous-ensembles de M ©? satisfaisant, pour tout
wCY

(i) Cw C Cy pour tout w Cw' CY et
(il) Cy ‘I“Uw'gw o, qu;_ﬁw Ci.

est appelée un Y -systéme indépendant.
On dit que c’est un Y -systéeme indépendant de modeles si en outre C,, = M, < M
pour tout w C Y.

Dans [Sh90], Shelah appelle les systemes indépendants des systémes stables. Or,
comme cette notion nous intéresse aussi dans des théories simples non-stables, ce
terme préterait a confusion.

Fait 2.4 ([Sh90, XI1.2.5]). Soit T' une théorie stable, et (M.y),ep(yy un Y -systéme
indépendant de modéles. Supposons que w ¢ w;, pour i =1,...,r, et posons w} :=
UN)Z' Nw.

Si, pour une formule ©(Zw, Zi,, - - -, Zaw, ) €t des uplets a,, € My, ap, € Mg, pour
i=1,...7, on a = p(Qw, gy, ---,0s,), alors il existe alwg € My (avec Eivg = Qp,
si agp, € My ) tels que)ch(ﬁw,aiﬂ,l,...,ﬁ’ ). O

wy,
Une fois pour toute, on choisit un ordre total < sur P(Y") tel que w C w’ implique
w < w'. Puis, si § = (Cy)wep(y) est un Y-systeme indépendant, on introduit les

notations suivantes : on pose A5 :=J,c., Cur €6 By = U2 Cu-

Fait 2.5 ([Sh90, XII.2.3]). Supposons que S := (Cy)wep(y) satisfait (i) et, pour
tout w C Y, la propriété suivante :
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(i) Cu L, BS.
Alors, S est un Y -systéme indépendant. O

Lemme 2.6. Soit T une L-théorie stable, T le réduit de T par rapport a L' C L.
Puis, soit S := (My)wcy un Y -systéme indépendant de modéles de T. Alors S’ :=
(M]))wcy est un Y -systéme indépendant de modéles de T', ot M, := M, [ .

Preuve. Par 2.5, il suffit de montrer que M,, J/;‘S B2 pour tout w, la propriété (i)

étant trivialement satisfaite. Prenons m € M,, et posons p’ := tp., (m/A%). Pour
toute £'(0)-formule ¢ (Z,7) il existe une L'( A2 )-formule x'(7) telle que pour tout
¢ on ait | x/(¢) ssi ¢/(T,¢) est contenue dans une extension non-déviante de p’ a
ASE. En particulier on a = x/(@) pour tout @ € AS avec ¢ (Z,a) € p'.
On raisonne par I'absurde. On trouve donc b € B2 avec = —x/(b) A ¢’ (m,b).
Donc, par le Fait 2.4, il existe @ € A3 avec = —x'(@) A ¢’ (T, a@). Contradiction.
O

Dans la majorité des cas dans la suite, ensemble Y sera n := {0,...,n — 1}.
Nous notons P~ (n) := P(n)\{n}. Pour i =0,...,n—1, 7 dénote 'ensemble n\ {i}
(un élément de P~ (n)). Pour tout w € P~ (n), on se donne un ensemble (infini)
de variables z,, tel que @, N Ty = Ty Pour tout w, w’. Si py(z,) est un type
complet et Cy, = Py, pour w’ C w, Cyy est le sous-ensemble de C, qui correspond
a l'inclusion z, C x4,.

Définition 2.7. Soit T simple, et n un entier naturel.

(1) Un probléme de n-amalgamation de modéles est la donnée de types complets
Pw(Zyw) pour w € P~ (n) tels que pour tout ¢ € n et tout M; = p; on ait :

(My)wcs est un -systéme indépendant de modeles.

(2) Une solution a un tel probléme est la donnée d’un uplet de variables xy,
(contenant U;:Ol x;) et un type complet py (xy) tel que pn(xn) F pi(x;) pour
tout i et si My |= p, alors (Mw)we'p(n) est un n-systéme indépendant de
modeles.

(3) On dit que la théorie T a la propriété de n-amalgamation de modéles, si
tout probléme de n-amalgamation de modeles (dans T') admet une solution.

Le fait suivant est bien connu. Les deux parties se montrent simultanément par
induction sur n et <, en utilisant 2.4 et 2.5.

Fait 2.8. Soit T' stable, et (pu(Tw))wep—(n) un probléme de n-amalgamation de
modéles de T'. Alors

(1) I existe une solution py(xyn) d ce probléme.
(2) Cette solution est unique dans le sens suivant : si p,,(x}) est une deuzieme
solution, alors pn [z, = Pa Y- O
2.3. Théories prégéométriques. Dans cette section, nous donnons des faits ba-

siques sur les théories (pré-)géométriques (voir la Définition 2.12).

Définition 2.9. Une prégéométrie (combinatoire) est la donnée d’un ensemble X
et d'un opérateur de cléture cl(-) : P(X) — P(X) satisfaisant, pour tout A, B C X
et pour tout a,b € X (ou a et b sont des éléments) :
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(i) (monotonie) A C cl(A). De plus, A C B = cl(A) C cl(B).

(ii) (transitivité) cl(cl(A)) = cl(4).

(iii) (caractére fini) Si a € cl(A), il existe un sous-ensemble Ay C A fini tel que
a € cl(Ap).

(iv) (propriété d’échange de Steinitz) Sia € cl(AU{b})\ cl(A), alors b € cl(AU
{a}).

Les ensembles de la forme A = cl(A) sont appelés clos.

Pour A C X, on peut localiser (X, cl) a A pour obtenir la prégéométrie (X, cly)
ou cla(B) := cl(AU B) pour tout B C X.

Remarque 2.10. Soit (X, cl) une prégéométrie. On dit que l’ensemble B C X est
indépendant au-dessus de A si b & cla(B \ {b}) pour tout b € B. On dit que B
est une base pour C O B au-dessus de A si B est indépendant au-dessus de A et
C g CIA(B).

Par la propriété d’échange de Steinitz, de telles bases existent (tout sous-ensemble
de C qui est indépendant au-dessus de A et mazimal avec cette propriété est une
base de C' au-dessus de A), et deuz bases ont la méme cardinalité. Cette cardinalité
est appelée la dimension de C' au-dessus de A et notée dim(C/A).

Enfin, on dit que C est indépendant de D au-dessus de A, si dim(Cy/A) =
dim(Cy/A U D) pour tout sous-ensemble fini Cy de C.

Soit (X, cl) une prégéométrie.

— (X, cl) est triviale, si cl(A) = J,c 4 cl({a}) pour tout f # A C X.

— (X, cl) est modulaire, si pour tous ensembles clos A, B C X, A est indépendant
de B au-dessus de A N B. De manieére équivalente, pour tous ensembles clos
A, B de dimension finie, dim(AB) = dim(A4) + dim(B) — dim(A N B).

— (X, cl) est localement finie si cl(A) est fini pour tout A C,, X.

Notons qu’une prégéométrie triviale est modulaire.

Fait 2.11. Soit (X,cl) une prégéométrie modulaire. Alors, le treillis des sous-
ensembles clos de X est modulaire. Cela signifie : Si C et A C B sont des ensembles

clos, alors cl(A(BNC)) = BNcl(AC).

Une théorie T' élimine le quanteur 3% si pour toute formule ¢(x,Z) il existe une
formule 0(%Z) telle que T 3%zp(x,Z) < §(Z). C’est équivalent a l'existence d’un
entier n,, satisfaisant, dans tout M =T : si pour b € M, la formule ¢(x,b) a plus
de n, solutions dans M, alors ¢(z,b) a une infinité de solutions dans M.

Définition 2.12.  — Une théorie complete T est appelée prégéométrique si dans
tout M =T, la cléture algébrique satisfait a la propriété d’échange de Steinitz.
— Si de plus T élimine 3°°, on dit que T est géométrique.
— On dit que la structure M est (pré-)géométrique si Th(M) Pest.

Nous avons emprunté la notion d’une théorie prégéométrique de [Ga05], ot I'on
peut aussi trouver quelques propriétés de base de ces théories.

Notons que dans toute structure M, 'opérateur acl(—) est monotone, transitif
et de caractere fini. Il induit donc une prégéométrie sur M précisément s’il satisfait
a la propriété d’échange de Steinitz.

Exemples 2.13. (1) Toute théorie fortement minimale (avec dim(A/B) =
RM(A/B) pour tout A fini), plus généralement toute théorie supersimple
de rang SU 1 est géométrique, et on a dim(A/B) = SU(A/B) (si A est
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fini) dans une telle théorie. La propriété d’échange pour ces théories est
une conséquence des inégalités de Lascar ; quant a 1’élimination de 3°°, voir
[Hr98, Lemma 4.2].

(2) La théorie des corps réel-clos, plus généralement toute expansion o-minimale
de Th(Q, <) est géométrique [vdD98].

(3) Qp (le corps des p-adiques) est géométrique. Plus généralement, toute théo-
rie p-minimale est géométrique [HM97].

(4) SiT est géométrique et Tp la théorie qu’on obtient en ajoutant un prédicat
aléatoire & T', alors toute complétion de Tp est géométrique [CP9S].

Un exemple d’une théorie prégéométrique qui n’est pas géométrique est la théorie
d’une relation d’équivalence avec exactement une classe a n éléments, pour tout
n € N. Cette théorie est w-stable de rang de Morley (et de Lascar) égal a 2.

Définition 2.14. Soit T une théorie prégéométrique et dim la notion de dimension
par rapport a la prégéométrie induite par acl.
— Pour p € S"(A) on pose dim(p) := dim(a/A), ou @ = p.
— Sin(zg,...,Tn—1) est un type partiel (& parametres dans A), on pose dim(7) :=
max{dim(p) |7 Cp € S™(A)}.

Soit 7(xg, ..., T,—1) un type partiel. Par induction sur n, on montre
(1) dim(m(zg,...,Tn-1)) =n <= | I ... 3%, 17(T).
Plus généralement pour r € N quelconque on a dim(7w(zg,...,T,—1) > r si et

seulement s’il existe un sous-ensemble I C n de cardinalité r tel que la projection
de m(Z) sur les coordonnées T; (donnée par 3T, ;(T)) soit de rang 7.

Notre définition de dim(w) ne dépend donc pas de ’ensemble de parametres A
considéré, et I'existence de points génériques en découle (si 7 est définit sur B, alors
il existe @ = 7 avec dim(a/B) = dim(w) : on dit qu'un tel uplet @ est générique
dans m au-dessus de B). En particulier, si p € S(B) et B C A, il existe ¢ € S(A)
étendant p avec dim(q) = dim(p). (Un tel ¢ est appelé une extension libre de p.)
Notons également que dim(7(T)) est égal au minimum des dim(¢(T)) quand ¢(T)
parcours les formules dans 7 ().

A Taide de la caractérisation de dim(7(Z)) > r donnée ci-dessus, on établit les
résultats suivants :

Fait 2.15. Soit T une L-théorie prégéométrique et T = T | p» un réduit (pour
L' CL). Alors on a :

(a) T' est prégéométrique (géométrique si T est géométrique).
(b) Sin’ est un L'-type partiel, alors dimp(7') = dimp/ (7).

Preuve. Nous donnons 'argument pour la premiere partie de (a), car il semble
que ce fait — quoiqu’il admette une preuve élémentaire — n’est pas tres connu.
Soit donc T une L-théorie prégéométrique et T = T | - un réduit. Soit C' un
ensemble de parameétres et a,b des singletons avec a € acly/ (Cb) \ acly (C). 11 faut
montrer que b € acly (Ca). Soit p'(x,y) := tp,/(a,b/C). On déduit des hypotheéses
que T' £ I®°y3®ap/(z,y), en particulier T £ I®°y3I®xp’(z,y). Comme T est
prégéométrique, on a donc T [ I*®xI®yp/(x,y) et enfin T7 = I*xI®yp/(z,y),
c’est a dire b € acly/ (Ca).
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Autrement dit : une théorie est prégéométrique si et seulement si les quanteurs
3%z et 3°°y commutent, et cette derniere propriété est préservée dans des réduits.
O

Fait 2.16. Soit T une théorie géométrique. Alors, la dimension est définissable
dans T, c’est a dire pour toute formule ©(Z,Z) et tout entier 1 il existe une formule
0(z) telle que dim(p(T,b)) = r si et seulement si = 0(b). O

Définition 2.17. Soit T une théorie prégéométrique et soit p = tp(a/B) € S(B)
un type donné, @ = (ag, ...,a,—1). Pour I,.J C n on pose k;,; := dim(ar/a;B).

Soit ¢(7,%) une formule telle que ¢(Z,b) soit dans p. On dit que ¢(7,%) est
rang-compléte par rapport a p si les conditions suivantes sont satisfaites :

— Si (@, b) # 0, alors dim(o(F, b ) = dim(a/B).

- E gp(&’,B/) implique dim(&}/&f,gl) < kg pour tout I,.J C n.

Notons que si = @(6’,3) et dim(ﬁ'/gl) = dim(a/b), alors dim(ﬁ}/ﬁ}y) = ki
pour tout I, J C n.

La formule ¢(7, Z) est dite rang-compléte s'il existe b et un type p tels que (T, b)
soit rang-complete par rapport a p.

Lemme 2.18. Soit T' une théorie géométrique et soit p = tp(a/B) € S(B) un type
donné. Alors, p contient une formule o(T,b) telle que p(T,Z) soit rang-compléte par
rapport a p. Plus précisément, ces formules sont cofinales dans p. O

Notons que, par définition, si ¢(Z,b) est rang-complete par rapport a p € S(b),
alors p est générique dans (Z, b).

Notation. Si T est une théorie prégéométrique, nous notons A \L(gg C le fait

que A et C sont algébriquement indépendant au-dessus de B, c’est a dire que
dim(Ay/BC) = dim(Ap/B) pour tout Ay C,, A.

Fait 2.19. Dans toute théorie prégéométrique, J/alg définit une notion d’indépen-
dance au sens de la Définition 2.1. |

Notons que si \L“lg est égal a la relation de non-déviation, alors T est supersimple
de rang SU égal a 1.

3. FUSION LIBRE DE THEORIES PREGEOMETRIQUES

Dans cette section, nous montrons comment on peut fusionner librement deux
théories prégéométriques, au-dessus d’une théorie fortement minimale et modulaire,
en utilisant la méthode d’amalgamation de Hrushovski. Nous définissons la classe
des fusions (Co, <) (avec une notion de plongement fort <), et nous mettons en
place les outils de base pour le travail dans cette classe.

Il est utile d’introduire plusieurs notions de clotures (ce que nous faisons), dont
chacune aura sa place dans la suite.

Puis, nous montrons lexistence des amalgames libres dans (Cy, <), c’est & dire
dans la classe des fusions avec les plongements forts comme plongements. En par-
ticulier, il s’en suit que (C~07 <) a la propriété d’amalgamation. Quitte & choisir une
composante connexe de cette classe, cela permet de construire des structures riches
(pour la sous-classe des fusions finiment engendrées (Co, <)), dans la Proposition
3.19.
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D’abord, nous indiquons le contexte dans lequel nous travaillons, et nous fixons
quelques notations.

On considere des théories completes 77 et Ty, dans des langages L1 et Lo, res-
pectivement, ayant un réduit commun Ty := Ty [ Lo = T [ Ly, ou Lo := L1 N L.
On suppose :

— Pour ¢ = 1,2, la théorie T; est prégéométrique, c’est a dire 'opérateur de

cloture algébrique induit une prégéométrie dans tout modele de T;.

— Tp est fortement minimale et modulaire.

Nous écrivons d; pour dimr,, et | * pour J/alg par rapport & la théorie T;. Enfin,
acl; dénote la cloture algébrique au sens de T;.

Pour simplifier I’exposition, on supposera que :

Hypotheéses 3.1 (Hypotheses sur les langages dans la fusion).
— Pour i = 0,1,2, la théorie T; élimine les quanteurs dans le langage L£;, et L;
ne contient pas de symboles de fonctions.
— acl;(0) est infini pour i = 1,2 .
— Les langages £; sont dénombrables.

Quitte a passer a des morleyisées et quitte a remplacer les fonctions par leurs
graphes, on peut toujours supposer le premier point. Pour satisfaire a la seconde
condition, il suffit d’ajouter — au besoin — des constantes aux langages £ et Lo.

Nous appelons (Tp, 11, T2) un contexte de fusion, si Ty, T1 et Ty satisfont & toutes
les hypotheses ci-dessus.

3.1. Construction. Afin de fusionner (librement) T} et T au-dessus de Ty, nous
procédons comme dans [HHO6], 'inspiration originale étant bien sir [Hr92]. Pour
L := L1 ULy on définit C comme la classe des L-structures M = TY U Ty avec
M = acly (M) = acly(M). Comme T} et T, éliminent les quanteurs, cette définition
a un sens.

Par convention, toutes les £;-formules considérées seront sans quanteurs (c’est &
dire chaque L;-formule qui apparait est remplacée par une L;-formule sans quan-
teurs qui lui est équivalente modulo T}).

Remarque 3.2. Si M € C, alors M |=T,.

Preuve. Soit M € C. Comme M est acl;-clos (donc infini par 3.1), en particulier,
M est aclp-clos et infini. Or, on sait que tout ensemble infini algébriquement clos
dans une théorie fortement minimale est un modele. (Il

Pour A C M € C on définit (A) comme le plus petit sous-ensemble de M conte-
nant A qui est algébriquement clos au sens de T3 et T5. D’une maniere équivalente,
(-) correspond & la clture transitive des opérateurs acly et acly. On dit que M est
finiment engendrée (dans le sens de (-)), si M = (b) pour un uplet b € M fini. Soit
C la classe des structures dans C qui sont finiment engendrées.

Définition 3.3. Soient M € C, et A, B C M avec do(A) fini.
(1) 6(A) :=d1(A) + da(A) — do(A), la prédimension de A.
(2) 6(A/B) :=di(A/B) + dz(A/B) — do(A/B).

(3) Co:={M eC|d6(A) >0VAC, M}, Co:=CyNC . Les structures dans C,
seront appelées fusions.
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(4) Si M € Cy, dp(A) := min{d(4A) | A € A C, M} , la dimension de A
dans M. De maniere analogue, on définit la dimension relative dp;(A/B) :
mln{dM(AB()) — dM(Bo) | BO Qw B}

(5) Pour M € Cy, on pose 6(M) := min{é(A4) | A C, M et (A) = M}. De plus,
si M est finiment engendrée au-dessus de A C M, on peut définir §(M/A).

(6) Soient C' C B deux sous-ensembles aclp-clos d’une structure dans C. Alors,
on pose C' < Bf(C est autosuffisant ou fort dans B) si pour tout uplet fini
bde Bonadb/C)>0.

En général, les fusions sont dénotées par K, L etc., tandis que k, [ etc. sont réser-
vées pour des fusions finiment engendrées (i.e. les structures dans Cy). Remarquons
que §(A/B) = §(AB) — 6(B) si do(B) est fini.

Il est commode d’étendre la notion d’un sous-ensemble autosuffisant aux sous-
ensembles arbitraires C € B C K € Cp. On pose C < B ssi aclg(C) < acly(B).
Contrairement au cas ou B est aclg-clos, cette notion peut dépendre du plongement
particulier de B dans K.

Par définition, on a Cy = {M € C | § < M}. Notons également que §(A) =
d(acly(A)).

Remarque 3.4. Si Ty est w-catégorique, alors Cy est une classe élémentaire.

Preuve. Soient ;(T) des L;(())-formules, pour i = 1, 2, avec dim(y;(Z)) = m;. Pour
une telle paire on met I’axiome suivant — une condition définissable car T est
w-categorique :
VE{[p1(T) A p2(T)] — [do(T) < m1 + mal}.
|

Définition 3.5. Soit K € Cy une fusion et A C K. On dit que A contréle K si
(Ay = K et A< K.Si BC K, on dit que A controle K au-dessus de B si AB
controle K.

On observe que pour A fini on a §((A)) < §(A), avec égalité si et seulement si
(A) est controlé par A.

Dans le lemme suivant, nous rassemblons les propriétés de base de la prédimen-
sion et de la notion de I'autosuffisance. Ces résultats seront utilisés constamment
dans la suite, la plupart du temps sans référence.

Lemme 3.6 ([HHO06, Lemma 3.1]). ! Soit K € C, contenant tous les ensembles et
uplets qui apparaissent dans les énoncés suivants.

(1) (sous-modularité) Soit A C B. Alors, 6(¢/ acly(Ac) Naclg(B)) > §(¢/B).
En particulier, si B < C et D C C sont des ensembles acly-clos, alors
DnNnB<D.

(2) (transitivité) Si A< B et B<C, alors A< C.

INotre énoncé est plus général que celui montré dans [HHO06]. Or, chaque fois que nous citons ce
papier, il est sous-entendu que la méme preuve donne le résultat dans notre contexte plus général.
Concernant les notations, il y a une différence considérable avec [HHO6], ol sont empruntés des
notations qui pouvaient parfois préter & confusion. Ainsi, nous écrivons clg(A), cl,, (A) et clg(A),
parfois avec un superscript K, pour les ensembles notés A, cl(A) et cl9°°™(A), respectivement,
dans [HHOG6].
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(3) (continuité) Si (A;)icr est un systeme filtré de sous-ensembles de C (c’est
a dire pour tout i,j € I il existe k € I avec A; UA; C Ay) tel que A; < C
pour tout i, alors | J;c; As < C.

(4) Soient Ay, Ay < B des sous-ensembles forts et aclp-clos de B. Alors A; N
Ay < B.

Si on suppose en outre que K € Cy, alors :

(5) Pour tout A C K il existe un unique ensemble cli¥ (A) qui est minimal
parmi les ensembles A’ ayant les propriétés suivantes : A’ D A, A’ < K et
A" = acly(A’). Si do(A) est fini, alors do(cli (A)) est fini aussi. De plus,
on a dg(A) = 6(clE (A)).

(6) Soient A C B C C finis. Alors, on a dg(C/A) = dx(C/B) + dx(B/A),
dg(B/A) < dk(C/A) et dg(C/A) = dx(C/B).

(7) dx(a/B) € {0,1} pour tout singleton a, et l'opérateur de cldture géo-
métrique (aussi appelée d-cloture) clX(B) := {a € K | dx(a/B) = 0}
définit une prégéométrie. |

Nous introduisons encore un autre opérateur de cloture pour lequel on réserve le
terme de cloture autosuffisante.

Définition 3.7. Soit K une fusion et A C K. Alors on pose clX(A4) := (clX(A)),
la cléture autosuffisante de A (dans K).

Notons que la cloture autosuffisante de A est égale a la plus petite fusion conte-
nant A qui est contenue dans K de maniére autosuffisante.

Dans la suite, on écrira d, clg et cl,, au lieu de dg, clé( et clf, si 'on ne risque pas
d’ambiguité. (Cet usage est justifié par 3.8 ci-dessous.) On observe que aclp(A4) C
clp(A4) Ccly,(A) Cclg(A).

Puisque clq donne lieu a une prégéometrie, il y a une notion de dimension asso-
ciée. Clairement, cette dimension est égale a la dimension d déja définie pour les
ensembles finis. Nous étendons donc la définition de d, et & partir de maintenant,
d(A/B) dénote la dimension (au sens de la prégéométrie) pour des ensembles A et
B arbitraires.

Remarque 3.8. Soient K < L des fusions et A C K. Alors, dx(A) = dp(4),

A (A) = clk(A) et B (A) = L (A).

Preuve. Par transitivité de < et 3.6(4), cl&(4) = clf(A). Le résultat sur cl, en

découle. Puis, dg (4) = d(clf (A)) = 5(clk (A)) = dL(A), par 3.6(5). O
Voila un lemme facile que nous utiliserons tres souvent :

Lemme 3.9. Soit B < K.
(1) Soit AC,, K avec §(A/B) <0. Alors, 6(A/B) =0 et AB< K.
(2) Pour tout uplet @ € acly(B), on a d2(a/B) = do(a/B), é(a/B) = 0 et
Ba < K. En particulier, acl;(B) < K pouri=1,2 et (B) < K.
Preuve. Soit A C,, K avec 6(A/B) < 0. Alors, §(A/B) = 0 suit du fait que
0(A’"/B) > 0 pour tout A" C,, K par la définition de l'autosuffisance. Puis, soit
C C, K arbitraire. Donc, 0 < 6(AC/B) = §(C/AB) + 6(A/B) = 6(C/AB), d’ou
AB < K, et (1) est montré.
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La deuxieme partie suit de la premiere, par induction et continuité. Il suffit de
noter que pour toute expansion de théories prégéométriques 7" C T'et @, B C M |
T,on ad(a/B) <d'(a/B). O

Lemme 3.10. Soit K € C. Supposons que pour i = 1,2, des L;-types p;i(x1) €
SI(K) soient donnés, avec po := p1 | £, = p2 | £,- Alors il existe une extension
LeCdeK et ACL tel que A= p1Ups et L est contrélée par A au-dessus de K.

Preuve. Par le lemme de consistance de Robinson, il existe A avec KA = TY U Ty
et A ): P1 U pP2-
(¥): Pour tout B =Ty UTY il y aun L € C controlé par B.

Il suffit de montrer (x), ce que nous faisons maintenant.

On choisit des £;-plongements ¢; : B C M; E T; (i = 1,2), ou les M; sont
suffisamment saturés. Quitte & choisir un Lo (B)-isomorphisme de acly(¢1(B)) avec
acly(t2(B)), on peut supposer que B = aclg(B). Si B n’est pas aclj-clos, on choisit
b’ dans M, avec b’ € acly(B)\ B (nous supposons que les ¢; sont des inclusions). On
pose B’ := acly(BV), et on fait de B’ un Ty-modele (une Ly-extension de B) en
exigeant que da(d’'/B) = 1. Pour cela, il suffit de choisir un élément b’ € My avec
b" ¢ acly(B); Papplication qui envoie b’ sur b” s’étend en un Ly(B)-isomorphisme
B’ ~ B” := acly(Bb"). En utilisant cette application, on peut équiper B’ d’une
L-structure telle que B’ = TY U Ty . Tout uplet @ de B’ qui n’est pas entierement
contenu dans B, est interalgébrique (au sens de £y) au-dessus de B avec V', et donc
d0(@a/B)=0('//B)=0+1—1=0. On en déduit que B < B’.

Maintenant, on continue avec B’ au lieu de B. Posons By := B et By := B’.
Si B; n’est pas acly-clos, on choisit ¥ € acl;(B) \ By, et comme avant on trouve
By < By = acly(BV) = Ty U Ty. Ainsi, prenant la réunion pour les ordinaux
limites, on obtient une suite croissante (Bg)s de modeles de TY U Ty, avec Bg C
acly (B) pour tout S. Il est clair que cette chaine s’arréte, et il existe donc « tel que
B, = acly(B,). Par transitivité et continuité de 'autosuffisance, B = By < B,.

Posons B! := B,. En échangeant les roles de £; et L, on obtient, & I'aide d’une
deuxiéme chaine, une structure B! < B? |= TY UTY telle que B? = acly(B'). On
continue en alternant £q et Lo et on obtient donc B< B! < B2< ... < B"< ...
tels que B?mHl = acly(B*™) et B2 = acly(B?™*1) pour tout m € N. Soit
L=, ., B". Alors, par construction, on a L = (B) et B < L, c’est a dire L est
controlée par B. ([

Définition 3.11. Soient K C L, M trois structures dans C (nous continuons 2
écrire des inclusions au lieu de plongements). On dit que N € C contenant L et
M est un amalgame libre de L et M au-dessus de K s’il satisfait aux conditions
suivantes :

() M L;L, pour i =0,1,2 et
(8) N est contrdlée par M L.

Par abus du langage, on écrit N = M Qg L si N est un amalgame libre de M
et L au-dessus de K, méme si on n’a pas 'unicité de I’amalgame libre.

Lemme 3.12. Dans la classe C, les amalgames libres existent.

Preuwve. Soit K C L, M trois structures dans C. Notons d’abord que si A \J/33 C

pour un B = acl;(B), alors acl;(AB) Nacl;(BC) = B, et donc A J/(; C aussi, car
To est modulaire.
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Pour ¢ = 1,2, on choisit une extension libre p;(x;) de tp;(L/K) & M. Par le
paragraphe précédent, p;(zy) | £, ne dévie pas au-dessus de K au sens de la théorie
To, et donc p1 [ £, = P21 £y, car tpy(L/K) est stationnaire (K étant un modele de
Ty par 3.2).

Pour terminer, il suffit d’appliquer le Lemme 3.10 & p; et ps au-dessus de M. [

En fait, la preuve qu’on vient de donner montre un résultat plus fort :

Remarque 3.13. Soient K C L,M des structures dans C. On pose pi(xy) =
tp,;(L/K). Puis, pour i = 1,2, soit p; une extension libre de p; a M. Alors, il y a
un amalgame libre N = LR M tel que, considérant L et M comme sous-structures
de N, on a tp;(L/M) = p; pouri=1,2. O

Notation. Soit K une fusion, et B, A,C' C K. Alors on pose A J/% Csid(Ag/B) =
d(Ao/BC) pour tout Ag C,, A, et nous dirons que A et C sont d-indépendants au-
dessus de B.

Ici, nous utilisons d = dx, et nous devrions donc également noter quelque part
le fait que J/d dépend (a priori) de K. Cependant, si nous passons de K & K’ > K,

la signification de Ld ne change pas, par 3.8.

Lemme 3.14 ([HHO06, Lemma 3.11]). Soient K1, Ko deux fusions qui sont forte-
ment plongées dans K. On pose Ko := K1 N Ky et L := (K1K3). Sont équivalents :

(1) K1 L, Ko

(2) L est isomorphe & un amalgame libre K1 @, Ko et L est autosuffisant dans
K.

(3) K1 Ly Ko (i=1,2) et KKy < K. 0

Lemme 3.15 (Lemme d’amalgamation asymétrique,[HHO06, Lemma 3.13]). Soient
K,L,M € Co avec K < L et K C M. Alors, M est autosuffisant dans tout amal-
game libre N := L @k M, et N est dans Cy. (]

On combine les Lemmes 3.12 et 3.15 pour obtenir :
Corollaire 3.16. La classe (éo, <) a la propriété d’amalgamation (AP). O

Remarque 3.17. Si on remplace Co par la classe des L-structures acly-closes M |=
TY UTY satisfaisant 6(@) > 0 pour tout @ € M fini, on peut perdre la propriété
d’amalgamation. 1l y a méme de tels exemples avec Ty et Ts fortement minimales
triviales (cf. 5.8(1)).

Définition 3.18. On dit que M € Cy est riche si pour tout k < [ dans Cy, et tout
plongement fort £ < M il existe un k-plongement fort de [ dans M.

La classe (éo, <) a la propriété d’amalgamation, et par le Lemme 3.15, on peut
plonger deux fusions K, L fortement dans une méme fusion M ssi on peut établir
un L-isomorphisme entre (§) g et (). Donc, (Co, <) n’est pas toujours connexe,
les composantes connexes étant données par les L-types d’isomorphisme de fusions
()-engendrées.

Cela a pour conséquence que deux fusions riches dans Cy n’ont pas forcément la
meéme théorie élémentaire. Néanmoins, on a le résultat suivant :
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Proposition 3.19. Dans chaque composante connexe de (éo,g), il existe des

structures riches, et cela en cardinalité < 2%, Deuz fusions riches sont Loo -
équivalentes ssi elles se trouvent dans la méme composante connexe de (Cp, <).

Preuve. La classe Cy contient au plus 280 structures & L-isomorphisme pres, de
méme la classe Co(ko) := {ko <1 | I € Co} des L-structures dans Cyp au-dessus d’un
certain kg € Cy (& ko-isomorphisme prés). On obtient une fusion riche contenant
fortement une fusion M, € Cy en utilisant une construction a la Fraissé-Hrushovski,
a I’aide d’une induction transfinie.

Pour M, € Cy de cardinalité au plus 280, on construit My < M; avec les pro-
priétés suivantes :

(1) M, € Cp et card(M;) < 280,

<
(2) Pour tout k < I € Cy et tout plongement fort ¢ : k = My il existe un
k-plongement fort de [ dans M; étendant ¢.

On énumere I'ensemble des problemes d’amalgamation ¢ : k = My, k € Cy et
k <1 e Cy(k) qui apparaissent dans (2), via (1g,kg < l3)s<q- Il est facile de voir
que a < 2Ro

Pour obtenir M7, nous construisons une chaine (Ng, <)g<q dans Co, avec Ny :=
My, card(Ng) < 2% pour tout 3 et telle que (14, ks < lg)g<a est résolu au niveau

Np41, c’est & dire on peut plonger fortement /3 dans Ngy; au-dessus de g : kg =)
My < Ng.

Si A < « est un ordinal limite, on pose Ny := U7<>\ etpour B=v+1<a
il suffit de prendre un amalgame libre Ng = N, ®y, [, par le Corollaire 3.16. On
pose M; :=J;, Np-

Pour obtenir une fusion riche M (contenant fortement My et avec card(M) <
2%0) il suffit de répéter cette construction en remplagant My par M;. Ainsi, on
obtient une chaine (M;, <);<,,. Montrons que M := |J,_., M; est riche. Pour cela,
il suffit de noter que I'image de tout plongement fort + d’'un k € Cy est contenue
dans 'un des M; (car k est finiment engendrée), et tout probléeme d’amalgamation
au-dessus de ¢ est alors résolu dans M;, 1, et a fortiori dans M aussi.

Le fait que deux structures riches de la méme composante connexe sont L -
équivalentes est vrai plus ou moins par définition de la richesse. Il suffit de noter
que si k; = cl,(k;) < M; (ou M; est riche pour i = 1,2), f: k1 = ko et a1 € My,
alors k1 <1y := cli\jll (k1a1) € Co. Comme M; est riche, on trouve donc une copie lo
de Iy avec lo < My, et telle qu'il existe un isomorphime f 2l 215 étendant f. O

Le lemme suivant est rassurant :
Lemme 3.20. Soit M une fusion riche. Alors M =Ty UT.

Preuve. Par symétrie, il suffit de voir que M = T;. Considérons M comme sous-
ensemble (aclj-clos) de M = Ty, et soit p(x,7) une L£i-formule et b € M tel que
M, |= 3z¢(x,b). Par le test de Tarski, il suffit de trouver a € M avec M; = ¢(a,b)
pour pouvoir conclure que M <., M;.

Posons k := cIM(b), et choisissons p1(z) € Sr, (k) contenant o(z,b). Si p; est
réalisé dans k = acly(k), on a rien & faire (car ¥ C M). Sinon, nécessairement
di(p1) = 1, et a fortiori p; [ £, est le type Tp-générique au-dessus de k. On choisit
p2(x) € St, (k) avec d2(p2) = 1 (par conséquent, ps [ £, est le type générique, aussi).
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On applique le Lemme 3.10 & (p1,p2) pour obtenir o' = p; U py avec ka’ <
(ka') =: 1. Clairement, k < aclp(ka’) <1 € Cy. Comme M est riche, on peut k-
plonger [ (fortement) dans M. L’image a de a’ par ce plongement est la solution de
©(z,b) cherchée. O

3.2. Décomposition des extensions finiment engendrées. Dans cette sec-
tion, nous expliquons comment on peut décomposer des extensions autosuffisantes
de structures dans Cy en des extensions “élémentaires”. Pour cela, nous suivons
entierement [HHO6, Section 4].

Nous travaillons a l'intérieur d’une fusion riche K*. Les notions cly, d etc. seront
par rapport a K*.

Définition 3.21. Soit K < L une extension dans Co, avec L < K*. On dit que
cette extension est
— finiment engendrée si L = (K@) pour un uplet @ fini,
— générique si L = (Ka) pour un singleton a avec d(a/K) =1,
— parasite si elle est finiment engendrée et §(L/K) = 0,
— primitive si elle est parasite, propre et il n'y a pas de K’ € Cy tel que K ;
K'G Let K'<L.

Lemme 3.22. Soient K < K' < K*, et K < L < K* avec L/K primitive. Alors
ou bien L C K', ou bien L' := (LK') est égale a un amalgame libre K' @ L (et
L' <K*).

Preuve. D’abord, LL;OK, K' suit de d(L/K)=0et K CK'.SiLNK' 2 K,

alors L C K’ car L/K est primitive. Sinon, on conclut par le Lemme 3.14. (]

Techniquement, il est pratique de considérer un autre concept de primitivité pour
des extensions de sous-ensembles acly-clos d’une fusion :

Définition 3.23. Soit B C A C K* € Cy. On dit que I'extension A/ B est premiére,
si A et B sont aclg-clos, do(A/B) est fini et > 2, §(A/B) =0 et §(A’/B) > 0 pour
tout ensemble acly-clos A" avec B C A’ C A (en particulier B < A).

Le nombre dg(A/B) est appelé la longueur de Pextension.

Remarque. Notre définition exclut les “extensions premiéres de longueur 17, qui
correspondraient aux extensions de la forme A := aclp(Ba), ot « est dans ezacte-
ment un des acl;(B), i =1,2.

Lemme 3.24 ([HH06, Lemma 4.4]). Soit A/B une extension premiére de longueur
n (au sein de K*) et soit B C B’ C K* avec B’ acly-clos. On pose A’ := acly(AB').
Alors, on a :
(1) Si B J/;A pour i = 1,2, alors A’/B’ est premiére de longueur n. En
particulier, B’ J/% A.
(2) 8(A/B") =06(A'/B’) <0, et on a égalité ssi ou bien A C B’ ou bien A’/B’
est premiére (de longueur n).
(3) Si B’ =clo(B’), alors AC B’ ou A’/B’ est premiére de longueur n. O
Maintenant, on introduit des filtrations de (-) qui seront utilisées dans plusieurs

preuves qui marchent par induction. Les opérateurs (-)7, (-)% et (-} (n € N) défi-
nissent des filtrations différentes.
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Définition 3.25. Pour X C K* et n € N, on définit (X))} , (X)5 et (X)" de
maniere suivante. D’abord, on pose (X){ := (X)J := (X)? := acly(X).
Inductivement, on définit (X)"*' := acl;((X)™) pour i = 1,2, et finalement

(X)mH = acly ((X)7 1 U (X)),

Notons que (X)5' = acly (X)) et (X)7"F! = acl; ((X)5') pour tout m € N.
Cela suit de l'identité aclz(acl; (X)) = acla(aclp(acly (X) acle(X))), par induction
sur m et symétrie.

De plus, si X < K*, alors (X)) et (X)™ sont forts dans K* aussi (par 3.9).

Lemme 3.26. Soient B C A,C des ensembles forts dans K*. Supposons que
ALOBC’ etAJ/(;C’. Alors on a :

(a) AL;C’ pouri=1,2, et AC < K*.
(b) (A)7 ¢{B>;,L<c>;n et (A) ¢{B><c>, pouri=1,2,j=0,1,2 et tout m € N.

Preuve. L’argument dans la preuve de 3.14 pour montrer (1) = (3) donne (a).
Quant a (b), on a évidemment (A)™ \L?BW(C);” pour tout choix de m et i. Pour
établir (b), par induction (sur m), symétrie, continuité et utilisant (a), il suffit de

montrer acl; (A) \LZCII(B) acly (C). Or, acl; (A) L;CII(B) acly (C) est une conséquence

de A J/; C, et on en déduit acl; (A) J/chl(B) acly (C), par modularité de Tp. O

Considérons une extension générique L/K avec L = (Kg) < K*. Supposons
que @ € L avec d(a/K) = 0. Alors, g € clo(Ka), car d(g/K) = 1. L’hypotheése
clp(Ka) \Li, aclp(Kg) étant trivialement satisfaite, on déduit donc de 3.26(b) que
clo(Ka) Lg( L, et en particulier que @ € K. Cela montre

Corollaire 3.27. Soit L/K une extension générique et c € L\ K. Alors, d(¢/K) =
1. O

Voila le lien entre les extensions premieres et les extensions primitives :

Lemme 3.28 ([HHO06, Lemmes 4.8 et 4.11]). (a) Soit K < A; < K* avec K €
Co et A1 /K premiére. Alors, (A1)/K est une extension primitive.

(b) Soit L/K une extension primitive. Alors, il y a un unique ensemble minimal
A = clp(A) D K contrélant L/ K. L’extension A/K est premiére, et on
appelle longueur de L/K la longueur de A/K. O

Proposition 3.29 (Lemme de décomposition, [HH06, Cor. 4.9]). Soit K < L une
extension finiment engendrée (avec L < K*) telle que d(L/K) = d. Alors, il y a
une décomposition K = Ko < K1 < ... < Kgyn, = L, ou K;/K;_1 est générique
pour ¢ < d et primitive pour ¢ > d.

Si L/K est parasite et si K = Ko < K1 <...<K,=Let K=K, <K]| <
... < K], = L sont deuz décompositions en extensions primitives on an=n'. 0O

On finit la section avec quelques lemmes supplémentaires.

Lemme 3.30. Soit k une fusion fortement plongée dans une fusion finiment en-
gendrée. Alors, k est finiment engendrée aussi.

Plus généralement, si K < L' < L € Co avec L/K finiment engendrée, alors
L'/K est finiment engendrée aussi.
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Preuve. Soit k < [ avec | finiment engendrée. En particulier, d(k) < d(I), et ces
deux dimensions sont finies. On choisit B C,, k fini avec d(k/B) = 0. Puis, comme
[ est finiment engendrée, on peut choisir B C A C,, [ tel que A controle [.

Posons B’ := acly(A)Nk (donc dg(B’) est fini). Alors, A J/?B, k par construction,
de méme A J/(;, k, car d(k/B) = 0 et B C B’. 1l suffit d’appliquer 3.26(b) pour
obtenir (A) L?B/><k), en d’autres termes lJ/?B,> k. Donc, k = (B’) est finiment
engendrée.

La preuve concernant K < L’ < L est similaire. O

Lemme 3.31. Soit K une fusion, K C A, B C K*. On suppose que A = cly(4),
B =clyp(B), 6(B/A) =0 et [acly(B)Uacla(B))NA =K. Alors (B)N A =K.

Preuve. Posons B’ := acl;(B). Par symétrie, raisonnant par induction, il suffit de
montrer que acly(B')N A = K. On a B’ L;A par hypotheése, donc B’ J/?BA.
Comme A est fort et 6(B/A) = 0, nécessairement AB < K*, aussi. Cela donne
0(By/AB) = §(B(/B) = 0 pour tout Bj), C, B, et alors B’ J/ZA. On en déduit
que acla(B')NACacly(B)NA=K. O

4. AXIOMATISATION

Dans cette section, nous continuons & considérer un contexte de fusion (g, 77, T%)
comme dans la Section 3. Nous supposons de plus :

Hypothéses 4.1 (Hypotheéses de définissabilité).
— Les théories T; sont géométriques, c’est a dire elles éliminent 3°°.
— Ty est w-catégorique.

En particulier (cf. 3.4), Cy est une classe élémentaire. Pour des exemples de
théories géométriques, nous référons a 2.13.

Soit T, la L-théorie (en général incomplete) des fusions riches, dans le contexte
de fusion (Tp,T1,T>). Nous étudierons d’abord des questions de définissabilité et
d’uniformité concernant ’autosuffisance et les autres notions jusqu’alors introduites,
ce qui nous permettra de donner des axiomes explicites pour T,,. Nous verrons
ensuite que le fait d’étre riche est significatif modeéle-théoriquement, puisque tout
modele Ni-saturé de T, est riche et, réciproquement, toute fusion riche est un
modele w-saturé de T,,. Cela est le contenu du Théoreme 4.13. En particulier, on
en déduit une description des complétions de T, et des L-types.

Lemme 4.2. Soit a/b une extension premiére et po(T,z) une Lo-formule isolant
tpg(a, b). Puis, pour i = 1,2, soient p;(T,Z) des L;-formules rang-complétes telles
que tp;(a/b) soit générique dans p;(T,b).

Alors, pour tout 6’,5/ € K'e€Cy avec K' = /\f:O wi(ﬁ’,B/) on a

— ou biena € clé(/(gl),

— ou bien 6’/5I est une extension premiére. (Dans ce cas, @' est générique dans

gai(f,y) pouri=1eti=2.)

En particulier, pour tout ensemble B’ Db on a §(@/B') <0.

Preuve. Comme 6/5 est premiere et les ; sont rang-complétes, pour tout 5’ - 6’1 -

@’ on a é(a’/a}) < 0. On rappelle que 5/, ayant le méme Lo-type que b, énumere un
ensemble acly-clos (c’est pareil pour @’).



18 MARTIN HILS

Dong, si @ N clO(B/) O, alors @ C clo (51). Par contre, si @’ N 010(5/) =7, alors
b =l (¥)na <@ par 3.6(1), et donc nécessairement §(@’ /b ) = 0. On en déduit
que @’ /5/ est une extension premitre et l'uplet @’ est L;-générique dans ¢, (T, 5/)
pour i = 1,2 (on fait un J-calcul).

La derniere partie suit directement du Lemme 3.24(2). O

Définition 4.3. Soit 7(Z) = Jyp(7,y) une L-formule existentielle (avec ¢ sans
quanteurs). On dit que 7 est a quantification bornée , si K = ¢(a,b) implique
b e c1¥ (@) pour tout @,b € K € Cp.

Lemme 4.4. Soit B C K € Cy, et soient @y € clf (B), @, € cIX(B) et aq €
i (B).

(1) Il existe b € B et a € clf (B) (@ contenant bay) et une L-formule sans
quanteurs ¢(Z,y) avec = ¢(a@,b) telle que pour toute fusion K' et tout
V@ € K, sik=o@,b), adorsa €l ¥) et 5@ /b) < 5(a/b).

(2) Méme énoncé que dans (1), en remplacant @y par @, et cly par cl,.

(3) Il existe b € B, @ € clX (bag) (contenant bag) et une L-formule sans quan-
teurs o(T,Zq,7) avec K = ¢(@,aq,b) telle que pour tout 5/,53,6’ c K’
avec K' |= @(6’,@&,5/) on ad@ € clf (5/) NelX (5/63).

Soit maintenant e un entier >0, BC K eta € K. Alors :

(4) Sidg(@/B) < e, il eviste b € B et une L-formule existentielle a quanti-
cation bornée 17q(T,y) telle que K Ta(@,b) et si K’ Ta(a 7) pour
fi (T.79) q : b)) p
o e K el et b e K', alors dK/(a’/E') <e.

Preuve. Dans la preuve, on peut supposer que B = acly(B).

(1) Comme cIf (B) est la réunion des clf (By) pour By C,, B, il existe b € B
énumérant un ensemble aclyp-clos tel que &y € clg (). On considere une énumération
(finie, car Ty est w-catégorique) a de clé( (b), et on choisit, pour i = 1,2, une formule
¢i(T,z) rang-compléte par rapport a tp;(@/b) (en particulier, = ¢;(@,b)). On les
choisit telles que ;(Z,7) F tpy(a,b) ce qui est possible par le Lemme 2.18. Soient
k}/J les entiers associés & @; et I,J C n (avec les notations de 2.17, ou T =
(0, 0n 1) On pose $(7,5) i= ¢1(T,7) A 2(7.7).

Maintenant, soient @’,b € K’ tels que = ¢(a’,b). Prenons I C n avec @’ ¢
aclo(ﬁ’lg/). Comme @;b £ @ — on rappelle que @ énumeére clf(b) — on a 0 >
S(a/arb) = krll/l + kfl/l —do(a/asb). Or, do(ﬁ’/ﬁ}gl) = do(a/asb) (ils ont le méme
Lo-type) et d; (6’/6’15/) < kﬁ/[ pour ¢ = 1,2, car ¢; est rang-complete. Cela donne

6(6’/615/) < 0. Par sous-modularité, on a donc @ € cl&’ (5/)7 et (1) est montré.

Quant a (2), il suffit d’expliciter une cascade d’algébricités au sens de £ et de
L5 dans l'uplet @ en question (on utilise (1) et le fait que cl,, (X) = (clg(X))). C’est
facile et on omet les détails.

Montrons (3). On décompose Iextension parasite k = clX (B) < I (Bag) =l en
primitives (k =1y <1y < ... <1, =1). On se sert constamment de (2) pour pouvoir
utiliser explicitement des éléments se trouvant dans la cloture autosuffisante cl,,.

Traitons le cas n = 1, ou [ /k est une extension primitive. (Si n > 1, on raisonne
par induction.) Soit & < A < [ comme dans le Lemme 3.28.(b), c.a.d. A/k est
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une extension premieére, A contrélant . On choisit une Ly-base @; de A/k, puis on
choisit b = acly(b) C k et b € B avec les propriétés suivantes :
o — 1 .
(i) @ \LB k pour tout 1,
(i) @q € cly(ban).
(iii) b € cl,(b).
Alors, posant a := aclo(gal), on voit facilement que a/ b est une extension pre-
miere. Soit @ := aay. On utilise (2) pour pouvoir se servir de b et pour expliciter

toutes les autres cl,-dépendances, et le Lemme 4.2 garantit qu’on peut trouver une
formule ¢(Z,Z) comme requise.

Finalement, sous les hypotheses de (4), on choisit un sous-uplet (;,,..., ;)
de @ de maniere que @ € clq(Ba;,,...,a; ). Puis, on applique (3) & l'ensemble
Baj,, ..., a5, et 'uplet a. O

Lemme 4.5 (Définissabilité de I'autosuffisance). I existe un L-type partiel et uni-
versel H&yo, ceyYn—1) tel que pour toute fusion K € Cy et tout uplet be K on ait
K =TI(b) si et seulement si b < K.

Preuve. Soit b € K avec b £ K, et supposons que @ énumere cl{f (b). Par (la preuve
de) 4.4(1), il existe une L-formule sans quanteurs ¢(Z,7) satisfaite par (a,b) telle
que pour tout @, b € K’ avec = <p(6’,5/) on a (5(6’/5I) < 4(a/b) < 0. En particulier,
si K' = Elfcp(f,gl), alors b £ K'.

Il suffit de mettre dans II(y) toutes les formules de la forme VZ—p(Z,7), ou
©(T,7) est comme ci-dessus. O

Définition 4.6. Soit k,l € Cy avec k£ < [. On suppose qu’il y a des ensembles
finis et aclg-clos B < A tels que B controle k et A controle . On demande que
A \L; k pour i = 0,1,2. Une telle paire A/B est appelée paire de contréle pour
lextension k < [. Sid(A/B) = e =d(l/k), on dit que A/B est une paire de controle
de dimension e.

Remarque 4.7. Si A/B est une paire de contréle (pour une extension l/k), alors
B est relativement acl;-clos dans A pour i = 0,1, 2.

Prewve. On a ANacl;(B) C ANk = B, comme B = acly(B) et A J/% k. O

Lemme 4.8. Soit k <1 une extension dans Cy et A C,, . Alors, il existe une paire
de contrdle A/B pour l/k avec A C A.

Preuve. Comme [ est finiment engendrée, quitte a agrandir A, on peut supposer
que (A) = 1. Posons A; := clg(kA), et choisissons A C Ay C,, Ay avec acly(Agk) =
Aj;. Puis, on choisit B = clyp(B) C,, k controlant k et satisfaisant Ag \L; k pour
i =0,1,2. Finalement, on pose A := aclg(BAg). On vérifie que A/B est une paire
de contréle pour [/k. O

Pour pouvoir axiomatiser la théorie T, il nous faudra étudier des familles de
paires de controle. Considérons B < A, une paire de controle pour k& < [. On
énumere B avec b et A\ B avec @, et on pose by := Cb(tpy(a/k)), ot Cb(-) dénote la
base canonique d’un type. Comme @ J/g k, by € ziclgq (b). Par ailleurs, by € dclg? (k).
Soit 1o(T,Z,Z0) une Lo-formule isolant tp,(a@, b, by).
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Par définissabilité de la dimension dans T; (cf. 2.16), il existe des L;-formules
V;(T,Z,Zp) pour ¢ = 1,2, satisfaisant :
C(l) ': 1/}1 (67 b7 bO) A ¢2(aa b7 bO)
PC(ii) T; F ¢; — 1 pour i =1,2.
PC(iii) La formule p;(Z,Zz) := 32014 (T, Z, Zo) est une formule rang-complete par
rapport & tp,(a@/b) pour i = 1,2.
PC(iv) Pour tout b, by, et i = 1,2, d;(v:(F, b, by)) = di (:(T, D).
Définition 4.9. Soit ¥ := (1)1, 19) une paire de formules. On dit que ¥ est une
famille de paires de contréle (de dimension e) s'il existe une paire de controle
A/B de dimension e (pour une extension [/k dans Cp), telle que ¥ satisfasse aux
conditions PC(i-iv) données ci-dessus. Gardant les mémes notations, pour une telle
famille, on pose 0y (Z,%o) := ITY1 (T, Z,Z0) A FTY2 (T, Z, Z0)-
Lemme 4.10. Soit k <1 € Cy. Alors qftp.(I/k) est impliqué par I’ensemble des
¥1(T,b,bg) A YT, b,b), ou WU = (11,1)2) est une famille de paires de contréle,
ael,bek, b € dely’(k) nacly!(h) et ab/b une paire de contréle de l/k avec
): U (a, b, b()) AN ’(/Jg(a, b, bo)
Preuve. C’est essentiellement le Lemme 4.8, combiné avec le fait que les formules
rang-complétes sont cofinales dans tp;(@/b) pour i = 1,2. O

Lemme 4.11. Soit ¥ = (¥1(%,%,20),¥2(T, Z,Z0)) une famille de paires de con-
tréle de dimension e, et soit b € k' € Co, B:) € delg?(k), b controlant K, tels que
= 9\1,(5/,56). Alors :
(1) Soit k' C L e Cy eta € L une solution générique de v;(T, EI,EZJ) au-dessus
de k' pour i =1 et i = 2. Supposons de plus que k'a’ < (k'a’) =:I' C L.
Alors, 6’5//5/ est une paire de contréle pour k' <1, de dimension e.

(2) Des extensions L de k' contenant des uplets @ comme dans (1) existent.

Preuve. Pour (1), notons que b < @b suit de PC(iii) et PC(iv). Comme @’ \L% K’
et @ J/g/ acli(gl) pour i = 1,2 on a a J/%, k" pour i = 0,1,2. Le Fait 2.11 nous
donne que k' < A}, := aclg(A’k’) (on raisonne comme dans la preuve du Lemme

3.12), et donc @b /b est une paire de controle pour k' < I’ (de dimension e).
Pour montrer (2), il suffit d’appliquer le Lemme 3.10 & (p1,p2), ol p; est un

L;-type générique dans 1; (f Bl,%) au dessus de k’. La condition PC(ii) entraine
que pi [ g, = P> [ zo, car bO Cbo(p; I L,) pour i = 1,2 et p; [ £, ne Lo-dévie pas
au-dessus de b . (]

Lemme 4.12. Soit ¥ = (¢¥1(Z, Z,Zo
role (de dimension e), et soient b C
= 0 (b,by). Alors il existe U = (V1 (&, 2, Zo
controle (de dimension e), avec & DT, 2 D Z et
i=1,2¢t0; (b bo) pour un by C by € delg?((b)).

clo(b) < K € Cy, by € del$?((b)) tels que
), ¥2(Z, 2, 20)), une famille de paires de
Zo D Zo, telle que = 1); — ; pour

¥2(Z,%,%0)) une famille de paires de cont-
z,

Preuve. Pour i = 1,2, soient p; des L;-types génériques dans v;(Z, b, by) au-dessus
de k := (b). Comme by € dcl$?(k), cela a un sens. Supposons que @; = p;. Comme
dans la preuve de 4.11, on montre que @; Lgk et p1 [z, =Dp21c,, €t enfin qu'une
application de 3.10 & (p1, p2) fournit une extension k < I, avec | contrélée par une
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solution @ de py Upy au-dessus de k. Soit @ := acl(ba)\b. Alors ab/b est une paire de
controle de [/k. Par le Lemme 4.10, il existe une famille de paires de controle U =
(1/)1 (JNJ, %, 20)1(1/}2(.%, 27 20)) ej 90 = Cbo(a/b) 2 bo tel que ': 1,[}1 (CNL, b7 bo) /\f//g(&, b, bo)
et = ;(Z,b,bp) — ¥i(T,b,by) pour i = 1,2. Quitte & rétrécir les 1);, on peut
supposer que = 1;(Z, Z, %) — ¥i(T, %, Z) pour i = 1,2. O

Maintenant, on consideére la L-théorie T := T!(1,2,3) donnée par les trois
groupes d’axiomes :
TI(1) : Th(Cy)
T(2) : Ty UTs
T!(3) : Soit ¥ = (1)1,2) une famille de paires de controle de dimension e. Puis,

soit 7(Z, Z) une formule existentielle & quantification bornée, telle que K =
7(@,b) implique d(a/b) < e. Pour ¥ et 7, on met 'axiome

Vzzo3Z[0w (Z,Z0) — ¥1(T,Z,Z0) A 2(T,Z,Z0) A —7(T, Z)].

Théoréme 4.13. Les théories T, et T,, coincident. Tout modele Wy -saturé de T,
est une fusion riche. Réciproqguement, toute fusion riche est un modéle Ry-saturé
de T,.

Preuve. Soit K une fusion riche. On montre d’abord que K |= T7,. 1l est clair que
K =T/(1), et le Lemme 3.20 donne K = 77,(2). Quant au schéma d’axiomes T},(3),
supposons que ¥ = (t1,1)2) est une famille de paires de controle (de dimension e),
et b,by € K avec |= 0y (b, by). Puis, soit 7(Z, %) une formule comme dans le schéma
(3). Quitte & appliquer le Lemme 4.12, on peut supposer que b < (b) =: k < K.
On trouve, par le Lemme 4.11, k < [ € Cy et @ € I tel que ab/b soit une paire de
controle (de dimension e) pour I/k et tel que @ satisfasse 1 (%, b, bo) A 1o (Z, b, bp).
Comme K est riche, on peut k-plonger ! fortement dans K. Identifiant @ avec son
image dans K par un tel plongement, on obtient K |= v;(a, b, by) pour i = 1,2. Or,
on a aussi K |= —7(@,b), car d(@/b) = e. L’axiome correspondant & ¥ et 7 dans
T/ (3) est donc satisfait par K. En particulier, on a montré la consistance de T,
car les fusions riches existent.

Ensuite, nous montrons que tout modele Ry-saturé de T, est riche. Une fois que
cela est établi, la proposition entiere est prouvée, i.e. toute fusion riche est modele
w-saturé de T, (puisque la Lo ,-6équivalence avec un modele w-saturé entraine
lw-saturation) et T/, = T,, (puisque toute structure a des extensions élémentaires
N;-saturées et deux théories ayant les mémes modeles k-saturés pour un certain s
sont équivalentes).

On considere K = T, ou K est Nj-saturé, et k < K une fusion finiment en-
gendrée. Pour tout k¥ < [ € Cyp (on suppose que d(I/k) = e), on doit trouver un
k-plongement fort de [ dans K.

En utilisant le Lemme 4.4.(4), on voit que l'on peut approximer “d(z/z) > e’
par des formules de la forme —7(Z, %), ou 7(T,Z) est une formule existentielle &
quantification bornée forcant d(Z/zZ) < e. On note que 'ensemble de tels 7 est
clos par disjonctions finies. Combiné avec 4.10, cela montre que les axiomes dans
T/ (3) approximent bien une réalisation de qftp,(l/k) qui est autosuffisante. Par
N;-saturation de K, on peut donc k-plonger fortement [ dans K. ([l

D’un point de vue esthétique, le Théoreme 4.13 n’est pas satisfaisant, car il
ne caractérise pas les fusions riches par une propriété modele-théorique. Si 1’on
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exigeait, dans la définition d’une fusion riche, que tout probleme d’amalgamation
soit résolu pour tout k <1 € Co dénombrable, les fusions riches correspondraient
exactement aux modeles ¥-saturés de T,,. Cependant, & ’aide d’une notion adaptée
de saturation, on peut aussi se contenter de la définition de “riche” que nous avons
donnée.

On dira qu'une structure M est R.-saturée si pour tout b C,, M, tout type au-
dessus de acl(b) est réalisé dans M. On remarque que d’habitude, dans la définition
de la N.-saturation, la cloture algébrique est prise dans M?, mais nous la prenons
uniquement dans les réels. A posteriori, en utilisant le Corollaire 4.24, on pourra
caractériser les fusions riches de la fagon suivante :

Remarque 4.14. Les fusions riches dans Co sont ezactement les modéles R.-
saturés de T,,. O

En modifiant la preuve du Théoréme 4.13 et en utilisant le Lemme de décompo-
sition 3.29, on obtient :

Remarque 4.15. Dans Uaziomatisation de T!,, on peut se restreindre aux familles
de paires de contréole donnant lieu a des extensions primitives ou d des extensions

génériques.
Il y a un cadre ou l'on peut se dispenser des extensions génériques :

Définition 4.16. Soit Ty C 77 une expansion satisfaisant a nos hypotheses gé-
nérales. On dit que l'expansion Ty, C T3 renforce la prégéométrie si pour tout
AC M ET; et tout élément a avec di(a/A) = 1 on a acly (Aa) 2 acly(Aa).

Notation. Pour B C A, on pose B <,, A si et seulement si 6(A’/B) > 0 pour tout
ensemble A" avec B C A’ C A et do(A’/B) < n.

Lemme 4.17. Supposons que le contexte de fusion (To,T1,Ts) est tel que les deux
expansions Ty C 11 et Ty C Ty renforcent la prégéométrie. Alors, toute extension
générique de fusions peut étre approrimée par des extensions parasites.

Plus précisément, soit K < L € Cy une extension générique et @ € L avec
d(@/K) = d(a/K) = 1. Alors, pour tout n € N il existe une extension parasite
L'/K eta € L' avec qftpy(a@'/K) = qftp,(a/K) et Ka' <, L'.

Preuve. Soit donc K < L = (Ka) une extension générique (avec L < K* pour K*
riche). Observons d’abord que pour ¢’ € K* \ K on a d(a’/K) =1 si et seulement
si Ka' <,, K* pour tout n, c’est & dire a’ satisfait & tous les types partiels suivants :

VY1 ... ynd(ay/K) > 1.

Rappelons que les £; ne contiennent pas de symboles de fonctions. Il suffit alors de
trouver des singletons a,, € K* satisfaisant qftp,((Ka,)"/K) = qftp,((Ka)"/K)
et do(clo(Kay)/K) > n. On va construire une extension parasite K < L, =
cl,(Ka,) avec a,, comme requis.

Nous renvoyons a 3.25 pour la définition de (-)™. Pour construire L,,, on consi-

dere d’abord A/, := (Ka)". Par induction sur n, en utilisant ’hypothése que les
expansions Ty C 7T; renforcent la prégéométrie et que d(a/K) = 1, on voit que
Al n’est pas acl;-clos, pour ¢ = 1,2. On peut donc choisir (dans L) des élé-

ments ¢; € acl;(A)) \ Al,. Maintenant, on applique le Lemme 3.10 aux types
p; := tp,(aclp(Al,¢;)/K) au-dessus de K, et on obtient une extension L, /K qui
est controlée au-dessus de K par une réalisation de p; U po. On vérifie sans peine
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que L, /K est parasite. Soit a,, € L,, ’élément qui correspond & a dans L. Alors,
Ay, = clg(Kap) C (Kap)" et A, € (Ka,)™ (par construction).

A fortiori, do(clo(A4,)/K) > n+1, car si A, N (Ka,)™ = A, N (Ka,)™ " pour
un m, il s’en suit que 4,, C (Ka,)™ (par 3.31). O

Combinant ce résultat avec le Lemme de décomposition, on obtient le corollaire
suivant.

Corollaire 4.18. Soit (Ty,T1,T>) un contexte de fusion, ot Ty C T; renforce la
prégéométrie, pour i = 1,2. Alors, dans l'aziomatisation de T,,, le schéma (3) prend
la forme

Vﬁoaf[a‘l/ (Ea EO) - ¢1 (Ev Ea E0) A 7#2(5’ 27 EO)L
ot VU parcourt les familles de paires de contréles donnant lieu a des extensions
primitives. O

Exemples 4.19. (1) Soit Ty = EVF, la théorie d'un espace vectoriel infini sur
F,,, et soit T} une complétion de la théorie des corps pseudofinis de caracté-
ristique p. La théorie T} est une expansion de Ty (le Lo-réduit est donné par
le groupe additif du corps). Alors, Ty C T} renforce la prégéométrie. Cela
est aussi vrai, si Ty est la théorie d’un ensemble infini sans structure et T3
une théorie compléte de corps pseudofinis (de caractéristique arbitraire).

(2) Soit Ty la théorie d’un ensemble infini sans structure, et soit T3 le graphe
aléatoire (ou une expansion d’une théorie géométrique Ty qu’on peut obtenir
en ajoutant un prédicat aléatoire [CP98]). On a acly (4) = A = acly(4), et
donc l'expansion 77 D T ne renforce pas la prégéométrie.

(3) Soit Ty = EVp,, et T1 la théorie d'un espace vectoriel infini sur F, avec
une forme bilinéaire générique S3(-,-). Alors, Tp C 77 ne renforce pas la
prégéométrie, car dans cet exemple on a acl; = acly aussi.

Pour pouvoir pleinement exploiter le Théoreme 4.13, il est commode de consi-

dérer la classe Cy ainsi que la théorie T,, dans une expansion par définitions de
L.

Définition 4.20. Soit £* I'expansion par définitions de £ donnée par I’ensemble
des L-formules existentielles (sans parametres) a quantification bornée.

Formellement, ce nouveau langage L£* est construit ainsi : pour toute formule
existentielle & quantification bornée 7(Z) = 7(xo, . . ., n—1) on introduit un nouveau
symbole de relation n-aire R, (). Puis, on consideére T,, (et toute autre théorie qui
implique Th(Cy)) dans le langage £*, en ajoutant aux L-axiomes les “définitions”
des R., c’est a dire pour tout 7 on impose

VI(R(T) < 7(T)).

On écrit 17 pour dénoter la théorie T, ainsi obtenue dans £*, de méme C; dénote
la classe Cq, considérée dans L*.

Notation. On écrira tp,, au lieu de tpy  ainsi que acl, au lieu de acly, .

Théoréme 4.21 (Elimination des quanteurs).
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(1) Soient A; C M; = T, pour i = 1,2 des uplets (pas nécessairement finis).
Alors

tp,, (A1) = tp,(Az) ssi clM(A}) 22, clM2(4y).
(2) La théorie T} élimine les quanteurs (dans L*).

(3) La L-théorie T, est presque modéle-compléte, i.e. toute L-formule est équi-
valente, dans T,,, a une combinaison booléenne de L-formules existentielles.

Preuve. Notons d’abord que (2) est une conséquence de (1), car il y a suffisamment
de L-formules pour décrire uniformément la cléture autosuffisante (c’est la partie
(2) du Lemme 4.4). Puis, (3) suit de (2). Il suffit donc de montrer (1).

On peut supposer que A; et Ay sont finis. L’implication est claire. Réciproque-
ment, supposons que clM*(A;) =, clM2(A,). Par le Théoréme 4.13, les modeles
saturés de T,, sont riches. On peut donc établir un va-et-vient infini au-dessus du
L-isomorphisme donné entre les c1M(4;), d’ott tp,, (A1) = tp,,(As). O

Corollaire 4.22. Soient M C N deux modéles deT,,. Alors M < N si et seulement
st M < N. O

Corollaire 4.23. Les complétions de T,, sont données par les L-types d’isomor-
phisme possibles de (D) € Co, c’est & dire pour M,N = T, on a M = N si et
seulement si (B)pr = (D) N - O

Corollaire 4.24. Pour tout A C M =T, on a clM(A) = acl,(A), i.e. la cloture
algébrique au sens de T,, est donnée par la cloture autosuffisante.

Preuve. L’inclusion I (4) C acly, (A) suit de 3.8, et il suffit donc de montrer que
K = cI?(A) est algébriquement clos. Soit K < M < K* =T, et a € K*\ K. On
a K <cy(Ka)=:L < K* Pourn €N, soient Ly, ..., L, des copies isomorphes
de L au-dessus de K. On peut supposer que K* est suffisamment saturé, et on peut
alors plonger fortement un amalgame libre L1 ®k ...®x L, dans K*. En utilisant le
Théoréme 4.21, on voit que tp,(a/K) admet un nombre non-borné de réalisations,
d’ott ¢ acl, (K). O

A la fin de cette section, nous étudions une notion d’indépendance inhérente a
la construction de la fusion libre.
Définition 4.25. Soient A, B,C C K, ou K est une fusion. On pose A J/*B C ssi
clu(BA) Nel,(BC) = cl,(B) et A |5 C.

Le Lemme 3.14 montre :

Remarque 4.26. Soient B C A,C C K des sous-ensembles cl,-clos de la fusion
K. Alors, sont équivalents :

() ALl,C.
(2) AL C (i=1,2) et AC< K.
(3) D :=(AC) est un amalgame libre de A et C au-dessus de B et D < K. [O

Lemme 4.27. La notion |~ est symétrique et transitive, c’est a dire pour tout
A, B,C,D on a
’. . . * . . *
Symétrie : A \LB(E si et seulement si C' | A.* )
Transitivité : A |, CD si et seulement si A | ,C et A |, D.
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Preuve. La symétrie est claire par définition. Pour montrer la transitivité, il suffit de
traiter le casou B < A, C et C' < D sont tous cl,-clos. Si A J/*B Cet A LZ D, alors

A L*B D suit de la Remarque 4.26(2). Pour 'autre direction, notons que A L*B D=
* . , .. * . d N d .
Al C’*sult de la deﬁnltlo*n de |7, puisque A |, D entraine A |, C. Le fait
que A | B D implique A | . D est une conséquence du Lemme 3.26 : on 'applique
aC <A, ,D,ou A :=acly(AC). Comme A J/*B C, A’ est fort dans K. Les autres

hypotheses de 3.26, en 'occurrence A’ J/g,D et A’ LdCD, sont satisfaites, et on
déduit donc que cl,,(AC) N D = C, car cl,,(AC) = (4). O

Lemme 4.28 (Caractere local). Soient M une fusion, B C M et @ € M un uplet
fini. Alors il existe By C, B tel que & L;O B.

Preuve. On pose L := cl,(Ba) et K := cl,(B). Donc, L = (Ka) pour un uplet fini
a € M controlant L au-dessus de K, @ O @. Maintenant, on choisit £ < K finiment
engendré tel que d(a/K) = 6(a/K) = §(a/k) = d(a/k), et on pose | := (ka) (c’est
autosuffisant dans M). Le Lemme 3.14 entraine que L est un amalgame libre de K
et [ au-dessus de k¥’ := KNI. Or, k' est une fusion contenue de mani¢re autosuffisante
dans une fusion finiment engendrée, et donc finiment engendréee aussi, par le Lemme
3.30. Pour terminer la preuve, il suffit de choisir un ensemble By C B fini tel que
k' C cly,(By). |

Proposition 4.29. Dans toute complétion T de T,,, la notion |~ définit une no-
tion d’indépendance, c’est a dire elle satisfait auzx propriétés (i)-(vii) de la Définition
2.1.

Preuve. L’invariance par automorphisme est claire, et la non-trivialité suit de la
définition de | * et de I'égalité acl,, = cl,, (Corollaire 4.24).

Ensuite, la propriété d’extension suit de ’existence d’un amalgame libre dans Co,
combiné avec le fait qu’on peut toujours plonger un amalgame libre de deux fusions
fortes de maniere autosuffisante dans un modele suffisamment saturé (donc riche)
de T.

Le caractere fini est une conséquence immédiate de : cl,, est un opérateur finitaire,
® ainsi que < passent a la limite.

Enfin, la symétrie et la transitivité sont montrées dans 4.27, tandis que le carac-
tere local est le contenu du Lemme 4.28. (]

5. SIMPLICITE

Dans cette section, nous considérons un contexte de fusion (T, T1,T5) avec T et
T5 supersimples de rang SU 1 (et Tp toujours w-catégorique) et nous montrons —
sous une hypothese supplémentaire — que toute complétion de T, est supersimple
(Théoreme 5.5).

Soit LF une notion d’indépendance. Rappellons qu’une suite (A4;);<q est J/F—
indépendante au-dessus de B si pour tout 3 < a on a Ag J/ll; U;<p Ai- Les suites

Lr—indépendantes ont des propriétés similaires a celles des suites indépendantes
— Clest a dire | -indépendantes — dans une théorie simple.

Définition 5.1. (1) On dit qu'une expansion de théories simples Ty C T}
a une algébricité indépendante, si pour tout M = Ty et toute suite Ti-
indépendante A, B, C' au-dessus de M avec A, B, C acl;-clos et contenant
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M on a
0
acly (AB)acl; (AC) | acly(BC).
BC
(2) Nous disons que le contexte de fusion (Tp, T, T2) satisfait & I’hypothése A,
si 'expansion Ty C T; a une algébricité indépendante pour ¢ = 1 et ¢ = 2.

Lemme 5.2. Soit Ty fortement minimale et modulaire.

(1) Si Ty a une prégéométrie triviale, alors toute expansion simple To C Ty a
une algébricité indépendante.

(2) SiTy est stable, alors Ty C T a une algébricité indépendante.

Preuve. C’est clair pour (1). Quant & (2), soit M = T} et soit A, B, C une suite T}-
indépendante au-dessus de M telle que A, B,C O M. Comme Ty est modulaire et
fortement minimale, il suffit de montrer que acly(acl; (AB) acl; (AC)) Nacly (BC) =
aclg(BC). Soient @ € A, b € B et e € C. Soit f € acl;(BC) \ acly(BC). Puis,
soit d € acl;(AB) avec = ¢1(d,@,b), ot ¢1(7,%,b) est une L;-formule & pa-
rametres dans Mb qui rend d explicitement algébrique au-dessus de Mba. De
méme pour € € acl;(AC) et une formule ¢! (7,z,¢) avec = ¢/ (é,a,c). Puis, soit
xo(w,7,7) une Lo(M)-formule, explicitant w € acly(MzTy) avec = xo(f,d,€).
Comme tp,, (@/ acly(Mbe)) est le cohéritier de sa restriction & M, on trouve m € M
avec = 3Typ1(T,m,b) A @) (F,m,¢) A xolf,T,7). On en déduit facilement que
f € acly(BC). O

Remarque. Nous ignorons s’il y a des exemples d’expansions Ty 2O Ty (disons
avec Ty supersimple de rang SU 1 et Ty fortement minimale et modulaire) sans
algébricité indépendante.

Lemme 5.3. Supposons Uhypothése A, et soit K | Ty U Ty une fusion, K C
A, B,C C M, ot M est riche et A,B,C une suite | “-indépendante de sous-
ensembles cl,-clos de M. On pose D := (BC) = cl,(BC), E 1= (AB) = cl,(AB)

et F := (AC) = cl,,(AC). Alors, D, E, F est une suite | '-indépendante au-dessus
de ABC, pouri € {0,1,2}.
Preuve. Par induction sur m + n + p, on va montrer :
()™ "™P: La suite ((AB)T", (AC)?, (BC)%) est | -indépendante au-dessus de
I’ensemble ABC, pour i =0,1,2 et j =1,2.
Une fois que (x)™™P est montré, la preuve est terminée. Pour I'établir, il suffit
de montrer que (AB)7(AC)Y J/;C<BC>§ pour i = 0,1,2, puisque nous avons
(AB) | ,(BC) par hypothese, ce qui entraine (AB) | ,(BC) par 4.26 et donc

aussi (AB) \J/;C<BC> pour tout ¢.
Les ensembles BC, (AB)T'(AC)7 et (BC)Y étant forts, le Lemme 3.26 montre

(AB)™(AC)" B (BC)? = (AB)T'(AC)" L (BC)? pour i = 1,2.
BC BC

On raisonne par I'absurde. Il existe donc m,n, p € N avec m +n + p minimal tels
que (x)™"™P soit faux. Par symétrie, on peut supposer que m < n < p et

(AB)TMAC); gﬁc (BOYL.
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Par hypothese, 'expansion Ty C 77 a une algébricité indépendante, et donc
nécessairement p > 2 (car m < n < p).

Par minimalité de m + n + p, on a (AB)5*(AC)% \J/;C(BO)IQ’_l ce qui donne
(AB)"HHAC) T LEBC% (BC) (par la définition des hiérarchies <>§“), et en par-
ticulier

0
(2) (AB)T"(AC)T L (BO).
(BC)}
Puisque p > 2, on a (AB)*(AC)? \L%(/V(BC}%, carm+n+1<m+n+p. Par
transitivité et (2) on arrive a (AB)T*(AC)} \L%C<BC>’1), une contradiction. O

Proposition 5.4 (Théoreme d’Indépendance). Supposons Uhypothése A, et soit
K E Ty UTy une fusion, K < Ag, A1, As € Co. Supposons données des fusions
Aoy, Aqo2y et Agi 2y ainsi que des K-plongements forts ! : A — Ay pour
k € w, tels que Ag;jy soit un amalgame libre des images de A; et Aj pour les
plongements Li{i"j} et L;{-i’j}.

Alors il existe une K-fusion A et des K-plongements forts v, : Ay — A satis-

faisant

(1) w0tk =ty 0t sikewnuw' (ce plongement est noté v,),

(2) 10(Ao),t1(A1),12(A) est une suite | *“-indépendante au-dessus de K.
Preuve. L’argument que nous donnerons doit beaucoup a des suggestions de Mas-
soud Pourmahdian qui ont aidé a simplifier la preuve du Théoreéme d’Indépendance

que nous avions initialement.

On peut supposer que Aj, Az < Ay 2y, c’est & dire Li1,2} et L;LQ} sont des

inclusions. D’abord, nous construisons des £;-plongements ¢!, : A, — M’ =T}
satisfaisant la condition (1) ainsi que certaines conditions d’indépendance.

On choisit M" O Ay 9y, un modele suffisamment saturé de 77 (en particulier,
V{1 2y sera donnée par l'inclusion).

Par le théoréme d’indépendance dans T3, on trouve Af, avec

(I): A J/; A1 Ay, et Af =l W0 (4y) ainsi que A)) =1, 102 (4).
On peut choisir A} de telle maniére que
1
(II): A(/) \LK A{LQ}'
Identifiant Af et L({)O’l}(AO), on trouve A, ,, satisfaisant
_ 1
(III): Al{O,l} :}46‘41 A{O,l} et A/{O,l} J’A()Al A{LQ}.

De méme, identifiant Af avec L[{)O’2}(AO), on trouve A, ,, satisfaisant

_ 1
(IV)! A/{O,Q} :}46‘42 A{072} et A{{O,Q} \J-’A6A2 A{{O,l}A{lvz}'
Finalement, par (III) et (IV), nous avons le suivant :

(V): Al{o 1},A%072},A{1,2} est une suite T)-indépendante au-dessus de l'en-
semble AjA; As.
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Les identifications que nous avons faites fournissent des £;-plongements Lf{oﬂ»} :
Af{o,i} — M’ pour ¢ = 1,2 qui satisfont évidemment (1).

Voila les conséquences de (I)-(V) au niveau des Lo-réduits : d’abord, par (III) et
(II), on a Alg J/zl Af1,23, ce qui donne

(IT1-0): Al ), “41 A9y

Puis, (IV) donne A’{ Af{oyl}A{lyg}. Par ailleurs, on prétend que

0
0,2} \J/acll(A(’)Az)

0
(3) acll(AgAg) \L A{{O,l}A{LQ}’
Al Ag
ce qui donnera (IV-0).

Pour montrer (3), notons d’abord que (3) est un énoncé qui ne dépend que de
q = tpl(A’{O,l}A{LQ}). Comme ~A,{0,1} J/ih Af1,2y, par la Remarqu? 3.13,~i1 existe
un amalgame libre (alixiliaire) A= A/{O,l} ®a, Aq1,2) tel que tpl(A'{O’l}A{LQ}) =
q1, ou nous écrivons X chaque fois qu'un ensemble X est considéré comme sous-
ensemble de A. Les fusions A, A; et Ay forment une suite | “-indépendante, avec
Al 1y = (ApA1) et Agr 0y = (A1 4y).

Or, le Lemme 5.3 implique (Ag[b) J/%, fl’{o 1}21{172}, et donc en particulier
: ;

A1A2
acly (A} Ay) J“%6A2 121’{071};1{172}. Comme tp; (A, 13 Aq1,23) = tp1 (A 13 A(1,23), on
a montré (3).

0
(IV-O): AI{072} J-/A(/JA2 A%O,I}A{lyz}'
On combine (III-0) et (IV-0) pour obtenir

(V-0): Le systeme (K, A{),Al,AQ,A’{Oﬁl},A’{O,Z},A{LQ},M’), avec les indices
et plongements évidents, est un systeme indépendant de modeles de Tj.

Par le Fait 2.4 et (V-0), tpo(Afg 1y, Afg oy Af1,23) est completement déterminé
par le systeme en question.
Changeant £; en Lo, on peut obtenir des Lo-plongements ¢!/ : A,, — M" =T,
satisfaisant & (1), en considérant Ag oy € M” = Tj suffisamment saturé, et en
/! "

trouvant Ag, A, |, et Aﬁglog} vérifiant les analogues de (I)-(V).
Par ce qui est dit plus haut, on a 1’égalité

tPo(Afo,134%0,2)A11.2)) = tpo(Afo 13470 234 11.23)-

I suffit d’appliquer 3.10 & tp; (A% 13 Ao 2y Af1,21) €t tPa(AYg 13 AT 2y Af1,2}) Pour
obtenir la fusion A cherchée. Notons que les plongements ¢,, sont donnés implicite-
ment par notre construction. Puis, (2) suit du fait que A est un amalgame libre de
Aj et Ay 0y au-dessus de K (on applique 5.3). O

Théoréme 5.5. Supposons U’hypothése A. Alors toute complétion T de T, est
supersimple, et la relation de non-déviation | dans T est donnée par | *.

Le rang SU d’une extension parasite est égal a la longueur d’une décomposition
en extensions primitives, et SU(g/A) < w pour tout g avec d(g/A) = 1.

Preuve. On utilise le Théoréme de Kim-Pillay 2.2. 11 a déja été montré que | * est
une notion d’indépendance dans la Proposition 4.29. Puis, une fois que la simplicité
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de T est établie, 4.28 montre que tout type finitaire ne dévie pas au-dessus d’un
ensemble fini, d’ou la supersimplicité de T'. Or, le Théoreme d’Indépendance suit
de la Proposition 5.4.

Les énoncés concernant le rang SU découlent des Inégalités de Lascar (voir [Wa00,
Ch.5] pour une preuve dans le cas simple), car le rang SU d’une extension primi-
tive est égal & 1 (c’est précisément le contenu du Lemme 3.22). Pour les extensions
parasites, c’est clair. Puis, si g X/*B B’ pour un singleton g avec d(g/B) = 1, forcé-
ment d(g/B’) = 0. On en déduit que SU(g/B’) < w, car cl,(B’g)/ cl,(B’) est une

extension parasite. O
En fait, la Proposition 5.4 montre :

Corollaire 5.6. Dans la situation du Théoréme 5.5, le Théoréme d’Indépendance
est valide au-dessus de toute fusion K = cl,,(K) =Ty U T5. O

Remarque 5.7. Si T, et Ty sont fortement minimales et Ty w-catégorique, alors
Uhypotheése A est satisfaite par le Lemme 5.2. On peut alors appliquer le Théo-
reme 5.5, ce qui montre que toute complétion T de T, est supersimple dans ce cas,
avec | = | *. Dans [Hi06, Section 2.6], nous obtenons des résultats divers de n-
amalgamation. Nous montrons entre autres que T a la propriété de n-amalgamation
de modéles pour tout n € N (cf. [Hi06, Théoreme 2.6.8] ).

Voila un exemple d’un contexte de fusion avec 17 et T3 fortement minimales et
Ty w-catégorique ou aucune complétion de 77 U T, n’est stable :

Exemple 5.8. Soit T la théorie d’une relation d’équivalence F, avec une infinité
de classes a 4 éléments, sauf une classe exceptionnelle contenant un seul élément 0,
Ty := EVp,, l'expansion étant donnée par : Exy ssi £ = ay pour un a € F§ =
{1,X,A2, A3} (pour A = 2, par exemple),

Ty := théorie d’une opération de Go = Z/2xZ/2 = {1, ¢, d, cd} agissant trivialement
sur 0 et librement sur le complément de {0}. On trouve Ty comme réduit via Ezxy
ssiz =g -y pour un g € Gs.

On montre qu’aucune complétion de 77 U T5 n’est stable. Car supposons que
M = Ty U T, soit stable. En particulier, c’est un groupe stable I' pour I’addition
dans I’espace vectoriel donné par T}, avec composante connexe I'°. Soit & générique
dans T'°. Comme la multiplication avec A est un automorphisme définissable de T,
I’élément Az est générique dans I'Y aussi, c’est & dire tp(x) = tp(Az). En particulier,
si Az = c-x (par exemple), alors A(Az) = c-(A\x) aussi. On arrive a une contradiction :
r#Nr= X )=c-(\z)=c-(c-x)=c? 2 =n1.

Remarque 5.9. Pour exclure ce genre d’exemples, on peut définir : le contexte de
fusion (Ty, Th,T2) (avec T; fortement minimale) a un bon controle si pour tout K €
Co et tout A C K contrélant K, le L-type d’isomorphisme de K est complétement
déterminé par qftp,(A). On montre que si dans une des expansions T; D To les
multiplicités sont préservées, alors (Ty,T1,T2) a un bon contréle. En particulier,
c’est donc le cas si dclyg = acly, par exemple si Ty est la théorie d’un espace vectoriel
sur umn corps fini.

Dans [HHO6], il est montré que si on suppose un bon contrdle, alors T, est
compléte et w-stable avec un unique type générique (de rang w en général).

Pour conclure la section, nous allons montrer que tout type parasite est mo-
nobasé. Pour cela, le lemme suivant est bien utile, car il permet de comprendre
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facilement la déviation au sein d’un type parasite. On aurait pu énoncer ce lemme
déja depuis un moment.

Lemme 5.10. Soit L une extension parasite de K = cl,(K), et soit M = cl, (M)
une extension arbitraire de K. Alors L Jj;( M ssi LOM = K ssi L J/(;( M.

Preuve. 1l suffit de combiner le Lemme 3.14 avec 4.26, car L J/(Ii( M est automatique
pour L/K parasite. O

Proposition 5.11. Soit T' une complétion de T,,, et supposons que T soit simple
avec | = | *. Alors, tout type parasite est monobasé.

Preuve. C’est une conséquence de la caractérisation de la non-déviation pour les
extensions parasites donnée dans le Lemme 5.10. ([

6. PAIRES MAGNIFIQUES DE FUSIONS LIBRES

Dans [BPVO03], la notion d’une paire magnifique de modeles de T est introduite et
étudiée, ou T est une théorie simple complete. En fait, la définition a un sens dans
toute théorie compléte avec une notion d’indépendance | *. Dans cette section,
en travaillant dans la classe des paires de fusions, nous montrons que tout modele
suffisamment saturé de la théorie des paires magnifiques de modeles de T, est une
paire magnifique (en supposant les hypotheses de définissabilité 4.1). On obtient
comme corollaire que toute complétion T de T, a la wnfcp si de plus T est simple
avec | = | ".

Le concept d’une paire magnifique (d’une théorie simple) est une généralisation
commune des deux notions suivantes :

— les belles paires (de modeles d’une théorie stable) étudiées par Poizat dans

[Po83],

— les paires génériques (de modeles d’une théorie simple de rang SU égal a 1)

étudiées par Vassiliev dans [Va03].

Il est observé dans [BPV03] que pour une théorie stable T, une “paire magnifique”
est (essentiellement) la méme chose qu’une “belle paire”.

Supposons que T est une L-théorie simple et complete qui élimine les quanteurs.
Soit Lp := LU {P}, ot P est un nouveau prédicat unaire. Une £p-structure est
donc de la forme (M, P(M)), pour une L-structure M et P(M) C M.

Définition 6.1. Soit x > |T|". Une Lp-structure (M, P(M)) est une paire k-
magnifique si P(M) <, M |= T et si les propriétés suivantes sont satisfaites :

(i), Pour tout sous-ensemble A C M de cardinalité < x et tout L-type (finitaire)
p € S(A) il existe @ € M réalisant p tel que a | , P(M).
(49),, Pour tout A C M de cardinalité < x et tout L-type (finitaire) p € S(A) tel
que p ne dévie pas au-dessus de P(A), il existe @ € P(M) avec @ = p.
Fait 6.2 ([BPV03]). Soit T simple et compléte. Alors :

(1) Des paires k-magnifiques existent pour tout x, plus généralement : toute
paire se plonge dans une paire k-magnifique (méme librement, voir plus
bas pour la définition d’un plongement libre).

(2) Deux paires rk-magnifiques (pour k > |T|T) sont Lo o -équivalentes. En
particulier, elles ont la méme Lp-théorie élémentaire que 'on note TF.

O
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Si maintenant T" est une théorie compléte et | * une notion d’indépendance, la
Définition 6.1 d’une paire xk-magnifique dans 7' (par rapport & | *) a un sens. En
effet, le Fait 6.2 reste valable dans ce cadre (les arguments donnés dans [BPV03]
restent valides sans changement).

Disons, par abus de langage, que les paires (k-)magnifiques de modeles de T
sont aziomatisables si un modele suffisamment saturé de T% est une paire (k-
Jmagnifique. Dans [BPV03], la relation entre l’axiomatisabilité des paires magni-
fiques d’une théorie simple T' et certaines propriétés de T est étudiée en détail, et
plusieurs conditions équivalentes & I'axiomatisabilité de T% sont données. Dans le
cas oll les paires magnifiques sont axiomatisables, [BPV03] fait une étude systéma-
tique de la théorie T% (si les paires magnifiques ne sont pas axiomatisables, il faut
sortir du cadre des classes élémentaires de structures).

Définition 6.3 ([BPV03]). Une théorie simple a la wnfcp (weak non finite cover
property, une version faible de la propriété du non-recouvrement fini) si pour toutes
formules ¢(Z,z) et ¥(Z,y) on a :
(finitude) D(¥(Z,¢), ¢) < w pour tout €.
(définissabilité) Pour tout n € N il existe une formule y,, (%) telle que D(¥ (7, b), )
n si et seulement si = x,(b).

Notons que si T a la wnfcp, alors T élimine 3°°.
Fait 6.4 ([BPV03]). Soit T simple et compléte.

(1) La théorie T® est aziomatisable si et seulement si T a la wnfcp.
(2) Si T® est awiomatisable, c’est une théorie simple (supersimple si T est

. T% L \ T
supersimple) et | a une description concréte en terme de |

En général, on doit considérer les paires |T|T-magnifiques mais dans le cadre de
la fusion libre, on peut faire mieux :

Définition 6.5. Soit 7' une théorie complete et | * une notion d’indépendance
telle que tout type finitaire ne | *-dévie pas au-dessus d'un ensemble fini. Une
Lp-structure (M, P(M)) est une paire X.-magnifique si P(M) <z M =T et si les
deux propriétés suivantes sont satisfaites :

(i) Pour tout sous-ensemble A C M tel que A = acl(h) pour un uplet b fini,
et pour tout L-type (finitaire) p € S(A) il existe @ € M réalisant p tel que
al, P(M).

(ii)c Pour tout A C M de la forme A = acl(b) pour un uplet b fini, et pour tout

L-type (finitaire) p € S(A) tel que p ne (| *-)dévie pas au-dessus de P(A),
il existe @ € P(M) avec a |= p.

Nous allons utiliser des idées de [Be04] pour reformuler la magnificence en terme
de richesse. Pour cela, nous revenons a la fusion libre dans un contexte de fusion
(To, T1,Ts). Soit (C~§3, <¥) la classe des paires (A, P(A)) de fusions avec P(A) < A,
ot (B,P(P)) <¥ (A,P(A))ssi B< A, P(B)< P(A) et B J/;(B) P(A). On pose

CF = {(A,P(A) eCF|A e}

Suivant la terminologie de [Be04], on appelle <* une extension (un plongement)
libre. Si (B, P(B)) <% (A, P(A)),(C,P(C)) sont des paires de fusions, on peut
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choisir un amalgame libre D = A ®p C et définir P(D) := (P(A)P(C)) au sein de
D. On effectue un calcul standard de | *-indépendance pour vérifier que P(D) =
P(A)@pp) P(C) et (A, P(A)),(C, P(C)) <* (D, P(D)), ce qui montre la deuxiéme
partie du lemme suivant. Quant a la premiere, il suffit d’utiliser 4.4.

Lemme 6.6. (1) CF est une classe élémentaire.
(2) (CF,<®) (ainsi que (CF,<%)) a la propriété d’amalgamation (AP). O

Définition 6.7. Un élément (M, P(M)) € CF est appelé une paire riche de fusions
si (M, P(M)) est riche pour la classe (C(?, <¥).

Avant d’arriver a I’égalité “paire riche=paire N.-magnifique”, nous allons mon-
trer qu’'une extension finiment engendrée dans COq3 peut étre obtenue comme suite
d’extensions plus simples et faciles a décrire.

Définition 6.8. Soit (B, P(B)) <*® (A, P(A)) une extension libre dans Cj .

— (B, P(B)) <® (A, P(A)) est une extension de base, si A = (BP(A)). Une telle
extension de base est finiment engendrée / parasite / primitive / générique, si
P(A)/P(B) Vest.

— On dit que (B, P(B)) <¥ (A, P(A)) ne change pas la base, si P(A) = P(B).
Dans ce cas, I’extension est appelée finiment engendrée / parasite / primitive /
générique, si A/B est une extension finiment engendrée / parasite / primitive
/ générique.

Soit (B, P(B)) <¥* (A, P(A)) dans CT)B Ausein de A, on trouve Ag := (BP(A)) =
cl,(BP(A)). Donc, P(Ag) = P(A), et (B, P(B)) <* (Ag, P(Ap)) est une extension
de base, alors que (Ag, P(Ag)) <% (A, P(A)) ne change pas la base. En utilisant le
Lemme de décomposition 3.29 dans la classe ((,:'07 <) et 3.30, on en déduit :

Lemme 6.9. Soit (B, P(B)) <* (A, P(A)) dans C} avec A/B finiment engendrée.
Alors il existe des fusions Ag = B < A; < ... < A, = A telles que pour i =
1,...,n—1, (A;, P(A;)) < (Ait1, P(Ait1)) est d’un des types suivants : extension
de base primitive, extension de base générique, extension primitive qui ne change pas
la base, extension générique qui ne change pas la base. On peut méme les arranger
de sorte qu’il existe r < n — 1 tel qu’il s’agisse des extensions de base pour i < r et

des extensions qui ne changent pas la base pour i > r. O

Lemme 6.10. Les paires riches de fusions sont exactement les paires N -magni-
fiques de modéles de T,,.

Preuve. L’argument est similaire & la preuve de [Be04, Prop. 2.3], et nous 'omet-
tons. g

Remarque. En fait, on peut montrer un peu plus : Une paire de fusions (M, P(M))
dans C~§3 satisfait o la condition (i), ssi elle est riche pour les extensions qui ne
changent pas la base, et elle satisfait a la condition (it). ssi elle est riche pour les
extensions de base. (]

Les composantes connexes de (C?3 , <®) sont précisément données par les compo-
santes connexes de (Cp, <). Evidemment, deux paires riches de fusions (M, P(M))
et (N, P(N)) ont la méme L p-théorie ssi elles se trouvent dans la méme compo-

sante connexe de (C~8ﬂ , <¥). Dans ce cas, elles sont (£p)oo n-6quivalentes, car elles
se correspondent par va-et-vient infini.
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Voila le lien avec les paires x-magnifiques (toujours par rapport a | *) :

Lemme 6.11. Soit (M, P(M)) une paire de fusions R.-magnifique, et k-saturée en
tant que Lp-structure. Alors, (M, P(M)) est une paire k-magnifique.

Preuve. Clair. O

Soit T® la théorie des paires N.-magnifiques de modeles de T,,. Nous voulons
axiomatiser cette L£p-théorie. Soit Tﬂy la Lp-théorie suivante :

T¥'(1) : Si (M, P(M)) est un modele de T¥ (1), alors P(M) <, M |=T,,.
T¥(2) : Soit ¥ = (¢1(T,%,%0), ¥a(T, Z,Z0)) une famille de paires de controle de
dimension e et 7(%, Z, ) une L-formule existentielle & quantification bornée

telle que = 7(@, b,¢) implique d(a/bc) < e. Alors, on met un axiome de la
forme

VZZo3IzTVy{[0w (Z, Z0) /\ y; € P]

n—1

— [V1(F, 7, %0) A (T, 2, %0) A 7(Z,2,9) A\ 2 & P}

=0

T*'(3) : Soit ¥ comme dans le schéma (2), 7(Z, Z) existentielle & quantification bor-

née forcant d(Z/z) < e. Puis, pour T = (2o,...,2n—1) C &, Zo C Zo et
Z=(20...,20-1) C Z, soit U = (¢ (&, 2, %), 12(Z, 2, %)) une autre famille
de paires de controle (de dimension e), telle que |= th; — ; pour i = 1,2,
et @ € (ab) des que k= 91 (a, b, by) A tha(a, b, by). Pour une telle situation, on
met un axiome de la forme

T,
x

VZZo3z{[04 (2, Z0) /\ z; € P]

H[1L1('i‘72a20)/\’1)z2(53,272 ) _‘Tl' Z /\JZ,LEP

Théoréme 6.12. Les théories T} et Tjﬁ/ coincident. Plus précisément, sont équi-
valents pour (M, P(M)) une paire de fusions :

(a) (M,P(M)) est une paire riche de fusions.
(b) (M,P(M)) est une paire Xe-magnifique de modéles de T,,.
(c) (M, P(M)) est un modéle R -saturé de T* .

Preuve. L’équivalence (a) <= (b) est le Lemme 6.10.

On vérifie que le schéma d’axiomes T:}Bl (2) est une version approximative de
(i), tandis que T® (3) est une version approximative de (ii).. Donnons I'argument
concernant T¥ (2) et la propriété (i).. Soit d’abord (M, P(M)) une paire de modeles
de T, satisfaisant (i).. On montre que (M, P(M)) = T¥'(2). Pour cela, on considére
une famille de paires de controle ¥ = (¢1,19), de dimension e, et 7(Z, Z,7) comme
dans le schéma d’axiomes T (2), et on suppose que M = 6y (b, by) pour des uplets
b,by € M.
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Par 4.12 on peut supposer que b < (b) =: k et (k, P(k)) <¥ (M, P(M)), c’est
adire k < M et k J_/*P(k) P(M). Soit p := tp,(@'/k), ot @ est une solution L;-
générique de 1;(T,b,by) (i = 1,2) au-dessus de k, telle que k < ka’' < (ka') =: I
et I’ est fortement k-plongée dans K* =, M. On applique (7). au type p € S(k)
pour trouver @ € M réalisant p tel que EJ/ZP(M). Posons [ := (ka) = cl, (ka).
Comme k J_/*P(k) P(M),onal \L*P(k) P(M), et donc, par la définition de | *, P(l) =
INP(M) = P(k) ainsi que ZJ/(;,(k) P(M). Le premier point donne que 'uplet @
n’a pas de coordonnée dans P, et le deuxiéme point montre que e = d(a/k) =
d(a/kco, ..., cm—1) pour tout uplet ¢ € P(M) fini. I’axiome correspondant & ¥ et
7 dans (2) est donc vrai dans (M, P(M)).

Réciproquement, soit (M, P(M)) une paire de modeles de T, satisfaisant TF (2),
telle que (M, P(M)) soit RN.-saturé pour sa propre théorie. Soit p € S(k) avec
k < M finiment engendrée. Soit @’ € K* une solution de p, et posons I’ := cl,, (ka').
Il faut trouver @ € M tel que @ | p et EJ/ZP(M). Or, nous montrons plus :
on peut trouver une k-copie [ de I’ dans M, avec | < M et ZJ/*P(k) P(M). Pour
cela, il suffit que ! = qftp,,(I'/k), P(I) =INP(M) C P(k) (ot P(l) = P(k)) et
l J/: P(M)). Or, les axiomes (2) montrent que le type décrit est finiment réalisable
dans (M, P(M)). Par R.-saturation, on conclut.

L’argument concernant T¥ (3) et la propriété (ii). est plus facile, et nous I'omet-
tons.

Nous avons alors montré que toute paire riche de fusions est un modele de T(}y
et que tout modele N .-saturé de Tf,y est une paire riche de fusions.

Finalement, il est facile de voir que si la paire (K, P(K)) est librement plongée
dans (M,P(M)) = T¥  alors K = aclz,(K) (on varie légérement I’argument
donné dans la preuve de 4.24). Avec cela, on montre 'R -saturation d’une paire
riche de fusions, ce qui termine la preuve. O

Corollaire 6.13. Supposons que la complétion T de T,, est simple, et que la non-
déviation dans T est donnée par | *. (C’est par exemple le cas sous I’hypothése A,
pour des expansions Ty et Ty de Ty, avec Ty et Ty supersimples de rang SU 1 et Ty
fortement minimale modulaire et w-catégorique.) Alors, on a :

(1) La L-théorie T a la wnfcp.

(2) La Lp-théorie T¥ est supersimple, ou T¥ dénote la théorie d’une paire
riche de fusions dans la composante connexe de (Co, <) associée a T.

Prewve. Comme | = | dans T par hypothese, les paires x-magnifiques par
rapport & | * que nous avons étudiées sont les “vraies” paires s-magnifiques, c’est
a dire celles par rapport a la relation de non-déviation | . Le corollaire suit donc
du Fait 6.4, car T® est axiomatisable par le Théoreme 6.12. ]

7. VARIATIONS SUR LA FUSION

Dans cette section, nous mentionnons deux constructions qui sont similaires a la
fusion libre. Si T est une théorie (pré-)géométrique et Ty C Ty un réduit fortement
minimal et modulaire, nous considérons des structures bicolores par rapport a ’ex-
pansion 717 2 Ty ; de méme, nous construisons la courbe générique au-dessus de Tj.
Sous des hypotheses de définissabilité convenables, ces constructions admettent des
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axiomatisations explicites; si de plus 7} est supersimple de rang SU égal a 1, on
obtient des théories supersimples.

Les preuves sont similaires & celles que nous avons données dans la fusion libre,
mais les arguments sont plus élémentaires en général. Nous ne donnons donc pas
de preuves et nous contentons d’indiquer le type de résultats qu’on obtient. Le cas
ou T; est supersimple de rang SU égal & 1 est traité en détail dans [Hi06, Ch.4].

7.1. Courbe générique. Soit T} une L;i-théorie complete et C' un nouveau sym-
bole de relation binaire. Soit £ := £3 U {C}. On s’intéresse & des L-structures
(M,CM), ot M = Ty. Soit Ty = ACF,, la théorie d'un corps algébriquement clos
de caractéristique p > 0, et soient K = ACF),, d > 1 et (a; ;) une suite d’éléments
algébriquement indépendants dans K, o1 0 < 4,5 et i 4+ j < d. La courbe Cy C K2
donnée par ’équation Zz j a; ;X 1YJ = 0 est une courbe générique de degré d. Soit
T, la L-théorie de (K, CK). Cette théorie s’interprete dans le type de 'uplet a; ; et
ne dépend donc pas du choix des a; ;. Dans [CHKP02], il est montré :

(1) La suite (Ty)g>1 tend vers une limite T, dans 'espace des L-théories.
(2) Cette limite T, est w-stable de rang de Morley w.

(3) Si (K,C) E T, et (a/,b') € C, alors posant C' := C \ {(¢/,V)}, on a
(K,C") E T,. De méme, il existe (a”,b") € K2\ C tel que pour C" :=
CU{(a",t")} on a (K,C") E=T,.

La construction de T, se fait par une amalgamation & la Fraissé-Hrushovski, sans
collapse. La complétude et 'w-stabilité ainsi que (3) s’obtiennent alors facilement.
La preuve de (1) est plus difficile. Les propriétés (1) et (3) ont de nombreuses
conséquences de non-définissablité. Citons-en deux :

(I) Pour m > 2, soit R,, un nouveau prédicat m-aire. Alors, il n’existe pas
d’énoncé p(R,,) dans le langage des corps augmenté par R, tel que pour
tout ensemble définissable D C K™ on ait : D est Zariski-clos si et seule-
ment si K |= (D).

(II) Soit R,, comme dans (I). Alors il n’existe pas d’énoncé ¢(R,,) tel que
pour tout ensemble Zariski-clos D C K™ on ait : D est irréductible si et
seulement si K |= (D).

Nous allons généraliser la construction de [CHKP02] au cadre suivant :

Contexte 7.1. T; est une £;-théorie prégéométrique (complete). Pour simplifier
Pexposition, on suppose aussi que 73 élimine les quanteurs et que £, = L£(T1) est
dénombrable.

Soit £ := L1 U{C}, ot C est un nouveau symbole de relation binaire. Comme
avant, acl; dénote la cloture algébrique au sens de 17, et d; la dimension au sens
de la prégéométrie induite par acl;.

Nous travaillons dans la classe C des L-structures (M, C™) avec M = acly (M) =
TY. Pour A C, M € C et B C M arbitraire on pose 0(A) := dy(A) — |C4] et
5(A/B) :=di(A/B) — |CAB\ CB|. On définit Cy := {M € C|6(A) > 0VA C, M},
et Cp est la classe des structures finiment engendrées (au sens de acly) dans Co. Pour
B C AC M, on définit B < A (B est autosuffisant ou fort dans A) si et seulement
si 6(a/B) > 0 pour tout uplet fini @ € A. La dimension d est définie comme dans
la fusion libre, et on a ’analogue du Lemme 3.6.
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La classe Cy est élémentaire. Pour étre en analogie compléte avec la fusion libre,
nous pourrions écrire (-) au lieu de acl;(-), mais nous gardons la notation acl;. Si
KeCyet BCK, par conséquent, on dit que B contrdle K si acly(B) = K et B <
K. On a donc B < acly(B) si et seulement si cah(B) = 0B Powr K CL,M C N
dans C, on dit que N est un amalgame libre de L et M au-dessus de K, si L \L}K M
et N est controlé par LM, c’est a dire N = acly (LM) et CN = CtuCM.

Les amalgames libres existent dans Co. En particulier, la classe (C~07 <) a la pro-
priété d’amalgamation. De plus, elle est connexe (comme acl; () avec aucun point
dans C se plonge de maniere autosuffisante dans toute structure de éo). Soit T, la
L-théorie des structures riches dans Cy. Avec des arguments similaires & la fusion
libre, on peut montrer :

Proposition 7.2. (1) Si Ty est géométrique, alors la théorie (compléte) T,
admet une axiomatisation explicite, et ses modeéles N -saturés sont précisé-
ment les structures riches dans Co. En particulier, cela fournit une descrip-
tion des types dans T,,. De plus, il y a une notion d’indépendance naturelle
" dans T,,.

(2) SiTy est supersimple de rang SU égal a 1, alors T, est supersimple de rang
SU égal a w et la relation de non-déviation dans T,, est donnée par | *. O

Corollaire 7.3. On peut construire et axiomatiser la théorie de la courbe géné-
rique dans un corps réel clos, dans un corps p-adiquement clos et dans un corps
pseudofini.

Soit T3 la théorie d’un corps pseudofini. Comme dans un corps algébriquement
clos, le degré fournit une mesure pour décrire la “complexité” d’une courbe plane. On
peut donc espérer pouvoir représenter, de maniere naturelle, la théorie T,, comme
limite de théories Ty = Th(F,Cy) ou F est pseudofini et Cy une courbe plane de
degré d, avec un parametre générique. Cependant, il n’y a pas de choix unique pour
les parametres génériques, et la limite de telles théories Ty (si elle existe) pourrait
dépendre des choix de parametres.

D’ol les questions suivantes (une réponse positive, méme a la premiere partie,
parailt probable, mais nous n’avons pas exploré cette question en profondeur ; on ne
peut d’ailleurs pas imaginer une réponse positive a la seconde partie qui ne passerait
pas par la premiére) :

Questions.  — Est-ce que la limite de telles théories Ty est égale a T,,, et cela
indépendamment du choix des parametres génériques pour définir les courbes
Cy?
— Est-ce qu’il existe un choix de parametres pour lequel les théories Ty aient la
limite T, 7

7.2. Structures bicolores. Afin de construire un contre-exemple a la conjecture
de Berline-Lascar (qui dit qu le rang U de Lascar d’un corps superstable est toujours
de la forme w®), Poizat considere des corps algébriquement clos K avec un nouveau
prédicat unaire P, désignant un sous-ensemble distinct PX C K. II effectue une
amalgamation & la Hrushovski, a I'aide de la prédimension §(A) := 2deg. tr(4) —
dim(P4), ot dim est une notion de dimension appropriée sur le prédicat, et il
obtient des corps de rang de Morley (et de Lascar) w - 2; le rang du prédicat est
égal a w.
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Dans [Po99], on a P = N (I'ensemble des points noirs), et le prédicat désigne
juste un sous-ensemble : on obtient les corps noirs. Si P = R désigne un sous-
groupe du groupe additif du corps, on construit ainsi les corps rouges [Po01]. Enfin,
également dans [Po01], Poizat considére le cas o P = V désigne un sous-groupe
du groupe multiplicatif du corps, pour obtenir les corps verts.

Il y a un cadre naturel qui incorpore deux de ces constructions de corps bicolores :
les corps noirs (en toute caractéristique) et les corps rouges en caractéristique posi-
tive. Nous proposons le cadre des structures bicolores. Au niveau de la construction,
nous supposerons : 17 est complete et prégéométrique, et Ty C T est un réduit for-
tement minimal et modulaire. En ajoutant un nouveau prédicat unaire R (désignant
les points rouges) & L1 = L(T}), nous considérons la classe des modeles de Ty dans
L := L1 U{R}, a l'aide de la prédimension §(A) := 2d;(A) —do(R*), ol d; désigne
la dimension par rapport a T;. Pour faciliter I’exposition, nous supposons de plus :
les T; éliminent les quanteurs dans £;, les langages sont dénomobrables et acly (()
est infini. On définit la classe des structures bicolores comme suit :

Co := {(M, RM)| M = acl, (M) et (M, RM) = T}}.

La, T(;43 désigne la théorie des belles paires de modeles de Tj, considérée dans
LoU{R}. Notons que T(;B élimine les quanteurs dans ce langage, car Ty est modulaire.

On définit une notion d’autosuffisance < (pour des sous-ensembles aclp-clos de
structures dans éo) et de dimension d(-) précisément comme dans la fusion libre,
et on obtient alors des opérateurs de cloture cly, cl,, et clgq, en remplagant (-) par
acly (+).

On développe la machinerie des amalgames de Hrushovski comme dans la fu-
sion, & 'exception du fait que la fonction d(-) n’induit une prégéométrie que si
I’on la restreint aux points rouges. L’existence d’amalgames libres donne la pro-
priété d’amalgamation dans ((?o,g), et cette classe est connexe, aussi. On peut
donc construire des structures bicolores riches dans ((,70, <) — riches par rapport &
la classe Cy des structures finiment engendrées au sens de acl;. Soit T, la théorie
(complete) des structures bicolores riches.

Théoréme 7.4. (1) SiTy est géoméirique et Ty w-catégorique, alors T, admet
une axiomatisation explicite, et ses modéles N¢-saturés sont précisément les
structures bicolores riches. En particulier, cela fournit une description des
types dans T,,. De plus, il y a une notion d’indépendance naturelle | * dans
T,.

(2) SiTy est supersimple de rang SU égal a 1 et Ty w-catégorique, alors T,, est
supersimple de rang SU au plus w -2 (avec SU(R) < w) et la relation de
non-déviation dans T,, est donnée par | . ]

Dans bien des cas, il est possible d’effectuer des caluls de rang exact :

Exemple 7.5. (1) Soit Ty la théorie d’un corps pseudofini et Ty la théorie d'un
ensemble infini sans structure. Alors SU(T,) = w - 2 et SU(R) = w.

(2) Soit Ty la théorie d’un corps pseudofini de caractéristique p > 0 et Ty =
EVE,. Alors, comme avant, SU(T,,) = w -2 et SU(R) = w.
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