GENERIC TRIVIALIZATIONS OF GEOMETRIC THEORIES

ALEXANDER BERENSTEIN AND EVGUENI VASSILIEV

AsstracT. We study the theory 7™ of the structure induced by parameter
free formulas on a “dense” algebraically independent subset of a model of a
geometric theory 7. We show that while being a trivial geometric theory,
T* inherits most of the model theoretic complexity of T' related to stability,
simplicity, rosiness, NI P and NT P». In particular, we show that T is strongly
minimal, supersimple of SU-rank 1, or NIP exactly when so is 7. We show
that if T" is superrosy of thorn rank 1, then so is T, and that the converse
holds if T" satisfies acl = dcl.

1. INTRODUCTION

This paper continues the work of the two authors started in [6], where the object
of study was the expansion T°"¢ of a geometric theory T in a language £, obtained
by augmenting £ with a predicate for a “dense” algebraically independent subset
H(M) of a model M of T, thus forming what we referred to as an H-structure
(M, H). Density here essentially means that H(M) intersects every infinite de-
finable subset of M (one also requires the extension property, see Definition 2.1).
Recall that a theory is called geometric, if in all of its models, the algebraic closure
satisfies the exchange property, and T eliminates the infinity quantifier 3°°. The
class of geometric theories includes o-minimal, strongly minimal, supersimple SU-
rank 1 theories, superrosy thorn rank 1 theories (also know as surgical geometric
theories), as well as the p-adics in a single sort. In the o-minimal context, the ex-
pansion by dense (in the sense of the order) independent subset was introduced by
A.Dolich, C. Miller and C. Steinhorn [12]. In [6], we establish basic model theoretic
properties of 7" and show how various stability /simplicity /rosiness properties of
T transfer to T

In the present paper we consider the structure induced on H(M) by parameter-
free L-formulas, which we denote by H*(M). To any geometric theory T this
construction associates a complete theory T™ of such structures, the “generic trivi-
alization” of T', which itself is a geometric theory with trivial algebraic closure.

To put the study of T* into perspective, we recall from [6] that the notion of an
H-structure of a geometric theory has a close connection to lovely pairs, another
kind of expansion of geometric theories considered in [4] and [5] (and earlier studied
in the SU-rank 1 context in [18]; in the o-minimal context in [13]; see also [16] and
[3] for stable and simple settings). In fact, one gets a lovely pair from a (sufliciently
saturated) H-structure if H(M) is replaced with its algebraic closure. It follows
from the results in [5] that in the non-trivial weakly one-based (linear) case, the
geometry of M modulo H(M) is a disjoint union of projective geometries over
division rings. Thus, in the linear case, working modulo H (M) allows one to recover
the underlying vector spaces.



Oun the other hand, when we restrict to the set H (M), all the information about
the pregeometry induced by the algebraic closure in M is lost. Essentially, one
looks at the formulas holding on independent tuples in models of T. Thus, for
example, in the strongly minimal case, H (M) will have no structure other that
the one iduced by equality, while in the o-minimal case, one gets a trivial weakly
o-minimal expansion of a dense linear order.

However, it turns out that while the first order structure induced on the set H(M)
“forgets” the geometry of T', it retains most of its “combinatorial” complexity. One
can therefore view the construction of an H-structure as a way to separate the
underlying geometry from the “random noise” (e.g. in the SU-rank 1 case) and/or
definable topology (in the o-minimal or C-minimal cases). A natural but challenging
question, which is beyond the scope of this paper, is to what extent do the quotient
geometry and the generic trivialization describe the original theory T (at least,
in the linear case). Our main goal is to investigate how various model theoretic
properties of a geometric theory T are reflected in its generic trivialization 7.

In Section 2, we establish some preliminary results on 7™, and show that T is
strongly minimal exactly when T is the theory of equality. We also show that any
subset of an H-structure (M, H) L-definable over acl(H (M)) has a co-finite subset
L-definable over H(M), a property that allows us to “pull parameters into H(M)”.

In Section 3, we show that 7" is A-stable, totally transcendental, or supersimple
of SU-rank 1 exactly when so is T*. We also show that if T is superrosy of thorn
rank 1, then so is 7%, and prove the converse under assumption that 7' satisfies
acl = dcl. We aslo establish the connection between Morley rank and forking in T
and T*.

In Section 4, we study the question of NIP and strong dependence. We show
that T has NIP (is strongly dependent, dp-minimal) if and only if so is T*. We also
study the behavior of dp-rank in 7" and T*.

Section 5 is devoted to the study of the NT P, property and burden in 7" and
.

2. FIRST PROPERTIES

We start this section by recalling basic definitions and results from [6].

Let T be a complete geometric theory in a language £. That is, in any model
M =T, the algebraic closure satisfies the Exchange Property and T eliminates the
quantifier 3°°. Let H be a new unary predicate and let Ly = LU {H}.

Definition 2.1. We say that (M, H(M)) is an H-structure if

(1) H(M) is an algebraically independent subset of M.

(2) (Density/coheir property) If A C M is finite dimensional and ¢ € S1(A4) is
non-algebraic, there is a € H(M) such that a = q.

(3) (Extension property) If A C M is finite dimensional and ¢ € S;1(A4) is
non-algebraic, there is a € M, a |= q and a € acl(AU H(M)).

It is shown in [6] that H-structures exist for any geometric theory T. Note that
acl(H(M)) is an elementary substructure of M (in fact, (M, acl(H(M)) is a lovely
pair in the sense of [4]).

Definition 2.2. Let A be a subset of an H-structure (M, H(M)). We say that A
is H-independent if A is algebraically independent from H (M) over H(A).
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Lemma 2.3. Let (M, H) and (N, H) be sufficiently saturated H structures asso-
ciated to a geometric theory T, let @ € M and @ € N H-independent tuples such
that tp(d, H(a@)) = tp(a@’, H(a')). Then tpg(d@) = tpy(d’).

In particular the theory of H-structures is complete. We write 7°"¢ for this
common theory. We normally work with a sufficiently saturated model (M, H) of
T4, Any such model is itself an H-structure.

Definition 2.4. Let (M, H(M)) be an H-structure. Let @ = (a1,...,a,) € M.
Let h € H(M) be the smallest tuple such that @ | . H. We call h the H-basis of
@ and we denote it as HB(d).

Basic properties of the H-basis of tuples can be found in [6]. In particular,
HB(ad) is a subset of acl(@) and is unique up to permutation. In this paper we will
need the following result.

Proposition 2.5. Let A C M and let Y C H(M)" be Ly-definable over A. As-
sume that A = AU HB(A). Then there is X C M"™ L-definable over A such that
Y=XnNH(M™".

Proof. Let @,b € H(M)™ be such that tp(@/A) = tp(b/A). Since A is H-independent,
we get that both Aa, Ab are H-independent sets and thus by Lemma 2.3 we get
tpy(d/A) = tpy(b/A). The result follows by compactness. O

In particular, if we take A = () in the proposition above, then we get that the
types of tuples in H are isolated by their L-types.

The following proposition will be used throughout this paper when replacing
formulas over M with ones over H(M).

Proposition 2.6. Let (M, H(M)) be an H-structure, and suppose D C M is a set
L-definable over acl(H(M)). Then there exists D' C M, L-definable over H(M),
such that D' C D and D\D' is finite.

Proof. Let D = ¢(M,@,b), where @ € H(M) and b € acl(@), witnessed by an
L-formula ¢(y,ad). Let by = b,by,...,b,—1 be all the solutions of (¢,a@). Let
D; = ¢(M,d,b;). For any nonempty o C n, let
Diy=[1Din () (M\Dy).

i€o jEn\o
For each D(,) which is infinite, choose ¢, € H(M) N D, (any infinite £-definable
set intersects H (M)). Then D,y is £-definable over dc,. Indeed, it is defined by

vy (g, a@) — (¢(x, 7, @) < ¢(cq, ¥, @))).

Next, for any 7 < n,

Let

i€o, 0#ocCn, |D,|>w
Then D, C D;, D} is L-definable over H(M), and D;\D} is finite. In particular,
this holds for Do = D.
O



Remark 2.7. One can easily generalize the above argument to the case when D C
M™ is of dimension n. In this setting, there exists D' C D definable over H(M),
with dim(D\D’) < n.

Definition 2.8. We will denote by H*(M) the structure H(M) together with sets
¢(H(M)™), where ¢(Z) is an L-formula definable in M with no parameters (note
that this is the same as the structure induced by L g-formulas with no parameters,
by Proposition 2.5). More formally, the language of H*(M) consists of the new
predicate symbols R, (%) for each such formula ¢(Z), with the obvious interpreta-
tion.

Clearly, for any two sufficiently saturated H-structures (M, H) and (N, H) of a
geometric theory T, the structures H*(M) and H*(N) are elementarily equivalent,
and are also sufficiently saturated. Thus T gives rise to the unique theory T =
Th(H*(M)). We will refer to T* as the generic trivalization of T.

First, we make some observations about the general model theoretic properties
of H*(M).

Remark 2.9. (1) H*(M) is a geometric structure with a trivial (identical) alge-
braic closure. Elimination of 3°° follows from triviality of acl: any formula in one
variable with n parameters having more than n realizations is infinite.

(2) For any L-formula ¢(Z,y) and @ = (a1,...,a,) € H(M), we have
(M, H) |53y (H(y) Adld,y) <= M3y ¢(@,y) Vv \/ ¢ a)
i=1

Since T is geometric, the latter is an L-formula. This shows that H*(M) has
quantifier elimination.

We will now look at the case when the structure of H*(M) is as simple as
possible.

Proposition 2.10. T is strongly minimal if and only if H*(M) has no structure
(other than the one induced by equality).

Proof. Left to right is clear, since in T there is only one n-type of an independent
tuple, for any n.

Suppose H*(M) has no structure, and 7' is not strongly minimal. Let (M, H)
be an H-structure. In M there is an infinite co-infinite definable set D. Since
acl(H(M)) is an elementary submodel of M, we may assume that D is definable
over acl(H(M)). By Proposition 2.6, there is D’ C D L-definable over H(M), such
that D\ D’ is finite. Clearly D'NH (M) and H(M)\D' are disjoint infinite definable
subsets of H*(M), a contradiction. O

Thus, T is strongly minimal exactly when 7™ is the theory of equality (which is
also equivalent to saying that T* is itself strongly minimal).

Clearly, we cannot expect T to be as well-behaved in the non-strongly minimal
case. For example, if T defines a random graph, then so does T*. Moreover,
even though H*(M) has a trivial geometry, T* can still interpret some non-trivial
structures. In the next example we show how the structure of M can get reflected
in H*(M) in a deeper way when T is of Morley rank two.

Example 2.11. Let T be the theory of a vector space over a division ring. Let
Tp be the theory of lovely (or beautiful, in Poizal’s sense) pairs of models of M.
4



Essentially, Tp is the theory of infinite-dimensional pairs of vector spaces. Then
Tp has Morley rank 2, and the algebraic closures is Tp and T coincide (i.e. are
given by the linear span), and Tp eliminates 3°°. Thus, Tp is a geomelric theory
with acl = del. Consider an H-structure (M, P,H) of Tp. Then H*(M,P) is
a linearly independent set having infinite intersection with P(M) and all of its
cosets, in particular H*(M, P) has Morley rank two. For a,b € H write aEb if
a—b € P. E is an 0-definable equivalence relation in H*(M,P). We define a
product in H*(M, P)/E by [a]g - [b]e = [c]g where c € H*(M) and c € a+ b+ P.
Then (H*(M)/E,-) is an interpretable group in H*(M, P) even though the algebraic
closure is trivial when restricted to H* (M, P).

Example 2.12. Let T be the theory of the p-adics Q, in the language Lp;,, where
L is the language of rings and for a,b € Q, we have that Div(a,b) if and only if
v(a) < v(b), see [1] for more details. It is well known that T is a geometric theory.
Let (Qp, H) be a model of T, For a,a’ € H*(Q,) define E(a,a’) if v(a) =
v(a’), which is a O-definable equivalence relation. We can define for a,b € H*(Q,),
[alg + [b]g = [a - b]lg and —[a]g = [1/a]g. Note that the classes [a - bg, [1/alg
are realized in H*(Q,) by the density property. The group (H*(Qp)/E,+) is an
interpretable group in H*(Q,) even though the structure H*(Q,) is trivial.

Example 2.13. Let ((F2)¥,+,0,P) be the generic unary predicate expansion of
the Fy-vector space ((F3)“,+,0), in the sense of Chatzidakis-Pillay [10]. Let T
be the theory of the structure consisting of P((F2)“) together with the relations
Ro(z,y1,--,Yn) saying x +y1 + ... +yn =0 (or, equivalently,  =y1 + ...+ yn).
Note that T is an w-categorical 1-based SU-rank 1 theory. Let (M,H) be an H-
structure of T'. Then the theory T™ has quantifier elimination down to formulas
of the form 3zR,(z,21,...,2n), and is w-categorical. Moreover, T* is the model
companion of the theory of all structures in the language

(Pz(l'l,wg),ng(fEhl'Q,fE:g), .. ')7

where the relations P, (x1,...,2,) are symmetric and imply x; # x; for all 1 <i <
j <n. In particular, any random n-hypergraph is definable in T*.

Remark 2.14. Note that if T is geometric, then T is w-categorical if and only
if for any n T has finitely many types of independent n-tuples. This is clearly the
case when T is strongly minimal, even though T itself may not be w-categorical.

We will now take a closer look at the relationship between the induced structure
on H(M) and the original structure M.

Proposition 2.15. Suppose T is a geometric theory, (M, H) a sufficiently satu-
rated H-structure. Fiz a set I’ of L-formulas of the form 0(x,¥), where § can have
arbitrary length. Suppose that any definable subset of H*(M) is given by 0(x, l;) for
some O(x,q) in T and be H*(M). Then any definable subset of M has a finite
symmetric difference with some definable set of the form 0(M,c) where ¢ € M and

O(z,y) €.

Proof. Suppose a definable set D in M is given by ¢(x,¢). By density property,
we may assume that ¢ € acl(H(M)). By Proposition 2.6, changing D to a co-
finite subset if needed, we may assume that ¢ € H(M). By the assumption on
T, ¢(H(M),& = 0(H(M),b) for some 0(z,7) € I and b € H(M). Now, if D =

(M, €) has an infinite symmetric difference with 6(M,b), by the density property,
5
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the symmetric difference of ¢(H (M), ¢1) and 0(H (M), b) is also non-empty (in fact,
also infinite), a contradiction.
O

Thus, similarly to strongly minimal or o-minimal structures (where definable
sets are described in terms of equality or order), M is "H-minimal": if a class of
formulas is sufficient for describing definable subsets of H*(M), the same class of
formulas will work for M.

We finish this section by looking at the case of ordered geometric structures.

Proposition 2.16. Suppose T is a theory of an ordered geometric structure, and
(M, H) a sufficiently saturated H-structure of T. Then

(1) The order restricted to H(M) is dense without endpoints.
(2) If T is a weakly o-minimal expansion of DLO then H*(M) is also weakly
o-minimal.

Proof. (1) Follows from the fact that H*(M) has trivial geometry.

(2) Assume T is a weakly o-minimal expansion of DLO. By Proposition 2.5
and Remark 2.9 the definable subsets of H*(M) are the intersection of £-definable
subsets of M with H. Since the definable subsets of M are finite unions of convex
sets and points, the definable subsets of H*(M) are also finite unions of convex sets
and points. O

Example 2.17. Let M = (Q x {0,1}, <jex). Essentially, we replace each element
in a dense linear order by a "predecessor-successor” pair. Note that Th(M) is
geometric with disintegrated algebraic closure (closure of any element has size 2:
the element itself and its successor or predecessor). Note that M is not weakly
o-minimal, e.g. the set of all predecessors is dense co-dense in M. The structure
of H*(M) is that of a dense linear order expanded with a dense co-dense subset:
those elements that were predecessors in the original structure M. Thus H*(M) is
also not weakly o-minimal.

Note that even without the assumption that M is ordered, if H*(M) is an ordered
structure, the order must be dense without endpoints. A natural question is: can
we extend the order to M? In other words, does any linear order on H*(M) come
from a linear order on M? The following example shows that it is not the case.

Example 2.18. Let M = (Q x {0,1}, <), where < is the partial order defined by
(x,1) < (y,9) if and only if x < y. Then in M there is no definable linear order,
while (H(M), <) is a dense linear order.

Remark 2.19. Suppose now T is a C-minimal theory. Then the structure of
H*(M) is weakly C-minimal, in the sense that every definable subset of H*(M) is
given by a boolean combination of instances of C where the parameters may come
from M.

3. STABILITY, SIMPLICITY AND ROSINESS

Now we check how generic trivialization behaves with respect to stability, sim-
plicity and rosiness. As we have already shown, T is strongly minimal if and only
if so is T (which is equivalent to T being the theory of equality).

Proposition 3.1. Let T be a geometric theory. Then T is A-stable if and only if
T* is \-stable.



Proof. Let (M, H) be a sufficiently saturated H-structure of T, and A > |T'|. Thus,
T* =Th(H*(M)).

Suppose T is A-stable. Let A C H*(M) be of size < A, then there at most A
different 1-types over A realized in M. Of these types, only the non-algebraic ones
together with the family {tp(a/A) : a € A} are realized in H*(M). Thus T* is also
A-stable.

Suppose T™* is A\-stable.

It suffices to show that for any set B C M of size < A, there at most A different
non-algebraic 1-types over B realized in M. Next, we may assume that B = acl(A),
where A C H(M). By Proposition 2.6, for any L-formula ¢(z,a, l_;) where @ € A
and b € acl(@), there is ¢'(x,d,€) a formula such that ¢'(z,a,c) C ¢(z,d, l;), they
have a finite symmetric difference and the tuple ¢ € H(M). Let C consist of all
such ¢. Then |[AU C| < A\ Let p be any non-algebraic 1-type over B. Then p
is axiomatized by L-formulas of the form ¢(z,a@,b), where @ € A and b € acl().
Replacing ¢(z, a, l_;) with ¢/(z,d, ), we get a consistent non-algebraic type p’ over
AUC. Note that if p; # po, then pj # ph. Thus the number of non-algebraic 1
types over B is at most the number of non-algebraic 1-types over A U C', which is
bounded by A.

O

Now we study the special case of totally trascendental theories. Before we start,
the reader should notice that if ¢(x, @) defines a finite set in M, that set may not be
realized in H(M). But if p(z,a@) defines an infinite set in M, the set has infinitely
many realization in H(M). In the next proposition we show that the Morley rank
of an infinite formula is the same in M as in H*(M).

Notation 3.2. Let T be a geometric theory, (M, H) a sufficiently saturated H -
structure of T. For any L-formula ¢(z,Yy) and @ € H*(M) we write MR(p(x,d))
for the Morley rank of the formula computed inside M and we write M R (p(2, @))
for the Morley rank of the formula computed inside H*(M).

Proposition 3.3. Let T be a geometric theory, (M, H) a sufficiently saturated
H-structure of T. Then T is totally trascendental if and only if T* is totally
trascendental. Moreover for any L-formule p(x,y) and @ € H*(M) if p(z,qd)
has infinitely many realizations, MR- (p(x,d)) = MR(¢(x,d)). In particu-
lar MR(T) = MR(T*)

Proof. Claim For any ordinal « and for any formula ¢(x, @) where @ € H*(M) we
have that M Ry (¢(z,d@)) > o implies M R(p(z,d)) > a.

We prove the Claim by induction on a. The case a = 0 and the limit case are
clear. If MRg-ar)(@(x,d@)) > 1 it means that the formula ¢(z,d) has infinitely
many realizations in H*(M) and thus it has infinitely many realizations in M.

Let o(z,a) be a formula in H*(M) and assume that M R« (@(z, @) > a+1,
with a > 1. Then there are {¢;(z,d;) : i € N} pairwise contradictory formulas in
H*(M) which imply ¢(z,a@) in H*(M) and such that M Ry« (i, d;)) > o for
all i. By induction hypothesis M R(¢;(x,d;)) > «. Let 0;(x,d;, @) = vi(x,d;) A
o(z,d) and note that M R(0;(x,d,d;)) = MR(1;(x, d;)) since the symmetric differ-
ence of the two formulas is a finite set in the structure M (they agree in H*(M)).
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The formulas 0;(z, @, d;) may have finite intersection (which does NOT affect find-
ing Morley ranks since o« > 1) and each one implies ¢(z,a@). It follows that
MR(p(z,d)) > a+1.

Claim For any ordinal o > 0 and £-formula ¢(z, @) with @ € H if M R(¢(x, @)) >
o then MRy« (p(z,d@)) > o

We prove it by induction on «. If @ = 1, it means that (z, @) is infinite, then by
the density property it intersects H infinitely often and thus M Ry« (o(z,d)) >
1. The limit case is clear. Assume the result holds for a > 0 and that M R(¢(x,d@)) >
a + 1. Then there are wi(x,gi) for i € N pairwise disjoint, each of which im-
plies o(x,d@) and such that MR(¢;(x,b;)) > o. We may write b; = 005 so
that b? is independent over @, b.; and b' € acl(@,b;,b0). Therefore we can re-
alize tp(g?/é, 5<Z) inside H and after changing parameters we may assume that
B0 € H for every i and that b} € acl(b?). By Proposition 2.6 there are elements
¢; € H and formulas ¢} (z, l_)?,ci) such that ¥(z, g?, ¢i) defines a cofinite subset of
¥i(z,b;). Note that ¢/ (z,b;) for i € N are pairwise disjoint and each formula im-
plies o(x, @). Also since each of ¥;(x, b;) defines an infinite set, M R(¢}(z, b, ¢;)) =

MR(1;(x,b;)). By induction hypothesis we get that MR-y (Y5 (2 0, ¢)) > a

s Uis &e

and so M Ry-p(o(z,d@)) > o+ 1 as we wanted. O

Now we turn our attention to the supersimple SU-rank 1 case. Recall that a
theory is supersimple of SU-rank 1 exactly when any non-algebraic formula in a
single variable does not divide over ().

Proposition 3.4. Let T be a geometric theory. Then T is supersimple of SU-rank
1 if and only if T* is supersimple of SU-rank 1.

Proof. Let (M, H) be a sufficiently saturated H-structure of T

Suppose T is supersimple of SU-rank 1. Consider a non-algebraic L-formula
¢(x,d) where @ € H(M). Suppose ¢(x,d) divides over () in H*(M), witnessed
by an indiscernible sequence (@; : i € w) of tuples in H(M). Thus the partial
type {&(z,d;) : i € w} is not realized in H(M), and hence is algebraic (in M).
Let eq,...,e, be the all its realizations in M. We may assume that the sequence
(d; : i € w) is indiscernible over €. Then the sequence (@;€ : i € w) witnesses that a
non-algebraic formula

o(x, do) A /\ T =e;
1<i<n
divides over (3, a contradiction with T being supersimple of SU-rank 1.

Suppose T* is supersimple of SU-rank 1. Let ¢(x,d) be a non-algebraic L-
formula in M, and suppose it divides over (), witnessed by an indiscernible sequence
(@; : 1 € w). Adding a finite acl-independent set B, if needed, we may assume that

= =/

(d@; : i € w) is Morley over B. Write a; = a}d;, where @} is acl-independent over

171 ?
B, and a € acl(a,B). Since the infinite tuple Bayad) ... is acl-independent, we

may assume that B C H(M) and @, € H(M) for all i. By Proposition 2.6, we
can find ¢ € H(M) and an L-formula ¢'(z, ¥, Z) such that ¢'(M, d}, ¢;) are cofinite
subsets of ¢(M,d;). We may also assume that (@,¢; : ¢ € w) is indiscernible over
B. Clearly, since {¢(z,d;) : i € w} is inconsistent, so is {¢'(z,a%, &) : i € w}. Since
¢'(H*(M), d;, ¢;) are infinite, this contradicts the assumption that T is supersimple
of SU-rank 1.

O



Next, we will consider the case when T is a simple geometric theory, but not
necessarily supersimple of SU-rank 1. Note that in this case, it is still open whether
T4, or at least, T* is also simple. However, we can still say something about the
behavior of forking in T%.

Proposition 3.5. Let T be a geometric theory, (M, H) a sufficiently saturated H -
structure of T, and suppose T is simple. Let A C B C H*(M) and let ¢ € H(M)
be a tuple. Then if tp(¢/B) forks over A (in M), tpy.n)(¢/B) forks over A (in
H*(M)).

Proof. Assume first that p(x, B) = tp(¢/B) forks over A (in M). Let {B; : i € w}
be a L£-Morley sequence in tp(B/A) over A such that Up(x, B;) is inconsistent in
M. Since the set B is a subset of H*(M), the set B\ A is algebraically independent
over A and by the density property we may assume that By C H*(M). Since
the sequence {B; : i € w} is a £-Morley sequence, the sequence is algebraically
independent over A, so using an inductive argument we may assume by the density
property that B; C H*(M) for all . Then {B; : i € w} is an indiscernible sequence
over A in H*(M) and Up(z, B;) is inconsistent in H*(M) C M. This shows that
tDPp+ (ar)(€/ B) forks over A (in H*(M)). O

Proposition 3.6. Let T be a geometric theory, (M, H) a sufficiently saturated H -
structure of T, and suppose T is simple, that dcl = acl in T and that T* is simple.
Let AC B C H*(M) and let ¢ € H(M) be a tuple. Then if tpy,ar)(¢/B) forks
over A (in H*(M)), tp(¢/B) forks over A (in M).

Proof. Assume now that p(Z, B) = tp(¢/B) does not fork over A (in M). We
may write ¢ = (¢1,...,¢1,Cl41,---,Cn), Where ¢1,. .., ¢ are independent over A and
Clal,--+,Cn € dcl(ey, ..., ¢, A). Let fiiq,..., fn be definable functions such that
ci = fier, ..., A) for i > 141, We will prove that p* (Z, B) = tp g« (a)(¢/B) does
not fork over A (in M). Since T* is simple, it suffices to check that for {B; : i € w}
a Morley sequence in tp () (B/A) over A (in H*(M)) one has that Uiep* (2, B;)
is consistent in H*(M). By the previous proposition, the sequence {B; : i € w} is
a Morley sequence in tp(B/A) over A (in M). Since tp(¢/B) does not fork over
A, there is cflz Uiewp(Z, B;). Furthermore, we may asssume that tp(cf/ Uicw Bi)
does not fork over A. In particular, we must have dim(d/A) = dim(d/ Ujc,, B;).
Then we can write d = (di,...,d;,di41,...,dy), then dy,...,d; are independent
over U;cwB; and dj41,...,d, € dcl(dy,...,d;, A). By the density property we may
assume that dy,...,d; € H(M). Therefore tpy(c1,...,c,A) = tpy(di,...,di, A),
so we must have that

tpH(Cla"'7Clvfl+1(cla'"7ClaA)7" '7fn(clv"~7cl7A)7A) =

tpH(dl,...,dl,fH_l(dl,...,dl,A),...,fn(dl,...,dl,A),A),
but clearly
fl+1(d17"'7dl7A)’""fn(d17"'7dl7A) = (dl+17"'7dn)7

so we get tpy (€ B) = tpy(d, B;) and thus tpg. ) (C B) = tpH*(M)(d B;) for all

zandd}zuz@,p( B;) in H*(M). .



Now we consider the case of thorn rank one theories (or surgical geometric the-
ories). We show that if T is superrosy of thorn rank one then so is its generic
trivialization T*. We also show the converse under the assumption acl = dcl in
T. The proof of the first implication relies on a trick from [2] relating imagi-
naries in H*(M) with imaginaries in M (in the setting of lovely pairs instead of
H-structures). We also use the following fact (see [14]):

Fact 3.7. A geometric theory T is superrosy of thorn rank one if and only if for
every definable set X (in any number of variables) and a definable equivalence
relation E(x,y) on X, only finitely many E-classes have the same dimension as X .

Proposition 3.8. Let T be a geometric theory.

(1) If T is superrosy of thorn-rank 1 then so is T*.
(2) If acl=dcl in T, and T* is superrosy of thorn-rank 1, then so it T.

Proof. Let (M, H) be a sufficiently saturated H-structure of T

(1) Assume that T is superrosy of thorn rank one. Since T* is geometric, by
Fact 3.7 it suffices to show that there are no definable subset S of (H*(M))™ of
dimension n < m and a definable equivalence relations on S with infinitely many
classes of dimension n. Note that any such set S is of the form X N H(M)™, where
X is a definable subset of M™ (with parameters from H(M)).

Assume that there is an an L-definable set X C M™ and a L-formula e(Z,¥),
such that XNH (M)™ has dimension n, and when restricted to XNH(M)™, e(—, —)
defines an equivalence relation with infinitely many classes of dimension n. We may
assume that e(a, I;) implies that @, b€ X. Since being superrosy of thorn rank 1 is
preserved under reducts and expansions by constants, we may assume that both X
and ¢ are defined over 0.

Case 1: Suppose first n = m. Let X’ consist of all @ € X such that d is a tuple
of distinct elements and there exists another tuple of distinct elements b such that
@ and b are disjoint (as sets) and = (@, b). Clearly, X’ is still L-definable over (),
has dimension n (in M), and ¢ restricted to X’ N H(M)™ is an equivalence relation
with infinitely many (in fact, all) classes of dimension n.

Now we follow the ideas from [2] and define for @,b € X', E(a,b) = "((a@, Z) V
e(b, 7)) A =(e(@, 2)) A e(@, ) has dimension less than n". That is, for @,b € X/,
E(@, b) holds iff the subset of X’ defined by (&, Z) Ae(b, Z) has dimension less than n.
Since T eliminates 3°° this relation is definable in M. Clearly, it is an equivalence
relation (on X'). It remains to show that when restricted to X' N H(M)", E
coincides with €, and hence has infinitely many classes of dimension n on X' N
H(M)™ and therefore also on X’ (in the sense of M).

If @b € X' N H(M)™ and = (@, b), then clearly £(a@, 2)Ae(b, Z) is not realized
in H(M). Then, by the density property, (@, Z)Ae(b, Z) must have has dimension
less than n, and thus = E(@,b).

Ifd,be X' NH(M)" and = —¢(a, b), then (@, 2) e (b, Z) coincides with (@, Z) V
e(b, 7) when restricted to H(M). It follows from the definition of X’ that each e-
class in X' N H(M)™ has dimension n. Hence, £(@, Z) V &(b, Z) has dimension n, and
therefore |= —E(@,b).

Case 2: Now suppose n < m. We will reduce to Case 1. For any function
f{1,...,m} = {1,...,n} consider the function gy : M"™ — M™ given by

gf(xl, . ,l'n) = (l'f(l), . 71'f(m))'
10



Since any m-tuple in X N H(M)™ has at most n distinct entries, we have

XNHM™C U g (H(M)™).
P m}—{1,.m}
Since there only finitely many such functions f, we can find f : {1,...,m} —
{1,...,n}, such that e(—, —) has infinitely many classes of dimension n when re-

stricted to X N gp(H(M)"). Let Y = g;'(X N gp(M")), and for h,k € Y, let

£'(h, k) denote e(gf(/_i),gf(lg)). Clearly, Y is L-definable, has dimension n, and &’
is an equivalence relation on Y N H(M)™. Then apply Case 1 to Y and &’.

(2) Assume now that acl = dcl in T, T* is superrosy of thorn-rank 1, but T is
not superrosy of thorn-rank 1. Then there is a definable set X C M™ of dimension
n < m, and a definable equivalence relation F on X having infinitely many classes
of dimension n. Since acl = dcl, we may assume that both X and E are definable
over H(M). Since being superrosy of thorn rank 1 is preserved under reducts and
expansions by constants, we may assume that both X and E are definable over (.

Note that an E-class has dimension n exactly when we can find two tuples b and
¢ that belong to the class, have dimension n, realize the same type and are such
that dim(gﬁ) =2n. Let & = (x1,...,2,) be projection of an m-tuple Z onto first n
coordinates. By reordering the variables in necessary, we can find infinitely many E-
classes of dimension n for which the witnesses have the property that dim(b"é") =
2n (i.e. the tuples are generated by the first n entries). Fix a sufficiently large
cardinal k. By compactness, we can construct a sequence (l;a,c} ta < k)in X
such that for any a < k:

tp(ga) = tp(Ca),

= E(ba,Ca),

b"" is an independent tuple, and for any o # 8 < k, = E(bq, 5@)
Reducing the sequence, if necessary, we may assume that there is an (-definable

function f such that
ga = f(gg)a Ca = f(éz)’
where " = (x1,...,2,) (projection of an m-tuple onto first n coordinates).

Let X = {(h1,...,hy,) € H" : f(h) € X, h; # h;, i # j}. Define B on X
by EH (h, k) iff E(f(h), f(k)). Clearly, both X and EH are definable in H*(M),
and E¥ is an equivalence relation on X¥. Moreover, X has dimension n and
the tuples b and ¢ witness that £ has infinitely many classes of dimension n.
Indeed, b7, € X dim(b7,e) = 2n, EH (b7, ") and ﬁEH(bg,bg) for a # 5.
Contradiction with 7™ being superrosy of thorn-rank 1.

O

In the light of the above results, thorn rank 1 setting seems to be most appro-
priate for studying generic trivializations. Without this assumption, H*(M) may
be “formally” trivial, but become non-trivial when passing to (H*(M))®?, as in Ex-
ample 2.11. In fact, if we allow T to have a definable equivalence relation E with
infinitely many classes each of which is infinite, any structure definable in M/E
will also be definable in H*(M)/E.

11



4. NIP AND DP-RANK

In this section we will study the Independence Property; the setting is the same
as before, T is a geometric theory and (M, H) a sufficiently saturated H-structure
of T. Our goal is to prove that T is NIP (strongly dependent) if and only if T*
is NIP (strongly dependent) and to study how the dp-rank in both settings are
related. The proofs in this section are very close to the ones dealing with NIP in
the setting of lovely pairs of geometric structures [7] or just structures expanded
with a predicate [9]. We need the following result from [6]:

Fact 4.1. It T is geometric and T has NIP, then T has NIP.

Proposition 4.2. Let T be a geometric theory and suppose T has NIP. Then T*
also has NIP.

Proof. Let (M, H) be a sufficiently saturated H-structure of T. Assume that T
has IP. Then there is I = (b; : i € w) an indiscernible sequence and a in H*(M) such
that ¢(a, b;) holds iff i is even. By Remark 2.9 the definable subsets of H(M) are
given by L-definable sets intersected with H (M), so there is an £-definable formula
0(x, ) such that ¢(x,5) Nx € H(M) ANy € H(M) is equivalent to 0(x, ) A x €
HM)ANy e HM).

Note that this sequence I also belongs to M, that a belongs to M and that
0(a,b;) holds iff i is even. So T has the IP and thus by Fact 4.1 T has the
IP. (]

Proposition 4.3. Let T be a geometric theory and suppose T has NIP. Then T
has NIP as well.

Proof. Let (M, H) be a sufficiently saturated H-structure of T'.
Suppose T has IP, witnessed by a formula ¢(z, %) (we may assume that z is a

—

single variable). Thus, in M there exists an indiscernible sequence I = (b; : i € w)
and a (non-algebraic over I) such that ¢(a, b;) holds iff i is even. Extending I we get
an indiscernible sequence J = (b; : i < w + w). Then there exists a’ (non-algebraic
over J) such that ¢(a’,b;) holds iff i = 2n or w + 2n.

Note that the sequence J = (b; : w < i < w+w) is independent and indiscernible
over I. Let B be a finite subset of I such that b, LBI. Then (5’z w<i <

w + w) is independent and indiscernible over B. We may assume that B = d is
an independent tuple. For w < i < w + w, let b; = bYb}, where b} is a tuple

771
—

independent over d, and b} € acl(d,50). Then the infinite tuple db2p0., ... is
independent over ). We may assume that o, d_: and I_);O for w < i < w+ w are
all in H(M). After changing parameters, the formula ¢(x,b;) can be written as

-

¢, d,b?,b!) with d, 50 € H and b € acl(d,b?) for w < i < w + w. Note that the
way we rewrite the formula does not depend on the index i. By Proposition 2.6
and the fact that J is indiscernible there is a sequence {¢; : w < i < w4+ w} in

H and formulas ¢’(x,cf,l;g,ci) such that ¢'(z,d, gg,q) defines a cofinite subset of

d(z,d, 00, b}). Furthermore, we may assume that the sequence {b;¢; : w < i < w+w}
is indiscernible. Let Je={i =w+2n:n <w}andlet Jo={i=w+2n+1:
n < w}. Since the type Ajcjed(z,d, b0, b1) ANicsomd(z,d, b2, b}) is not algebraic, so

207 1771
is the type Aicsed’(z,d,b9,¢;) A Nicgod'(,d, b, ¢;) and the formula ¢'(z, 7", 2))

witnesses IP for H*(M) and thus for T*. O
12



We will refine our analysis in the setting of strongly dependent theories and
compare the dp-rank of T and T*. Basic facts about dp-rank can be found in [11],
more general information about strongly dependent theories can be found in [17].
We only recall the basic definitions :

Definition 4.4. Let M be a sufficiently saturated structure. For a cardinal k,
an ICT pattern of depth r in variables  is a set of formulas {p,(Z; %) : a < K}
together with an array {a@ : @ < k,n < w} such that @& € My and for any

n: K — w, the type
Nei@aa) A N N —eie.a)

i<w i<k j<w,j#n(i)

is consistent. The dp-rank for a partial type p(Z) is the maximum cardinal s
(possibly finite) such that p(Z) is consistent with an ICT pattern in variables & of
depth k. A theory is strongly dependent if the dp-rank of x = x is < N,.

It is proved in [6] that if T is strongly dependent so is T°"¢ and vice versa. It
is easy to modify the proofs given in Propositions 4.2 and 4.3 to show that T is
strongly dependent if and only if T is strongly dependent. Instead of doing that,
we show below how the dp-rank of x = z in T is related to dp-rank of z = x in T™.

The reader should note that the dp-rank of x = = can be > n for every n but
still smaller than N.

Proposition 4.5. Let T be a geometric theory and suppose that T is strongly
dependent. Then the dp-rank of x = x in T either agrees with the dp-rank of r = x
in T* or they differ by one.

Proof. Let (M, H) be a sufficiently saturated H-structure of T'.

Agsume that © = x has dp-rank greater than or equal to n in T*. Then there are
o1(x, 1), -+, pn(z,¥,) L-formulas without parameters and there are sequences
{(@ :i <w):j <n} that form a ICT pattern of depth n in H*(M). Clearly this
is also an ICT pattern of depth n in M.

Assume now that = z has dp-rank greater than or equal to n in 7. Then

there exist £ formulas ¢1(z,41), .. ., ¢n(2,¥s) and mutually indiscernible sequences
{(@ i <w+w):j<n}, that form a ICT pattern of depth n. Let I} = (@} : i <
W)yootyIy=(a%:i<w)andlet J; = (@ 1w <i<wHw),...,Jp, = (@ :w<

i < w+ w). Note that Jy is independent and indiscernible over I; U--- U I,,. Let
Bi be a finite subset of I; U--- U I,, such that a., J/Bl IU---UlI,. Then Jj is
independent and indiscernible over B;. In the same way by mutual indiscernability
there is By a finite subset of I; U --- U I,, such that J, J/Bz LUJiUly---UI,.
And proceeding inductively we can find B,, a finite subset of I; U---U I, such that
Jo L HULU---UL Uy 1 UT,. Let b= B,U---UB,, then JyU---UJ, is an

independent set over b. We may assume that bis independent. For w <i<w+w
and 1 < j < n we can write @ = @/,a,, where @, is a tuple independent over b,
and @, € acl(@,b). Since the elements in bU {@, : w <i < w+w,1 < j < n} are
algebraically independent, we may assume that all the elements in the set belong
to H. By Proposition 2.6 there is a formula ¢}(z,7,w) and there is ¢} € H
such that ¢} (z,d};,ct) defines a cofinite subset of ¢;(z,d;) for w < i < w + w.
Repeating the process for the formulas ¢ (z,@%), . . ., @n(z, @) we can find formulas
13



» e
the parameters ¢/ belong to H.
The formulas @1 (z, W), .., pn_1(z, W,_1) together with the sequences {(dg :
w<i<w4w):j<n-—1}form aICT pattern of depth n — 1. Note that for each
n:n—1— |w,w+w), the type

N ei@ @ n A\ A el

i<n—1 1<i<n—1w<j<w+w,j#n(i)

oh(z,az,c?), ..., ¢l (z,ar, c?) which define cofinite subsets of the previous ones and

has infinitely many realizations (since the pattern can be extended to an ICT pat-
tern of depth n), in particular it has infinitely many realizations in H. Note that
exchanging each formula of the form ¢;(z) for the formula ¢}(x) only removes a

finite number of realizations. Thus the formulas ¢ (z, w1, 2), ..., ¢, _;(z, Wy—1, 2)
together with the sequences {(@};c] : w < i < w+w) : j < n—1} form a ICT
pattern of depth n — 1 inside the structure H*(M). O

Corollary 4.6. Let T be a geometric theory. Then T is dp-minimal if and only if
T* is dp-minimal.

Question 4.7. Are the dp-ranks of T and T* equal?

We end this section by looking at the effect of generic trivialization on VC-
dimension. The relation in this setting is not clear, since the role of the algebraic
closure (as opposed to the complexity of patterns of formulas) takes a more central
role.

Remark 4.8. Let (M, H) be an H-structure and let o(Z, ) be an L-formula. Let
Sy = {p(M™b) : b€ M"Y}, let SH = {p(H™b) : b € H"} and let VC(p) =
VO(S,), VCH (p) = VC(SH). Then VCH (p) < VC(p)

Indeed, assume that A C H™ has size n and that Sg shatters A. This means

that for every B C A there is hp € H such that B= AN o(Z, HB), Then the same
witnesses show that S, shatters A in M.

5. NTP, AND BURDEN

In this section we follow the presentation of NT P, theories from [8]. Let T be a
complete theory and let M |= T be a sufficiently saturated structure.

Definition 5.1. Let p(z) be a partial type. An inp-pattern in p(x) of depth s
consists of (aq, : @ < K,i < W), Pa(T,Ya), < k and k, < w such that:

(1) {(¢a(z,aq,) : i <w} is ke-inconsistent, for each oo < &

(2) {da(x,a0,f(a)) : @ < K} Up(z) is consistent, for any f:x — w.
The burden of p(z), denoted bdn(p), is the supremum of the depths of all inp-
patterns in p(z). If we want to emphasize that we are finding the burden of a type
p(z) inside a theory T we write bdnr(p).

Definition 5.2. Let £ < w. A formula ¢(Z, %) has k — TP, if there is an array
(o @,i < w) in My such that {¢(Z,dn,i) : ¢ < w} is k-inconsistent for every
a < w and {$(F,dq, f(a)) : @ < w} is consistent for any f: w — w. We say that
o(Z,9) has TP, if it has k — TP, for some k. Otherwise we say that ¢(Z,7) is
NTP;, and T is NT P, if every formula is.

14



Remark 5.3. Note that if (%, ) has T P» witnessed by the array (Ga,; @ o, i < w),
then for for every f : w — w we have that the type {¢(Z,dq f(a)) : @ < w} is not
algebraic.

Assume now that T is a geometric theory in a language £ and let (M, H) be a
sufficiently saturated H-structure. Our goal, as in the previous sections, is to see
how the bounds for the burden of types in T relate to bounds on the burden of
types in T and how the failure of NT' P, in T relates to the failure of NT P, in T*.

We will use the following important facts from NT P, theories:

Fact 5.4. [8] T is NTPs if and only if every formula of the form ¢(z,7) is NT P,
where x is variable in the sort of M (that is, of length one).

Fact 5.5. [15] Assume T has k — T P> witnessed by ¢(Z;4). Then there is an array
of parameters {Gq,; @ o < w,i < w} witnessing k — TPy with ¢(Z;4) such that
whenever ig < i1 < -+ <y, jo < j1 < -+ < jn we have

tp(aog,...,aOn,alg,...,aln,...,ano,‘..,ann) =

tp(CLinO, ceny aiojn,ailjo, e ,ailjn, ey ainjo, . ,ainjn).
In such a case we say the the sequence of parameters {dy,; : o < w,i < w} is array
indiscernible.

Theorem 5.6. Let T be a geometric theory in a language L and let (M, H) be a
sufficiently soturated H-structure. If T has NT Py, then T has NTPs.

Proof. Assume that H*(M) has k—T P, for some k. By Fact 5.4 and Fact 5.5 there
is ¢(z;7) and an array indiscernible sequence of parameters {dn; : @ < w,i < w}
witnessing k — TPy with ¢(x;%) in the structure H*(M). We may assume that
the formula ¢(z; %) is an L-formula. Since {¢(x,dq,i) 1 @ < w} is k-inconsistent in
H*(M) for every o < w, the type Nij<w®(T,dq,;) is either inconsistent or finite in
M.

If it is inconsistent, then there is | € N such that {¢(z,dn,) : ¢ < w} is I-
inconsistent and the same formula and the same sequence of parameters witness
[—TP, in M.

If it is consistent, there is [ € N such that A<, (2, Tai) = Nic1p(z,d0,:)- Let
{€1a,---,€sa} be the set of realizations of the type and let €, = (€14, .-, €sa)-
Note that by indiscernability, the value of [ and the value of s does not depend
on . Let ¥(x,¥,2) = é(x,¥) Ni<s © # 2;. Then the formula ¥ (x, ¥, Z) with the
parameters {@y,i€q : @ < w,i < w} witness | — TPy in M. O

Theorem 5.7. Let T be a geometric theory in a language £ and let (M, H) be a
sufficiently saturated H-structure. If the type x = x in T has finite burden so does
the type x = x in T* and bdnp(x = z) > bdnp«(x = ) > bdnp(x = ) — 1. If
the burden of the type x = x in T (resp T™*) is k for some infinite cardinal k, then
bdnr(x = z) = bdnp+(x = x).

Proof. Assume first that the burden of z = x in T is n < w. Then there are L-
formulas ¢q(z, %) and there is an array {aq,; i < w+w,1 < a < n} in My and
there are positive integers {k, : 1 < a < n} such that {¢(x,d0;) 1 < w+w} is
kq-inconsistent and if f : {1,...,n} — w is a function, {¢a(,dq f(a)) : @ < k} is
consistent. We may further assume that each row of the sequence of parameters
{a,i i <w+w,a <n} is indiscernible over the other rows.
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First we proceed as in the proof of dp-ranks (Proposition 4.5). Let I = (&;1 :
t<w),....Inp=(dipn:i<w)andlet J; = (@1 :w<i<w4w),...,Jp = (Ain:
w < i < w+w). Note that J; is independent and indiscernible over I; U --- U I,,.
Let B; be a finite subset of I; U---U I, such that @, ; J/Bl IL1U---Ul,. Then Jj is
independent and indiscernible over B;. In the same way by mutual indiscernability
there is By a finite subset of I; U --- U I,, such that J, J/Bz LUJiUly---UI,.
And proceeding inductively we can find B,, a finite subset of I; U---U I, such that
Jo L HUJ U Ul Udny Ul Let b=DByU---UB,, then J;U---U.J,

is an independent set over b. We may assume that b is independent.
For each « and each i > w, we may write d,,; = d@., ;a> ;, where @, ; is indepen-

1

@,
b € H and that for each a and w < i < w+w we have that d, ; € H. By Proposition
2.6 there is a formula ¢ (z, b, Z1,w) and there is ¢; ; € H such that ¢ (z, Z_;, Ei%’i7 1)
defines a cofinite subset of ¢ (x,d1 ;) for w < i < w+ w. Similarly for 2 < j <n
there are formulas ¢’(z, b, 21, w) and there is c;; € H such that ¢(z,,0, &’},“Cj,i)
defines a cofinite subset of ¢;(x,d; ;) for w <i<w+w.

Note that if we consider the array of formulas ¢/ (z,7) and the parameters

{l;,ai’ica,i w < i < w+wa < n}, then {(b;(x,g,d'i’ica_j) D < wHwhis

,t

dent over b and az ; € acl(a b). We may assume by the density property that

kq-inconsistent and if f : {1,...,n—1} — w is a function, {P(z, b, d;7f(a)ca7f(a)) :
« < k} has infinitely many solutions and thus it has a solution in H. Since all
parameters of the array belong to H, we have that bdng-n(z = ) > n —1. If
instead of n we have an infinite cardinal the assertion is clear.

Now assume that bdnr-(x = ) > n. Then there are L-formulas ¢, (z,%) and
there is an array {a.,; : ¢ < w,1 < o < n} in H*(M)y and positive integers
{ka : @ < n} such that {¢(x,dn,) : ¢ < w} is ko-inconsistent in H*(M) and if
[ :A{l,...,n} — wis a function, {¢a(x,dn, f(a)) : @ < k} is consistent in H*(M).
We may assume that for each «, the row {aq,; : ¢ < w} is indiscernible. Let o <n
and consider the type Ai<w (T, dn,:) in M.

If the type is inconsistent, then there is an integer I, such that {¢n(z,dn ;) 1 ¢ <
w} is ly-inconsistent in M. Let 9, (2, ¥) = ¢o(z,¥) and keep the same parameters
{@a,i 11 <w} and let &, = 0.

If the type is consistent it must be algebraic, and then there is an integer [, such
that NicwPa (%, ai) = Nict, Qo (T, Tni)- Let €, = {eq1,- .., €qs} be the realizations
of the previous type and let o (2, @a,is €a) = Pa(®, da,i) A Ni<s® 7 €;. In this case
change the a row for {9, (x,dn,iz) : © <w} and change k, for l,.

Consider now the pattern asssociated to the formulas v, (x,%,7), the array
{8n,i€n 1 <w,a < n} and the integers {lp, : 1 <a<n}. If f: {1,...,n} - wis
a function, {¢a (7, @y, f()) : @ < n} is consistent in H*(M), so unless the solution
coincides with some e,; (there are finitely many of those), we also get a solution
for the type {Ya (2, dq, f(a), €a) 1 @ < 0}

This shows (after removing finitely many rows if necessary) that bdnp«(x = ) >
n. (]
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