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Abstract. We study the theory T ∗ of the structure induced by parameter
free formulas on a �dense� algebraically independent subset of a model of a
geometric theory T . We show that while being a trivial geometric theory,
T ∗ inherits most of the model theoretic complexity of T related to stability,
simplicity, rosiness, NIP and NTP2. In particular, we show that T is strongly
minimal, supersimple of SU-rank 1, or NIP exactly when so is T ∗. We show
that if T is superrosy of thorn rank 1, then so is T ∗, and that the converse
holds if T satis�es acl = dcl.

1. Introduction

This paper continues the work of the two authors started in [6], where the object
of study was the expansion T ind of a geometric theory T in a language L, obtained
by augmenting L with a predicate for a �dense� algebraically independent subset
H(M) of a model M of T , thus forming what we referred to as an H-structure
(M,H). Density here essentially means that H(M) intersects every in�nite de-
�nable subset of M (one also requires the extension property, see De�nition 2.1).
Recall that a theory is called geometric, if in all of its models, the algebraic closure
satis�es the exchange property, and T eliminates the in�nity quanti�er ∃∞. The
class of geometric theories includes o-minimal, strongly minimal, supersimple SU-
rank 1 theories, superrosy thorn rank 1 theories (also know as surgical geometric
theories), as well as the p-adics in a single sort. In the o-minimal context, the ex-
pansion by dense (in the sense of the order) independent subset was introduced by
A.Dolich, C. Miller and C. Steinhorn [12]. In [6], we establish basic model theoretic
properties of T ind and show how various stability/simplicity/rosiness properties of
T transfer to T ind.

In the present paper we consider the structure induced on H(M) by parameter-
free L-formulas, which we denote by H∗(M). To any geometric theory T this
construction associates a complete theory T ∗ of such structures, the �generic trivi-
alization� of T , which itself is a geometric theory with trivial algebraic closure.

To put the study of T ∗ into perspective, we recall from [6] that the notion of an
H-structure of a geometric theory has a close connection to lovely pairs, another
kind of expansion of geometric theories considered in [4] and [5] (and earlier studied
in the SU-rank 1 context in [18]; in the o-minimal context in [13]; see also [16] and
[3] for stable and simple settings). In fact, one gets a lovely pair from a (su�ciently
saturated) H-structure if H(M) is replaced with its algebraic closure. It follows
from the results in [5] that in the non-trivial weakly one-based (linear) case, the
geometry of M modulo H(M) is a disjoint union of projective geometries over
division rings. Thus, in the linear case, working modulo H(M) allows one to recover
the underlying vector spaces.
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On the other hand, when we restrict to the set H(M), all the information about
the pregeometry induced by the algebraic closure in M is lost. Essentially, one
looks at the formulas holding on independent tuples in models of T . Thus, for
example, in the strongly minimal case, H(M) will have no structure other that
the one iduced by equality, while in the o-minimal case, one gets a trivial weakly
o-minimal expansion of a dense linear order.

However, it turns out that while the �rst order structure induced on the setH(M)
�forgets� the geometry of T , it retains most of its �combinatorial� complexity. One
can therefore view the construction of an H-structure as a way to separate the
underlying geometry from the �random noise� (e.g. in the SU-rank 1 case) and/or
de�nable topology (in the o-minimal or C-minimal cases). A natural but challenging
question, which is beyond the scope of this paper, is to what extent do the quotient
geometry and the generic trivialization describe the original theory T (at least,
in the linear case). Our main goal is to investigate how various model theoretic
properties of a geometric theory T are re�ected in its generic trivialization T ∗.

In Section 2, we establish some preliminary results on T ∗, and show that T is
strongly minimal exactly when T ∗ is the theory of equality. We also show that any
subset of an H-structure (M,H) L-de�nable over acl(H(M)) has a co-�nite subset
L-de�nable over H(M), a property that allows us to �pull parameters into H(M)�.

In Section 3, we show that T is λ-stable, totally transcendental, or supersimple
of SU-rank 1 exactly when so is T ∗. We also show that if T is superrosy of thorn
rank 1, then so is T ∗, and prove the converse under assumption that T satis�es
acl = dcl. We aslo establish the connection between Morley rank and forking in T
and T ∗.

In Section 4, we study the question of NIP and strong dependence. We show
that T has NIP (is strongly dependent, dp-minimal) if and only if so is T ∗. We also
study the behavior of dp-rank in T and T ∗.

Section 5 is devoted to the study of the NTP2 property and burden in T and
T ∗.

2. First properties

We start this section by recalling basic de�nitions and results from [6].
Let T be a complete geometric theory in a language L. That is, in any model

M |= T , the algebraic closure satis�es the Exchange Property and T eliminates the
quanti�er ∃∞. Let H be a new unary predicate and let LH = L ∪ {H}.

De�nition 2.1. We say that (M,H(M)) is an H-structure if

(1) H(M) is an algebraically independent subset of M .
(2) (Density/coheir property) If A ⊂M is �nite dimensional and q ∈ S1(A) is

non-algebraic, there is a ∈ H(M) such that a |= q.
(3) (Extension property) If A ⊂ M is �nite dimensional and q ∈ S1(A) is

non-algebraic, there is a ∈M , a |= q and a 6∈ acl(A ∪H(M)).

It is shown in [6] that H-structures exist for any geometric theory T . Note that
acl(H(M)) is an elementary substructure of M (in fact, (M, acl(H(M)) is a lovely
pair in the sense of [4]).

De�nition 2.2. Let A be a subset of an H-structure (M,H(M)). We say that A
is H-independent if A is algebraically independent from H(M) over H(A).

2



Lemma 2.3. Let (M,H) and (N,H) be su�ciently saturated H structures asso-
ciated to a geometric theory T , let ~a ∈ M and ~a′ ∈ N H-independent tuples such
that tp(~a,H(~a)) = tp(~a′,H(~a′)). Then tpH(~a) = tpH(~a′).

In particular the theory of H-structures is complete. We write T ind for this
common theory. We normally work with a su�ciently saturated model (M,H) of
T ind. Any such model is itself an H-structure.

De�nition 2.4. Let (M,H(M)) be an H-structure. Let ~a = (a1, . . . , an) ∈ M .

Let ~h ∈ H(M) be the smallest tuple such that ~a |̂ ~h
H. We call ~h the H-basis of

~a and we denote it as HB(~a).

Basic properties of the H-basis of tuples can be found in [6]. In particular,
HB(~a) is a subset of acl(~a) and is unique up to permutation. In this paper we will
need the following result.

Proposition 2.5. Let A ⊂ M and let Y ⊂ H(M)n be LH-de�nable over A. As-
sume that A = A ∪HB(A). Then there is X ⊂ Mn L-de�nable over A such that
Y = X ∩H(M)n.

Proof. Let ~a,~b ∈ H(M)n be such that tp(~a/A) = tp(~b/A). SinceA isH-independent,

we get that both A~a, A~b are H-independent sets and thus by Lemma 2.3 we get

tpH(~a/A) = tpH(~b/A). The result follows by compactness. �

In particular, if we take A = ∅ in the proposition above, then we get that the
types of tuples in H are isolated by their L-types.

The following proposition will be used throughout this paper when replacing
formulas over M with ones over H(M).

Proposition 2.6. Let (M,H(M)) be an H-structure, and suppose D ⊂M is a set
L-de�nable over acl(H(M)). Then there exists D′ ⊂ M , L-de�nable over H(M),
such that D′ ⊂ D and D\D′ is �nite.

Proof. Let D = φ(M,~a,~b), where ~a ∈ H(M) and ~b ∈ acl(~a), witnessed by an

L-formula ψ(~y,~a). Let ~b0 = ~b,~b1, . . . ,~bn−1 be all the solutions of ψ(~y,~a). Let

Di = φ(M,~a,~bi). For any nonempty σ ⊂ n, let

D(σ) =
⋂
i∈σ

Di ∩
⋂

j∈n\σ

(M\Dj).

For each D(σ) which is in�nite, choose cσ ∈ H(M) ∩D(σ) (any in�nite L-de�nable
set intersects H(M)). Then D(σ) is L-de�nable over ~acσ. Indeed, it is de�ned by

∀~y(ψ(~y,~a) → (φ(x, ~y,~a) ↔ φ(cσ, ~y,~a))).

Next, for any i < n,

Di =
⋃

i∈σ, ∅6=σ⊂n

D(σ).

Let
D′

i =
⋃

i∈σ, ∅6=σ⊂n, |Dσ|≥ω

D(σ).

Then D′
i ⊂ Di, D

′
i is L-de�nable over H(M), and Di\D′

i is �nite. In particular,
this holds for D0 = D.

�
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Remark 2.7. One can easily generalize the above argument to the case when D ⊂
Mn is of dimension n. In this setting, there exists D′ ⊂ D de�nable over H(M),
with dim(D\D′) < n.

De�nition 2.8. We will denote by H∗(M) the structure H(M) together with sets
φ(H(M)n), where φ(~x) is an L-formula de�nable in M with no parameters (note
that this is the same as the structure induced by LH -formulas with no parameters,
by Proposition 2.5). More formally, the language of H∗(M) consists of the new
predicate symbols Rφ(~x) for each such formula φ(~x), with the obvious interpreta-
tion.

Clearly, for any two su�ciently saturated H-structures (M,H) and (N,H) of a
geometric theory T , the structures H∗(M) and H∗(N) are elementarily equivalent,
and are also su�ciently saturated. Thus T gives rise to the unique theory T ∗ =
Th(H∗(M)). We will refer to T ∗ as the generic trivalization of T .

First, we make some observations about the general model theoretic properties
of H∗(M).

Remark 2.9. (1) H∗(M) is a geometric structure with a trivial (identical) alge-
braic closure. Elimination of ∃∞ follows from triviality of acl: any formula in one
variable with n parameters having more than n realizations is in�nite.

(2) For any L-formula φ(~x, y) and ~a = (a1, . . . , an) ∈ H(M), we have

(M,H) |= ∃y (H(y) ∧ φ(~a, y)) ⇐⇒ M |= ∃∞y φ(~a, y) ∨
n∨

i=1

φ(~a, ai)

Since T is geometric, the latter is an L-formula. This shows that H∗(M) has
quanti�er elimination.

We will now look at the case when the structure of H∗(M) is as simple as
possible.

Proposition 2.10. T is strongly minimal if and only if H∗(M) has no structure
(other than the one induced by equality).

Proof. Left to right is clear, since in T there is only one n-type of an independent
tuple, for any n.

Suppose H∗(M) has no structure, and T is not strongly minimal. Let (M,H)
be an H-structure. In M there is an in�nite co-in�nite de�nable set D. Since
acl(H(M)) is an elementary submodel of M , we may assume that D is de�nable
over acl(H(M)). By Proposition 2.6, there is D′ ⊂ D L-de�nable over H(M), such
that D\D′ is �nite. Clearly D′∩H(M) and H(M)\D′ are disjoint in�nite de�nable
subsets of H∗(M), a contradiction. �

Thus, T is strongly minimal exactly when T ∗ is the theory of equality (which is
also equivalent to saying that T ∗ is itself strongly minimal).

Clearly, we cannot expect T ∗ to be as well-behaved in the non-strongly minimal
case. For example, if T de�nes a random graph, then so does T ∗. Moreover,
even though H∗(M) has a trivial geometry, T ∗ can still interpret some non-trivial
structures. In the next example we show how the structure of M can get re�ected
in H∗(M) in a deeper way when T is of Morley rank two.

Example 2.11. Let T be the theory of a vector space over a division ring. Let
TP be the theory of lovely (or beautiful, in Poizat's sense) pairs of models of M .
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Essentially, TP is the theory of in�nite-dimensional pairs of vector spaces. Then
TP has Morley rank 2, and the algebraic closures is TP and T coincide (i.e. are
given by the linear span), and TP eliminates ∃∞. Thus, TP is a geometric theory
with acl = dcl. Consider an H-structure (M,P,H) of TP . Then H∗(M,P ) is
a linearly independent set having in�nite intersection with P (M) and all of its
cosets, in particular H∗(M,P ) has Morley rank two. For a, b ∈ H write aEb if
a − b ∈ P . E is an ∅-de�nable equivalence relation in H∗(M,P ). We de�ne a
product in H∗(M,P )/E by [a]E · [b]e = [c]E where c ∈ H∗(M) and c ∈ a + b + P .
Then (H∗(M)/E, ·) is an interpretable group in H∗(M,P ) even though the algebraic
closure is trivial when restricted to H∗(M,P ).

Example 2.12. Let T be the theory of the p-adics Qp in the language LDiv, where
L is the language of rings and for a, b ∈ Qp we have that Div(a, b) if and only if
v(a) ≤ v(b), see [1] for more details. It is well known that T is a geometric theory.
Let (Qp,H) be a model of T ind. For a, a′ ∈ H∗(Qp) de�ne E(a, a′) if v(a) =
v(a′), which is a ∅-de�nable equivalence relation. We can de�ne for a, b ∈ H∗(Qp),
[a]E + [b]E = [a · b]E and −[a]E = [1/a]E. Note that the classes [a · b]E, [1/a]E
are realized in H∗(Qp) by the density property. The group (H∗(Qp)/E,+) is an
interpretable group in H∗(Qp) even though the structure H∗(Qp) is trivial.

Example 2.13. Let ((F2)ω,+, 0, P ) be the generic unary predicate expansion of
the F2-vector space ((F2)ω,+, 0), in the sense of Chatzidakis-Pillay [10]. Let T
be the theory of the structure consisting of P ((F2)ω) together with the relations
Rn(x, y1, . . . , yn) saying x+ y1 + . . .+ yn = 0 (or, equivalently, x = y1 + . . .+ yn).
Note that T is an ω-categorical 1-based SU-rank 1 theory. Let (M,H) be an H-
structure of T . Then the theory T ∗ has quanti�er elimination down to formulas
of the form ∃zRn(z, x1, . . . , xn), and is ω-categorical. Moreover, T ∗ is the model
companion of the theory of all structures in the language

(P2(x1, x2), P3(x1, x2, x3), . . .),

where the relations Pn(x1, . . . , xn) are symmetric and imply xi 6= xj for all 1 ≤ i <
j ≤ n. In particular, any random n-hypergraph is de�nable in T ∗.

Remark 2.14. Note that if T is geometric, then T ∗ is ω-categorical if and only
if for any n T has �nitely many types of independent n-tuples. This is clearly the
case when T is strongly minimal, even though T itself may not be ω-categorical.

We will now take a closer look at the relationship between the induced structure
on H(M) and the original structure M .

Proposition 2.15. Suppose T is a geometric theory, (M,H) a su�ciently satu-
rated H-structure. Fix a set Γ of L-formulas of the form θ(x, ~y), where ~y can have

arbitrary length. Suppose that any de�nable subset of H∗(M) is given by θ(x,~b) for
some θ(x, ~y) in Γ and ~b ∈ H∗(M). Then any de�nable subset of M has a �nite
symmetric di�erence with some de�nable set of the form θ(M,~c) where ~c ∈M and
θ(x, ~y) ∈ Γ.

Proof. Suppose a de�nable set D in M is given by φ(x,~c). By density property,
we may assume that ~c ∈ acl(H(M)). By Proposition 2.6, changing D to a co-
�nite subset if needed, we may assume that ~c ∈ H(M). By the assumption on

Γ, ψ(H(M),~c) = θ(H(M),~b) for some θ(x, ~y) ∈ Γ and ~b ∈ H(M). Now, if D =
ψ(M,~c) has an in�nite symmetric di�erence with θ(M,~b), by the density property,
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the symmetric di�erence of ψ(H(M),~c1) and θ(H(M),~b) is also non-empty (in fact,
also in�nite), a contradiction.

�

Thus, similarly to strongly minimal or o-minimal structures (where de�nable
sets are described in terms of equality or order), M is "H-minimal": if a class of
formulas is su�cient for describing de�nable subsets of H∗(M), the same class of
formulas will work for M .

We �nish this section by looking at the case of ordered geometric structures.

Proposition 2.16. Suppose T is a theory of an ordered geometric structure, and
(M,H) a su�ciently saturated H-structure of T . Then

(1) The order restricted to H(M) is dense without endpoints.
(2) If T is a weakly o-minimal expansion of DLO then H∗(M) is also weakly

o-minimal.

Proof. (1) Follows from the fact that H∗(M) has trivial geometry.
(2) Assume T is a weakly o-minimal expansion of DLO. By Proposition 2.5

and Remark 2.9 the de�nable subsets of H∗(M) are the intersection of L-de�nable
subsets of M with H. Since the de�nable subsets of M are �nite unions of convex
sets and points, the de�nable subsets of H∗(M) are also �nite unions of convex sets
and points. �

Example 2.17. Let M = (Q× {0, 1}, <lex). Essentially, we replace each element
in a dense linear order by a "predecessor-successor" pair. Note that Th(M) is
geometric with disintegrated algebraic closure (closure of any element has size 2:
the element itself and its successor or predecessor). Note that M is not weakly
o-minimal, e.g. the set of all predecessors is dense co-dense in M . The structure
of H∗(M) is that of a dense linear order expanded with a dense co-dense subset:
those elements that were predecessors in the original structure M . Thus H∗(M) is
also not weakly o-minimal.

Note that even without the assumption thatM is ordered, ifH∗(M) is an ordered
structure, the order must be dense without endpoints. A natural question is: can
we extend the order to M? In other words, does any linear order on H∗(M) come
from a linear order on M? The following example shows that it is not the case.

Example 2.18. Let M = (Q × {0, 1}, <), where < is the partial order de�ned by
(x, i) < (y, j) if and only if x < y. Then in M there is no de�nable linear order,
while (H(M), <) is a dense linear order.

Remark 2.19. Suppose now T is a C-minimal theory. Then the structure of
H∗(M) is weakly C-minimal, in the sense that every de�nable subset of H∗(M) is
given by a boolean combination of instances of C where the parameters may come
from M .

3. Stability, simplicity and rosiness

Now we check how generic trivialization behaves with respect to stability, sim-
plicity and rosiness. As we have already shown, T is strongly minimal if and only
if so is T ∗ (which is equivalent to T ∗ being the theory of equality).

Proposition 3.1. Let T be a geometric theory. Then T is λ-stable if and only if
T ∗ is λ-stable.
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Proof. Let (M,H) be a su�ciently saturated H-structure of T , and λ ≥ |T |. Thus,
T ∗ = Th(H∗(M)).

Suppose T is λ-stable. Let A ⊂ H∗(M) be of size ≤ λ, then there at most λ
di�erent 1-types over A realized in M . Of these types, only the non-algebraic ones
together with the family {tp(a/A) : a ∈ A} are realized in H∗(M). Thus T ∗ is also
λ-stable.

Suppose T ∗ is λ-stable.
It su�ces to show that for any set B ⊂M of size ≤ λ, there at most λ di�erent

non-algebraic 1-types over B realized inM . Next, we may assume that B = acl(A),
where A ⊂ H(M). By Proposition 2.6, for any L-formula φ(x,~a,~b) where ~a ∈ A

and ~b ∈ acl(~a), there is φ′(x,~a,~c) a formula such that φ′(x,~a,~c) ⊂ φ(x,~a,~b), they
have a �nite symmetric di�erence and the tuple ~c ∈ H(M). Let C consist of all
such ~c. Then |A ∪ C| ≤ λ. Let p be any non-algebraic 1-type over B. Then p

is axiomatized by L-formulas of the form φ(x,~a,~b), where ~a ∈ A and ~b ∈ acl(~a).
Replacing φ(x,~a,~b) with φ′(x,~a,~c), we get a consistent non-algebraic type p′ over
A ∪ C. Note that if p1 6= p2, then p

′
1 6= p′2. Thus the number of non-algebraic 1

types over B is at most the number of non-algebraic 1-types over A ∪ C, which is
bounded by λ.

�

Now we study the special case of totally trascendental theories. Before we start,
the reader should notice that if ϕ(x,~a) de�nes a �nite set inM , that set may not be
realized in H(M). But if ϕ(x,~a) de�nes an in�nite set in M , the set has in�nitely
many realization in H(M). In the next proposition we show that the Morley rank
of an in�nite formula is the same in M as in H∗(M).

Notation 3.2. Let T be a geometric theory, (M,H) a su�ciently saturated H-
structure of T . For any L-formula ϕ(x, ~y) and ~a ∈ H∗(M) we write MR(ϕ(x,~a))
for the Morley rank of the formula computed insideM and we writeMRH∗(M)(ϕ(x,~a))
for the Morley rank of the formula computed inside H∗(M).

Proposition 3.3. Let T be a geometric theory, (M,H) a su�ciently saturated
H-structure of T . Then T is totally trascendental if and only if T ∗ is totally
trascendental. Moreover for any L-formula ϕ(x, ~y) and ~a ∈ H∗(M) if ϕ(x,~a)
has in�nitely many realizations, MRH∗(M)(ϕ(x,~a)) = MR(ϕ(x,~a)). In particu-
lar MR(T ) = MR(T ∗)

Proof. Claim For any ordinal α and for any formula ϕ(x,~a) where ~a ∈ H∗(M) we
have that MRH∗(M)(ϕ(x,~a)) ≥ α implies MR(ϕ(x,~a)) ≥ α.

We prove the Claim by induction on α. The case α = 0 and the limit case are
clear. If MRH∗(M)(ϕ(x,~a)) ≥ 1 it means that the formula ϕ(x,~a) has in�nitely
many realizations in H∗(M) and thus it has in�nitely many realizations in M .

Let ϕ(x,~a) be a formula in H∗(M) and assume thatMRH∗(M)(ϕ(x,~a)) ≥ α+1,
with α ≥ 1. Then there are {ψi(x,~ai) : i ∈ N} pairwise contradictory formulas in
H∗(M) which imply ϕ(x,~a) in H∗(M) and such that MRH∗(M)(ψi(x,~ai)) ≥ α for
all i. By induction hypothesis MR(ψi(x,~ai)) ≥ α. Let θi(x,~ai,~a) = ψi(x,~ai) ∧
ϕ(x,~a) and note that MR(θi(x,~a,~ai)) = MR(ψi(x,~ai)) since the symmetric di�er-
ence of the two formulas is a �nite set in the structure M (they agree in H∗(M)).
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The formulas θi(x,~a,~ai) may have �nite intersection (which does NOT a�ect �nd-
ing Morley ranks since α ≥ 1) and each one implies ϕ(x,~a). It follows that
MR(ϕ(x,~a)) ≥ α+ 1.
Claim For any ordinal α > 0 and L-formula ϕ(x,~a) with ~a ∈ H ifMR(ϕ(x,~a)) ≥

α then MRH∗(M)(ϕ(x,~a)) ≥ α.
We prove it by induction on α. If α = 1, it means that ϕ(x,~a) is in�nite, then by

the density property it intersects H in�nitely often and thus MRH∗(M)(ϕ(x,~a)) ≥
1. The limit case is clear. Assume the result holds for α > 0 and thatMR(ϕ(x,~a)) ≥
α + 1. Then there are ψi(x,~bi) for i ∈ N pairwise disjoint, each of which im-

plies ϕ(x,~a) and such that MR(ψi(x,~bi)) ≥ α. We may write ~bi = ~b0i
~b1i so

that ~b0i is independent over ~a,~b<i and ~b1i ∈ acl(~a,~b<i,~b
0
i ). Therefore we can re-

alize tp(~b0i /~a,~b<i) inside H and after changing parameters we may assume that
~b0i ∈ H for every i and that ~b1i ∈ acl(~b0i ). By Proposition 2.6 there are elements

ci ∈ H and formulas ψ′i(x,~b
0
i , ci) such that ψ′i(x,~b

0
i , ci) de�nes a co�nite subset of

ψi(x,~bi). Note that ψ′i(x,~bi) for i ∈ N are pairwise disjoint and each formula im-

plies ϕ(x,~a). Also since each of ψi(x,~bi) de�nes an in�nite set, MR(ψ′i(x,~b
0
i , ci)) =

MR(ψi(x,~bi)). By induction hypothesis we get that MRH∗(M)(ψ′i(x,~b
0
i , ci)) ≥ α

and so MRH∗(M)(ϕ(x,~a)) ≥ α+ 1 as we wanted. �

Now we turn our attention to the supersimple SU-rank 1 case. Recall that a
theory is supersimple of SU-rank 1 exactly when any non-algebraic formula in a
single variable does not divide over ∅.

Proposition 3.4. Let T be a geometric theory. Then T is supersimple of SU-rank
1 if and only if T ∗ is supersimple of SU-rank 1.

Proof. Let (M,H) be a su�ciently saturated H-structure of T .
Suppose T is supersimple of SU-rank 1. Consider a non-algebraic L-formula

φ(x,~a) where ~a ∈ H(M). Suppose φ(x,~a) divides over ∅ in H∗(M), witnessed
by an indiscernible sequence (~ai : i ∈ ω) of tuples in H(M). Thus the partial
type {φ(x,~ai) : i ∈ ω} is not realized in H(M), and hence is algebraic (in M).
Let e1, . . . , en be the all its realizations in M . We may assume that the sequence
(~ai : i ∈ ω) is indiscernible over ~e. Then the sequence (~ai~e : i ∈ ω) witnesses that a
non-algebraic formula

φ(x,~a0) ∧
∧

1≤i≤n

¬x = ei

divides over ∅, a contradiction with T being supersimple of SU-rank 1.
Suppose T ∗ is supersimple of SU-rank 1. Let φ(x,~a) be a non-algebraic L-

formula inM , and suppose it divides over ∅, witnessed by an indiscernible sequence
(~ai : i ∈ ω). Adding a �nite acl-independent set B, if needed, we may assume that
(~ai : i ∈ ω) is Morley over B. Write ~ai = ~a′i~a

′′
i , where ~a

′
i is acl-independent over

B, and ~a′′i ∈ acl(~a′iB). Since the in�nite tuple B~a′0~a
′
1 . . . is acl-independent, we

may assume that B ⊂ H(M) and ~a′i ∈ H(M) for all i. By Proposition 2.6, we
can �nd ~ci ∈ H(M) and an L-formula φ′(x, ~y, ~z) such that φ′(M,~a′i,~ci) are co�nite
subsets of φ(M,~ai). We may also assume that (~a′i~ci : i ∈ ω) is indiscernible over
B. Clearly, since {φ(x,~ai) : i ∈ ω} is inconsistent, so is {φ′(x,~a′i,~ci) : i ∈ ω}. Since
φ′(H∗(M),~a′i,~ci) are in�nite, this contradicts the assumption that T ∗ is supersimple
of SU-rank 1.

�
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Next, we will consider the case when T is a simple geometric theory, but not
necessarily supersimple of SU-rank 1. Note that in this case, it is still open whether
T ind, or at least, T ∗ is also simple. However, we can still say something about the
behavior of forking in T ∗.

Proposition 3.5. Let T be a geometric theory, (M,H) a su�ciently saturated H-
structure of T , and suppose T is simple. Let A ⊂ B ⊂ H∗(M) and let ~c ∈ H(M)
be a tuple. Then if tp(~c/B) forks over A (in M), tpH∗(M)(~c/B) forks over A (in

H∗(M)).

Proof. Assume �rst that p(x,B) = tp(~c/B) forks over A (in M). Let {Bi : i ∈ ω}
be a L-Morley sequence in tp(B/A) over A such that ∪p(x,Bi) is inconsistent in
M . Since the set B is a subset of H∗(M), the set B \A is algebraically independent
over A and by the density property we may assume that B0 ⊂ H∗(M). Since
the sequence {Bi : i ∈ ω} is a L-Morley sequence, the sequence is algebraically
independent over A, so using an inductive argument we may assume by the density
property that Bi ⊂ H∗(M) for all i. Then {Bi : i ∈ ω} is an indiscernible sequence
over A in H∗(M) and ∪p(x,Bi) is inconsistent in H∗(M) ⊂ M . This shows that
tpH∗(M)(~c/B) forks over A (in H∗(M)). �

Proposition 3.6. Let T be a geometric theory, (M,H) a su�ciently saturated H-
structure of T , and suppose T is simple, that dcl = acl in T and that T ∗ is simple.
Let A ⊂ B ⊂ H∗(M) and let ~c ∈ H(M) be a tuple. Then if tpH∗(M)(~c/B) forks

over A (in H∗(M)), tp(~c/B) forks over A (in M).

Proof. Assume now that p(~x,B) = tp(~c/B) does not fork over A (in M). We
may write ~c = (c1, . . . , cl, cl+1, . . . , cn), where c1, . . . , cl are independent over A and
cl+1, . . . , cn ∈ dcl(c1, . . . , cl, A). Let fl+1, . . . , fn be de�nable functions such that
ci = fi(c1, . . . , cl, A) for i ≥ l+1. We will prove that p∗(~x,B) = tpH∗(M)(~c/B) does
not fork over A (in M). Since T ∗ is simple, it su�ces to check that for {Bi : i ∈ ω}
a Morley sequence in tpH∗(M)(B/A) over A (in H∗(M)) one has that ∪i∈ωp

∗(x,Bi)
is consistent in H∗(M). By the previous proposition, the sequence {Bi : i ∈ ω} is
a Morley sequence in tp(B/A) over A (in M). Since tp(~c/B) does not fork over

A, there is ~d |= ∪i∈ωp(~x,Bi). Furthermore, we may asssume that tp(~d/ ∪i∈ω Bi)
does not fork over A. In particular, we must have dim(~d/A) = dim(~d/ ∪i∈ω Bi).
Then we can write ~d = (d1, . . . , dl, dl+1, . . . , dn), then d1, . . . , dl are independent
over ∪i∈ωBi and dl+1, . . . , dn ∈ dcl(d1, . . . , dl, A). By the density property we may
assume that d1, . . . , dl ∈ H(M). Therefore tpH(c1, . . . , cl, A) = tpH(d1, . . . , dl, A),
so we must have that

tpH(c1, . . . , cl, fl+1(c1, . . . , cl, A), . . . , fn(c1, . . . , cl, A), A) =

tpH(d1, . . . , dl, fl+1(d1, . . . , dl, A), . . . , fn(d1, . . . , dl, A), A),

but clearly

fl+1(d1, . . . , dl, A), . . . , fn(d1, . . . , dl, A) = (dl+1, . . . , dn),

so we get tpH(~c,B) = tpH(~d,Bi) and thus tpH∗(M)(~c,B) = tpH∗(M)(~d,Bi) for all

i and ~d |= ∪i∈ωp
∗(x,Bi) in H∗(M).

�
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Now we consider the case of thorn rank one theories (or surgical geometric the-
ories). We show that if T is superrosy of thorn rank one then so is its generic
trivialization T ∗. We also show the converse under the assumption acl = dcl in
T . The proof of the �rst implication relies on a trick from [2] relating imagi-
naries in H∗(M) with imaginaries in M (in the setting of lovely pairs instead of
H-structures). We also use the following fact (see [14]):

Fact 3.7. A geometric theory T is superrosy of thorn rank one if and only if for
every de�nable set X (in any number of variables) and a de�nable equivalence
relation E(x, y) on X, only �nitely many E-classes have the same dimension as X.

Proposition 3.8. Let T be a geometric theory.

(1) If T is superrosy of thorn-rank 1 then so is T ∗.
(2) If acl = dcl in T , and T ∗ is superrosy of thorn-rank 1, then so it T .

Proof. Let (M,H) be a su�ciently saturated H-structure of T .
(1) Assume that T is superrosy of thorn rank one. Since T ∗ is geometric, by

Fact 3.7 it su�ces to show that there are no de�nable subset S of (H∗(M))m of
dimension n ≤ m and a de�nable equivalence relations on S with in�nitely many
classes of dimension n. Note that any such set S is of the form X ∩H(M)m, where
X is a de�nable subset of Mm (with parameters from H(M)).

Assume that there is an an L-de�nable set X ⊂ Mm and a L-formula ε(~x, ~y),
such thatX∩H(M)m has dimension n, and when restricted toX∩H(M)m, ε(−,−)
de�nes an equivalence relation with in�nitely many classes of dimension n. We may

assume that ε(~a,~b) implies that ~a,~b ∈ X. Since being superrosy of thorn rank 1 is
preserved under reducts and expansions by constants, we may assume that both X
and ε are de�ned over ∅.
Case 1: Suppose �rst n = m. Let X ′ consist of all ~a ∈ X such that ~a is a tuple

of distinct elements and there exists another tuple of distinct elements ~b such that

~a and ~b are disjoint (as sets) and |= ε(~a,~b). Clearly, X ′ is still L-de�nable over ∅,
has dimension n (in M), and ε restricted to X ′ ∩H(M)n is an equivalence relation
with in�nitely many (in fact, all) classes of dimension n.

Now we follow the ideas from [2] and de�ne for ~a,~b ∈ X ′, E(~a,~b) = "(ε(~a, ~z) ∨
ε(~b, ~z)) ∧ ¬(ε(~a, ~z)) ∧ ε(~a, ~z)) has dimension less than n". That is, for ~a,~b ∈ X ′,

E(~a,~b) holds i� the subset ofX ′ de�ned by ε(~a, ~z)4ε(~b, ~z) has dimension less than n.
Since T eliminates ∃∞ this relation is de�nable in M . Clearly, it is an equivalence
relation (on X ′). It remains to show that when restricted to X ′ ∩ H(M)n, E
coincides with ε, and hence has in�nitely many classes of dimension n on X ′ ∩
H(M)n and therefore also on X ′ (in the sense of M).

If ~a,~b ∈ X ′ ∩ H(M)n and |= ε(~a,~b), then clearly ε(~a, ~z)4ε(~b, ~z) is not realized

in H(M). Then, by the density property, ε(~a, ~z)4ε(~b, ~z) must have has dimension

less than n, and thus |= E(~a,~b).
If ~a,~b ∈ X ′∩H(M)n and |= ¬ε(~a,~b), then ε(~a, ~z)4ε(~b, ~z) coincides with ε(~a, ~z)∨

ε(~b, ~z) when restricted to H(M). It follows from the de�nition of X ′ that each ε-

class in X ′∩H(M)n has dimension n. Hence, ε(~a, ~z)∨ ε(~b, ~z) has dimension n, and

therefore |= ¬E(~a,~b).
Case 2: Now suppose n ≤ m. We will reduce to Case 1. For any function

f : {1, . . . ,m} → {1, . . . , n} consider the function gf : Mn →Mm given by

gf (x1, . . . , xn) = (xf(1), . . . , xf(m)).
10



Since any m-tuple in X ∩H(M)m has at most n distinct entries, we have

X ∩H(M)m ⊂
⋃

f :{1,...,m}→{1,...,n}

gf (H(M)n).

Since there only �nitely many such functions f , we can �nd f : {1, . . . ,m} →
{1, . . . , n}, such that ε(−,−) has in�nitely many classes of dimension n when re-

stricted to X ∩ gf (H(M)n). Let Y = g−1
f (X ∩ gf (Mn)), and for ~h,~k ∈ Y , let

ε′(~h,~k) denote ε(gf (~h), gf (~k)). Clearly, Y is L-de�nable, has dimension n, and ε′

is an equivalence relation on Y ∩H(M)n. Then apply Case 1 to Y and ε′.
(2) Assume now that acl = dcl in T , T ∗ is superrosy of thorn-rank 1, but T is

not superrosy of thorn-rank 1. Then there is a de�nable set X ⊂Mm of dimension
n ≤ m, and a de�nable equivalence relation E on X having in�nitely many classes
of dimension n. Since acl = dcl, we may assume that both X and E are de�nable
over H(M). Since being superrosy of thorn rank 1 is preserved under reducts and
expansions by constants, we may assume that both X and E are de�nable over ∅.

Note that an E-class has dimension n exactly when we can �nd two tuples ~b and
~c that belong to the class, have dimension n, realize the same type and are such

that dim(~b~c) = 2n. Let ~xn = (x1, . . . , xn) be projection of an m-tuple ~x onto �rst n
coordinates. By reordering the variables in necessary, we can �nd in�nitely many E-

classes of dimension n for which the witnesses have the property that dim(~bn~cn) =
2n (i.e. the tuples are generated by the �rst n entries). Fix a su�ciently large

cardinal κ. By compactness, we can construct a sequence (~bα,~cα : α < κ) in X
such that for any α < κ:

tp(~bα) = tp(~cα),

|= E(~bα,~cα),

~bnα~c
n
α is an independent tuple, and for any α 6= β < κ, ¬E(~bα,~bβ).
Reducing the sequence, if necessary, we may assume that there is an ∅-de�nable

function ~f such that

~bα = ~f(~bnα), ~cα = ~f(~cnα),

where ~xn = (x1, . . . , xn) (projection of an m-tuple onto �rst n coordinates).

Let XH = {(h1, . . . , hn) ∈ Hn : ~f(~h) ∈ X, hi 6= hj , i 6= j}. De�ne EH on XH

by EH(~h,~k) i� E(~f(~h), ~f(~k)). Clearly, both XH and EH are de�nable in H∗(M),
and EH is an equivalence relation on XH . Moreover, XH has dimension n and

the tuples ~bnα and ~cnα witness that EH has in�nitely many classes of dimension n.

Indeed, ~bnα,~c
n
α ∈ XH , dim(~bnα,~c

n
α) = 2n, EH(~bnα,~c

n
α) and ¬EH(~bnα,~b

n
β) for α 6= β.

Contradiction with T ∗ being superrosy of thorn-rank 1.
�

In the light of the above results, thorn rank 1 setting seems to be most appro-
priate for studying generic trivializations. Without this assumption, H∗(M) may
be �formally� trivial, but become non-trivial when passing to (H∗(M))eq, as in Ex-
ample 2.11. In fact, if we allow T to have a de�nable equivalence relation E with
in�nitely many classes each of which is in�nite, any structure de�nable in M/E
will also be de�nable in H∗(M)/E.
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4. NIP and dp-rank

In this section we will study the Independence Property; the setting is the same
as before, T is a geometric theory and (M,H) a su�ciently saturated H-structure
of T . Our goal is to prove that T is NIP (strongly dependent) if and only if T ∗

is NIP (strongly dependent) and to study how the dp-rank in both settings are
related. The proofs in this section are very close to the ones dealing with NIP in
the setting of lovely pairs of geometric structures [7] or just structures expanded
with a predicate [9]. We need the following result from [6]:

Fact 4.1. It T is geometric and T has NIP, then T ind has NIP.

Proposition 4.2. Let T be a geometric theory and suppose T has NIP. Then T ∗

also has NIP.

Proof. Let (M,H) be a su�ciently saturated H-structure of T . Assume that T ∗

has IP. Then there is I = (~bi : i ∈ ω) an indiscernible sequence and a in H∗(M) such
that φ(a,~bi) holds i� i is even. By Remark 2.9 the de�nable subsets of H(M) are
given by L-de�nable sets intersected with H(M), so there is an L-de�nable formula
θ(x, ~y) such that φ(x, ~y) ∧ x ∈ H(M) ∧ ~y ∈ H(M) is equivalent to θ(x, ~y) ∧ x ∈
H(M) ∧ ~y ∈ H(M).

Note that this sequence I also belongs to M , that a belongs to M and that

θ(a,~bi) holds i� i is even. So T ind has the IP and thus by Fact 4.1 T has the
IP. �

Proposition 4.3. Let T be a geometric theory and suppose T ∗ has NIP. Then T
has NIP as well.

Proof. Let (M,H) be a su�ciently saturated H-structure of T .
Suppose T has IP, witnessed by a formula φ(x, ~y) (we may assume that x is a

single variable). Thus, in M there exists an indiscernible sequence I = (~bi : i ∈ ω)
and a (non-algebraic over I) such that φ(a,~bi) holds i� i is even. Extending I we get
an indiscernible sequence J = (~bi : i < ω + ω). Then there exists a′ (non-algebraic

over J) such that φ(a′,~bi) holds i� i = 2n or ω + 2n.
Note that the sequence J = (~bi : ω ≤ i < ω+ω) is independent and indiscernible

over I. Let B be a �nite subset of I such that ~bω |̂
B
I. Then (~bi : ω ≤ i <

ω + ω) is independent and indiscernible over B. We may assume that B = ~d is

an independent tuple. For ω ≤ i < ω + ω, let ~bi = ~b0i
~b1i , where

~b0i is a tuple

independent over ~d, and ~b1i ∈ acl(~d,~b0i ). Then the in�nite tuple ~d~b0ω
~b0ω+1 . . . is

independent over ∅. We may assume that a′, ~d, and ~b0i for ω ≤ i < ω + ω are

all in H(M). After changing parameters, the formula φ(x,~bi) can be written as

φ(x, ~d,~b0i ,~b
1
i ) with ~d,~b0i ∈ H and ~b1i ∈ acl(~d,~b0i ) for ω ≤ i < ω + ω. Note that the

way we rewrite the formula does not depend on the index i. By Proposition 2.6
and the fact that J is indiscernible there is a sequence {ci : ω ≤ i < ω + ω} in

H and formulas φ′(x, ~d,~b0i , ci) such that φ′(x, ~d,~b0i , ci) de�nes a co�nite subset of

φ(x, ~d,~b0i ,~b
1
i ). Furthermore, we may assume that the sequence {~bici : ω ≤ i < ω+ω}

is indiscernible. Let Je = {i = ω + 2n : n < ω} and let Jo = {i = ω + 2n + 1 :
n < ω}. Since the type ∧i∈Jeφ(x, ~d,~b0i ,~b

1
i )∧∧i∈Jo¬φ(x, ~d,~b0i ,~b

1
i ) is not algebraic, so

is the type ∧i∈Jeφ
′(x, ~d,~b0i , ci) ∧ ∧i∈Jo¬φ′(x, ~d,~b0i , ci) and the formula φ′(x, ~y0, z))

witnesses IP for H∗(M) and thus for T ∗. �
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We will re�ne our analysis in the setting of strongly dependent theories and
compare the dp-rank of T and T ∗. Basic facts about dp-rank can be found in [11],
more general information about strongly dependent theories can be found in [17].
We only recall the basic de�nitions :

De�nition 4.4. Let M be a su�ciently saturated structure. For a cardinal κ,
an ICT pattern of depth κ in variables ~x is a set of formulas {ϕα(~x; ~yα) : α < κ}
together with an array {~aα

n : α < κ, n < ω} such that ~aα
n ∈ M~yα and for any

η : κ→ ω, the type ∧
i<κ

ϕi(x,~ai
η(i)) ∧

∧
i<κ

∧
j<ω,j 6=η(i)

¬ϕi(x, ai
j)

is consistent. The dp-rank for a partial type p(~x) is the maximum cardinal κ
(possibly �nite) such that p(~x) is consistent with an ICT pattern in variables ~x of
depth κ. A theory is strongly dependent if the dp-rank of x = x is ≤ ℵ0.

It is proved in [6] that if T is strongly dependent so is T ind and vice versa. It
is easy to modify the proofs given in Propositions 4.2 and 4.3 to show that T is
strongly dependent if and only if T ∗ is strongly dependent. Instead of doing that,
we show below how the dp-rank of x = x in T is related to dp-rank of x = x in T ∗.

The reader should note that the dp-rank of x = x can be ≥ n for every n but
still smaller than ℵ0.

Proposition 4.5. Let T be a geometric theory and suppose that T is strongly
dependent. Then the dp-rank of x = x in T either agrees with the dp-rank of x = x
in T ∗ or they di�er by one.

Proof. Let (M,H) be a su�ciently saturated H-structure of T .
Assume that x = x has dp-rank greater than or equal to n in T ∗. Then there are

ϕ1(x, ~y1), . . . , ϕn(x, ~yn) L-formulas without parameters and there are sequences

{(~aj
i : i < ω) : j ≤ n} that form a ICT pattern of depth n in H∗(M). Clearly this

is also an ICT pattern of depth n in M .
Assume now that x = x has dp-rank greater than or equal to n in T . Then

there exist L formulas ϕ1(x, ~y1), . . . , ϕn(x, ~yn) and mutually indiscernible sequences

{(~aj
i : i < ω + ω) : j ≤ n}, that form a ICT pattern of depth n. Let I1 = (~a1

i : i <
ω), . . . , In = (~an

i : i < ω) and let J1 = (~a1
i : ω ≤ i < ω + ω), . . . , Jn = (~an

i : ω ≤
i < ω + ω). Note that J1 is independent and indiscernible over I1 ∪ · · · ∪ In. Let
B1 be a �nite subset of I1 ∪ · · · ∪ In such that ~a1

ω |̂
B1
I1 ∪ · · · ∪ In. Then J1 is

independent and indiscernible over B1. In the same way by mutual indiscernability
there is B2 a �nite subset of I1 ∪ · · · ∪ In such that J2 |̂

B2
I1 ∪ J1 ∪ I2 · · · ∪ In.

And proceeding inductively we can �nd Bn a �nite subset of I1 ∪ · · · ∪ In such that

Jn |̂
Bn

I1∪J1∪· · ·∪In−1∪Jn−1∪In. Let ~b = B1∪· · ·∪Bn, then J1∪· · ·∪Jn is an

independent set over ~b. We may assume that ~b is independent. For ω ≤ i < ω + ω

and 1 ≤ j ≤ n we can write ~aj
i = ~aj

i1~a
j
i2, where ~a

j
i1 is a tuple independent over ~b,

and ~aj
i2 ∈ acl(~aj

i1
~b). Since the elements in ~b ∪ {~aj

i1 : ω ≤ i < ω + ω, 1 ≤ j ≤ n} are
algebraically independent, we may assume that all the elements in the set belong
to H. By Proposition 2.6 there is a formula ϕ′1(x, ~z1, w) and there is c1i ∈ H
such that ϕ′1(x,~a

1
i1, c

1
i ) de�nes a co�nite subset of ϕ1(x,~a1

i ) for ω ≤ i ≤ ω + ω.
Repeating the process for the formulas ϕ2(x,~a2

i ), . . . , ϕn(x,~an
i ) we can �nd formulas

13



ϕ′2(x,~a
2
i , c

2
i ), . . . , ϕ

′
n(x,~an

i , c
n
i ) which de�ne co�nite subsets of the previous ones and

the parameters cji belong to H.

The formulas ϕ1(x, ~w1), . . . , ϕn−1(x, ~wn−1) together with the sequences {(~aj
i :

ω < i < ω+ ω) : j ≤ n− 1} form a ICT pattern of depth n− 1. Note that for each
η : n− 1 → [ω, ω + ω), the type∧

i≤n−1

ϕi(x,~ai
η(i)) ∧

∧
1≤i≤n−1

∧
ω≤j<ω+ω,j 6=η(i)

¬ϕi(x, ai
j)

has in�nitely many realizations (since the pattern can be extended to an ICT pat-
tern of depth n), in particular it has in�nitely many realizations in H. Note that
exchanging each formula of the form ϕi(x) for the formula ϕ′i(x) only removes a
�nite number of realizations. Thus the formulas ϕ′1(x, ~w1, z), . . . , ϕ′n−1(x, ~wn−1, z)
together with the sequences {(~aj

i1c
j
i : ω < i < ω + ω) : j ≤ n − 1} form a ICT

pattern of depth n− 1 inside the structure H∗(M). �

Corollary 4.6. Let T be a geometric theory. Then T is dp-minimal if and only if
T ∗ is dp-minimal.

Question 4.7. Are the dp-ranks of T and T ∗ equal?

We end this section by looking at the e�ect of generic trivialization on VC-
dimension. The relation in this setting is not clear, since the role of the algebraic
closure (as opposed to the complexity of patterns of formulas) takes a more central
role.

Remark 4.8. Let (M,H) be an H-structure and let ϕ(~x, ~y) be an L-formula. Let

Sϕ = {ϕ(Mm,~b) : ~b ∈ Mn}, let SH
ϕ = {ϕ(Hm,~b) : ~b ∈ Hn} and let V C(ϕ) =

V C(Sϕ), V CH(ϕ) = V C(SH
ϕ ). Then V CH(ϕ) ≤ V C(ϕ)

Indeed, assume that A ⊂ Hm has size n and that SH
ϕ shatters A. This means

that for every B ⊂ A there is ~hB ∈ H such that B = A ∩ ϕ(~x,~hB). Then the same
witnesses show that Sϕ shatters A in M .

5. NTP2 and Burden

In this section we follow the presentation of NTP2 theories from [8]. Let T be a
complete theory and let M |= T be a su�ciently saturated structure.

De�nition 5.1. Let p(x) be a partial type. An inp-pattern in p(x) of depth κ
consists of (aα,i : α < κ, i < ω), φα(x, yα), α < κ and kα < ω such that:

(1) {(φα(x, aα,i) : i < ω} is kα-inconsistent, for each α < κ
(2) {φα(x, aα,f(α)) : α < κ} ∪ p(x) is consistent, for any f : κ→ ω.

The burden of p(x), denoted bdn(p), is the supremum of the depths of all inp-
patterns in p(x). If we want to emphasize that we are �nding the burden of a type
p(x) inside a theory T we write bdnT (p).

De�nition 5.2. Let k < ω. A formula φ(~x, ~y) has k − TP2 if there is an array
(aα,i : α, i < ω) in M~y such that {φ(~x,~aα,i) : i < ω} is k-inconsistent for every
α < ω and {φ(~x,~aα,f(α)) : α < ω} is consistent for any f : ω → ω. We say that
φ(~x, ~y) has TP2 if it has k − TP2 for some k. Otherwise we say that φ(~x, ~y) is
NTP2, and T is NTP2 if every formula is.
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Remark 5.3. Note that if φ(~x, ~y) has TP2 witnessed by the array (~aα,i : α, i < ω),
then for for every f : ω → ω we have that the type {φ(~x,~aα,f(α)) : α < ω} is not
algebraic.

Assume now that T is a geometric theory in a language L and let (M,H) be a
su�ciently saturated H-structure. Our goal, as in the previous sections, is to see
how the bounds for the burden of types in T relate to bounds on the burden of
types in T ∗ and how the failure of NTP2 in T relates to the failure of NTP2 in T ∗.

We will use the following important facts from NTP2 theories:

Fact 5.4. [8] T is NTP2 if and only if every formula of the form φ(x, ~y) is NTP2,
where x is variable in the sort of M (that is, of length one).

Fact 5.5. [15] Assume T has k−TP2 witnessed by φ(~x; ~y). Then there is an array
of parameters {~aα,i : α < ω, i < ω} witnessing k − TP2 with φ(~x; ~y) such that
whenever i0 < i1 < · · · < in, j0 < j1 < · · · < jn we have

tp(~a00, . . . ,~a0n,~a10, . . . ,~a1n, . . . ,~an0, . . . ,~ann) =

tp(~ai0j0 , . . . ,~ai0jn ,~ai1j0 , . . . ,~ai1jn , . . . ,~ainj0 , . . . ,~ainjn).
In such a case we say the the sequence of parameters {~aα,i : α < ω, i < ω} is array
indiscernible.

Theorem 5.6. Let T be a geometric theory in a language L and let (M,H) be a
su�ciently saturated H-structure. If T has NTP2, then T

∗ has NTP2.

Proof. Assume that H∗(M) has k−TP2 for some k. By Fact 5.4 and Fact 5.5 there
is φ(x; ~y) and an array indiscernible sequence of parameters {~aα,i : α < ω, i < ω}
witnessing k − TP2 with φ(x; ~y) in the structure H∗(M). We may assume that
the formula φ(x; ~y) is an L-formula. Since {φ(x,~aα,i) : i < ω} is k-inconsistent in
H∗(M) for every α < ω, the type ∧i<ωφ(~x,~aα,i) is either inconsistent or �nite in
M .

If it is inconsistent, then there is l ∈ N such that {φ(x,~aα,i) : i < ω} is l-
inconsistent and the same formula and the same sequence of parameters witness
l − TP2 in M .

If it is consistent, there is l ∈ N such that ∧i<ωφ(x,~aα,i) = ∧i<lφ(x,~aα,i). Let
{e1α, . . . , esα} be the set of realizations of the type and let ~eα = (e1α, . . . , esα).
Note that by indiscernability, the value of l and the value of s does not depend
on α. Let ψ(x, ~y, ~z) = φ(x, ~y) ∧i≤s x 6= zi. Then the formula ψ(x, ~y, ~z) with the
parameters {~aα,i~eα : α < ω, i < ω} witness l − TP2 in M . �

Theorem 5.7. Let T be a geometric theory in a language L and let (M,H) be a
su�ciently saturated H-structure. If the type x = x in T has �nite burden so does
the type x = x in T ∗ and bdnT (x = x) ≥ bdnT∗(x = x) ≥ bdnT (x = x) − 1. If
the burden of the type x = x in T (resp T ∗) is κ for some in�nite cardinal κ, then
bdnT (x = x) = bdnT∗(x = x).

Proof. Assume �rst that the burden of x = x in T is n < ω. Then there are L-
formulas φα(x, ~y) and there is an array {aα,i : i < ω + ω, 1 ≤ α ≤ n} in M~y and
there are positive integers {kα : 1 ≤ α ≤ n} such that {φα(x,~aα,i) : i < ω + ω} is
kα-inconsistent and if f : {1, . . . , n} → ω is a function, {φα(x,~aα,f(α)) : α < k} is
consistent. We may further assume that each row of the sequence of parameters
{aα,i : i < ω + ω, α ≤ n} is indiscernible over the other rows.
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First we proceed as in the proof of dp-ranks (Proposition 4.5). Let I1 = (~ai,1 :
i < ω), . . . , In = (~ai,n : i < ω) and let J1 = (~ai,1 : ω ≤ i < ω + ω), . . . , Jn = (~ai,n :
ω ≤ i < ω + ω). Note that J1 is independent and indiscernible over I1 ∪ · · · ∪ In.
Let B1 be a �nite subset of I1∪· · ·∪ In such that ~aω,1 |̂

B1
I1∪· · ·∪ In. Then J1 is

independent and indiscernible over B1. In the same way by mutual indiscernability
there is B2 a �nite subset of I1 ∪ · · · ∪ In such that J2 |̂

B2
I1 ∪ J1 ∪ I2 · · · ∪ In.

And proceeding inductively we can �nd Bn a �nite subset of I1 ∪ · · · ∪ In such that

Jn |̂
Bn

I1 ∪ J1 ∪ · · · ∪ In−1 ∪ Jn−1 ∪ In. Let ~b = B1 ∪ · · · ∪Bn, then J1 ∪ · · · ∪ Jn

is an independent set over ~b. We may assume that ~b is independent.
For each α and each i ≥ ω, we may write ~aα,i = ~a1

α,i~a
2
α,i, where ~a

1
α,i is indepen-

dent over ~b and ~a2
α,i ∈ acl(~a1

α,i,
~b). We may assume by the density property that

~b ∈ H and that for each α and ω ≤ i < ω+ω we have that ~a1
α,i ∈ H. By Proposition

2.6 there is a formula φ′1(x,~b, ~z1, w) and there is c1,i ∈ H such that φ′1(x,~b,~a
1
1,i, c1,i)

de�nes a co�nite subset of φ1(x,~a1,i) for ω ≤ i < ω + ω. Similarly for 2 ≤ j ≤ n

there are formulas φ′j(x,~b, ~z1, w) and there is cj,i ∈ H such that φ′j(x, ,~b,~a
1
j,i, cj,i)

de�nes a co�nite subset of φj(x,~aj,i) for ω ≤ i < ω + ω.
Note that if we consider the array of formulas φ′α(x, ~y) and the parameters

{~b, a1
α,icα,i : ω < i < ω + ω, α < n}, then {φ′α(x,~b,~a1

α,icα,i) : i < ω + ω} is

kα-inconsistent and if f : {1, . . . , n−1} → ω is a function, {φα(x,~b,~a1
α,f(α)cα,f(α)) :

α < k} has in�nitely many solutions and thus it has a solution in H. Since all
parameters of the array belong to H, we have that bdnH∗(M)(x = x) ≥ n − 1. If
instead of n we have an in�nite cardinal the assertion is clear.

Now assume that bdnT∗(x = x) ≥ n. Then there are L-formulas φα(x, ~y) and
there is an array {aα,i : i < ω, 1 ≤ α ≤ n} in H∗(M)~y and positive integers
{kα : α ≤ n} such that {φα(x,~aα,i) : i < ω} is kα-inconsistent in H∗(M) and if
f : {1, . . . , n} → ω is a function, {φα(x,~aα,f(α)) : α < k} is consistent in H∗(M).
We may assume that for each α, the row {aα,i : i < ω} is indiscernible. Let α ≤ n
and consider the type ∧i≤ωφα(x,~aα,i) in M .

If the type is inconsistent, then there is an integer lα such that {φα(x,~aα,i) : i <
ω} is lα-inconsistent in M . Let ψα(x, ~y) = φα(x, ~y) and keep the same parameters
{~aα,i : i < ω} and let ~eα = ∅.

If the type is consistent it must be algebraic, and then there is an integer lα such
that ∧i<ωφα(x,~aα,i) = ∧i<lαφα(x,~aα,i). Let ~eα = {eα1, . . . , eαs} be the realizations
of the previous type and let ψα(x,~aα,i, ~eα) = φα(x,~aα,i) ∧ ∧i≤sx 6= ei. In this case
change the α row for {ψα(x,~aα,i,~e) : i < ω} and change kα for lα.

Consider now the pattern asssociated to the formulas ψα(x, ~y, ~z), the array
{~aα,i~eα : i < ω, α ≤ n} and the integers {lα : 1 ≤ α ≤ n}. If f : {1, . . . , n} → ω is
a function, {φα(x,~aα,f(α)) : α ≤ n} is consistent in H∗(M), so unless the solution
coincides with some eαi (there are �nitely many of those), we also get a solution
for the type {ψα(x,~aα,f(α), ~eα) : α ≤ n}.

This shows (after removing �nitely many rows if necessary) that bdnT∗(x = x) ≥
n. �
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