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Abstract

We show that if G is a strongly minimal finitely axiomatizable group, the
division ring of quasi-endomorphisms of G must be an infinite finitely presented
ring.

Questions about finite axiomatizability of first order theories are nearly as old as
model theory itself and seem at first glance to have a fairly syntactical flavor. But it was
in order to show that totally categorical theories cannot be finitely axiomatized that,
in the early eighties, Boris Zilber started developing what is now known as “Geometric
stability theory”. Indeed, as is often the case, in order to answer such a question, one
needs to develop a fine analysis of the structure of models in the class involved and to
understand exactly how each model is constructed.

The easiest way to force a structure to be infinite by one first order sentence is to
impose an ordering without end points, or a dense ordering, thus making the structure
unstable. It was hence rather natural to wonder about theories at the other extremity
of the stability spectrum, and in the early 60’s the question was posed whether there ex-
isted finitely axiomatizable totally categorical theories or simply uncountably categorical
theories [21], [16].

Each model of a totally categorical theory is prime over a strongly minimal set. It is
not too difficult to see that a totally categorical strongly minimal set cannot be finitely
axiomatizable ([14]). Much more complicated, the proof of the non finite axiomatizability
for the whole class goes through a characterization of the geometries associated to totally
categorical strongly minimal sets (locally modular and locally finite) and then an analysis
of how any model is “built” around the strongly minimal set ([22], [23] and [6] where
the result is proved for all ω-stable ω-categorical theories).

Around the same time as Zilber’s negative answer for the totally categorical case,
Peretjat’kin produced an example of a finitely axiomatized ℵ1-categorical theory [18].
This example was in the following years simplified by Baisalov (see [9, 12.2, Example
5]). This final example has Morley Rank equal to 2, thus still leaving open the question
of the existence of a finitely axiomatizable strongly minimal set (Morley rank and degree
equal to 1). Furthermore all the known examples of finitely axiomatizable ℵ1-categorical
theories are rather similar and constructed around a strongly minimal set with trivial
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pregeometry, also leaving open the question of the existence of a finitely axiomatizable
ℵ1-categorical theory with non trivial pregeometry.

In 1994, Hrushovski ([10]) showed that any finitely axiomatizable ℵ1-categorical the-
ory must have locally modular pregeometry, thus reducing the remaining open questions
to two very different cases:

– the existence of a finitely axiomatizable trivial strongly minimal set

– the existence of any finitely axiomatizable ℵ1-categorical theory which contains a
locally modular strongly minimal group.

The canonical example of a strongly minimal locally modular non trivial theory is
that of infinite K-vector spaces, for a fixed division ring K. It is open whether there
exists any finitely axiomatizable complete theory of R-modules, for R any ring, but it
is very easy to check that if K is an infinite division ring which is finitely presented as
a ring, then the theory of K-vector spaces can be finitely axiomatized. Unfortunately,
the existence of such a division ring is open (see section 3). Conversely, it was origi-
nally shown by Paljutin ([17]), in a paper where he characterizes finitely axiomatizable
uncountably categorical quasi-varieties, that, if the theory of infinite K-vector spaces is
finitely axiomatizable, then K is finitely presented as a ring (see section 3.2).

In the paper cited above, Hrushovski conjectures that, more generally, a finitely
axiomatizable ℵ1-categorical non trivial theory exists if and only if such an infinite
finitely presented division ring exists. Any ℵ1-categorical non trivial locally modular
theory must contain a locally modular strongly minimal group G, and the geometry
associated to such a group is that of infinite K-vector spaces, where K is the division ring
of quasi-endomorphisms of G (see section 2 for the definitions). The precise conjecture in
[10] is that, in any finitely axiomatizable ℵ1-categorical non trivial theory, the associated
division ring of quasi-endomorphisms is infinite and finitely presented as a ring.

One should remark that although every ℵ1-categorical non trivial locally modular
theory must contain a definable strongly minimal group, one cannot use general argu-
ments to transfer down the finite axiomatizability to the strongly minimal group. We
will see in section 3.1 some general assumptions under which finite axiomatizability can
be transferred (bi-interpretability, definable finite partition). But, it is not even true in
general that, if M is finitely axiomatizable and contained in the algebraic closure of a
strongly minimal set D (M is then said to be almost strongly minimal), the strongly
minimal set D, with the induced structure from M , must be finitely axiomatizable.
In the finitely axiomatized ℵ1-categorical Morley rank 2 theory which was mentioned
above, for example, the whole structure M is contained in the algebraic closure of a
strongly minimal subset D ⊂M ×M (the diagonal), whose induced structure is that of
the integers with the successor function, which is not finitely axiomatizable.

One last remark, in past years, work around strongly minimal finitely axiomatizable
trivial sets has also centered around a conjecture relating their existence to the existence
of an infinite group with specific properties (see section 3 for some further details).

In this paper we show that Hrushovski’s conjecture holds for strongly minimal groups,
and more generally for Morley Rank one groups: If G is a finitely axiomatizable strongly
minimal group, then the division ring of quasi-endomorphisms of G must be infinite and
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finitely presented (Theorem 3.19).

By Hrushovski’s result, we know that such a group must be locally modular. This
enables us to reduce to the case when G is a strongly minimal Abelian structure. Then
we show (Proposition 3.16) that if G is a finitely axiomatizable strongly minimal abelian
structure, the division ring K of quasi-endomorphisms of G must be infinite and that
the theory of K-vector spaces must also be finitely axiomatizable (Lemma 3.15).

We begin in section 1 by recalling or proving some general facts about abelian struc-
tures, under the precise form they will be needed later. In particular, we describe, in
section 1.3, the theory which will end up being both finitely axiomatizable and interde-
finable with the theory of K-vector spaces. In section 2 we recall the basic facts about
the ring of quasi-endomorphisms of a locally modular strongly minimal group and we
look at strongly minimal abelian structures. In section 3, we consider the question of
finite axiomatization. We begin by a somewhat technical section (3.1) where we give
precise definitions of finite axiomatizability in the case of infinite languages and we show
how this notion transfers when changing languages or structures. In order to be as self-
contained as possible on the subject of finite axiomatizability, in section 3.2, we recall
very precisely the two classical examples (regular group actions and vector spaces). In
the next section (section 3.3), we prove the main theorem, that if a strongly minimal
abelian structure is finitely axiomatizable, then its division ring of quasi-endomorphisms,
K, must be infinite and the theory of K-vector spaces must be finitely axiomatizable.
Finally in the last section (3.4) we conclude for strongly minimal groups and more gen-
erally for groups of Morley Rank one.

We would like to thank the many people with whom we have had very helpful dis-
cussions since we started getting interested in questions of finite axiomatizability, in
particular, Ehud Hrushovski, Alexandre Ivanov, David Lippel, Dugald MacPherson,
Mike Prest and Gabriel Sabbagh.

1 Abelian structures

1.1 Axiomatization and quantifier elimination

In this first section, we recall the precise statements about axiomatization and pp-
elimination of quantifiers for abelian structures

We define an abelian structure G, to be a commutative group

G =< G,+,−, 0, (Hi)i∈I >,

where eachHi is a subgroup of someGni . We denote by L0 the language {+,−, 0, (Hi)i∈I}.
We are going to consider expansions of abelian structures by constants and we will de-
note by Lc the language of an expansion of G by some constants in a subset C, i.e.
Lc = L0 ∪ {c : c ∈ C}.

Recall that the set of positive primitive formulas is the closure of the atomic formulas
by conjunction and existential quantifiers.
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It has been well-known for years that in a complete theory of modules, every formula
is equivalent to a Boolean combination of pp-formulas and that a complete theory of
modules is axiomatized by so-called invariant statements describing the index of pairs
of positive primitive definable subgroups ([3], [20]).

The similar result for abelian structures has also been known for a long time (abelian
structures were originally introduced by E. Fisher in [7]) but was never published in any
“official” form until it appeared as a special case in the general treatment of theories
given by cosets in [8]. As we are dealing with questions of finite axiomatization, it is
important for us to be extremely precise about the form of the axioms and the language
we are working in. For this reason we will recall briefly the precise definitions we need
and state, mostly without proofs, the results under the exact form we require. Some
similar considerations appear also in [5].

Lemma 1.1. Let φ(x1, . . . , xn) be a consistant positive primitive formula in L0 in n
variables (n ≥ 1) and without parameters. Then {a ∈ Gn : G |= φ(a)} is a subgroup of
Gn.

Note that the set of pp-definable subgroups in G corresponds to the closure of the
groups (Hi : i ∈ I), the trivial groups ({0} and G), the diagonal of G2 and the graph of
the addition by, cartesian product, permutation of coordinates, intersection and projec-
tion.

Lemma 1.2. Let φ(x̄, 0̄) be a pp-formula from L0 without parameters, which defines a
subgroup in Gn. Let d̄ be a tuple from G. Then φ(x̄, d̄) is empty or is a coset of the
pp-definable subgroup defined by φ(x̄, 0̄).

A pp-formula in the language Lc is equivalent to φ(x̄, c̄) where φ is a pp-formula from
L0 and c̄ is a tuple of constants. In particular a subgroup of Gn which is definable by a
pp-formula from Lc is in fact already pp-definable in L0 without parameters.

Let T (G) be the following set of sentences from L0 :
– G is a commutative group,
– for each original predicate Hi from L0, Hi is a subgroup of Gni ,
– the equivalence sentences: all sentences of the form ∀x̄ (φ(x̄) ↔ ψ(x̄)), for φ and ψ
pp-formula which define the same subgroup of Gn (note that these sentences give the
following relations between pp-definable subgroups : inclusion, intersection, projection
and equality up to a permutation of variables),
– the dimension sentences: for each pair H ⊂ H ′ of pp-definable subgroups of G, such
that the index of H in H ′ is equal to n, the sentence “[H ′ : H] = n”; for each pair
H ⊂ H ′ of pp-definable subgroups of G, such that the index of H in H ′ is infinite in G,
the infinite scheme of sentences “[H ′ : H] ≥ k” , for every k ≥ 1.

Fact 1.3. The theory T (G) is complete in the language L0 and admits quantifier elimi-
nation to the pp-formulas, that is, every formula is equivalent modulo T (G) to a Boolean
combination of pp-formulas.

Note that it follows easily that every abelian structure is stable.
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Corollary 1.4. The theory of G in the language Lc is given by T (G) together with the
pp-type of the constants (i.e. for each pp-definable group H, we have to describe the
H-congruences on the set of constants).

Corollary 1.5. Let a ∈ G and B ⊂ G, then a is algebraic on B in the Lc-structure G
if and only if a is in a B-definable coset of some finite pp-definable subgroup of G.

Proof. By elimination to pp-formulas, the type of a over B is given by the set X of
B-definable cosets of pp-definable subgroups to which a belongs, and the set Y of B-
definable cosets of pp-definable subgroups to which a does not belong. Note that X is
closed under finite intersections. By compactness, as a is algebraic over B, there is some
coset A in X and some cosets B1, B2, ..., Bn from Y such that A\ (B1∪ . . .∪Bn) is finite
non empty. We can suppose that each Bi is contained in A, by taking its intersection
with A. Then A = a+H = {a1} ∪ . . . ∪ {am} ∪ (d1 +H1) ∪ . . . ∪ (dn +Hn), where {ai}
is considered as a coset of the trivial group, di +Hi = Bi and Hi ⊂ H. By Neumann’s
Lemma, if some coset a + H is covered by a finite number of cosets, then it is covered
by those cosets which correspond to subgroups of finite index in H. It follows that A
itself is finite.

We finish with a remark that will be very useful in the sequel:

Proposition 1.6. Let G be an abelian structure in Lc. Let H ⊂ Gn be any definable
connected subgroup (with parameters). Then H is pp-definable. In particular, H is
definable over ∅.

Proof. Let H be a connected definable subgroup of Gn. By pp-elimination, there is a set
A such that H is equivalent to a Boolean combination of pp-formulas with parameters
in A. We can suppose that the unique generic type of H, q, is defined and stationary
over A. As q is a complete type over A, we can suppose that there are ā0, ā1, . . . , ām ∈ A
and pp-definable (over ∅) subgroups φ0, φ1, . . . , φm of Gn such that:

1. for each i > 0, φi is a subgroup of φ0,

2. (ā0 + φ0) \ (ā1 + φ1 ∪ ... ∪ ām + φm) ⊆ H,

3. every generic of H over A is in (ā0 + φ0) \ (ā1 + φ1 ∪ ... ∪ ām + φm),

4. for each i > 0, each φi is of infinite index in φ0: indeed if φi has finite index in φ0,
by enlarging A if necessary, we can suppose that ā0 + φ0 =

⋃
1≤j≤k ēj + φi, with

ēj ∈ A, and replace ā0 + φ0 with one of the ēj + φi.

It follows that H = φ0: the difference of two generics of H (over A) is in φ0, so
H ⊂ φ0. Conversely, let h be a generic of H over A. Take a generic x of φ0 over Ah.
Since for each i > 0, φi is a subgroup of φ0 of infinite index, x /∈ (āi − h) + φi. Thus
x+ h ∈ (ā0 + φ0) \ (ā1 + φ1 ∪ ... ∪ ām + φm) and x ∈ H.
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1.2 Direct sums

The following direct sum construction plays an essential role in the paper.

Let S be an abelian structure in the language L0, and let G be an abelian structure
in the language Lc. Let GS := G ⊕ S, be the Lc-structure with universe the group
GS = G ⊕ S and with the obvious interpretation of the symbols in the language: each
constant c is interpreted by (c, 0); forH of arity n , we interpretH in GS byH(G)⊕H(S)
where H(G) := {(h, 0) ∈ GS

n : G |= H(h)} and H(S) := {(0, h) ∈ GS
n : S |= H(h)}. If

g = (g1, . . . , gn) ∈ Gn and s = (s1, . . . , sn), we will use both notations g + s or (g, s) to
denote the element (g1 + s1, . . . , gn + sn) ∈ GS

n.

Lemma 1.7. For each pp-formula φ(x) (x = (x1, . . . , xn)), from L0, φ(GS) = φ(G) ⊕
φ(S), i.e., for h1 ∈ G, and h2 ∈ GS, GS |= φ(h1 + h2) if and only if G |= φ(h1) and
S |= φ(h2).

Proof. By induction on pp-formulas. For atomic formulas, it follows from the way GS is
defined as being the direct sum of G and S as L0-structures. For a conjunction of two pp-
formulas, it follows easily from the fact that GS is the direct sum of G and S as groups.
There remains to check the case of a projection. Let φ(x1, ..., xn) be a pp-formula such
that φ(GS) = φ(G) ⊕ φ(S) and consider the pp-formula ψ := ∃x1φ. We have trivially
that ψ(G) ⊕ ψ(S) ⊂ ψ(GS). Let (a2, ..., an) ∈ ψ(GS). Then there is a1 ∈ GS such
that (a1, ..., an) ∈ φ(GS) = φ(G) ⊕ φ(S). So (a1, ..., an) = (b1, ..., bn) + (c1, ..., cn), with
(b1, ..., bn) ∈ φ(G) and (c1, .., cn) ∈ φ(S). But then (a2, ..., an) = (b2, ..., bn) + (c2, ..., cn)
with (b2, ..., bn) ∈ ψ(G) and (c2, .., cn) ∈ ψ(S).

Remark. In particular, if φ(x̄, ȳ) is a pp-formula in L0 and c̄ = c1, . . . , cn are some
constants from C. Then GS |= φ(g + s, c) if and only if G |= φ(g, c) and S |= φ(s, 0).

1.3 The totally transcendental case

We consider an abelian structure G with constants, in the language Lc, and we denote
its theory by T.

Recall that in a totally transcendental group, there is no infinite strictly decreasing
sequence of definable subgroups. It follows easily that the same is true for cosets:

Lemma 1.8. If M is a totally transcendental group then every infinite intersection of
definable cosets in Mn is equivalent to a finite intersection.

The following lemmas (1.9 to 1.12) are well known for the case of modules (in the
usual language for modules, see [20]) and mostly folklore for abelian structures. The
proofs are similar to the ones in the case of modules.

Definition. Let M be a model of T. We say that M is pure injective if every set of
pp-formulas with parameters in M (with possibly infinitely many variables) which is
finitely realized in M is realized in M .

Lemma 1.9. If T is totally transcendental then every model of T is pure injective.
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Proposition 1.10. If G0 is an elementary substructure of G and is pure injective, then
there exists f , an Lc-homomorphism from G to G0, such that f is the identity on G0.

Corollary 1.11. If G0 is an elementary substructure of G, then G = G0 ⊕G1 and for
each pp-definable subgroup H ⊂ Gn in L0, H = H ∩ (G0

n)⊕H ∩ (G1
n).

Proof. Let G1 = ker f where f is given by the previous proposition. Then g = f(g) +
(g− f(g)) and g− f(g) ∈ Kerf for each g ∈ G: indeed f(g− f(g)) = f(g)− f(f(g)) =
f(g)− f(g) = 0. We have the same property for cartesian product. So we can suppose
that H ⊂ G to simplify the notation. Since H is a pp-definable subgroup and f is an
L0-homomorphism, f(H) ⊂ H∩G0 and so f(H) = H∩G0. Thus H = H∩G0⊕H∩G1:
for each h ∈ H, f(h) ∈ H ∩G0 and (h− f(h)) ∈ ker f ∩H.

Let G = G0 ⊕ G1, as above, where G0 is an elementary substructure of G, and
G1 = ker f , f given by Prop. 1.10. Let G1 be the following abelian structure on G1 in
the language L0 :

G1 =< G1,+,−, 0, (Hi ∩Gni
1 )i∈I > .

Then G = G0 ⊕G1 as abelian structures (see section 1.2) and by lemma 1.7:

Lemma 1.12. For every subgroup H of Gn definable by a pp-formula φ in G, the group
φ(G1) := {a ∈ G1

n : G1 |= φ(a)} is equal to H ∩Gn
1 .

Let T1(G) be the following modification of the axioms T (G) :

- the axioms for abelian groups,

- for each original predicate H from L0, “H is a subgroup”,

- the equivalence sentences from T (G),

- “[φ : ψ] is infinite” for every pair of pp-formulas such that in G, ψ(G) ⊂ φ(G) ⊂ G
and [φ(G) : ψ(G)] is infinite,

- [φ : ψ] = 1 for every pair of pp-formulas such that in G, ψ(G) ⊂ φ(G) ⊂ G and
[φ(G) : ψ(G)] is finite.

Proposition 1.13. If G is |G0|+-saturated, T1(G) axiomatizes the complete theory of
the abelian structure G1, that is T1(G) ` T (G1).

Proof. We show first that G1 is a model of T1 := T1(G). By Lemma 1.12, G1 satisfies the
equivalence sentences from T (G). LetK ⊂ H be a pair of pp-definable subgroups of G. If
[H : K] is infinite then by |G0|+-saturation of G, [H : K] > |G0|. Thus [H∩G1 : K∩G1]
is infinite. If [H : K] is equal to k, since G0 is an elementary substructure, there are
a1, ..., ak ∈ G0 such that H = a1 +K ∪ ... ∪ ak +K. Let x ∈ H ∩G1. Then x = ai + b
where b ∈ K. Let f be as in Prop. 1.10, then 0 = f(x) = f(ai) + f(b) = ai + f(b). But
f(b) ∈ K, so x ∈ K and H ∩G1 = K ∩G1.

Now we show that T (G1) is a consequence of T1. Let φ and ψ be a pair of pp-formulas
from L0 which define subgroups H and K of Gn such that H ∩Gn

1 = K ∩Gn
1 . We have

to show that the sentence ∀x̄ (φ(x̄) ↔ ψ(x̄)) is a consequence of T1. Note first that if
K ⊂ H and [H : K] is finite, this follows from the last axioms by an easy induction on
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n. But we can consider the pair K ∩ H ⊂ H and remark that [H : K ∩ H] is finite:
indeed, if [H : K ∩H] was infinite, then [H ∩ Gn

1 : K ∩H ∩ Gn
1 ] would be infinite. For

the dimension sentences, suppose now that H and K are pp-definable subgroups of G
such that K ∩G1 ⊂ H ∩G1. Then the sentence for the index of [H ∩G1 : K ∩G1] is a
consequence of the sentence from T1 corresponding to the pair of pp-formulas ψ ∩φ and
φ.

Remark 1.14. Note that G1 contains no non trivial finite pp-definable subgroup. So,
in G1, the algebraic closure of the empty set is reduced to 0 and algebraic closure
corresponds to definable closure.

Suppose now that G is a model of T and that S is a model of the theory T1 := T1(G),
and consider the Lc-structure GS = G⊕ S as in section 1.2, then:

Corollary 1.15. If S is a model of T1 and G is a model of T, then GS is a model of
T and the map i from G into GS, i(g) = (g, 0) is an Lc-elementary isomorphism (i.e.
G⊕ {0} is an Lc-elementary substructure of GS).

Proof. Let φ and ψ be two pp-formulas such that φ(G) ⊂ ψ(G). Then φ(S) ⊂ ψ(S) (by
equivalence sentences). If [ψ(G) : φ(G)] = k then ψ(S) = φ(S) (by T1), so [ψ(GS) :
φ(GS)] = k. If [ψ(G) : φ(G)] = ∞ then [ψ(GS) : φ(GS)] = ∞. Thus, GS is a model of
T, so G⊕ {0} and GS are elementarily equivalent, and it follows by pp-elimination in T
and Lemma 1.7 that G⊕ {0} ≺ GS.

2 The strongly minimal case

We remind the reader that a structure M is said to be strongly minimal if every
definable subset of M (with parameters possibly in an elementary extension of M) is
finite or co-finite. If M is strongly minimal, model theoretic algebraic closure (denoted
acl) defines a pregeometry on M , in particular, for any X ⊂ M , the dimension of X
(the cardinality of a maximal algebraically free subset in X) is well defined. We say
that M is trivial, or has trivial pregeometry if, for all A ⊂ M , acl(A) =

⋃
a∈A acl{a}.

We say that M is locally modular if for all algebraically closed X, Y ⊂ M , such that
dim(acl(X∩Y )) > 0, dim(X∪Y ) = dim(X)+dim(Y )−dim(X∪Y ). We will explicitly
state the results we use about locally modular strongly minimal groups. For proofs and
details we refer to [19], [4] or [15].

By a strongly minimal group, we mean, as usual, that G is a group with possibly
extra structure, in a language L, which is strongly minimal as an L-structure.

Let G = (G,L) be a strongly minimal group in a language L. Let G0 := G ∩ acl(∅).
A quasi-endomorphism of G is a connected subgroup H of G2, definable over acleq(∅),
different from G2, such that the first projection of H is equal to G. It follows that H is
strongly minimal. We define the kernel of H and the cokernel of H to be respectively:

KerH := {a ∈ G : (a, 0) ∈ H}, Coker(H) := {a ∈ G : (0, a) ∈ H}.

The cokernel of H is always finite, and if H is not trivial, that is if H 6= G × 0, the
kernel of H is finite. We denote by QS(G) the set of quasi-endomorphisms of G.
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Remark: By strong minimality, if G0 is infinite, G0 is an elementary substructure of G
and in that case, all quasi-endomorphisms of G are actually definable over G0. In any
case, if M0 is a prime model for Th(G), all quasi-endomorphisms are definable over M0.

A quasi-endomorphism induces an endomorphism of G/G0: if H ∈ QS(G), then {(a +
G0, b + G0) : (a, b) ∈ H} is the graph of an endomorphism fH of G/G0. Furthermore
the map which to every H ∈ QS(G) assigns the endomorphism fH is a bijection from
QS(G) onto the ring of the “quasi-definable” endomorphisms of G/G0. The ring of
endomorphisms of G/G0 induces the structure of a division ring on QS(G).

In the case of a locally modular group, the pregeometry on G defined by the relation
of algebraic closure corresponds to the geometry of QS(G)-vector spaces. More precisely:

Fact 2.1. Let G be a locally modular strongly minimal group, let b, a1, . . . , an ∈ G. then
b ∈ acl(a1, . . . , an) if and only if there are quasi-endomorphisms S1, . . . , Sn and elements
h1, . . . , hn ∈ G such that for each i, 1 ≤ i ≤ n,

(ai, hi) ∈ Si and b− (h1 + . . .+ hn) ∈ G0.

Any strongly minimal abelian structure A is locally modular and by 1.6, all quasi-
endomorphisms of A are definable over ∅.

By general results about one-based groups (see section 3.4), any locally modular
strongly minimal group is “almost interdefinable” with a strongly minimal abelian struc-
ture. This will enable us at the end to reduce to the case of finitely axiomatizable abelian
structures.

From now on in this section, G is a strongly minimal abelian structure
with constants, in the language Lc.

Consider, T (G), the axiomatization of the theory of G given in the previous sections,
and T1 = T1(G), the associated theory.

Note that one can see directly from the axiomatizations of the form T (G) when an
abelian structure is strongly minimal: by pp-elimination G will be strongly minimal if
and only if G is infinite and for any pp-definable subgroup H of G, H is finite or equal
to G.

Lemma 2.2. The theory T1 is strongly minimal.

Proof. First a model of T1 must be infinite (the formula x = x is a pp-formula). Let φ
be a pp-definable subgroup of G. By strong minimality of G, either φ is finite, or φ is
equal to G. Hence in any model H of T1, φ is trivial or φ = H. By pp-elimination, T1

is also strongly minimal.

We also know (see Remark 1.14) that in any model of T1, acl(∅) = {0} and acl = dcl.
It follows easily that if G1 is a model of T1 and if K1 is the division ring of quasi-
endomorphisms of G1, the structure on G1 is exactly the K1-vector space structure. But
we want to check that K1 = K, where K is the division ring of quasi-endomorphisms of
G.

Let us recall the definition of interdefinability:
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Definition 2.3. Let M1 = (M,L1) and M2 = (M,L2) be, respectively, L1 and L2-
structures with the same universe M . Let A ⊂M , we say that M1 is A-definable in M2

if every A-definable subset in M1 is A-definable in M2, equivalently, if every symbol in
the language L1 is A-definable in M2. We say that M1 and M2 are A-interdefinable
if each Mi is A-definable in the other, equivalently, if M1 and M2 have the same
A-definable subsets.

Proposition 2.4. Let K be the division ring of quasi-endomorphisms of G. Then, if S
is any model of T1, S carries a K-vector space structure with which it is ∅-interdefinable.

Proof. Let G′
S = G′ ⊕ S, where G′ is a countable elementary substructure of G (take

for G′, G0 = acl(∅), if it is infinite) and S is any model of T1. Then G′
S is a model

of T, the theory of G (1.15). Let φr(x, y) be a pp-formula which defines the quasi-
endomorphism r ∈ K. By the axioms in T1, in S × S, φr(x, y) defines a subgroup such
that its first projection is equal to S, which is strict and connected, hence which is a
quasi-endomorphism of S. The kernel, {y ∈ S : S |= φr(0, y)}, must be trivial, as well
as the co-kernel. So φr(x, y) defines an endomorphism of S. It follows easily that the
set of pp-formulas (φr : r ∈ K) induce a K-vector space structure on S.

Now, it suffices to prove that any two tuples, a1, ..., an and b1, ..., bn, of S have the
same L0-type if they have the same K-vector space type.

Claim. Let a, b, a1, .., an ∈ S be such that a is K-linearly independent from a1, ..., an and
b is also K-linearly independent from a1, ..., an, then there exist an L0-automorphism of
S which sends a to b and fixes a1, ..., an.

Proof. In the structure G′
S, (0, a) /∈ acl((G′⊕{0})∪{(0, a1), ..., (0, an)}) (in the language

Lc): otherwise, there would be r1, ..., rn ∈ K, (x1, y1), ..., (xn, yn) ∈ G′
S and g ∈ G′ such

that
(0, a) = (x1, y1) + ...+ (xn, yn) + (g, 0) and G′

S |= φri
((0, ai), (xi, yi)).

But then, a = y1 + ... + yn = r1a1 + .... + rnan. Similarly (0, b) /∈ acl((G′ ⊕ {0}) ∪
{(0, a1), ..., (0, an)}).
Since G′

S is strongly minimal and G′ ⊕ {0} ≺ G′
S, there exists an automorphism τ of

G′
S which sends (0, a) to (0, b) and fixes pointwise G′ ⊕ {0} and (0, a1), ..., (0, an). From

τ we construct easily an L0-automorphism of S which sends a to b and fixes a1, ..., an:
just let σ(s) := s′ if τ(0, s) = (x, s′).

Let a1, ..., an and b1, ..., bn be two tuples of S which have the same K-vector space
type. Assume that a1, .., ak are K-linearly independent and for every j > k, aj is
dependent on a1, .., ak. By the previous claim, there is an L0-automorphism σ of S
which sends a1a2...ak on b1....bk. But, then for every j > k, σ(aj) = bj.

Remark. If G is such that G0 = acl(∅) = 0, then T = T1 and G itself has the structure
of a K-vector space. In that case, it will follows directly that T is finitely axiomatizable
if and only if the theory of infinite K-vector spaces is finitely axiomatizable, and hence
if and only if (see section 3.2.2) K is finitely presented as a ring.
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3 Application to finite axiomatizability

In [17] Paljutin shows that “There exists a finitely axiomatizable, not locally finite
categorical quasi-variety if and only if one of the following conditions hold:

1) there exists an infinite finitely presented ring which is a division ring;

2) there exists an infinite finitely presented group with a finite number of elements
g1, . . . , gn such that every non trivial cyclic subgroup of G intersects one of the conjugacy
classes of the elements g1, . . . , gn.”

The proof proceeds by showing first that, if there is a such a finitely axiomatizable
quasi-variety (a quasi-variety is the class of models of a set of universal Horn sentences),
then there exists one which is “standard”, where the standard quasi-varieties are either
K-vector spaces for a division ringK, or the Cayley graph of a group. Then he shows that
if the quasi-variety of K-vector spaces is finitely axiomatizable and not ω-categorical,
K must satisfy 1), and that if the Cayley graph of G is finitely axiomatizable and not
ω-categorical, then G must satisfy 2) (a proof of this part, due to M.A. Taitslin and
Yu.E. Shimarev had already appeared in [1]).

The existence of such a ring and such a group are both still open. The existence of an
infinite finitely presented group with finitely many conjugation classes is a well-known
long standing open question, but the existence of the a priori weaker condition required
in 2) is also open.

Concerning the existence of a ring satisfying 1), it seems that it is already unknown
whether there exists an infinite finitely generated ring which is a division ring. One can
only easily see that such a division ring cannot be commutative (see section 3.2.2 below).

For some years now A. Ivanov has been working on the conjecture that the existence
of any finitely axiomatizable strongly minimal trivial set must imply the existence of
a group satisfying 2) and has proved some partial results ([12, 13]). The idea behind
this conjecture is that such a group should appear as a subgroup or a quotient of the
automorphism group of a connected component of the trivial strongly minimal set.

As explained in the introduction, Hrushovski then showed in [10] that any finitely
axiomatizable ℵ1-categorical theory must be locally modular and suggested the conjec-
ture that if the theory has non trivial pregeometry, then the associated division ring of
quasi-endomorphisms must satisfy 1).

In order to be quite self-contained on the subject of finite axiomatizability, and
because sometimes a certain confusion arises on what exactly is meant by finite axiom-
atizability (in the case of an infinite language, for example), we will present in the next
section precise definitions and basic transfer properties. For the same reasons, in section
3.2, we will present a detailed exposition of the two “standard” cases.

3.1 Transferring finite axiomatizability

We are going to need to transfer the property of being finitely axiomatizable through
various changes of languages and interpretations, and to be quite precise when we do it.
We have unfortunately not found a completely adequate reference for our purpose, which
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we could have simply quoted or referred to. Most of what follows appears in various
places under slightly different forms. The closest references for bi-interpretability can be
found in [2] or, more recently, in [19]. In both cases the notions were used in the context
of quasi-finitely axiomatizable ω-categorical theories.

First, we need to recall precisely what it means for a theory in an infinite language
to be finitely axiomatizable.

¿From now on, when we use the word theory, we mean a consistant set of axioms
which is closed under deduction.

Definition 3.1. Let L be an infinite language and T a theory in L. We say that T is
finitely axiomatizable if there is a finite sub-language L0 of L such that any model
M of T is interdefinable (Definition 2.3) with its reduct to L0 and the theory TL0 , the
restriction of T to the language L0, is finitely axiomatizable in L0. We then say that T
is finitely axiomatizable in the finite language L0.

The following easy lemma will be useful later:

Lemma 3.2. Let T be a theory in a language L, let L0 be a sub-language of L and let
Σ be a subset of sentences from T with the following properties:

– for every predicate symbol R(x̄) in the language L, Σ includes a sentence of the
form ∀x̄ (φR(x̄) ↔ R(x̄)) where φR(x) is a formula in L0,

– for every function symbol f(x̄) in L, Σ includes a sentence of the form ∀x̄∀y (φf (x̄, y) ↔
f(x̄) = y) where φf (x̄, y) is a formula in L0,

– for every constant symbol c in L, Σ includes a sentence of the form ∀x (φc(x) ↔
x = c) where φc(x) is a formula in L0.

Then T is axiomatized by Σ ∪ TL0.

Finite axiomatizability is easily seen to transfer through interdefinability.

Lemma 3.3. Let M1 = (M,L1) and M2 = (M,L2) be two structures on the same
domain M which are interdefinable. Then Th(M1) is finitely axiomatizable if and only
if Th(M2) is finitely axiomatizable.

First some basic remarks about extending the language while keeping finite axioma-
tizability:

Lemma 3.4. (i) Let M = (M,L) be a structure in a finite language L. If E is a
∅-definable equivalence relation in M then the theory of M has a finite axiomatization
if and only if the theory of the reduct of Meq, ME = (M,Mn/E, L, fE) has a finite
axiomatization.

(ii) Let M = (M,L) be a structure in a finite language L. Let ā be a tuple of M
such that the type of ā is isolated. Then the theory of M has a finite axiomatization if
and only if the theory of Mā = (M,L, ā) has a finite axiomatization.

We now check that one can reduce questions of finite axiomatizability for ℵ1-categorical
one-based groups to the case of abelian structures.

Recall the fundamental properties of one-based groups (the reader can take Property
1 as a definition for one-based groups)
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Fact 3.5. [11] 1. A group G is one-based if and only if, for every n ≥ 1, every definable
subset of Gn is a Boolean combination of definable cosets of connected definable subgroups
of Gn.
2. A one-based group is definably abelian by finite, that is, has a definable normal abelian
subgroup of finite index.
3. Let H be a one-based group. Let S ⊂ Hn be a definable connected subgroup. Then S
is definable over acleq(∅).

Corollary 3.6. Let G be an ℵ1-saturated one-based group. Fix M0 a countable elemen-
tary sub-model of G. Let A ⊂ G; any A-definable subset of Gn is a Boolean combination
of A-definable cosets of some M0-definable connected subgroups.

Now let G = (G,L) be an ℵ1-saturated connected one-based group. Fix some count-
able elementary sub-model of G, M0. Let (Hi)i∈I be the family of all connected M0-
definable subgroups in

⋃
n≥1G

n. Let G be the following abelian structure:

G =< G,+,−, 0, (Hi)i∈I , (m)m∈M0 > .

Then it follows from Fact 3.5 and Corollary 3.6 that G and G are M0-interdefinable.

Corollary 3.7. Let G be an ω-stable one-based connected group such that Th(G) is
finitely axiomatizable in a finite language L. Then there is a finitely axiomatizable abelian
structure with constants G, which is interdefinable with a finitely axiomatizable expansion
of G by finitely many constants.

Proof. Without loss of generality, suppose that G is ℵ1-saturated. Consider M0 � G,
the prime model of Th(G), by ω-stability. Consider the abelian structure G described
above which is M0-interdefinable with G. As the language L is finite, we can choose a
finite family H1, . . . , Hk and a finite sequence m0, . . . ,mn of elements from the prime
model M0, such that every symbol from the language L can be defined in the restriction
G1 of G to the finite language

L1 := {+,−, 0, (Hi)1≤i≤k, {m0, . . . ,mn}}

and such that every Hi is definable in G over {m0, . . . ,mn}. Now add {m0, . . . ,mn}
as new constants to the language L of G. As M0 is atomic, the tuple (m0, . . . ,mn)
has isolated type over ∅ in L. By Lemma 3.4, the theory of the expansion G ′ of G to
L′ := L ∪ {m0, . . . ,mn} remains finitely axiomatizable. Now the structures G ′ and G1

are interdefinable (over ∅). Hence by Lemma 3.3 Th(G1) is finitely axiomatizable.

We will also need to check that an ℵ1-categorical group is finitely axiomatizable if
and only if its connected component is. This is a particular case of the transfer of finite
axiomatizability by bi-interpretability.

Recall the definition of bi-interpretability from [2], or [19]:

Definition 3.8. Let M = (M,L1) and N = (N,L2). We say that M is ∅-interpretable
in N if there is a ∅-definable subset U of Nn, and a surjective map f , from U onto M
such that:
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– the equivalence relation Ef on U × U defined, for (a, b) ∈ U × U , by f(a) = f(b)
is ∅-definable in N ,

– for every k-ary relation symbol R in L1, the subset Rf of Uk, Rf := {(a1, . . . , ak) ∈
Uk ; M |= R(f(a1), . . . , f(ak))} is ∅-definable in N ,

– for every k-ary function symbol h in L1, the subset Grf (h) := {(a1, . . . , ak, b) ∈
Uk+1 ; M |= g(f(a1), . . . , f(ak)) = f(b)} is ∅-definable in N ,

– for every constant symbol c in L1, the subset cf := {a ∈ U : M |= f(a) = c} is
∅-definable in N .

It follows that f induces an isomorphism of L1-structures between U/Ef (subset of
N eq) and M.

If M is interpretable in N , via the surjective map f from U ⊂ Nk onto M , and
N is interpretable in Q = (Q,L3), via the surjective map g from V ⊂ Qn onto N , let
W := {(q1, . . . , qk) ∈ (Qn)k : (g(q1), . . . , g(qk)) ∈ U}. We denote by f ◦ g the obvious
induced map from W ⊂ Snk onto M . One checks easily that f ◦ g is an interpretation
of M in Q.

If M is interpretable in N , via f , and N is interpretable in M via g, we say that
M and N are bi-interpretable if f ◦ g is a ∅-definable map in M and g ◦ f a ∅-definable
map in N .

We leave the checking of the following lemma to the reader.

Lemma 3.9. LetM be an L1-structure and N an L2-structure which are bi-interpretable.
Then Th(M) is finitely axiomatizable if and only if Th(N ) is.

We recall the definition of an induced structure on a definable subset:

Definition 3.10. Let M be an L-structure and D be a ∅-definable subset of Mn. The
induced structure from M on D is the structure < D, (Pφ){φ formula in L} >, where, for

φ(x1, . . . , xk), |xj| = n, Pφ is a predicate of arity k which is interpreted on D by the set
Dk ∩ φ(Mnk).

Lemma 3.11. Let M be an L-structure which is the union of a finite definable partition,
that is, M = M1∪. . .∪Mn, where, for 1 ≤ i < j ≤ n, Mi is ∅-definable and Mi∩Mj = ∅.
Suppose furthermore that for each i > 1 there is a ∅-definable bijection, fi from M1 onto
Mi and that L contains n constant symbols {c1, . . . , cn} which are interpreted in M
by distinct elements of M1. Consider M1 together with its induced structure from M,
denoted M1. Then M and M1 are bi-interpretable.

Proof. Let U := M1×{c1, . . . , cn} ⊂M1
2 and let f : U 7→M , f(x, ci) = fi(x), where f1

is the identity on M1. Then f gives an (injective) interpretation of M into M1. Indeed,
for any k-ary predicate symbol R from L, the set Rf = {(a1, . . . , ak) ∈ U : M |=
R(f(a1), . . . , f(ak)} is a basic predicate in the language of the induced structure, hence
certainly definable. Similarly for the other symbols of L.

Let g : M1 ⊂ M 7→ M1 be the identity. Let W := {(x, y) ∈ U : f(x, y) ∈ M1} =
M1×{c1}. Then g ◦ f : W 7→M1 is an interpretation of M1 into itself. For (x, c1) ∈ U ,
g ◦ f(x, c1) = x is the first projection and is hence ∅-definable in M1.

14



Let W ′ := {(x, y) ∈M1×M1 : (g(x), g(y)) ∈ U}. Then W ′ = U = M1×{c1, . . . , cn},
and f ◦ g(x, ci) = fi(x) is ∅-definable in M.

Corollary 3.12. Let G = (G,L) be an ω-stable group in a language L. Let G0 be the
connected component of G, G0, with the induced structure from G. Then Th(G) is finitely
axiomatizable if and only if Th(G0) is finitely axiomatizable.

Proof. By ω-stability, G0 is ∅-definable in G and has finite index in G. By ω-stability
again, there is a prime model G1, G1 � G, atomic over ∅. Choose a1, . . . , an in this
prime model such that G = a1G

0 ∪ . . . ∪ anG
0, with a1 = 1. Choose c1, . . . cn dis-

tinct elements from G1
0, the connected component of G1. Then the type of the tuple

a1, . . . , an, c1, . . . , cn is isolated over the empty set. Let T denote the complete theory
of G in the language L together with {a1, . . . , an, c1, . . . , cn} added as new constants.
By 3.4, Th(G) (in L) is finitely axiomatizable if and only if T is. Similarly, let T0 be
Th(G0) in the language with {c1, . . . , cn} added as new constants, then Th(G0) is finitely
axiomatizable iff T0 is. We are now in the situation of Lemma 3.11: G is the union of
a finite ∅-definable partition a1G

0 ∪ . . . ∪ anG
0, and for each i, there is a ∅-definable

bijection fi from aiG
0 onto a1G

0 = G0, fi(aig) = g. The result then follows by 3.11 and
3.9.

3.2 The classical examples

Before we start on the description of the two emblematic examples, we would like to
draw the reader’s attention to the following: if T is a theory in L which is finitely
axiomatizable in a finite sub-language L0 of L then it is certainly finitely axiomatizable
in every finite sub-language L1 of L containing L0 (Lemma 3.2), but one should be a
little careful. For example suppose that T is a complete theory in an infinite language
L, which is finitely axiomatizable in a finite sub-language L0 of L. Let F0 be a finite set
of axioms for TL0 , and let Σ be an arbitrary infinite set of axioms in L for the complete
theory T . By compactness some finite subset Σ1 of Σ will axiomatize TL0 . But if L1 is
the finite sub-language of L containing all symbols appearing in Σ1, there is no reason
that Σ1 ` TL1 , or equivalently there is no reason for Σ1 to axiomatize a complete theory
in the language L1. This explains the care taken in identifying the right set of axioms
in the following proofs.

3.2.1 The trivial example

First, recall that for any non trivial group G, the theory TG which describes G acting
semi-regularly (the stabilizer of every element is trivial) on an infinite set, in the language
LG := {g : g ∈ G}, where each g is a unary function symbol, is strongly minimal,
eliminates quantifiers and has trivial geometry. The theory TG is ω-categorical if and
only if G is finite. If G is infinite, the Cayley graph of G (that is the regular action of
G on itself by left multiplication) is a model of TG. The theory TG can be axiomatized
by the following set of axioms, ΣG, if G is infinite:

– ∀x 1(x) = x;
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– ∀x g(x) 6= x, for every g 6= 1 ∈ G;

– ∀x g(h(x)) = r(x), for every g, h, r ∈ G such that gh = r.

If G is finite, then TG can be axiomatized by ΣG together with the scheme for infinity.

Note that, for any model M of TG, for any a ∈M , the definable closure of {a} in M in
the language LG is the G-orbit of a.

Now suppose that we have a presentation of G, i.e. that G is isomorphic to the free
group on S = {si; i ∈ I} modded out by a normal subgroup P . Then the theory TG is
clearly interdefinable with the following theory in the language LS = {s : s ∈ S}, which
we denote by ΣS: let W be the set of words on S,

– ∀xw(x) = x for every w ∈ P ,

– ∀xw(x) 6= x for every w ∈ W \ P .

Suppose that G is an infinite finitely presented group G, with a finite number of
conjugation classes C1, . . . Ck such that every non trivial cyclic subgroup of G intersects
one of the Ci’s. Then TG is finitely axiomatizable (in the sense of Definition 3.1). Indeed,
choose F = {g1, . . . , gn} ⊂ G such that: for every j, gj 6= 1, F generates G, there is a
finite set P0 of words on F which generates the presentation of G, P , F is closed under
inverse, and for every g ∈ G \ {1}, there is some m > 0 such that gm is conjugate to
one of the gj’s. Let ΣF be the (complete) set of axioms described above, in the finite
language LF := {g1, . . . , gn}, which is interdefinable with TG. Consider Σ0, the following
finite subset of ΣF :

– ∀x gj(x) 6= x, for every j, 1 ≤ j ≤ n,

– ∀xw(x) = x, for every w ∈ P0.

We must check that Σ0 is an axiomatization for ΣF . If w ∈ P , then, for all x, w(x) = 1
as P is the normal subgroup generated by P0. If g is any word on F , and g 6∈ P , we
must check that for all x, g(x) 6= x. By assumption, there are m > 0, gj ∈ F and h ∈ G,
such that gm = h−1gjh. If g(x) = x for some x, then gm(x) = x = h−1(gj(h(x)), hence
h(x) = gj(h(x)). But this contradicts Σ0.

Conversely, suppose that G is infinite and that the theory TG is finitely axiomatizable.
Let F ⊂ G, be finite such that T := TG is finitely axiomatizable in the sub-language
LF := {f ; f ∈ F}, that is, such that any model of TG is interdefinable with its reduct to
LF , and the (complete) theory TG|LF is finitely axiomatizable. Let H be the subgroup
of G generated by F . Then TG|LH contains the theory TH , which is complete, hence it
is equal to TH . In the language LG, G which is a model of TG, is equal to the definable
closure of the identity element 1. Similarly, H is, in LH the definable closure of 1. By
interdefinablity of LG with LF , G is also equal to the definable closure of 1 in LF , hence
also in LH . It follows that G = H.
So we know that G is finitely generated, hence isomorphic to the free group on a finite
set of generators S, which we suppose closed under inverse, modded out by a normal
subgroup P . Let W be the set of all words on F . Pass to the theory TS (axiomatized
by ΣS) in the finite language {s : s ∈ S}, which is interdefinable with TG, By finite
axiomatizability, there is a finite subset W0 of W (the set of words on S) such that ΣS

can be axiomatized by ΣW0 :
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– ∀xw(x) = x for every w ∈ W0 ∩ P ,

– ∀xw(x) 6= x for every w ∈ W0 \ P .

We can suppose that, for every s ∈ S, ss−1 ∈ W0.

Let N be the normal subgroup generated by W0 ∩ P in D, the free group on S. By
construction N ⊂ P . The Cayley graph of D/N , in the language LS is a model of ΣW0 ,
hence is interdefinable with a model of ΣS. It follows that N = P and G ∼= D/N .
Let h ∈ G, h 6= 1, let H denote the subgroup generated by h in G, and G/H the set of
left cosets, equipped with an LG structure by the left action of G. As the action of G is
not semi-regular on G/H, G/H is not a model of ΣS, hence by finite axiomatizability,
it is not a model of ΣW0 . So there is some g ∈ W0 \ N and some coset aH such that
g(aH) = aH, that is, such that a−1ga = hn for some integer n. So any non trivial
element h has a power which is conjugate to one of the g′s in W0.

3.2.2 Vector spaces

Let K be any countable division ring. Let LK be the usual language for K-vector spaces,
LK := {+,−, 0, (k)k∈K}, where k is a unary function interpreted as scalar multiplication
by the element k. Consider TK the theory of all infinite K-vector spaces in LK . The
theory TK is ℵ1-categorical and is totally categorical if and only if K is finite.

Suppose that K is an infinite division ring which is finitely presented as a ring. Then
the complete theory of K-vector spaces is finitely axiomatizable in the following way:
let F be a finite subset of K, which generates K as a ring and such that there is a finite
set of terms in F , P , which generates the presentation of K (a two-sided ideal J , such
that K is isomorphic to the quotient fo the free ring generated by F BY J). Then TK

is finitely axiomatized in LF := {+,−, 0, 1, (f)f∈F} by

– axioms for abelian groups

– ∀x 1(x) = x,

– ∀x ∀y f(x+ y) = f(x) + f(y), for every f ∈ F
– ∀xw(x) = 0, for every w ∈ P .

For the converse, we now suppose that the theory of infinite K-vector spaces is
finitely axiomatizable. By the classical results on the non finite axiomatizability of
totally categorical theories, the assumption forces K to be infinite.

Proposition 3.13. Let K be an infinite division ring. If the theory of K-vector spaces
is finitely axiomatizable then K is finitely presented as a ring.

Proof. Let TK be the theory of non trivial K-vector spaces, in the usual language LK =
{0,+,−, k : k ∈ K}.

Let X be a finite subset of K such that TK is finitely axiomatizable in the finite
language LX := {0,+,−, k : k ∈ X}.

Claim. K is generated as a skew field by X.
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Proof. Let K0 be the subfield of K generated by X. Then the theory TK0 of infinite K0-
vector spaces is a subset of T|LK0

and since TK0 is complete, they are equal. Now, consider
K as a K-vector space. Then K = dclLK

(1K) = dclLX
(1K) = dclLK0

(1K) = K0.

Denote by SK the classical axiomatization of TK :

1. ∃x x 6= 0;

2. axioms for abelian groups;

3. ∀x 1K(x) = x;

4. ∀x∀y k(x+ y) = k(x) + k(y), (k ∈ K);

5. ∀x k(x) + k′(x) = k′′(x), (k, k′, k′′ ∈ K, k′′ = k + k′);

6. ∀x k(k′(x)) = k′′(x), (k, k′, k′′ ∈ K, k′′ = kk′).

If A is a subset of K we will denote by SA the subset of sentences of SK in the
language LA := {0,+,−, k : k ∈ A}. A priori, SX does not give an axiomatization of the
complete theory TLX

, but since there is some finite axiomatization of TLX
by assumption,

there exists by compactness a finite subset Y containing X such that SY implies TLX
.

We are going to enlarge Y in order that SY implies the complete theory TLY
.

First we define the depth of elements of K relatively to X. We assume that 1K , OK ∈ X
and we define by induction a sequence (Wi)i∈ω of subsets of K such that W0 := X and

Wi+1 := {k ∈ K : k = −k1 or k = k−1
1 or k = k1 + k2 or k = k1k2 for k1, k2 ∈ Wi}.

Then K = ∪i∈ωWi since X generates K as a skew field K. We define the depth of k ∈ K
as the smallest integer n such that k ∈ Wn. Now by an easy induction, we can enlarge
Y so that it remains finite and for each k ∈ Y , if the depth of k is n + 1 then there
exists k1, k2 ∈ Y of depths at most n such that k = −k1, or k = k−1

1 , or k = k1 + k2 or
k = k1k2.

Claim. Then TLY
is axiomatized by SY .

Proof. We choose, by induction on the depth of elements of Y , for each k ∈ Y , a formula
φk(x, y) ∈ LX such that SY ` ∀x∀y (kx = y) ↔ φk(x, y) (we know by assumption that
there is such a formula for which T ` ∀x∀y (kx = y) ↔ φk(x, y), but we want one such
that the equivalence can be deduced from SY ). If k ∈ Y has depth 0 (i.e. k ∈ X), then
we let φk(x, y) := (kx = y). Assume that we have chosen a formula φk for each k ∈ Y
of depth less or equal to n. Let k ∈ Y have depth n+ 1. Then there exist k1, k2 ∈ Y , of
depth at most n, such that at least one of the following cases occur:

• k = −k1; in this case we let φk(x, y) := φk1(x,−y),

• or k = k−1
1 ; in this case we let φk(x, y) := φk1(y, x),
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• or k = k1 + k2; in this case we let

φk(x, y) := ∃t1∃t2 (φk1(x, t1) ∧ φk2(x, t2) ∧ (y = t1 + t2)) ,

• or k = k1k2; in this case we let

φk(x, y) := ∃t (φk2(x, t) ∧ φk1(t, y)) .

Since TK is finitely axiomatizable in the language LX and for each k ∈ Y , TLY
`

∀x∀y (kx = y) ↔ φk(x, y), the complete theory TLY
is axiomatized by

TLX
∪ {∀x∀y (kx = y) ↔ φk(x, y) : k ∈ Y }.

It follows that SY is an axiomatization of TLY
.

Now, we are going to prove that K is isomorphic to the finitely presented ring A,
given by the set of generators {k : k ∈ Y } and the presentation:

{1K−1}∪{k1+k2−k3 : k1, k2, k3 ∈ Y ; k3 = k1+k2}∪{k1k2−k3 : k1, k2, k3 ∈ Y ; k3 = k1k2}.

Remark that every non trivial A-module is a model of SY as an LY -structure, hence any
two non trivial A-modules are elementarily equivalent in the language LY . Furthermore,
any non trivial A-module has a canonical expansion to aK-vector space : by assumption,
for each k ∈ K, there is a formula θk ∈ LX ⊂ LY , such that T ` ∀x∀y (kx = y) ↔
θk(x, y). Define , for k ∈ K, m,n ∈M , km = n iff M |= θk(m,n).

Let ψ be the canonical morphism from A to K which sends each generator k ∈ Y
to k ∈ K. The morphism ψ is injective: consider the A-module structure on K given
via ψ, i.e. define ax := ψ(a)x. As A-modules, K and A are elementarily equivalent. In
A, if a 6= 0, then for some x, ax 6= 0, hence this is also true in K, which implies that
ψ(a) 6= 0.

Hence A has no zero divisors. Again by completeness of the theory of non trivial
A-modules, this implies that in all non trivial A-modules, if a 6= 0 ∈ A, if x 6= 0, then
ax 6= 0. This implies that A is a division ring: if a ∈ A\{0} was not left invertible, A/Aa
would be a non-trivial A-module satisfying that ax = 0 for some x 6= 0 (x = 1 + Aa).
Since X ⊂ ψ(A), X generates K as a skew field and ψ(A) is a skew field, we obtain that
ψ(A) = K.

Remark. As we have mentioned above, it seems to be an open question whether there
exists an infinite division ring which is finitely generated as a ring. It is easily seen,
though, that there is no such commutative division ring: Let K be a field which is
finitely generated as a ring, and let k denote its prime field (k = Fp or k = Q). As K is
finitely generated as a ring over k, then K is contained in kalg, the algebraic closure of
k. If K has characteristic p > 0, then K = Fp[a1, . . . , an] is finite. Otherwise k = Q, and
there are a1, . . . , an ∈ Qalg, such that K = Z[a1, . . . , an]. In that case, for some integer
m > 0, the ai’s are entire over A := Z[1/m] and K is finitely generated as an A-module.
As A is Noetherian, K is Noetherian as an A-module, and Q, as an A-submodule, must
also be finitely generated, which is impossible.
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3.3 Finitely axiomatizable strongly minimal abelian structures

We suppose that G is a strongly minimal abelian structure in a finite language Lc =
L0 ∪ {c ∈ C} such that its theory T is finitely axiomatizable. Recall from corollary 1.4
that T is axiomatized by the set of sentences T (G) together with the pp-type of the
constants. Let B be a finite axiomatization of T which consists of a finite subset A of
T (G) together with a finite subset of the pp-type of the constants. Denote by A1 the
following finite subset of T1 (as defined in section 1.8):

- the axioms for abelian groups,

- for each original predicate H from L0, H is a subgroup,

- the equivalence sentences in A,

- [φ : ψ] ≥ k for every k and for every pair of pp-formulas such that in G, ψ(G) ⊂
φ(G) ⊂ G, [φ(G) : ψ(G)] is infinite and the sentence [φ : ψ] ≥ k is in A,

- [φ : ψ] = 1 for every pair of pp-formulas such that in G, ψ(G) ⊂ φ(G) ⊂ G and for
some integer k, the sentence [φ(G) : ψ(G)] = k is in A,

- ∃x x 6= 0.

Lemma 3.14. For every model G of T and every model S of A1, the Lc-structure GS

(= G ⊕ S as in section 1.2) is a model of B and so, of T. Moreover, G ⊕ {0} is an
elementary submodel of GS.

Proof. The proof that GS is a model of B is exactly similar to the proof of 1.15. One
needs to check the dimensions only for the pp-subgroups φ, ψ such that a dimension
sentence of the form [φ : ψ] ≥ n (if it is infinite) or [φ : ψ] = n (if it is finite) appears in
A.

We are going to show that A1 gives an axiomatization for the complete theory T1. It
suffices to show that every model of A1 is infinite:

Lemma 3.15. If all models of A1 are infinite then A1 is a finite axiomatization of T1.

Proof. We show that any two models of A1 of cardinality ℵ1 are isomorphic, then if A1

has no finite models, it is complete and hence axiomatizes T1. Let G be a countable
model of T. (One can choose acl(∅) if it is infinite.) Let S1 and S2 be two models of A1

of cardinality ℵ1. Then by strong minimality, as G⊕ {0} is algebraically closed in GSi
,

there is an isomorphism between GS1 and GS2 which is the identity on G ⊕ {0}. From
this isomorphism one induces easily an isomorphism between S1 and S2.

Proposition 3.16. The ring of quasi-endomorphisms of G is infinite.

Proof. Suppose not. Let K denote the ring of quasi-endomorphisms, then K = Fq and
G has bounded exponent. In particular every finitely generated subgroup of G is finite.
We are going to construct a finitely generated subgroup of G which is a model of T,
contradicting the completeness of T.

First, we add the quasi-endomorphisms as predicates to the language: for each α ∈
Fq, denote by Hα the corresponding quasi-endomorphism, which is a strongly minimal
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subgroup ofG2, definable over ∅ by Lemma 1.6, such that its first projection is equal toG.
We add to Lc a predicate Ĥα for each α ∈ Fq. This preserves the finite axiomatizability
of G. So we can assume that the language Lc already contains the quasi-endomorphisms
as predicates. Now, we also, if necessary, add finitely many new predicates for some
pp-definable subgroups which appear in the axiomatization B, so that T has a finite
axiomatization containing only sentences of the following type where X, Y and Z are
amongst the predicates Ĥi of Lc:

1. G is a group;

2. the Ĥi ’s are subgroups;

3. the projection of X on the first k−1 coordinates is equal to Y (where X is k-ary);

4. the cartesian product of X and Y is equal to Z;

5. the intersection of X and Y is equal to Z;

6. X is equal to the group Y up to a fixed permutation of coordinates;

7. the index of X in Y is equal to k;

8. the index of X in Y is greater or equal to k ;

9. the tuple c is in X;

Remark that the sentences of types 3, 4, 5 and 6 correspond to the equivalence sentences
which occur in A.

Note that every subgroup G0 of G which contains all the constants, satisfies the
axioms of types 2, 4, 5, 6, and 9. For each sentence ΨX,Y,k of types 7 or 8, a subgroup G0

satisfies ΨX,Y,k if and only if it contains at least k elements of Y which are in different
cosets modulo X. Thus there exist finitely generated subgroups of G which satisfy the
finite set of axioms of types 1, 2, 4, 5, 6, 7, 8 and 9.

To deal with axioms of type 3, we need to find finitely generated subgroups which are
also “closed under projection” in the adequate sense. This is done in the two following
claims. We say that a subset X of G is stable under quasi-endomorphisms if for each
x ∈ X and each α ∈ Fq, the set {y ∈ G : (x, y) ∈ Hα} is a subset of X.

Claim. Let X be a definable subgroup of Gk. Then there exists a finite subset DX of G
such that, if G0 is any subgroup stable under quasi-endomorphisms which contains DX ,
if π denotes the projection from Gk onto the first k− 1 coordinates, then π(X)∩Gk−1

0 =
π(X ∩Gk

0).

Proof. Let l be the dimension (algebraic dimension = Morley rank) of X and (a1, ..., ak)
a generic point of X, that is a point of dimension l. Then, there are two cases.

Either, ak is independent of a1, ..., ak−1. It follows easily in this case that X = Y ×G
where Y = {(x1, ..., xk−1) : (x1, ..., xk−1, 0) ∈ X} and then for every subgroup G0,
π(X) ∩Gk−1

0 = π(X ∩Gk
0).
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Otherwise, by a permutation of coordinates we can assume that al+1, ..., ak are al-
gebraic over a1, ..., al. (Note that then every generic of X satisfies this property.) For
each j, l < j ≤ k, aj ∈ acl(a1, . . . , al); so (see Fact 2.1), there exist αj,1, ..., αj,l ∈ Fq

and bj,1, ..., bj,l ∈ G such that a′j = aj −
∑

1≤i≤l bj,i ∈ acl(∅) and for every i ≤ l,
(ai, bj,i) ∈ Hαj,i

.

Let T be the subgroup of Gk of elements (x1, ..., xk) such that there exist yl+1, ..., yk

with (x1, ..., xl, yl+1, ..., yk) ∈ X and for each j, l < j ≤ k, there exist yj,1, ..., yj,l with
xj = yj −

∑
i yj,i and i ≤ l, (xi, yj,i) ∈ Hαj,i

. Then (a1, . . . , al, a
′
l+1, . . . , a

′
k) ∈ T . Now let

T ′ := {(xl+1, ..., xk) : (0, ..., 0, xl+1, ..., xk) ∈ T}.
We claim that T ′ is finite and that T = Gl×T ′. Since X is of dimension l, the group

X ′ := {(xl+1, ..., xk) : (0, ..., 0, xl+1, ..., xk) ∈ X} is finite. It follows that T ′ is finite
because the cokernels of the quasi-endomorphisms are finite. Let (x1, ..., xl) be a generic
of Gl over (a1, ..., al). By strong minimality, (x1, ..., xl) and (a1, ..., al) have the same
type over acl(∅). Since (a′l+1, ..., a

′
k) ∈ acl(∅), we have (x1, ..., xl, a

′
l+1, ..., a

′
k) ∈ T and so

(x1 − a1, ..., xl − al, 0, .., 0) ∈ T . But (x1 − a1, ..., xl − al) is generic, so Gl × {0}k−l ⊂ T
and thus T = Gl × T ′.

Now, let G0 be any subgroup of G stable under quasi-endomorphisms such that Gk−l
0

contains T ′. Then π(X) ∩ Gk−1
0 = π(X ∩ Gk

0): indeed let (x1, ..., xl, yl+1, ..., yk) ∈ X be
such that x1, ..., xl ∈ G0, we are going to show that yk ∈ G0. For each j, l < j ≤ k,
take yj,1, ..., yj,l such that for each i ≤ l, (xi, yj,i) ∈ Hαj,i

. Then, by stability of G0 under
quasi-endomorphisms, yj,i ∈ G0 for each j, l < j ≤ k, and each i ≤ l. For each j,
l < j ≤ k, let zj = yj,1 + ... + yj,l and xj = yj − zj. Then (x1, ..., xl, xl+1, ..., xk) ∈ T
and as T = Gl × T ′, (xl+1, . . . , xk) ∈ T ′ ⊂ Gk−l

0 . So, in particular, xk ∈ G0 and thus
yk = xk + zk ∈ G0.

Claim. For every finite subset A ⊂ G, there is a finite subgroup G0 of G, containing A,
which is stable under quasi-endomorphisms.

Proof. Let A be a finite subset of G. For a subset X of G denote by X the set
∪(x,α)∈X×Fq{y ∈ G : (x, y) ∈ Hα}. Note that X is not necessarily stable under quasi-

endomorphisms (i.e. X is not necessarily equal to X).

For each (α, β) ∈ Fq
2, let Hα ◦Hβ denote the subgroup of G2 defined by the formula

∃z ((x, z) ∈ Hβ ∧ (z, y) ∈ Hα).

The quasi-endomorphism Hαβ is equal to the connected component of Hα ◦ Hβ. Let
X0 := {y ∈ G : (0, y) ∈ Hα ◦ Hβ for some (α, β) ∈ Fq

2} and let A0 be the finite
subgroup generated by A and X0. Let B be the set A0. We prove that B is stable under
quasi-endomorphisms : let α ∈ Fq, x ∈ B and y ∈ G be such that (x, y) ∈ Hα. By
definition of B, there exists β ∈ Fq and z ∈ A0 such that (z, x) ∈ Hβ. So (z, y) ∈ Hα◦Hβ.
Let y′ ∈ G be such that (z, y′) ∈ Hαβ. Then y − y′ ∈ X0 since (0, y − y′) ∈ Hα ◦ Hβ.
Remark that if α = 0 then y = 0 and if β = 0 then y ∈ X0. So assume that αβ 6= 0. Let
t ∈ G be such that (y − y′, t) ∈ H(αβ)−1 . Then t ∈ A0 since y − y′ ∈ X0 and X0 ⊆ A0.
Thus y ∈ B since (z + t, y′ + (y − y′)) ∈ Hαβ and z + t ∈ A0. Now consider G0 the
subgroup generated by B. Then G0 is also stable under quasi-endomorphisms since for

22



each x1, x2 ∈ G and each α ∈ Fq,

{y ∈ G : (x1 + x2, y) ∈ Hα} = {y1 ∈ G : (x1, y1) ∈ Hα}+ {y2 ∈ G : (x2, y2) ∈ Hα}.

Now by the previous claims we can find a finite subgroup of G, which contains
sufficiently many elements in different cosets for the axioms of type 7 or 8 to be satisfied,
which is stable under quasi-endomorphisms and contains each DHi

. Such a finite group
is a model of T.

Corollary 3.17. A1 is a finite axiomatization of the complete theory T1.

Proof. By lemma 3.15, it suffices to show that every model of A1 is infinite. Let S
be a model of A1. We work in the structure GS which is a model of T by 3.14. For
r ∈ K, let φr denote the corresponding pp-formula (over ∅). In GS, the kernel and
cokernel of φr are finite, hence, by Lemma 3.14, they must be contained in G ⊕ {0}
This means that φr restricted to {0} ⊕ S is a well-defined map. Let s ∈ S \ {0}. For
each r ∈ K, consider the unique (xr, yr) ∈ GS such that ((0, s), (xr, yr)) ∈ φr. Then, if
r 6= r′, yr 6= yr′ : indeed, if for r 6= r′, yr = yr′ then ((0, s), (xr − xr′ , 0)) ∈ (φr − φr′),
((xr − xr′ , 0), (0, s)) ∈ (φr − φr′)

−1 and hence s = 0.

By Proposition 2.4, T1 is interdefinable with the theory of non trivialK-vector spaces,
where K is the ring of quasi-endomorphisms of G. By Corollary 3.17 and Lemma 3.2,
the theory of K-vector spaces is finitely axiomatizable. By Proposition 3.13 we derive
immediately:

Corollary 3.18. The division ring K of quasi-endomorphisms of G is finitely presented
as a ring.

3.4 Finitely axiomatizable strongly minimal groups

Theorem 3.19. Let G be a strongly minimal group. If Th(G) is finitely axiomatizable
in a finite language L, then the quasi-endomorphisms ring of G is an infinite division
ring which is finitely presented as a ring.

Proof. By [10], a finitely axiomatizable strongly minimal group must be locally modular,
hence one-based.

Claim. If G is a strongly minimal locally modular group, and G ′ is an expansion of G
by a set C of constants, then G and G ′ have the same quasi-endomorphisms ring.

Proof. . For A ⊂ G, let S be any connected A-definable subgroup of G×G in G ′. Then
S is also definable in G, over A ∪ C. As G is one-based, by Fact 3.5, S is definable over
acleq(∅) in G. Conversely, any definable connected subgroup H in G remains connected
in G ′.
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Recall the construction from Corollary 3.7: we add finitely many constants from
M0, the prime model of Th(G). Let G ′ denote the expansion of G to the new language
L′ = L ∪ {m0, . . . ,mn}. Then G ′ is interdefinable with some finitely axiomatizable
abelian structure G =< G,+,−, 0, H1, . . . , Hk,m0, . . . ,mn >. It follows that G and
G have the same quasi-endomorphisms ring, as a quasi-endomorphism is a definable
connected subgroup of G×G. (Note that, as in G every definable connected subgroup
is defined over ∅ (Proposition 1.6), the same is true in G ′. Hence in G every definable
connected subgroup was already definable over {m0, . . . ,mn}.)

By Corollary 3.18, the division ring of quasi-endomorphisms of G is finitely presented
as a ring. As remarked above, this is also the division ring of quasi-endomorphisms of
G.

By Corollary 3.12, we derive immediately:

Corollary 3.20. Let G be a Morley Rank one group. If G is finitely axiomatizable then
the quasi-endomorphism ring of its connected component is an infinite division ring
which is finitely presented as a ring
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