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Abstract

Assume G is a group definable in a model M of a stable theory T . We
prove that the semigroup SG(M) of complete G-types over M is an inverse
limit of some semigroups type-definable in M eq. We prove that the maximal
subgroups of SG(M) are inverse limits of some definable quotients of subgroups
of G. We consider the powers of types in the semigroup SG(M) and prove that
in a way every type in SG(M) is pro-finitely many steps away from a type in
a subgroup of SG(M).

Introduction

Assume H is a group and X is a compact topological space upon which H acts
by homeomorphisms. In this case X is called an H-flow. We call an H-flow X
point-transitive if X contains a dense H-orbit. This is the basic set-up of topological
dynamics [E, A].

In several papers [N4, N5, N6] I proposed to apply the language and tools of
topological dynamics in model theory. Specifically, assume T is a complete theory
in language L, C is a monster model of T , G is a group 0-definable in C and M ≺ C
is a (small) model of T . Then the group G(M) acts by left translation on the space
SG(M) of complete G-types over M and SG(M) is a point-transitive G(M)-flow.

In the stable case the crucial role is played by generic types in SG(M). In gen-
eral, generic types may not exist. Topological dynamics provides us with a natural
surrogate for this notion, namely that of an almost periodic and of weakly generic
type in SG(M). Also, the Ellis semigroup of the flow SG,ext(M) of complete external
G-types over M has interesting model-theoretic connotations.

Although [N4, N5, N6] contain some applications of topological dynamics in
model theory, the topological-dynamic set-up seems too general for model theory.
In order to investigate some specific model-theoretic phenomena we need some ad-
ditional assumptions and it is not clear yet what the reasonable assumptions should
be. In particular, it is not clear which topological-dynamic properties of G have
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model-theoretic nature (and for example transfer between models in elementary ex-
tensions).

Stability theory is the core of model theory. The goal of this paper is to investigate
the topological dynamics of G in the stable case. This may bring the topological-
dynamic approach closer to the core notions of model theory, like forking of types, and
suggest the correct additional assumptions to impose on the topological dynamics of
G to make it a meaningful tool in model theory.

So in this paper we assume T is stable (unless specified otherwise). In this case the
Ellis semigroup of the G(M)-flow SG(M) is naturally isomorphic (as a G(M)-flow)
to the flow SG(M) itself, inducing on it a semigroup structure. The semigroup oper-
ation in SG(M) is the free multiplication of types [N3]. We prove that the semigroup
SG(M) is an inverse limit of an inverse system of semigroups SG,∆(M),∆ ∈ Inv,
that are type-definable in M eq (the notation is explained later). This result (and
many other results of this paper) heavily relies on the functional interpretation of
the semigroups SG(M) and SG,∆(M),∆ ∈ Inv, as the semigroups of endomorphisms
of certain G(M)-algebras of sets. A bulk of the paper is devoted to analysis of defin-
ability (in M eq) of various objects arising in the topological dynamics of G(M). We
prove that the maximal subgroups of SG,∆(M) are definable in M eq, they are defin-
ably isomorphic to the groups NG(M)(H)/H for ∆-definable ∆-connected subgroups
H of G(M). We describe also the maximal subgroups of SG(M) as inverse limits of
definable inverse systems of the groups NG(M)(H)/H.

The functional interpretation of types p in SG(M) and SG,∆(M),∆ ∈ Inv, pro-
vides us with some new objects related to p, namely the kernel and image of the
endomorphism dp corresponding to p. The size of these kernels and images may
be used to measure the size of types p. We compare this new way of measuring p
to forking in the particular case of ∗-powers p∗n of p. In this case we prove that
the growth of the local Morley ranks of p∗n is strictly correlated with the growth
of kernels and shrinking of images of the functions dp∗n . We prove that for every
p ∈ SG,∆(M),∆ ∈ Inv, there is a maximal subgroup S of SG,∆(M) such that eventu-
ally the ∗-powers of p belong to S. In particular, there is a ∆-definable ∆-connected
subgroup H of G(M) such that eventually the ∗-powers of p are left translates of
the generic type of H in SG,∆(M) by elements of NG(M)(H). This may be rephrased
by saying that regarding raising to ∗-power, every type in SG,∆(M) is finitely many
steps away from a translate of a generic type of a subgroup of G(M).

Since SG(M) is an inverse limit of the semigroups SG,∆(M),∆ ∈ Inv, for every
type p ∈ SG(M) there is a (unique) connectedM -type-definable subgroupH ofG, say
with the generic type q ∈ SG(M), such that for every finite set ∆ ⊆ L eventually the
∗-powers of p|∆ belong to the maximal subgroup of SG,∆(M) containing q|∆, hence are
some left translates of q|∆. This may be rephrased by saying that, regarding raising
to ∗-power, every type in SG(M) is pro-finitely many steps away from a translate of
a generic type of an M -type-definable connected subgroup H of G. Recall that in
the 1-based case every type p ∈ SG(M) itself is a translate of the generic type of an
M -type-definable subgroup H of G (provided M is |T |+-saturated) [HP].

The paper is organized as follows. In Section 1 we recall the basic notions of
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topological dynamics and set up the model-theoretic context wherein they are used
in this paper. In Section 2 we describe the semigroup SG(M) as an inverse limit
of semigroups SG,∆(M),∆ ∈ Inv and prove that the semigroups SG,∆(M) are type-
definable in M eq. In Section 3 we describe the maximal subgroups of SG(M) and
SG,∆(M),∆ ∈ Inv. In Section 4 we deal with ∗-powers of types.

1 Preliminaries

In this section we recall the basic notions of topological dynamics and put them into
a model-theoretic context. The general references are [E, A, N4]. In our model-
theoretic notation we follow [Pi].

In particular, we regard formulas of L as formulas with separated variables. This
means that given a formula φ of L we separate its free variables into a tuple of object
variables x and a tuple of parameter variables y and write it down as φ(x, y). By an
instance of φ we mean a formula φ(x, a), where the variables y are substituted by
parameters a from C. We will be freely working in M eq, an Leq-structure obtained
by adjoining to M its imaginary elements. The next definition essentially appears in
[N3].

Definition 1.1 For p, q ∈ SG(M) we define p ∗ q as the type tp(a · b/M), where
a |= p, b |= q and a⌣| Mb.

So ∗ is the free multiplication of types induced by the group operation of G(M)
and (SG(M), ∗) is a semigroup, with ∗ continuous in each coordinate separately. This
semigroup was considered already in [N3]. Here we will consider it in the context of
topological dynamics.

Assume H is a group and X is a point-transitive H-flow. In topological dynamics
of particular interest are minimal subflows of X, their elements are called almost
periodic (in X). Any h ∈ H determines a homeomorphism πh : X → X given by
πh(x) = hx. Let E(X) be the topological closure of the set {πh : h ∈ H} in the space
XX with the Tychonov product topology. E(X) with the operation of composition
of functions is a semigroup, called the Ellis enveloping semigroup of X. E(X) is also
an H-flow itself: for h ∈ H and f ∈ E(X), (hf)(x) = h · f(x).

A set I ⊆ E(X) is called a left ideal if I is non-empty and closed under left
multiplication by elements of E(X). It turns out that the minimal subflows of E(X)
are exactly the minimal left ideals I ⊆ E(X). Every minimal left ideal I ⊆ E(X)
splits into a disjoint union of groups, called ideal subgroups of E(X). All ideal
subgroups of E(X) are isomorphic.

If X,Y are H-flows, then we say that a continuous function f : X → Y is an H-
mapping, if f respects the action of H. H-flows form a category, with H-mappings
as morphisms.

The largest point-transitive H-flow is the space βH of ultrafilters on H. The
action of H on βH is the left translation. It turns out that the Ellis semigroup of
βH is isomorphic (as an H-flow) to βH itself.
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In [N4, N5, N6] these topological-dynamic notions were applied in a model-
theoretic setting. While in model theory it is natural to consider the G(M)-flow
SG(M), the role of the maximal point-transitive G(M)-flow there is played by the
space SG,ext(M) of complete externalG-types overM (instead of β(G(M)). SG,ext(M)
is also isomorphic to its Ellis semigroup (as a G(M)-flow). This induces a semigroup
operation on SG,ext(M) itself. In this paper we will consider several G(M)-flows
isomorphic to their Ellis semigroups. Below we present a general setting for this.

Assume H is a group and A is an algebra of sets. We say that A is an H-algebra
if there is an action of H on A by Boolean automorphisms. By an H-endomorphism
of an H-algebra A we mean a Boolean endomorphism of A respecting the action
of H. Let End(A) denote the semigroup of H-endomorphisms of A (the semigroup
operation is composition of functions).

The action of H on A induces an action of H on the Stone space S(A) by
homeomorphisms, making S(A) an H-flow.

In this paper we will consider H-algebras A of subsets of H, where the action of
H on A is induced by left translation in the group H (this means just that A is closed
under left translation). For example A = P(H) is an H-algebra and S(A) = βH
is an H-flow. Ellis proved [E] that the Ellis semigroup E(βH) is isomorphic to
End(P(H)) (as a semigroup) and to βH (as an H-flow).

In the model-theoretic setting let A = DefG,ext(M) be the algebra of externally
definable subsets of G(M), that is sets of the form U ∩G(M), where U is a definable
subset of C. DefG,ext(M) is closed under left translation by elements of G(M), hence
it is a G(M)-algebra of subsets o G(M). The space of external G-types SG,ext(M) is
just the Stone space of ultrafilters on DefG,ext(M).

Following Ellis we proved that also the Ellis semigroup E(SG,ext(M)) is isomorphic
to End(DefG,ext(M)) as a semigroup [N5] and to SG,ext(M) as a G(M)-flow [N4]. Here
we will generalize this result.

Definition 1.2 Let H be a group and A be an H-algebra of subsets of H (invariant
under left translation).
(1) For p ∈ S(A) we define a function dp : A → P(H) by

dp(U) = {g ∈ H : g−1U ∈ p}.

Clearly dp : A → P(H) is a homomorphism of H-algebras.
(2) We say that A is d-closed if A is closed under dp for every p ∈ S(A), that is
dp[A] ⊆ A. Notice that in this case dp ∈ End(A).
(3) If A is d-closed, then let d : S(A) → End(A) be the function mapping p to dp.

Remark 1.3 (1) The H-algebra P(H) is d-closed.
(2) The G(M)-algebra DefG,ext(M) is d-closed.

Proof. (1) is obvious. (2) is [N5, Lemma 1.2]. �

Proposition 1.4 Assume H is a group and A ⊆ B ⊆ P(H) are d-closed H-
subalgebras of P(H).
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(1) Assume p ∈ S(A), q ∈ S(B) and p ⊆ q. Then dp = dq|A.
(2) The function d : S(A) → End(A) is a bijection.
(3) The function d : S(A) → End(A) induces on S(A) a semigroup operation ∗
so that d becomes an isomorphism of semigroups. So for p, q ∈ S(A) we have
dp∗q = dp ◦ dq. Also, for U ∈ A we have

U ∈ p ∗ q ⇐⇒ dq(U) ∈ p.

(4) The restriction function S(B) → S(A) is an H-mapping and an epimorphism of
semigroups. The following diagram commutes

S(B) //

d
��

S(A)

d
��

End(B) // End(A)

where the horizontal arrows are restrictions.
(5) For p ∈ S(A) let lp : S(A) → S(A) be the function mapping q ∈ S(A) to p ∗ q.
Then E(S(A)), the Ellis semigroup of S(A), equals {lp : p ∈ S(A)}.
(6) Let l : S(A) → E(S(A)) be the function mapping p to lp. Then l is an isomor-
phism of H-flows and of semigroups.

Proof. (1) is obvious.
The proof of (2) is analogous to the proof of [N5, Proposition 1.6]. To see that

d is 1-1 consider p ̸= q ∈ S(A). Choose U ∈ p with U c ∈ q. Then 1 ∈ dp(U) and
1 ̸∈ dq(U), hence dp(U) ̸= dq(U) and dp ̸= dq.

To see that d is “onto” consider any f ∈ End(A). Let

p = {U ∈ A : 1 ∈ f(U)}.

Clearly p ∈ S(A) and it is easy to see that f = dp (or see the proof of [N5, Proposition
1.6]).

(3) Let U ∈ A. Since dp∗q = dp ◦ dq, we have that

U ∈ p ∗ q ⇔ 1 ∈ dp∗q(U) ⇔ 1 ∈ dp(dq(U)) ⇔ dq(U) ∈ p.

(4) follows from (1)-(3).
(5) Let πg : S(A) → S(A), g ∈ H, be the family of homeomorphisms given by the

action of H on A. So E(S(A)) is the topological closure of the set {πg : g ∈ H} in
the topology of pointwise convergence in the space of functions S(A) → S(A). For
an ultrafilter U ∈ βH let πU = limU πg. This means that for q ∈ S(A) and U ∈ A
we have

(∗) U ∈ πU(q) ⇐⇒ the set X := {g ∈ H : U ∈ πg(q)} belongs to U .

Hence E(S(A)) = {πU : U ∈ βH}. Notice that the set X appearing in (∗) equals
dq(U), hence for U ∈ A we have that

U ∈ πU(q) ⇔ dq(U) ∈ U ⇔ dq(U) ∈ p⇔ U ∈ p ∗ q,
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where p = U ∩ A ∈ S(A) (here we use the assumption that A is d-closed). Hence
πU = lp and E(S(A)) = {lp : p ∈ S(A)}.

(6) By (5) we have that the function l : S(A) → E(S(A)) is “onto”. To see that
l is 1-1 consider p ̸= q ∈ S(A). For g ∈ H let Ug = {U ∈ A : g ∈ U}. So Ug ∈ S(A).
Notice that for g = 1, dU1 : A → A is the identity function, hence

dp = dp ◦ dU1 = dp∗U1 and dq = dq ◦ dU1 = dq∗U1 .

By (3), p = p ∗ U1 = lp(U1) and q = q ∗ U1 = lq(U1), hence lp ̸= lq.
To see that the function l : S(A) → E(S(A)) is a homeomorphism, consider

U ∈ A and the basic open set [U ] = {p ∈ S(A) : U ∈ p}. For p ∈ S(A) we have that

U ∈ p⇔ U ∈ p ∗ U1 ⇔ U ∈ lp(U1),

hence l maps the set [U ] onto the open set {f ∈ E(S(A)) : f(U1) ∈ [U ]}. Since both
spaces S(A) and E(S(A)) are compact, l is a homeomorphism.

For every g ∈ H and p ∈ S(A) we have gp = Ug ∗ p, hence for every q ∈ S(A) we
have

lgp(q) = πg ∗ p ∗ q = πg(lp(q)) = glp(q).

Therefore lgp = πg ◦ lp. It is obvious that l is a semigroup isomorphism. �
In particular, by Remark 1.3 Proposition 1.4 applies to the H-algebra A = P(H)

and the G(M)-algebra A = DefG,ext(M).
Since in the stable case externally definable subsets of M are internally definable,

the above picture is simplified: DefG,ext(M) equals DefG(M), the G(M)-algebra of
definable subsets of G(M), and SG,ext(M) = SG(M). Also, the semigroup operation
on SG(M) defined in Proposition 1.4(3) is just the free multiplication of types from
Definition 1.1. Hence (SG(M), ∗) is the Ellis semigroup of the G(M)-flow S(G)
and d : SG(M) → End(DefG(M)) is an isomorphism of semigroups. We will apply
Proposition 1.4 to several G(M)-subalgebras of DefG(M).

Assume ∆ is a set of formulas of L (with separated variables). By a relatively
∆-definable subset of G(M) we mean a set of the form G(M) ∩ U , where U ⊆ M
is ∆-definable. Besides the algebra DefG(M) we will consider also its subalgebras
DefG,∆(M), consisting of the relatively ∆-definable subsets of G(M). Also, SG,∆(M)
denotes the set of complete ∆-types of elements of G, over M . So SG,∆(M) is just
the Stone space of the algebra DefG,∆(M).

2 The semigroup SG(M)

In this section we will prove that the semigroup SG(M) is an inverse limit of a
definable inverse system of some semigroups type-definable in M eq.

Definition 2.1 Assume ∆ ⊆ L.
(1) We say that ∆ is left-invariant if the family of subsets of G(M) relatively de-
finable by instances of formulas from ∆ is invariant under left translation in G(M).
Similarly we define the notion of a right-invariant set ∆.
(2) We say that ∆ is invariant if it is both left- and right-invariant.
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It is well-known how to modify a given set ∆ ⊆ L to make it invariant. Given a
formula φ(x, y) let

φ′(x, yz) = φ(z · x, y) and φ′′(x, yzv) = φ(z · x · v, y).

Here · denotes the group operation in G. For ∆ ⊆ L let ∆′ = {φ′ : φ ∈ ∆} and
∆′′ = {φ′′ : φ ∈ ∆}. Clearly, ∆′ is left-invariant and ∆′′ is invariant.

Remark 2.2 Every subset of G(M) relatively definable by an instance of a formula
from ∆ is relatively definable by an instance of a formula from ∆′ and an instance
of a formula from ∆′′. So DefG,∆(M) ⊆ DefG,∆′(M) ⊆ DefG,∆′′(M).

Assume ∆ ⊆ L is left-invariant. Then DefG,∆(M) is closed under left transla-
tion in G(M), hence it is a G(M)-subalgebra of DefG(M). The left translation in
DefG,∆(M) makes SG,∆(M) a G(M)-flow and the restriction function r∆ : SG(M) →
SG,∆(M) is an epimorphism of G(M)-flows.

Given an family U of uniformly definable subsets of G(M) we regard U as a defin-
able subset of M eq, identifying elements of U with their canonical names, uniformly.

Assume ∆ ⊆ L is finite. We may consider SG,∆(M) as a type-definable subset of
M eq. Namely, for every φ(x, y) ∈ ∆ we pick a formula dφ(y, z) such that every type
p(x) ∈ SG,φ(M) had a φ-definition that is an instance of dφ(y, z). This means that
for some cp,φ ⊆M we have that

dφ(M, cp,φ) = {a ⊆M : φ(x, a) ∈ p(x)}.

We may assume that cp,φ ∈M eq is a canonical name of dφ(M, cp,φ).
Let Zφ be the set of canonical names of subsets of M definable by instances of

dφ(y, z) (where z is the tuple of parameter variables). For c ∈ Zφ let

p0φ,c = {φ(x, a) : a ⊆M and M |= dφ(a, c)} ∪ {¬φ(x, a) : a ⊆M and M ̸|= dφ(a, c)}.

Let Z0 =
∏

φ∈∆ Zφ and for c = ⟨cφ⟩φ∈∆ ∈ Z0 let p0c =
∪

φ∈∆ p
0
φ,cφ . For n < ω let

Zn = {c ∈ Z0 : p0c is n-consistent with G(x)} and let Z =
∩

n<ω Zn.

Remark 2.3 Assume ∆ ⊆ L is finite.
(1) The sets Zφ, φ ∈ ∆, Z0 and Zn, n < ω, are definable in M eq and Z is type-
definable in M eq.
(2) The function p 7→ ⟨cp,φ⟩φ∈∆ is a bijection SG,∆(M) → Z.
(3) For c ∈ Z the set of formulas p0c generates a type in SG,∆(M), denoted by pc.
The mapping c 7→ pc is a bijection Z → SG,∆(M) inverse to the bijection from (2).

By Remark 2.3 we regard SG,∆(M) as a type-definable subset of M eq.
Let Invl denote the family of finite left-invariant sets ∆ ⊆ L, directed by in-

clusion. For ∆1,∆2 ∈ Invl with ∆1 ⊆ ∆2 let r∆2
∆1

: SG,∆2(M) → SG,∆1(M) be
restriction. We consider the inverse system D = (SG,∆(M))∆∈Invl of G(M)-flows,
with connecting functions r∆2

∆1
for ∆1,∆2 ∈ Invl with ∆1 ⊆ ∆2.
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Remark 2.4 (1) For ∆1,∆2 ∈ Invl with ∆1 ⊆ ∆2, the functions r∆2
∆1

: SG,∆2(M) →
SG,∆1(M) are definable G(M)-mappings.
(2) SG(M) with restriction functions r∆ : SG(M) → SG,∆(M),∆ ∈ Invl, is an
inverse limit of D.

Proof. Straightforward. �
We call a compact topological space X scattered if X contains no perfect subset.

In this case the Cantor-Bendixson rank CBX on X has ordinal values. The next
remark follows from basic stability theory. It justifies our interest in scattered flows.

Remark 2.5 Assume ∆ ∈ Invl. Then the G(M)-flow SG,∆(M) is scattered and its
CB-rank is finite.

Lemma 2.6 Assume H is a group and X is a scattered H-flow.
(1) If Y ⊆ X is a minimal subflow, then Y is finite.
(2) If X is point-transitive, then the dense H-orbit in X is unique.

Proof. (1) Choose p ∈ Y with maximal CBX-rank. The orbit Hp is dense in Y and
CBX(q) = CBX(p) for every q ∈ Hp (since H acts on X by homeomorphisms). If Hp
is infinite, then it has an accumulation point p′ ∈ Y \Hp and CBX(p′) > CBX(p),
a contradiction.

(2) The dense H-orbit in X consists of all isolated points. �
By Remarks 2.4 and 2.5 we see that the G(M)-flow SG(M) is pro-scattered, that

is it is an inverse limit of scattered flows. In SG(M) there is a unique minimal
subflow GenG(M), consisting of the generic types of G. We know that GenG(M) is
a profinite closed subgroup of SG(M). More generally, if H is a group and X is a
pro-scattered H-flow, then by Lemma 2.6 every minimal subflow of X is profinite.
However even if X is additionally point-transitive, there need not be a unique dense
H-orbit contained in X. Such an orbit is unique in the model-theoretic setting,
provided M is sufficiently saturated.

Proposition 2.7 Assume p ∈ SG(M) and let X = cl(G(M)p) be the subflow of
SG(M) generated by p. For ∆ ∈ Invl let p∆ = p|∆ and X∆ = cl(G(M)p∆) ⊆
SG,∆(M).
(1) (X, (r∆)∆∈Invl) is an inverse limit of the system (X∆)∆∈Invl with the connecting
functions r∆2

∆1
, where ∆1,∆2 ∈ Invl and ∆1 ⊆ ∆2. In particular, X is pro-scattered.

(2) If M is |T |+-saturated, then the set G(M)p is the unique dense G(M)-orbit in
X.

Proof. (1) is obvious.
(2) Choose q ∈ X and for ∆ ∈ Invl let q∆ = q|∆. Assume the orbit G(M)q is

dense in X. Then for every ∆ ∈ Invl we have that the orbit G(M)q∆ is dense in X∆,
just like the orbit G(M)p∆. Hence by Lemma 2.6, both orbits coincide and there is
a g∆ ∈ G(M) with q∆ = g∆p∆.
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Since SG,∆(M) is a type-definable subset of M eq, we can use p∆ and q∆ as pa-
rameters in formulas of Leq. The set of formulas

Φ(x) = {q∆ = x · p∆ : ∆ ∈ Invl} ∪ {G(x)}

is a type over |T |-many parameters, hence by the saturation of M it is realized by
some g ∈ G(M). We see that q = g · p, hence the orbits G(M)p and G(M)q are
equal. �

A special feature of topological dynamics of a stable group G is the existence of
generic types in SG(M). More generally, we define the notion of a generic point in
an arbitrary point-transitive H-flow X [N4]. Then the existence of a generic point
in X is equivalent to there being just one minimal subflow of X [N4, Corollary 1.9].

One could wonder if there is a topological property of the flow SG(M) (in our
stable setting) responsible for existence of generic types in SG(M). We do not know
any such property and the next example shows that the property of being pro-
scattered would not work.

Let M = G(M) = (Z,+,≤) be the ordered group of integers. Every definable
subset of M is a Boolean combination of co-sets of the groups kZ, k > 0, and the
≤-intervals in Z. For k > 0 let ∆k be the set of formulas {k|(x − y), x ≤ y} in the
language of M . Then every ∆k is invariant and the Z-flow SG,∆k

(M) is scattered,
of CB-rank 1. There are two minimal subflows of SG,∆k

(M), at +∞ and −∞, both
of size k. There are no generic types in SG,∆k

(M). SG(M) is an inverse limit of the
flows SG,∆k

(M), so it is pro-scattered. There are no generic types in SG(M).
Now we return to the stable setting. It turns out that SG(M) is pro-scattered

not just as a G(M)-flow, but also as an Ellis semigroup. We have already used
definability of types in a stable theory to interpret SG,∆(M),∆ ∈ Invl, as a type-
definable set in M eq. We shall need the following deep result on definability of types
in local stability theory.

Lemma 2.8 ([Pi, Lemma I.2.2]) Suppose δ(x, y) is a stable formula. Let M be
a model and let p(x) ∈ Sδ(M). Then there is a formula χ(y) which is a positive
Boolean combination of formulas ψ(c, y), c ∈ M , such that χ(y) is a δ-definition of
p(x), meaning that

χ(M) = {b ⊆M : δ(x, b) ∈ p(x)}.

By compactness we get the following remark.

Remark 2.9 Assume δ(x, y) is a stable formula. Then there is a natural number n
such that for every model M and p(x) ∈ Sδ(M) the set {b ⊆ M : δ(x, b) ∈ p(x)} is
M-definable by an instance of the formula

χ(y, z) =
∨
i<n

∧
j<n

δ(zij, y),

where z = ⟨zij⟩ is the tuple of parameter variables in χ(y, z).
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Let D′ be the subsystem of the inverse system D = (SG,∆(M))∆∈Invl consisting
of the flows SG,∆(M),∆ ∈ Inv. Notice that since essentially Inv is co-final in Invl,
still SG(M) is an inverse limit of D′. The next lemma explains the reason why we
restrict ourselves to ∆ ∈ Inv.

Lemma 2.10 (1) Assume p ∈ SG(M) and U ⊆ G(M) is definable. Then dp(U) is
a positive Boolean combination of some right translates Uc, c ∈ G(M), of U .
(2) Assume ∆ ⊆ L is invariant. Then DefG,∆(M) is a d-closed G(M)-subalgebra of
DefG(M).

Proof. (1) Choose a formula φ(x) over M , defining U . Let ψ(x, y) = φ(y · x). So for
every g ∈ G(M) we have that g−1U = ψ(M, g). Hence

dp(U) = {g ∈ G(M) : g−1U ∈ p} = {g ∈ G : ψ(x, g) ∈ p(x)}.

By Lemma 2.8, the set dp(U) is defined by a formula χ(y) that is a positive Boolean
combination of formulas ψ(c, y), c ∈ G(M). But for c ∈ G(M) we have that
ψ(c,M) = Uc−1, so we are done.

(2) follows from (1). �
Assume ∆ ∈ Inv. By Lemma 2.10 the G(M)-algebra DefG,∆(M) is d-closed,

hence by Proposition 1.4 the set SG,∆(M) carries a semigroup operation ∗ defined
by:

U ∈ p ∗ q ⇐⇒ dq(U) ∈ p

and the function d : SG,∆(M) → End(DefG,∆(M)) mapping p to dp is a semigroup
isomorphism. Also SG,∆(M) is isomorphic to the Ellis semigroup E(SG,∆(M)), as a
semigroup and as a G(M)-flow.

By Proposition 1.4, the connecting functions r∆2
∆1

: SG,∆2(M) → SG,∆1(M) of the
inverse system D′ and the functions r∆ : SG(M) → SG,∆(M),∆ ∈ Inv, respect the
semigroup operations, hence D′ is an inverse system of G(M)-flows and semigroups
and SG(M) is an inverse limit of D′ as a G(M)-flow and as a semigroup.

Proposition 2.11 Assume ∆ ∈ Inv. Then the semigroup operation ∗ in SG,∆(M)
is definable in M eq. Hence the semigroup SG,∆(M) is type-definable in M eq.

Proof. First we put the algebra DefG,∆(M) within the context of definable sets in
M eq. Let X∆ be the family of subsets of G(M) relatively definable by instances of
formulas from ∆. Hence X∆ is a family of uniformly definable subsets of G(M) and
we may consider X∆ a definable subset of M eq. Clearly X∆ is invariant under both
left- and right-translation in the group G(M). So X∆ generates DefG,∆(M) as an
algebra of sets.

For 0 < n < ω let Bn(X∆) be the family of sets in DefG,∆(M) of the form τ(ā),
where τ(x̄) is a Boolean term of length ≤ n and ā is an n-tuple of elements of
X∆. Clearly, Bn(X∆) is uniformly definable, hence we regard Bn(X∆) as a definable
subset of M eq. Also DefG,∆(M) =

∪
n Bn(X∆), hence DefG,∆(M) is

∨
-definable in

M eq. Notice that the Boolean operations on Bn(X∆) are definable in M eq, with
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values in B2n(X∆). Also every Bn(X∆) is closed under translation in G(M) and this
translation is an operation definable in M eq.

Since X∆ generates DefG,∆(M) as an algebra of sets, every f ∈ End(DefG,∆(M))
is determined by its restriction f |X∆

. By Remark 2.9 and the proof of Lemma 2.10(1)
there is an n < ω (independent of M) such that for every p ∈ SG,∆(M), the function
dp|X∆ has values in Bn(X∆). Also, dp|Bn(X∆) maps Bn(X∆) to Bn2(X∆).

To see this, consider U ∈ Bn(X∆). Hence U = τ(V1, . . . , Vn) for some V1, . . . , Vn ∈
X∆ and a Boolean term τ(x̄) of length ≤ n, where x̄ = ⟨x1, . . . , xn⟩. We have that
dp(U) = τ(dp(V1), . . . , dp(Vn)). Since dp(V1), . . . , dp(Vn) ∈ Bn(X∆), there are Boolean
terms τ1(x̄1), . . . , τn(x̄n) of length ≤ n such that

dp(Vi) = τi(Vi,1, . . . , Vi,n) for some Vi,j ∈ X∆.

Hence dp(U) = τ ′(Vi,j)1≤i,j≤n, where τ ′ = τ(τ1(x̄1), . . . , τn(x̄n)). We see that dp(U) ∈
Bn2(X∆).

The functions dp|X∆
: X∆ → Bn(X∆) and dp|Bn(X∆) : Bn(X∆) → Bn2(X∆) are

definable (in M eq, uniformly in p ∈ SG,∆(M)). Identifying f ∈ End(DefG,∆(M))
with f |X∆

we have that the set End(DefG,∆(M)) is type-definable in M eq (since
every such f is of the form dp, hence f maps X∆ into Bn(X∆)) and also the bijection
d : SG,∆(M) → End(DefG,∆(M)) is definable in M eq. To finish the proof it is enough
to show that composition of functions in End(DefG,∆(M)) is definable in M eq.

Assume f1, f2 ∈ End(DefG,∆(M)) and f = f1◦f2. The function f |X∆
is uniformly

definable in M eq from f1|X∆
and f2|X∆

as follows.
For U ∈ X∆ we have a uniform description of f1(f2(U)) as an element of Bn2(X∆).

Also we know that f1(f2(U)) belongs to Bn(X∆). So we define f |X∆
(U) as the unique

V ∈ Bn(X∆) equal to f1(f2(U)). �
Corollary 2.12 The Ellis semigroup SG(M) is an inverse limit of the definable
inverse system D′ = (SG,∆(M))∆∈Inv of semigroups type-definable in M eq.

In this way in the stable case we have located the Ellis semigroup SG(M) in the
definable realm of M . Unfortunately, the type-definable semigroups SG,∆(M),∆ ∈
Inv, need not be definable.

Notice that the definition of the inverse system D′ = (SG,∆(M))∆∈Inv is uniform
in M . If we go to an elementary extension M ′ of M , then the system D′(M ′) =
(SG,∆(M ′))∆∈Inv is related to D′ as follows.

There are natural embeddings j∆ : SG,∆(M) → SG,∆(M ′), mapping p ∈ SG,∆(M)
to its heir in SG,∆(M ′). These embeddings are monomorphisms of semigroups and
commute with the connecting functions of the systems D′ and D′(M ′). They yield a
∗-monomorphism j : SG(M) → SG(M ′) mapping p to p|M ′, its non-forking extension
to M ′.

3 Subgroups of semigroups of types

In this section we will investigate subgroups of the semigroups SG,∆(M),∆ ∈ Inv
and SG(M). These semigroups are isomorphic (via the functions d) to the semigroups
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End(DefG,∆(M)) and End(DefG(M)). This will be crucial in our analysis. We start
with a general background on such subgroups and then proceed with a more specific
description in our stable model-theoretic context.

Assume H is a group, X is a point-transitive H-flow and E(X) is its Ellis semi-
group. Subgroups of E(X) are interesting on their own. Indeed, the minimal subflows
I ⊆ E(X) split into disjoint unions of isomorphic “ideal groups”.

Assume A is a d-closed H-subalgebra of P(H) and X = S(A). We consider X
as an H-flow, the action being left translation. By Proposition 1.4, S(A) carries a
semigroup structure isomorphic (via the function d) to the semigroup End(A). S(A)
is isomorphic to its Ellis semigroup (both as a semigroup and as an H-flow). The
next lemma appears in [N5, Lemma 1.8].

Lemma 3.1 Assume A is an H-algebra of sets and S is a subgroup of End(A).
(1) There is an H-ideal K ⊆ A, the common kernel of all f ∈ S.
(2) There is an H-subalgebra B ⊆ A, the common image of all f ∈ S.
(3) K ∩ B = {∅}, B is a section of the family of K-cosets in A, A/K ∼= B and for
every f ∈ S we have that f |B is an H-automorphism of B.
(4) The mapping f 7→ f |B is a group monomorphism S → Aut(B) ∼= Aut(A/K).

The next corollary describes the maximal subgroups of End(A).

Corollary 3.2 Assume A is an H-algebra of sets and S is a subgroup of End(A).
Let K and B be the common kernel and image of all f ∈ S. Let

SK,B = {f ∈ End(A) : K = Ker(f),B = Im(f) and f |B ∈ Aut(B)}.

Then SK,B is a unique maximal subgroup of End(A) containing S. Also, every max-
imal subgroup of End(A) is of this form.

Proof. We need only to see that SK,B is a group. It is obviously closed under
composition of functions and has a neutral element (namely, the neutral element of
S). We need to check that every f ∈ SK,B has a group inverse in SK,B.

So let f ∈ SK,B. Let f ′
0 ∈ Aut(B) be the inverse of f |B in the group Aut(B). Since

B is a section of the family of cosets of K in A, we can define f ′ ∈ End(A) putting
f ′(U) = f ′

0(U
′), where U ′ ∈ B belongs to the K-coset of U . Clearly f ′ ∈ SK,B is the

group inverse of f . �
Assume S is a subgroup of End(A) and e ∈ S is its neutral element. Then e is

an idempotent (that is, e2 = e). Vice versa, every idempotent e ∈ End(A) forms a
trivial subgroup S = {e} of End(A), hence it belongs to a unique maximal subgroup
SK,B of End(A), where K = Ker(e) and B = Im(e). The fact that B = Im(e) for an
idempotent e ∈ End(A) yields additional properties of B.

Assume A is a Boolean algebra. We say that B is a complete subalgebra of A if
B is a subalgebra of A and for every set X ⊆ B, if X has the supremum in A, then
this supremum belongs to B (and is the supremum of X in B). Also, At(A) denotes
the set of atoms of A. Assume B is an atomic subalgebra of A. We say that U ∈ A
is compatible with At(B) if for every V ∈ At(B) we have that V ≤ U or V ≤ U c.
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Lemma 3.3 Assume A is a Boolean algebra, e is an endomorphism of A and e2 = e.
Let B = Im(e). Assume B is atomic and ΣAAt(B) = 1A.
(1) B consists of the elements of A compatible with At(B). In this way B is deter-
mined by At(B).
(2) B is a complete subalgebra of A.

Proof. We regard A as an algebra of subsets of a set Z.
(1) Clearly, every V ∈ B is compatible with At(B). Assume V ∈ A is compatible

with At(B). Let A = {U ∈ At(B) : U ⊆ V }. We claim that

(∗) V = ΣAA =
∪

A.

Indeed,
∪
A ⊆ V . Suppose U ∈ A meets V . Since ΣAAt(B) = 1A, we have that

U ∩V meets an atom of B, necessarily from A (as V is compatible with At(B)). This
proves (∗).

Using the fact that e|B = idB one can prove similarly that e(V ) = ΣAA =
∪
A.

Hence V = e(V ) ∈ B.
(2) Assume X ⊆ B, V ∈ A and V = ΣAX. By (1) it is enough to show that V

is compatible with At(B). So let U ∈ At(B). If U is contained in a set from X, then
clearly U ⊆ V . If U is disjoint from any set in X, then U ⊆ V c. So we are done. �.

In our model-theoretic setting the semigroup SG(M) is an inverse limit of the
semigroups SG,∆(M),∆ ∈ Inv, and since the corresponding G(M)-algebras DefG(M)
and DefG,∆(M) are d-closed, SG(M) and SG,∆(M) are isomorphic with the semi-
groups End(DefG(M)) and End(DefG,∆(M)), respectively (via the functions d). We
denote by r∆ both the (surjective) restriction functions SG(M) → SG,∆(M) and
End(DefG(M)) → End(DefG,∆(M)). Also, for ∆1,∆2 ∈ Inv with ∆1 ⊆ ∆2, r

∆2
∆1

de-
notes both the restriction functions SG,∆2(M) → SG,∆1(M) and End(DefG,∆2(M)) →
End(DefG,∆1(M)).

Assume S is a maximal subgroup of End(DefG(M)). So S = SK,B for some
G(M)-ideal K and G(M)-subalgebra B of DefG(M). For ∆ ∈ Inv let S∆ = SK∆,B∆

,
where K∆ = K ∩ DefG,∆(M) and B∆ = B ∩ DefG,∆(M). So every S∆ is a maximal
subgroup of End(DefG,∆(M)).

Remark 3.4 r∆[S] ⊆ S∆ for every ∆ ∈ Inv. Also, S is an inverse limit of the
groups S∆,∆ ∈ Inv.

One could wonder when the restriction functions r∆ : S → S∆ are surjective. This
is partially clarified in the next lemma.

Lemma 3.5 Assume L is countable. The following conditions are equivalent.
(1) The functions r∆ : S → S∆ are surjective for all ∆ ∈ Inv.
(2) The functions r∆2

∆1
: S∆2 → S∆1 are surjective for all ∆1,∆2 ∈ Inv with ∆1 ⊆ ∆2.

Proof. (1) ⇒ (2) is obvious. (2) ⇒ (1): ClearlyK =
∪

∆∈InvK∆ and B =
∪

∆∈Inv B∆.
Let ∆ ∈ Inv and f ∈ S∆. Choose an increasing cofinal sequence ∆n ∈ Inv, n < ω,
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with ∆0 = ∆. By (2) we find an increasing sequence fn ∈ S∆n , n < ω, with f0 = f .
Let f ′ =

∪
n<ω fn. Clearly

Ker(f) =
∪
n<ω

Ker(fn) =
∪
n<ω

K∆n = K, Im(f) =
∪
n<ω

Im(fn) =
∪
n<ω

B∆n = B

and f ′|B =
∪

n<ω fn|Bn is an automorphism of B. So f ′ ∈ S and r∆(f ′) = f . This
shows that r∆[S] = S∆. �

Later in this section we will prove that Lemma 3.5 holds also in some other cases.
This will follow from our description of the maximal subgroups of SG(M).

The maximal subgroups of SG(M) and SG,∆(M),∆ ∈ Inv, are determined by the
idempotents in SG(M) and SG,∆(M). These idempotents are related to each other.

Remark 3.6 Assume p ∈ SG(M) is an idempotent and ∆ ∈ Inv. Then p|∆ ∈
SG,∆(M) is also an idempotent. Conversely, every idempotent in SG,∆(M) extends
to an idempotent in SG(M).

Proof. Immediate. To see the second clause, consider an idempotent q ∈ SG,∆(M).
Let X = {q′ ∈ SG(M) : q ⊆ q′}. Hence X is a closed sub-semigroup of SG(M). By
[E], every closed sub-semigroup of an Ellis semigroup contains an idempotent, hence
we are done. �

Assume ∆ ∈ Inv. Subgroups of SG,∆(M) are related to G(M)-subalgebras of
DefG,∆(M). In the next lemma we describe some properties of G(M)-subalgebras of
DefG,∆(M).

Lemma 3.7 Assume ∆ ∈ Inv and B is a G(M)-subalgebra of DefG,∆(M).
(1) B is atomic.
(2) For g ∈ G(M) let Ug,B = {U ∈ B : g ∈ U}. Then Ug,B is a principal ultrafilter
on B, generated by the atom Ug,B of B containing g.
(3) U1,B is a definable subgroup of G(M), denoted by GB, and the atoms Ug,B, g ∈
G(M), are the left cosets of GB in G(M).
(4) GB equals {g ∈ G(M) : gU1,B = U1,B}, the stabilizer of U1,B.

Proof. (1) The restriction function SG,∆(M) → S(B) is surjective and SG,∆(M) is
scattered, so also S(B) is scattered. B is isomorphic to the algebra of clopen subsets
of S(B), hence B is atomic.

(2) Let U ∈ B be an atom and let g ∈ U . Then U generates Ug,B. For h ∈ G(M)
the set hg−1U is an atom of B containing h and generating Uh,B.

(3), (4) is [N6, Remark 3.2]. �
Let RM∆,Mlt∆ denote the local Morley ∆-rank and ∆-multiplicity. The next

two lemmas describe further properties of the idempotents in SG(M) and SG,∆(M).

Lemma 3.8 Assume p ∈ SG(M) is an idempotent and for ∆ ∈ Inv let p∆ = p|∆ ∈
SG,∆(M).
(1) p is the generic type of a type-definable connected subgroup S0 of G(M).
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(2) S0 = Stab(p), where Stab(p) = {g ∈ G(M) : gp = p}.
(3) S0 =

∩
∆∈Inv Stab(p∆), where Stab(p∆) = {g ∈ G(M) : gp∆ = p∆}.

(4) For ∆ ∈ Inv, Stab(p∆) is a definable subgroup of G(M), in fact Stab(p∆) ∈
DefG,∆(M).

Proof. (1) is by [N3], (2) is by [Pi], (3) is obvious.
(4) Choose U ∈ p∆(x) with RM∆(U) = RM∆(p∆) and Mlt∆(U) = Mlt∆(p∆).

Then
Stab(p∆) = {g ∈ G(M) : U ∈ gp∆} = dp∆(U) ∈ DefG,∆(M).

�

Lemma 3.9 Under the assumptions of Lemma 3.8, let B = Im(dp) and for ∆ ∈ Inv
let B∆ = Im(p∆) = B ∩ DefG,∆(M).
(1) p∆ ∩ B∆ = U1,B∆

.
(2) Stab(p∆) = GB∆

.
(3) RM∆(p∆) = RM∆(GB∆

) and Mlt∆(p∆) = Mlt∆(GB∆
) = 1.

(4) GB∆
is ∆-connected, that is it has no proper ∆-definable subgroup of finite index.

(5) p∆ is the only generic type of GB∆
in SG,∆(M).

Proof. (1) By Remark 3.6 p∆ is an idempotent, hence dp∆ is an idempotent in
End(DefG,∆(M)) and dp∆ |B∆

is the identity. So for every U ∈ B∆ with U ∈ p∆ we
have that 1 ∈ dp∆(U) and U = dp∆(U), hence 1 ∈ U . Therefore p∆ ∩ B∆ ⊆ U1,B∆

.
The equality follows since p∆ ∩ B∆ ∈ S(B∆).

(2) By Lemma 3.7(4), GB∆
= Stab(p∆∩B∆), hence Stab(p∆) ⊆ GB∆

. By Lemma
3.8(4), Stab(p∆) ∈ DefG,∆(M). By Lemma 3.6(3), GBδ

is an atom of B∆, hence
Stab(p∆) = GB∆

.
(3) First notice that

(∗) if q∆ ∈ SG,∆(M) and GB∆
∈ q∆, then q∆ ∗ p∆ = p∆.

Indeed, q∆ ∗ p∆ = limq∆ gp∆ = p∆, because GB∆
∈ q∆ and for g ∈ GB∆

we have
gp∆ = p∆ (see the proof of Proposition 1.4).

Now we prove that RM∆(p∆) = RM∆(GB∆
). Let q ∈ SG(M) be a generic type

of GB∆
and let q∆ = q|∆ ∈ SG,∆(M). By (∗) we have (q ∗ p)|∆ = q∆ ∗ p∆ = p∆, hence

GB∆
∈ q ∗ p.

By [N3] we have that RM∆(q∗p) ≥ RM∆(q), but RM∆(q) = RM∆(GB∆
) and also

RM∆(GB∆
) ≥ RM∆(q ∗ p), hence RM∆(q ∗ p) = RM∆(GB∆

). Hence also RM∆((q ∗
p)|∆) = RM∆(GB∆

).
Since (q ∗ p)|∆ = p∆, we get RM∆(p∆) = RM∆(GB∆

).
By [Pi, Lemma I.2.11], Mlt∆(p∆) = 1. Suppose for a contradiction thatMlt∆(GB∆

) >
1. Then there is a generic type q ∈ SG,∆(M) of GB∆

with q∆ := q|∆ ̸= p∆. Choose a
generic type p′ ∈ SG(M) of GB∆

with p′|∆ = p∆.
Let r ∈ SG(M) be the generic type of the connected component of GB∆

. By [N3],
the set of generic types of GB∆

is a subgroup of SG(M), with neutral element r. Let
r∆ = r|∆. We consider two cases.
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Case 1. r∆ = p∆. We have that q ∗ r = q, hence by (∗) we get q∆ = q∆ ∗ r∆ =
q∆ ∗ p∆ = p∆, a contradiction.

Case 2. r∆ ̸= p∆. Then we may assume q = r. Let p′′ be the group inverse of p′

in the group of generic types of GB∆
in SG(M) and let p′′∆ = p′′|∆. Then p′′ ∗ p′ = q,

hence p′′∆ ∗ p∆ = q∆ and by (∗) we have p′′∆ ∗ p∆ = p∆, again a contradiction.
Therefore Mlt∆(GB∆

) = 1.
(4),(5) follow from (3), since the generic types of GB∆

in SG,∆(M) have RM∆-rank
equal to RM∆(GB∆

). �
Corollary 3.10 Under the assumptions of Lemmas 3.8 and 3.9 (and with their no-
tation) we have the following.
(1) p ∩ B = U1,B := {U ∈ B : 1 ∈ U}.
(2) Let GB =

∩
U1,B. Then GB =

∩
∆∈Inv GB∆

= Stab(p).
(3) For ∆ ∈ Inv, p∆ is the only idempotent q ∈ SG,∆(M) with B∆ = Im(dq).
(4) p is the only idempotent q ∈ SG(M) with B = Im(dq).

Proof. (1),(2) are easy. (3) If q ∈ SG,∆(M) is an idempotent with B∆ = Im(dq), then
by Remark 3.6 there is an idempotent q′ ∈ SG(M) extending q. By Lemma 3.9(5),
q is the only generic type of GB∆

in SG,∆(M), hence q = p∆.
(4) A similar proof. �
In general, consider a group H and an H-algebra of sets A. Let B be an H-

subalgebra of A. If there is a maximal subgroup S of End(A) with B being the
common image of all f ∈ S, then S = SK,B, where K is the common kernel of all
f ∈ B. However in this situation there may be many H-ideals K ⊆ A yielding
distinct groups SK,B (although, for a fixed B these groups are isomorphic). This may
happen also in the model-theoretic context, where H = G(M), A = DefG,ext(M)
and S(A) = SG,ext(M), for example if there are no generic types in SG,ext(M).

However stable groups do have generic types. In the stable case Corollary 3.10
says more. Assume SK,B is a maximal subgroup of End(DefG(M)) (or End(DefG,∆(M)),
where ∆ ∈ Inv). Then K in SK,B is determined by B. Namely, K = Ker(dp) for the
unique idempotent p ∈ SG(M) (SG,∆(M), respectively) with Im(dp) = B.

Assume ∆ ∈ Inv. Now we are going to describe the maximal subgroups of
SG,∆(M). So let p ∈ SG,∆(M) be an idempotent and let B = Im(dp) and K =
Ker(dp). Let Sp be the maximal subgroup of SG,∆(M) containing p. So

Sp = {q ∈ SG,∆(M) : dq ∈ SK,B}.

Let X = cl(G(M)p) be the G(M)-subflow of SG,∆(M) generated by p. Let GB =
Stab(p). So GB is the atom of B containing 1. Notice that K and X are determined
by each other as follows.

Lemma 3.11 ([N5, Lemma 1.9]) Assume q ∈ SG,∆(M). Then for every U ∈
DefG,∆(M) we have that

U ∈ Ker(dq) ⇐⇒ [U ] ∩ cl(G(M)q) = ∅

where [U ] = {r ∈ SG,∆(M) : U ∈ r}.
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Proposition 3.12 (1) Sp = {gp : g ∈ NG(M)(GB)}. In particular, Sp is definable in
M eq (as a group).
(2) The function f : NG(M)(GB) → Sp mapping g to gp is a definable group homo-
morphism, with kernel GB. Hence Sp is definably isomorphic to the quotient group
NG(M)(GB)/GB.

Proof. (1) Assume q ∈ Sp. In particular, K = Ker(dq) = Ker(dp). By Lemma 3.11,
cl(G(M)q) = cl(G(M)p) = X, hence the orbit G(M)q is dense in X. By Remark
2.5 and Lemma 2.6(2), there is a unique dense G(M)-orbit contained in X, hence
G(M)q = G(M)p and q ∈ G(M)p.

We see that the group Sp is contained in the set {gp : g ∈ G(M)}. Assume
g ∈ G(M). We identify g with tp(g/M). Then gp = g ∗ p. We shall prove that the
following conditions are equivalent.

(a) gp ∈ Sp

(b) Im(dgp) = B

(c) gBg−1 = B

(d) g ∈ NG(M)(GB)

(a) ⇔ (b): Since for g ∈ G(M) we have that Ker(dgp) = Ker(dp) = K, we see that
(a) is equivalent to the conjunction of (b) and the statement that dgp|B permutes B.
So (a) ⇒ (b) is clear.

For (b) ⇒ (a) notice that the function dgp|B is the composition of the functions
dp|B and dg|B. The function dg : DefG,∆(M) → DefG,∆(M) maps U ∈ DefG,∆(M) to
Ug−1, hence it is a bijection. So if Im(dgp) = B, then dgp|B permutes B.

(b) ⇔ (c): Since dgp = dg ◦ dp, we have that

Im(dgp) = dg[Im(dp)] = dg[B] = Bg−1 = gBg−1.

The last equality holds since B is a G(M)-algebra.
(c) ⇔ (d): By Lemmas 3.3 and 3.7, B is determined by the set of atoms At(B),

and in turn At(B) is determined by GB as the set of left cosets of GB in G(M).
Likewise gBg−1 is determined by gGBg

−1. So we are done.
This proves the first clause of (1). The second clause is immediate.
(2) To see that f is a group homomorphism consider g, h ∈ NG(M)(GB). Since p

is the neutral element of Sp and hp ∈ Sp, we have that p ∗ hp = hp. Hence

f(g) ∗ f(h) = gp ∗ hp = ghp = f(gh).

Since GB = Stab(p) we get that GB = Ker(f). �
By Lemma 3.9 the group GB is ∆-definable and ∆-connected and p is the generic

type of GB in SG,∆(M). Proposition 3.12 shows that the maximal subgroup Sp

of SG,∆(M) containing p consists of the left translates of p by the elements of
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NG(M)(GB). Conversely, if H is a ∆-definable ∆-connected subgroup of G(M) and
N = NG(M)(H), then the quotient group N/H is definably isomorphic to the max-
imal subgroup of SG,∆(M) containing the generic type pH ∈ SG,∆(M) of H and
consisting of the left translates of pH by the elements of N/H.

Next we describe the maximal subgroups of SG(M). Assume p ∈ SG(M) is an
idempotent and for all ∆ ∈ Inv let p∆ = p|∆ ∈ SG,∆(M). Let Sp be the maximal
subgroup of SG(M) containing p and Sp∆ be the maximal subgroup of SG,∆(M)
containing p∆. For ∆ ∈ Inv let H∆ = Stab(p∆) and N∆ = NG(M)(H∆). Let
H = Stab(p) and N =

∩
∆∈InvN∆. So H =

∩
∆∈InvH∆ and N = NG(M)(H).

Corollary 3.13 (1) The group Sp is an inverse limit of the groups Sp∆.
(2) Assume M is |T |+-saturated. Then the function g 7→ gp is a group epimorphism
N → Sp with kernel H, inducing a group isomorphism N/H → Sp.
(3) Assume T is totally transcendental. Then for some ∆ ∈ Inv we have that N =
N∆ and H = H∆. Consequently the conclusion of (2) holds and Sp

∼= N/H ∼= Sp∆.

Proof. (1) is easy. For (2) it is enough to prove that Sp = {gp : g ∈ N}.
⊇ is obvious, since by (1) Sp = invlim∆∈InvSp∆ and by Proposition 3.12, Sp∆ =

{gp∆ : g ∈ N∆}.
For ⊆ consider any q ∈ Sp and for ∆ ∈ Inv let q∆ = q|∆. By (1), q∆ ∈ Sp∆ ,

hence there is a g∆ ∈ N∆ with q∆ = g∆p∆. By the saturation of M we find g ∈ N
such that q∆ = gp∆ for every ∆ ∈ Inv. Hence q = gp.

(3) If ∆1,∆2 ∈ Inv and ∆1 ⊆ ∆2, then H∆2 ⊆ H∆1 and N∆2 ⊆ N∆1 . By the
descending chain condition for definable groups in a totally transcendental theory we
get a ∆ ∈ Inv such that H = H∆ and N = N∆. By Proposition 3.12, Sp∆ = {gp∆ :
g ∈ N∆}. The types gp∆, g ∈ N∆, are the generic ∆-types of their H∆-cosets. They
extend uniquely to the generic types in SG(M) of these cosets. So the restriction
Sp → Sp∆ is an isomorphism. �

Notice that every connected type-definable subgroup H of G(M) corresponds in
this way to the group Sp, where p ∈ SG(M) is the generic type of H.

Earlier in this section we discussed when the restriction functions Sp → Sp∆ ,∆ ∈
Inv, are surjective. In Lemma 3.5 we provided a criterion for this in the case where
L is countable. Here we extend this result, using our description of the groups Sp

and Sp∆ . We keep the notation from Corollary 3.13

Lemma 3.14 Assume T is totally transcendental or M is |T |-compact. Then the
following conditions are equivalent.
(1) The restriction functions Sp → Sp∆ are surjective for every ∆ ∈ Inv.
(2) The connecting maps of the inverse system of groups (Sp∆)∆∈Inv are surjective.

Proof. (1) ⇒ (2) is obvious.
(2) ⇒ (1): If T is totally transcendental, then we are done by Corollary 3.13(3).

Next, assume M is |T |+-saturated. Let ∆0 ∈ Inv. We want to prove that the
restriction function Sp → Sp∆0

is surjective.
So let q∆0 ∈ Sp∆0

. Let κ = |T |. For ∆ ∈ Inv let N∆ = NG(M)(Stab(p∆)). By
Proposition 3.12, Sp∆ = {gp∆ : g ∈ N∆}.
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Extend ⟨∆0⟩ to an increasing continuous sequence ⟨∆α, α < κ⟩ of invariant sub-
sets of L with |∆α| < κ and

∪
α<κ ∆α =

∪
Inv. For α < κ let pα = p|∆α and

Nα =
∩
{N∆ : ∆ ∈ Inv and ∆ ⊆ ∆α}.

We find recursively elements gα ∈ Nα, α < κ, such that for every α < κ

(∗) the types gβpβ, β ≤ α, are compatible.

We begin the construction with a g0 ∈ N0 such that q∆0 = g0p∆0 . g0 exists by
Proposition 3.12.

Next suppose α < κ and for every α′ < α we have picked gα′ such that (∗) holds
with α′ in place of α. Let Φ(x) consist of the following formulas:

• x ∈ N∆ (for all ∆ ∈ Inv with ∆ ⊆ ∆α),

• gβp∆ = xp∆ (for every β < α and ∆ ∈ Inv with ∆ ⊆ ∆β).

We see that Φ(x) is a type over M eq of power < |T |. By the compactness of M
we find gα ∈ Nα realizing Φ(x). It is clear that (∗) holds.

Let q(x) be the union of the types gαpα, α < κ. By (∗) we have that q|∆ ∈ Sp∆

for every ∆ ∈ Inv, hence q ∈ Sp. q|∆0 = q∆0 by the choice of g0. �
Lemmas 3.5 and 3.14 resemble the situation that occurred around two-cardinal

theorem for stable theories. Assume φ(x) is a non-algebraic formula of L. Recall
that φ(x) has Vaught property if there are models M ≺ N of T with M ̸= N and
φ(M) = φ(N). We say that a model M of T has the extension property (with
respect to φ(x)) if there is a proper elementary extension N of M with φ(M) =
φ(N). Lachlan proved [La] that if φ(x) has Vaught property, then every M |= T
has an extension property, provided L is countable (and T is stable). There was
a question if this result really needs the countability assumption. Harnik removed
the countability assumption from it, instead adding the assumption that M is |T |-
compact. In [N1, N2] it was proved that it is consistent with ZFC + ¬CH that the
Lachlan’s result holds for every superstable theory assuming |L| < 2ℵ0 . The crucial
point of the proof was a construction of locally isolated types and locally atomic
models.

In Lemma 3.5 we also have a countability assumption, that is partially removed
in Lemma 3.14 at the cost of assuming that M is |T |-compact. Is it consistent with
ZFC+¬CH that Lemma 3.5 holds for a superstable T , assuming just that |L| < 2ℵ0?

Proposition 3.12 shows that the maximal subgroups of SG,∆(M),∆ ∈ Inv, are de-
finable in M eq. The next remark shows they are also definable in the pure semigroup
(SG,∆(M), ∗).

Remark 3.15 Let φ(x, y) be the formula

x ∗ y = y ∗ x = x ∧ ∃z(z ∗ x = x ∗ z = y)

Assume p ∈ SG(M) [or p ∈ SG,∆(M), where ∆ ∈ Inv] is an idempotent and S ⊆
SG(M) [S ⊆ SG,∆(M), respectively] is the maximal subgroup containing p. Then the
formula φ(x, p) defines S in the structure (SG(M), ∗) [(SG,∆(M), ∗), respectively].
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In the next section we shall need the following lemma.

Lemma 3.16 Assume ∆ ∈ Inv and B is a G(M)-subalgebra of DefG,∆(M) such
that the set

SB = {p ∈ SG,∆(M) : B = Im(dp) and dp|B permutes B}

is non-empty. Then SB is a maximal subgroup of DefG,∆(M).

Proof. Let p ∈ SB and let K = Ker(dp). By the proof of Corollary 3.2 we have that

SK,B = {f ∈ End(DefG,∆(M)) : Ker(f) = K, Im(f) = B and f |B permutes B}

is a maximal subgroup of End(DefG,∆(M)) containing dp, hence S := d−1[SK,B] is a
maximal subgroup of SG,∆(M) containing p.

Since p ∈ SB was arbitrary and by Corollary 3.10, K in SK,B is determined by B,
we get that S = SB, that is K is the common kernel of the functions dp, p ∈ SB. �

4 ∗-powers of types

In stability theory forking and local Morley ranks are the main tools to measure the
size of types. In our context topological dynamics provides some additional tools.
The largest types p ∈ SG(M) are the generic ones. They have the largest local
Morley ranks and also the smallest orbits, meaning that for p ∈ SG(M), p is generic
if and only if the G(M)-subflow cl(G(M)p) is minimal.

So for a type p ∈ SG(M) the size of the set cl(G(M)p) may indicate how large p
is: the smaller cl(G(M)p), the larger p. Notice that cl(G(M)p) is determined by the
kernel Ker(dp):

cl(G(M)p) =
∪

{SG(M) ∩ [U c] : U ∈ Ker(dp)}.

So the size of Ker(dp) is correlated with the size of p. Another object related to p is
Im(dp). Here the size of Im(dp) is inversely correlated with the size of p (we explain
it later).

The goal of this section is to compare the three ways of measuring p ∈ SG(M):
by local Morley ranks, by the size of Ker(dp) and by the size of Im(dp). First we
recall the fundamental lemma connecting forking and local Morley ranks. It appears
in [Pi] as Lemmas I.3.4, I.3.6 and Corrolary I.3.5.

Lemma 4.1 (1) Let ∆ ⊆ L be finite, A ⊆ B ⊆ C, q(x) ∈ S∆(B) and p(x) =
q(x)|A ∈ S∆(A). Then q does not fork over A if and only if RM∆(q) = RM∆(p).
(2) Let A ⊆ B, q(x) ∈ S(B), p(x) = q(x)|A. Then q does not fork over A if and only
if RM∆(p|∆) = RM∆(q|∆) for co-finally many (equivalently: all) finite sets ∆ ⊆ L.
(3) With the hypotheses of (2), q does not fork over A if and only if RM∆(p) =
RM∆(q) for co-finally many (equivalently: all) finite sets ∆ ⊆ L.
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For a type p ∈ SG(M) let

R⃗(p) = ⟨RM∆(p) : ∆ ∈ Inv⟩ and R⃗′(p) = ⟨RM∆(p|∆) : ∆ ∈ Inv⟩.

For p, q ∈ SG(M) we write R⃗(p) ≤ R⃗(q) when RM∆(p) ≤ RM∆(q) for every ∆ ∈ Inv.

The notation R⃗′(p) ≤ R⃗′(q) has an analogous meaning. The next lemma indicates
that the independent multiplication of types ∗ increases the size of types. Its items
are essentially proved in [N3] or follow from Lemma 4.1

Lemma 4.2 Assume p, q ∈ SG(M).

(1) R⃗(p ∗ q) ≥ R⃗(p) and R⃗(p ∗ q) ≥ R⃗(q).

(2) (1) holds also with R⃗′ in place of R⃗.
(3) The following conditions are equivalent

(a) R⃗(p ∗ q) = R⃗(q)

(b) R⃗′(p ∗ q) = R⃗′(q)
(c) For a |= p and b |= q, a⌣| Mb implies a⌣| Mab.
(4) The following conditions are equivalent

(a) R⃗(p ∗ q) = R⃗(p)

(b) R⃗′(p ∗ q) = R⃗′(p)
(c) For a |= p and b |= q, a⌣| Mb implies ab⌣| Mb.

∗ affects also the size of Ker(dp) and Im(dp) for p ∈ SG(M).

Remark 4.3 Assume p, q ∈ SG(M) or p, q ∈ SG,∆(M), where ∆ ∈ Inv. Then
Ker(dp∗q) ⊇ Ker(dq) and Im(dp∗q) ⊆ Im(dp).

Proof. By Proposition 1.4, dp∗q = dp ◦ dq. �
This remark justifies our claim above that the size of a type p ∈ SG(M) is

inversely correlated with the size of Im(dp). The next lemma relates the growth of
ranks, kernels and images.

Lemma 4.4 (1) Assume p, q ∈ SG(M).

(a) If R⃗(p ∗ q) = R⃗(p), then Im(dp∗q) = Im(dp).

(b) If R⃗(p ∗ q) = R⃗(q), then Ker(dp∗q) = Ker(dq).
(2) Assume p, q ∈ SG,∆(M), where ∆ ∈ Inv.
(a) If RM∆(p ∗ q) = RM∆(p), then Im(dp∗q) = Im(dp).
(b) If RM∆(p ∗ q) = RM∆(q), then Ker(dp∗q) = Ker(dq).

Proof. (1)(a) Let a, b ∈ C be independent realizations of p, q, respectively. Then
ab |= p ∗ q. Let q−1 = tp(b−1/M). By Lemma 4.2 we have that ab⌣| Mb, hence
ab⌣| Mb

−1. So a = (ab)b−1 realizes both p and (p ∗ q) ∗ q−1. Hence p = (p ∗ q) ∗ q−1.
By Remark 4.3 it follows that

Im(dp) ⊇ Im(dp∗q) ⊇ Im(dp∗q∗q−1) = Im(dp),

hence all these inclusions are equalities and we are done.
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(1)(b) A similar proof.
(2)(a) Choose p′, q′ ∈ SG(M) extending p, q, respectively. Let a, b ∈ C be in-

dependent realizations of p′, q′, respectively. Let (q′)−1 = tp(b−1/M) and q−1 =
tp∆(b−1/M). So q−1 = (q′)−1|∆.

We have that ab realizes both p ∗ q and p′ ∗ q′. We claim that

p ∗ q ∗ q−1 = p.

To compute p∗q ∗q−1 = (p∗q)∗q−1 we pick a b′ |= q′ with b′⌣| Mab. Then ab(b′)−1 |=
p ∗ q ∗ q−1. Since ab⌣| Mb

′, we have that RM∆(tp∆(ab/Mb′)) = RM∆(tp∆(ab/M)).
Since RM∆(p ∗ q) = RM∆(p), we have that

RM∆(tp∆(ab/Mb)) = RM∆(tp∆(a/Mb)) = RM∆(tp∆(a/M)) = RM∆(tp∆(ab/M)).

Let rb = tp∆(ab/Mb) and rb′ = tp∆(ab/Mb′). Since both b and b′ realize q′ and
Mlt∆(tp∆(ab/M)) = 1, we have that rb and rb′ are conjugate over M . Hence

p = tp∆(abb−1/M) = tp∆(ab(b′)−1/M) = p ∗ q ∗ q−1.

The rest is as in the proof of (1)(a).
(2)(b) A similar proof. �
Assume p ∈ SG(M) (or p ∈ SG,∆(M), where ∆ ∈ Inv). Consider the sequence of

types p∗n = p ∗ . . . ∗ p (n-times), n > 0. By Lemma 4.2 we get a non-decreasing se-

quence of ranks R⃗(p∗n), n > 0 (orRM∆(p∗n)). By Remark 4.3 we get a non-decreasing
sequence of kernels Ker(dp∗n) and non-increasing sequence of images Im(dp∗n). We
are going to compare the growth properties of these three sequences. We will use
the following lemma, which seems also to be of independent interest.

Lemma 4.5 Let B = Im(dp). If the function dp|B : B → B is 1-1, then it is “onto”.

Proof. First we assume that p ∈ SG,∆(M). Suppose dp|B : B → B is 1-1, but not
“onto”. Then the sequence of algebras Im(dp∗n), n > 0, is strictly decreasing. But
the sequence of ranks RM∆(p∗n), n > 0, eventually stabilizes (since RM∆(x = x)
is finite), hence by Lemma 4.4 also the sequence Im(dp∗n) eventually stabilizes, a
contradiction.

Now we deal with the case where p ∈ SG(M). If dp|B : B → B is 1-1, but not
“onto”, then for some ∆ ∈ Inv, some U ∈ B ∩ DefG,∆(M) lies outside Im(dp|B). We
consider p∆ = p|∆. Let B∆ = Im(dp∆). Then B∆ = B ∩ DefG,∆(M) and dp∆ : B∆ →
B∆ is 1-1, but not ”onto”, contradicting the case, where p ∈ SG,∆(M). �

The next proposition shows that the sequences of kernels and images of the
functions dp∗n , n > 0, are strictly correlated. Later we shall see they are strictly
correlated also to the sequence of ranks.

Proposition 4.6 Assume n > 0. The following conditions are equivalent.
(1) Ker(dp∗n) = Ker(dp∗(n+1)).
(2) Ker(dp) ∩ Im(dp∗n) = {∅}.
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(3) Im(dp∗n) = Im(dp∗(n+1)).
If conditions (1)-(3) hold, then Ker(dp∗n) = Ker(dp∗m) and Im(dp∗n) = Im(dp∗m) for
all m ≥ n.

Proof. (1) ⇔ (2) is trivial. For the rest of the proof let q = p∗n, B = Im(dq) and
K = Ker(dq). Notice that dq|B = (dp|B)n.

(2) ⇒ (3). By (2), dp|B : B → B is 1-1. Hence also dq|B is 1-1. It is enough to
show that dp|B : B → B is “onto”. Suppose not. Then also dq|B : B → B is not
“onto”. This contradicts Lemma 4.5.

(3) ⇒ (2). Suppose (3) holds and (2) fails. Then also Im(dq∗2) = B and K ∩B ̸=
{∅}. It follows that for every m > 0, Im(dq∗m) = B and the sequence Ker(dq∗m),m >
0, is strictly increasing.

Case 1. p ∈ SG,∆(M). Then q ∈ SG,∆(M) and by Lemma 4.4, the sequence of
kernels Ker(dq∗m),m > 0, is eventually constant (similarly as in the proof of Lemma
4.5), a contradiction.

Case 2. p ∈ SG(M). Then q ∈ SG(M). Choose a non-empty U ∈ K ∩ B.
U ∈ DefG,∆(M) for some ∆ ∈ Inv. Let q∆ = q|∆. We see that Im(dq∆) = Im(dq∗2∆ )
and U ∈ Ker(dq∆)∩ Im(dq∆), contradicting (3) ⇒ (2) in the case where p ∈ SG,∆(M)
and n = 1.

The last clause of the proposition is easy. �
Now we focus our attention on the case where p ∈ SG,∆(M) and ∆ ∈ Inv.

Theorem 4.7 Assume ∆ ∈ Inv, p ∈ SG,∆(M) and n0 > 0 is minimal such that
Ker(dp∗n0 ) = Ker(dp∗(n0+1)). Then there is a ∆-definable ∆-connected subgroup H of
G(M) such that the types p∗n, n ≥ n0, belong to the maximal subgroup S of SG,∆(M)
containing the generic type q ∈ SG,∆(M) of H. In particular, the types p∗n, n ≥ n0,
are of the form gq, where g ∈ NG(M)(H).

Proof. Let B = Im(dp∗n0 ). By Proposition 4.6, for every n ≥ n0 we have that
B = Im(dp∗n) and dp∗n |B permutes B. Hence by Lemma 3.16 all such types p∗n belong
to the maximal subgroup SB of SG,∆(M). Our theorem follows from Proposition 3.12.
�

In particular, if RM∆(G(M)) = d, then for every p ∈ SG,∆(M) and every m ≥ d
we have that p∗m belongs to a maximal subgroup of SG,∆(M), the same one that
contains p∗d.

Corollary 4.8 Assume n > 0 and p ∈ SG,∆(M), where ∆ ∈ Inv. The following
conditions are equivalent.
(1) Ker(dp∗n) = Ker(dp∗(n+1)).

(2) RM∆(p∗n) = RM∆(p∗(n+1)).
In particular, if (1) and (2) hold, then RM∆(p∗m) = RM∆(p∗m) for all m ≥ n.

Proof. (2) ⇒ (1) follows by Lemma 4.4.
(1) ⇒ (2). If Ker(dp∗n) = Ker(dp∗(n+1)), then by Theorem 4.7 the types p∗n and

p∗(n+1) are both left translates of the generic type q ∈ SG,∆(M) of some ∆-definable
∆-connected subgroup H of G(M). Hence RM∆(p∗n) = RM∆(p∗(n+1)).
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The last clause of the corollary is easy. �
Corollary 4.8 show that also the sequence of ranks of p∗n, n > 0, is strictly corre-

lated to the sequences of kernels and images of dp∗n .

Corollary 4.9 Assume ∆ ∈ Inv, p ∈ SG,∆(M) [or p ∈ SG(M)], n > 0 and p∗n

belongs to a maximal subgroup S of SG,∆(M) [SG(M), respectively]. Then p∗m ∈ S
for every m ≥ n.

In the case where p ∈ SG(M) we get a sequence of ∆-definable ∆-connected
subgroups H∆ of G(M) such that for every ∆ ∈ Inv the types (p|∆)∗n eventually
are left translates of the generic ∆-type of H∆. Let H =

∩
∆∈InvH∆. So H is a

connected type-definable subgroup of G(M) and the sequence p∗n, n > 0, “converges”
to translates of the generic type q of H. Namely, for every ∆ ∈ Inv, eventually
the types (p|∆)∗n are left translates of q|∆. Hence we could say that, considering
the operation of raising p to ∗-powers, the type p is pro-finitely steps away from a
translate of a generic type of a subgroup of G(M).

In the special case where U(G) is finite, say U(G) = d, we get a real convergence:
there is an n ≤ d such that for every m ≥ n, p∗m is a left translate of q, provided M
is |T |+-saturated. This last fact essentially follows also from [Ko].
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