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ABSTRACT. It is shown that in an elementary extension of a compact complex
manifold M, the K-analytic sets (where K is the algebraic closure of the
underlying real closed field) agree with the ccm-analytic sets if and only if
M is essentially saturated. In particular, this is the case for compact Kéahler
manifolds.

1. INTRODUCTION AND PRELIMINARIES

Let R = (R,...) be a fixed o-minimal expansion of R,, and M a compact
complex manifold. We will view the underlying real-analytic manifold of M as
living definably in R and equipped with all the structure induced from R. One
way to do so would be to consider M as a definable space in R in the sense of [16].
However we proceed more concretely as follows: the Morrey-Grauert imbedding
theorem allows us to identify M with a real-analytic submanifold of R™ for some
m > 0. Moreover, by compactness, M C R™ is globally subanalytic and hence
definable in R,,. We therefore can, and do, view M as equipped with the full
induced structure from R: a subset of M™ is definable if as a subset of R™" it is
definable in R. For example, every real-analytic subset of M™ is definable.

Now consider the complex manifold structure on M. Every complex-analytic
subset of M™ is real-analytic and hence definable. The complex-analytic structure
on M is thus viewed as a reduct of its real-analytic structure. Formally, let us denote
by Mecem this reduct where the underlying set is M and where the language consists
of a predicate for each complex-analytic subset of each cartesian power of M. A
definable subset of M (or its cartesian powers) will be called ccm-definable if it is
definable in the reduct Mccr,. Recall that Th(Mcem) admits quantifier elimination
and is of finite Morley rank ([18]). A more detailed survey of the model theory of
Th(Mcem) can be found in [6].

Next, we pass to an elementary extension of the entire situation: let R = (R,...)
be a sufficiently saturated elementary extension of R, and let M C R™ be the
interpretation of M in R. We obtain a corresponding elementary extension of
Mccm, denoted by Mccm, which is itself a reduct of the induced structure on M
from R. So on the ¢ nonstandard’ manifold M we have the definable sets, namely
those that are /c\ieﬁnable in R, and the ccm-definable sets, those that are definable
in the reduct Mccm,.
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Notation 1.1. If N < N is an elementary extension of first-order structures, and
F={F,=¢(c,a)VN :a e A=y(x)V}
is a definable family of sets in A/, then we let
Fi= {d(c, a)ﬁ ja € 1/}(:10)/\7}

be the correspondAing definable family in N. A definable set in A is then just a
member of some F where F is a definable family of definable sets in N'. The study
of definable sets in N thus amounts to the study of definable families in N

Among the definable sets in M there are two natural candidates for the “non-
standard complex-analytic” ones. The first of these comes from working entirely in
Th(Meem):

Definition 1.2. A subset S C Mn s ccm-analytic if there exists a ccm-definable
family F of complex-analytic subsets of M"™ such that S € F.

By quantifier elimination for Th(Mccm ), every ccm-definable set in M is a finite
boolean comination of ccm-analytic sets.

Remark 1.3. We will eventually use an equivalent characterisation of ccm-analytic
subsets that is more along the lines of [13, 6], and it is worth describing this now. Let
A be the many-sorted structure where there is a sort for each irreducible compact
complex-analytic space (not necessarily smooth) and the language consists of a
predicate for each complex-analytic subset of each cartesian product of sorts. The
Th(A) admits quantifier elimination and is of finite Morley rank (sort by sort). If
M is a compact complex manifold then M is a sort of A and Mcc, is just the
structure induced on M by A. The whole many-sorted structure A is interpretable
in R. Hence there is a corresponding elementary extension Aof A interpretable in
R. Now, a subset S C M™ is ccm-analytic if and only if there exist:

e asort B of A,

e a complex-analytic subset Z C B x M"™, and

e a generic point e of B in ./1,

such that S is the fibre of Z above e in A (see Section 6 of [6]). This equivalence
follows from quantifier elimination as well as definability of types in Th(A). The
point is that by definability of types the family of fibres of Z over B, F :={Z}, : b €
B}, forms a family of complex-analytic subsets of M™ that is definable in Mcep,.

The second notion of “complex-analyticity” in M is informed by the work of
Y. Peterzil and the second author on complex analysis over algebraically closed
fields in o-minimal structures. Let R be a real closed field and K its algebraic
closure. In [11, 12, 10] Y. Peterzil and the second author investigate differentiability
with respect to the field K for functions of several variables definable in o-minimal
expansions of R. Their analysis leads to a notion of K-analytic set. We will not
give their definition here as we will be concerned with only a special case. Suffice
it to say that K-analyticity is definable in parameters (see Corollary 4.13 of [10]),
and that if K = C and one is working in an o-minimal expansion of R,, then
K-analytic is just complex-analytic. It follows that if R is the underlying real
closed field of an elementary extension of an o-minimal expansion of R,;,, then the
notion of K-analytic subset of M introduced in [12] has the following more direct
characterisation — which will serve as a definition for us.
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Definition 1.4. Let R be the underlying real closed field of R and K its algebraic
closure. A subset S C M™ is K-analytic if there exists a definable family F of
complex-analytic subsets of M™ such that S € F.

In particular, every ccm-analytic set is K-analytic. Our purpose in this note is
to characterise the class of compact complex manifolds M for which the converse
holds.

Ezample 1.5. Consider the case when M is a projective algebraic variety V (or
rather the set of C-rational points of V). Then M can be identified with the K-
rational points of V. Moreover, by quantifier elimination and Chow’s theorem, every
ccm-definable family of complex-analytic subsets of M™ is a Zariski-constructible
family of algebraic subsets of M™. It follows that the ccm-analytic subsets of Mn
in this case are exactly the algebraic subsets over K. Now, in [10] Y. Peterzil and
the second author prove a nonstandard version of Chow’s theorem so that the K-
analytic subsets of M™ are also just the algebraic subsets over K. Hence, for M a
projective variety, K-analyticity and ccm-analyticity coincide in M.

Ezample 1.6 (See Section 3.3 of [12]). Fix real numbers a and b lying strictly
between 0 and 1, and consider the Hopf surface M obtained as the quotient of
C?\ {(0,0)} by the action of the group of automorphisms generated by (z,w)
(az,bw). Tt is explained in [14] that there are no infinite ccm-definable families
of automorphisms of M. Hence M has no ccm-analytic automorphisms (i.e., no
automorphims whose graph is a ccm-analytic subset of M 2) other than the inter-
pretations of the complex-analytic automorphisms of M itself. On the other hand,
as pointed out in [12], it is not hard to construct infinite definable (in R) families
of complex-analytic automorphisms of M. This gives rise to K-analytic subsets of
M? that are not ccm-analytic.

The characterisation we obtain will be in terms of the following notion intro-
duced by the first author in [7]: a compact complex manifold M is essentially
saturated if there exists a countable collection of complex-analytic subsets of M
and its cartesian powers, Ly, such that every ccm-definable set is definable (with
paramaters) in the language where there is a predicate for each complex-analytic
set in L£y.! The terminology comes from the fact (Proposition 2.3 of [7]) that if M
is essentially saturated and L is as above, then the structure (M, Lo) is saturated,
and definability in (M, £y) and Mcen, agree.

Our main observation is the following result which we prove in Section 3.

Theorem 1.7. The following are equivalent:
(a) M is essentially saturated.
(b) The K-analytic and ccm-analytic subsets of M™, for all n > 0, coincide.

Since compact Kahler manifolds are essentially saturated (see Section 4 of [7]),
we obtain:

Corollary 1.8. If M is a compact Kdahler manifold then every K-analytic subset
of M™ is ccm-analytic, for all n > 0. |

n fact, one can ask for less: that Lg is a countable sublanguage of the language of the many-
sorted structure A of Remark 1.3. That these are equivalent is definability of types again, see
Proposition 2.3 of [7].
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2. THE BARLET SPACE, ESSENTIAL SATURATION, AND VOLUME

In [7] essential saturation is given a geometric characterisation in terms of certain
universal families of analytic subspaces. In this section we will recall Barlet’s space
of compact cycles of a complex manifold, recast essential saturation as a condition
on the Barlet spaces, and discuss a theorem of Lieberman’s which will be used in
the proof of Theorem 1.7. A more detailed exposition of this material can be found
in Section 3 of [8].

For M any complex manifold, a k-cycle of M is a finite linear combination Z =
ZniZi where the Z;’s are distinct k-dimensional irreducible compact complex-

K3
analytic subsets of M, and each n; is a positive integer called the multiplicity of
Z; in Z. By |Z| we mean the underlying set or support of Z, namely UZZ" We

denote the set of all k-cycles of M by By(M), and the set of all cycles of M by
B(M) = UBk(M)~ In [1] Barlet endowed By (M) with a natural structure of

a complex-analytic space whereby if for s € Bi(M) we let Zs denote the cycle
respresented by s, then the set {(s,z) : s € Bp(M),z € |Zs|} is a complex-analytic
subset of By (M) x M. Equipped with this complex structure, B(M) is called the
Barlet space of M. When M is a projective variety the Barlet space coincides with
the Chow scheme. In [3] it is shown that

B*(M) :={s € B(M) : Z is irreducible with multiplicity 1}

is a Zariski open subset of B(M): its complement in B(M) is a proper complex-
analytic subset. An irreducible component of B(M) is prime if it has nonempty
intersection with B*(M).

The characterisation of essential saturation referred to above can be expressed
in terms of the Barlet space as follows.

Fact 2.1 (Moosa [7]). Suppose M is a compact complex manifold. Then M is
essentially saturated if and only if every prime component of B(M™) is compact,
for all n > 0.

Actually, in Theorem 3.3 of [7] this is done with the universal family of analytic
subspaces — the Douady space — rather than cycles. However, the same arguments
work for Barlet spaces as well.? Or alternatively, since there is a holomorphic
map from the Douady space to the Barlet space whose image contains B*(M) (see
Chapitre V of [1]), compactness of the components of the Douady space implies
compactness of the prime components of the Barlet space.

The main technique for determining whether a prime component of the Bar-
let space is compact comes from a theorem of Lieberman’s which involves some
hermitian geometry: Recall that if M is a complex manifold then there is a one-
to-one correspondence between hermitian metrics and positive real (1, 1)-forms on
M, given by h — w := —Im(h). Moreover, Re(h) is a reimannian metric on

2Indeed it is casier as one can replace the use of Hironaka’s flattening theorem by the much
simpler geometric flattening theorem of [2].
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M. Wirtinger’s theorem allows us to compute the volume of a compact complex
submanifold of M with respect to this riemannian metric (denoted by vol;) by
integrating the appropriate exterior power of the assocated (1,1)-form over the
submanifold: if Z C M is a compact complex submanifold of complex-dimension
k, then the volume of Z is given by

(2.1) volp(Z) = %/Zwk

where w* is the kth exterior power of w (see Section 3.1 of [17]).

If Z is a possibly singular complex-analytic subset (irreducible, compact, dimen-
sion k), then equation (2.1) can serve as the definition of volume; it agrees with the
volume of the regular locus of Z. More generally, if Z = . n;Z; is a k-cycle of M,
then the volume of Z with respect to h is vol,(Z) := 3. n; voly(Z;).

Note that taking volumes of cycles induces a function vol;, : B(M) — R given
by voly(s) := vol,(Zs).

Fact 2.2 (Lieberman [5]). Suppose M is a compact complex manifold equipped
with a hermitian metric h, and X C B(M). Then X is relatively compact in B(M)
if and only if vol, is bounded on X.

One application of this fact is to show that compact Kéahler manifolds are essen-
tially saturated (see Section 3 of [8]). We will use Lieberman’s theorem together
with the following consequence of a result of van den Dries’ to prove Theorem 1.7.

Proposition 2.3. Suppose M is a compact complex manifold (viewed as a definable
space in an o-minimal expansion R of Ran) and h is a hermitian metric on M. If
F is a definable family of complez-analytic subsets of M then {vol,(F): F € F} is
bounded.

Proof. In the e-print [9] there is an argument for how this follows from the fact
(Proposition 4.1 of [15]) that Hausdorff measure in definable families is bounded.
For the sake of completeness we include it here.

Let F = {F, : a € A}. Since complex-dimension is twice the real-dimension and
the latter is definable in parameters by o-minimality, we may assume that there is
a k > 0 such that dim¢(F,) = k for all a« € A. By compactness of M it suffices
to show that for each p € M there is an open neighbourhood V of p such that
vol, (F, NV) is bounded as a varies in A.

Consider a chart o : V' — D at p such that D is a definable bounded open ball in
C™ (where m = dim¢(M)) and a(p) = 0. Then Re(h)|y induces via « a riemannian
metric g on D. For each d € D, let r4 be the maximum of g4(v,v) for all v in the
closed unit sphere in the tangent space T;D of D at d. By the continuity of the map
d +— 714, for a smaller open ball D’ compactly contained in D, there is an r > 0 such
that ry <r for all d € D’. Shrinking the chart if necessary we may assume D’ = D.

Replacing o with %, we can now assume that for all d € D and all v € TyD,
T

ga(v,v) < ||v]|2 where || || denotes the standard norm. In other words, the length
of tangent vectors with respect to the riemannian metric induced on D from h|y is
not greater than the length with respect to the standard metric. It follows that the
volume of a(F, N'V) with respect to the standard riemannian metric on D is not
less than voly, (F, NV), for any a € A. But the volume of a(F, NV') with respect to
the standard Riemannian metric is equal to the 2k-dimensional Hausdorff measure
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of a(F, NV). Since {F, NV :a € A} is a definable family, the 2k-dimensional
Hausdorff measure of a(F, N V) is bounded as a varies in A by Proposition 4.1
of [15]. Hence, vol;,(F, NV) is bounded as a varies in A, as desired. O

3. PROOF OF THEOREM 1.7

Let us recall the set-up of the theorem:

e M is a compact complex manifold viewed as a definable set in a fixed o-
minimal expansion R of R,,.

e Risa sufficiently saturated elementary extension of R with underlying real
closed field R whose algebraic closure is K.

e M is the corresponding elementary extension of M viewed as a definable
set in R.

We first show (a) implies (b): that if M is essentially saturated then every K-
analytic subset of Mnis ccm-analytic, for all n > 0. So assume that M is essentially
saturated and let S C M™ be K-analytic. Let F = {F, : a € A} be a definable
family of complex-analyitc susbets of M™ such that S € F.

First of all, by the definable trivialisation theorem in o-minimal structures (see
Chapter 9 of [16]) the connected components of reg(Fy ), and hence the irreducible
components of F,, are uniformly definable. By taking unions it therefore suffices
to consider the case when each Fj, is irreducible.

Hence, for each a € A there is a unique b € B*(M") such that F, = Z.
Let X C B*(M™) be the set of such b’s. Now fix a hermitian metric h on M™.
By Proposition 2.3 {vol(F,) : a € A} is bounded, and hence volj, is bounded
on X. It follows that X is relatively compact in B(M™) (this is Fact 2.2). So

X is contained in the union of finitely many prime components of B(M™), say
¢

B = U B;. By essential saturation, each B; is compact (this is Fact 2.1). Hence
i=1

G:={Zy:be BNB*(M™)} is a ccm-definable family of complex-analytic subsets of

M™ (see Remark 1.3). Since X C BNB*(M™), every member of F isin G. It follows

that every member of Fisin G. In particular S € é, and so S is ccm-analytic as

desired.

For the converse assume that X is not essentially saturated. By Fact 2.1, for
some n > 0, there exists a non-compact prime component By of B(M™). Let
By :=reg(Bg) N B*(M™). Then B is a nonempty Zariski open subset of By and
is a complex-analytic manifold. Using the Morrey-Grauert imbedding theorem we
may assume that By C R¢ for some ¢ > 0, and that as a real-analytic manifold it is
a submanifold of Rf. Since Gy := {(s,z) : s € By, z € |Z,|} is a complex-analytic
subset of By x M™, Gy := {(s,z) : s € By,x € |Z4|} is real-analytic as a subset
of R x R™". Now fix an arbitrary a € By, choose V' C R an open ball of radius
one centred at a, and set D := V N By. Then G; N (D x R™") is a real-analytic
subset of RY x R™" which is relatively compact (being contained in D x M™).
Hence G N (D x R™") is definable in R,,. It follows that F := {Z; : d € D} is
definable in R. The point here is that this definable family of complex-analytic
subsets of M™ has as its parameter space a nonempty open subset of the non-
compact prime component By. We will show that this forces some member of T to
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not be ccm-analytic. (Note that F itself fails to be ccm-definable because D is not
ccm-definable.)

Claim 3.1. If S € F is ccm-analytic then there exists a compact complex-analytic
subset C' C B(M™) such that S € G where G := {Z.:ce CNB*(M")}.

Proof of claim. As mentioned in Remark 1.3, there exists an irreducible compact
complex-analytic set A and a complex-analytic subset FF C A x M", such that S is
a generic fibre of F' over A in A. Note that since S € F , every non-empty Zariski
open subset of A contains an element a such that F, € F. As the members of
F are irreducible, it follows that over a nonempty Zariski open subset of A the
fibres of F' are irreducible. In particular, there is a unique irrreducible component
of F' that projects onto A and which contains the general fibres of F', and hence
we may replace F' by this irreducible component. Note also that after possibly
shrinking the Zariski open set, these general fibres are of constant dimension. It
follows by the universal property of the Barlet space (together with the geometric
flattening theorem of [2]) that there exists a meromorphic map g : A — B(M™) and
a nonempty Zariski open subset U C A such that for all a € U, g(a) € B*(M™)
and F, = Zy(4) (see for example Proposition 2.20 of [4]). Let C' be the closure of
the image of U under g — which will be an irreducible compact complex-analytic
subset of B(M™) since A is compact and g is meromorphic — and let G := {Z. : ¢ €
C'NB*(M™)}. Since S is a generic fibre of F over A, S € G. O

Suppose for a contradiction that every member of Fis ccm-analytic. By satura-
tion and the claim F must be covered by finitely many families of the form given by
the claim. Taking unions this means that there exists a compact complex-analytic
subset C C B(M™) such that every member of F is contained in G := {Z. : ¢ €
CNB*(M™)}. But this means that D C C'NBy. By construction, D is a nonempty
open subset of By while C' N By is a complex-analytic subset of the irreducible
complex-analytic space By. Hence By = C N By, and so By is an irreducible com-
ponent of C'. But this contradicts the fact that C' is compact while By is not. There
must therefore exist some member of F that is not ccm-analytic. We have shown
that not every K-analytic set is ccm-analytic, as desired.

This completes the proof of Theorem 1.7. (]
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