FORKING GEOMETRY ON THEORIES WITH AN
INDEPENDENT PREDICATE

JUAN FELIPE CARMONA

ABsTrRACT. We prove that a simple geometric theory of SU-rank 1 is n-ample if
and only if the associated theory equipped with an predicate for an independent
dense subset is n-ample for n at least 2.

1. INTRODUCTION

The notion of n-ampleness, introduced by Pillay in [5], roughly measures the
complexity of the forking geometry: the Hrushovski construction ab-initio exhibits
that, in strongly minimal theories, forking geometry can be more complicated than
the geometry of vector spaces (1-based theories) and yet less than algebraic geome-
try (theories interpreting a field). The property that holds in Hrushovski’s example
is called CM-triviality and it fits in this hierarchy of n-amples. In fact, (see [5] and
[6]) a theory T is 1-based if and only if is not 1-ample and is CM-trivial if and only
if is not 2-ample. Furthermore if T interprets a field, then T is n-ample for all n.
However, the converse is not true: Evans [4] constructs a 1-based theory with a
reduct which is n-ample for every n but does not interpret an infinite group.

It is a major problem to find theories of finite rank that are not CM-trivial but
do not interpret a field. Baudisch and Pillay ([1]) obtained a 2-ample theory which
is of infinite rank not interpreting any infinite group.

On the other hand, Berenstein and Vassiliev in [2] exhibit a 1-based (not 1-
ample) theory T such that 79" is not 1-based, where 7" stands for the theory of
the pair (M, H), where M =T and H is an independent dense subset of M. We
prove in this paper that in this case 7°"? is CM-trivial. Moreover,we prove that for
n > 2, T is not n-ample if and only if 7% is not n-ample.

2. INDEPENDENT PREDICATES IN GEOMETRIC THEORIES

In this section we write down the principal definitions and results on geometric
theories with an independent predicate that we will use in this paper. All proofs
can be found in [2] and [3].

Definition 2.1. A complete theory T is geometric if eliminates 3°° and algebraic
closure satisfies the exchange property in every model of 7'
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Let T be a complete geometric theory in a language L and let Ly = LU {H}
where H is a new unary predicate. T is the Ly theory extending T together
with the axioms:

(1) for all L-formulas ¢(z,7)

Viy(e(z, y)nonalgebraic — Iz € Hp(x, 7)) (Density property)
(2) for all L-formulas ¢(x,7), for all n € w and for all ¥(x, 7, 2)

Vi (o(z, j)nonalgebraic A Vgz3<"z1(z, 7, 2)
— (3x ¢ HVZ € H(p(x,§) AN ¥(x,7,Z))) (Extension property)

In these axioms, “non algebraicity" can be expressed in a first order way due to
the elimination of 3°°.

From now on by acl() and | we mean algebraic closure and algebraic indepen-
dence in the sense of 7.

Proposition 2.1. (Berenstein, Vassiliev [2]) If T is a geometric theory and
(M, H) | 7

is No-saturated, then:

(1) If A C M is finite dimensional and q € S,,(A) has dimension n, then there
isa € H(M)™ such that a = q (Generalized density property).

(2) If A C M is finite dimensional and q € S,,(A) then there is a |= q such that

a | H (Generalized extension property).
A

Definition 2.2. An H-structure is an Nyp-saturated model of T"¢

Definition 2.3. Let (M, H) be an H-structure and ¢ a tuple in M. We denote by
HB(c), the H-basis of ¢, the smallest tuple h C H such that ¢ | H.

h
Also for A C M, A algebraically closed (in the sense of T°"?), the H-basis of c
relative to A, denoted by HB(c/A), will stand for the smallest tuple h4 € H such

that ¢ | H.
haA

Proposition 2.2. For every c, the basis HB(c) exists.

Proof. Let h and h’ be tuples of H such that ¢ | H and ¢ | H. It suffices to prove
h R
that if = hN A then c | H.
h//
We can write ¢ as cjco where ¢; is independent over H and ¢o C acl(ei H).

So by definition of h and h’' we know that co C acl(c1h) and co C acl(erh’). If
c2 € acl(c1h”) then, by exchange property, there is an element in g in A\ A’ (or in
R\ h), such that g € acl(c1h’). But ¢; was chosen to be independent from H so
actually g € acl(h'). This yields a contradiction as H is an independent subset. [

Proposition 2.3. Let (M, H) an H-structure, let ¢ and A be subsets of M and
assume that A = acl(A) and HB(A) C A, then HB(c/A) exists.
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Proof. Again, let h and h’ be minimal such that ¢ | H and ¢ | H. In particular
hA B A
we have that hh/ N A = 0.
Write ¢ as ¢jco where ¢; is independent over AH and ¢y C acl(c; AH). Then
c2 C acl(c1Ah) and ¢y C acl(ci AR'). Let h” = hn W, if ¢ € acl(c; AR”) then by
exchange there is an element g € h\ ' (or viceversa) such that g € acl(c; Ah').

Claim: we have that g ¢ acl(AR').

If not, as g ¢ h' then by exchange there is an element o’ and a subset A’ of A
such that a ¢ acl(4’) and a’ € acl(A’gh’), then some (non empty) subset of gh'
must be contained in HB(A), HB(A) C A and W’gNnA C hhNA = (. Contradiction.

Therefore, as g € acl(c; AR') \ acl(AR'), ¢1 is not independent over AH.
O

We defined the relative H-basis over algebraic closed sets A with HB(A) C A.
The next theorem shows that actually these hypothesis impose that the set over
which the H-base is defined must be algebraically closed in 7%,

Theorem 2.1. (Berenstein, Vassiliev [2]) If (M, H(M)) is an H-structure and A
is a subset of M then the algebraic closure of A in the sense of Ly (that we will
denote by acly(A)) is the algebraic closure in the sense of L of AUHB(A).

From now on, by HB(A/B) we mean HB(A/ acly(B)).

The next theorem provides a characterization of the canonical bases in 7" in
terms of H-basis and algebraic closure.

Theorem 2.2. (Berenstein, Vassiliev [2]) Let T an SU-rank 1 geometric theory
and (M, H) be an H-structure (sufficiently saturated), a a tuple of M and B C M
acly-closed. Then the canonical base cby(a/B) of stpg(a/B), is interalgebraic (in
the sense of Ly ) with cb(a HB(a/B)/B).

Example 2.1. Let V a vector space over Q such that |V| > Ng and let H =
{ho, h1, ...} be a countable independent subset of V. Then (V, H) is an H-structure.

Moreover, if t is a vector independent of H and ty = t + vy then cby(t/tg) is
interalgebraic with cb(tvo/to) = to. So t J to, but acly(t) Naclg(ty) = O hence
Th(V, H) is not 1-based.

This example shows that 1-basedness is not preserved in 7"¢.
We will see in the next section that if 7" is a SU-rank 1 geometric theory, then
T is 1-based iff T is trivial.
3. AMPLENESS

Definition 3.1. A simple theory T is not n-ample if for every sets aq, ..., a,, of M“?
which satisfy the next conditions:

Forall 1 <i<n-—1.

(1) Ai+1 \Lai_l...ao,

[£23
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(2) aCleq(ao...ai_1a1+1) N acleq(ao...ai_lai) = acleq(ao...ai_l).
We have ay, L agp.
acl®?(aq)Nacl®?(ag)

Here we use the definition given by Evans in [4]. This definition seems more
natural that the one given by Pillay in [5]. Nevertheless all the results that we
present here work for both definitions.

From now on we will assume that 7" is a SU-rank 1 geometric theory eliminating
imaginaries. By Theorem 1.2. canonical basis are interalgebraic with a tuple of
elements, so 7" has geometric elimination of imaginaries. Then, for the definition
of n-ampleness, it suffices to work with real elements in an H-structure (M, H).

Proposition 3.1. The H-basis are transitive in the sense that
HB(c¢/B) UHB(B) = HB(cB).
In particular, if A C B and acly(cA) Nacly(B) = acly(A) then
HB(c¢/A) C HB(¢/B).
Proof. 1t’s clear that HB(¢/B) UHB(B) C HB(cB). On the other hand,
c | H

BUHB(c/B)
and
B 5 H
HB(c/B) HB(B)
then

cB L H.
HB(c/B) HB(B)

Lemma 3.1. If T is trivial, then for every set A, acl(A) = acly(A).

Proof. Let h = acl(A) N H. If x € acl(4) Nacl(H), then by triviality = € acl(h’)
for some h' € H Nacl(A) = h. Hence HB(A) C h C acl(A). O

The previous lemma and Proposition 2.1 implies that, in a trivial theory, for
every set A and every B = acly(B) we have HB(A/B) C acl(A). Because
HB(A/B) C aclyg(AB) \ B = acl(AB) \ B C acl(4).
Proposition 3.2. T is trivial iff T is 1-based.

Proof. If T is trivial then for every a and b with b = acly (b) we have
h =HB(a/b) C acl(a),
so aclg(cby(a/b)) = acly(cb(ah/b)) C acly(a).

Suppose now 7% is 1-based and assume that 7T is not trivial, then there exists a
tuple a and elements b and h such that b € acl(ah) and b ¢ acl(a) Uacl(h). We can
assume that a is an independent tuple minimal with this property and therefore
that a | H (by the Generalized Extension Property). Moreover, as tp(h/a) is
not algebraic, we can assume that h belongs to H by density. It is clear that
h = HB(b/a) so cbg(b/a) is interalgebraic (in TH) with cb(bh/a). Now, the theory
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T4 is 1-based, hence acly(cbg(b/a)) = acly(b) Nacly(a). On the other hand
acly(a) = acl(a) as a | H and also acly (b) = acl(b) because a | H and b € acl(ah),
h

then b | H. But b ¢ acl(h) so HB(b) = 0.
h

However, minimality of a yields acl(cb(bh/a)) = acl(a), hence acl(a) C acl(b)
and h € acl(ab) C acl(b). This is a contradiction. O

Theorem 3.1. Forn > 2 T is n-ample iff T is n-ample.

Proof. (=) Assume T is n-ample, then there are sets aq, ..., a,, such that:

(1) Ai+1 \Lai_l...ao,

a;
(2) aCl(a()...ai,1Gi+1) n acl(ao...ai,lai) = acl(ao...ai,l).
(3) ay, L ag
acl(a1)Nacl(ap)

By the generalized extension property, there are ay...a}, such that ¢p(ay...al,) =
tp(ag...an) and ag...a,, | H.

As the H-bases of any subset of {a}...,a/,} are empty, algebraic closure in 7"
is the same as in 7. So condition (2) holds in 7.

By the characterization of the canonical bases (since H-bases are empty), con-
dition (1) holds also in 7%"?. But if

! H !
an, \J./ )
acly (a))Nacly (ay)
then
!/ li
an, J./ )
acl(aj)Nacl(ay)

This is a contradiction.

<)Assume T is not n-ample. Let ag, ..., a, be such that forall 1 <i<n -1
H
1) ai+1\|/ Q;—1..-QQ
a;
(2) aclH(ao...ai_laiH) N aclH(ao...ai_lai) = aclH(aO...ai_l).
We may assume that a; = acly (a;) for every i < n.

(
(

Claim 1. In these conditions we have the following chain:
HB(a,/ap) € HB(an/apar) C ... C HB(an/ag...an-1).

Because

H
Qp J/ a;...ap
i1

therefore
acly (apai_1...a0) Nacly(a;,...,a0) C acly(a;+1a—1-.-a0),
hence, by (2),
aclg(anai—1...a0) Naclg(a;a;—1...ap) = aclg(a;—1...ap).

The conclusion follows from Proposition[2.1]. Note that this only make sense if
n > 2.
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Let’s call h = HB(a,/ag) and ' = HB(a,/ag, ...,an—1). Hence h C h' by the
previous claim. As the canonical basis cby(a,/aclg(ap...an—1)) is interalgebraic
(in TH) with cb(a,h’/aclg(ag...an_1)), then

anh | aclg(an—1an-2...a0).
an—1
Define recursively tuples a}, b; for 0 < i < n — 1 in the following way:
For the case i = 0 let af, = 0 and by = ao.
For i > 0 let a} C aclgy(ai, bi—1,..,b9) be a maximal tuple independent over
acl(a;bi—_1, ...,bp) (in the sense of T'), and b; = acl(a;a}). In particular we have that

acl(bi, ceny bo) = aclH(ai, ...,ao).

Note that we can take a; = HB(a;, bi—1, ..., bo).
Define also b,, as a,h’.

Claim 2. For i <n — 1 we have b; | b;—...by:
bi—1
By definition a} | a;b;_1..bo, hence a’ | b;_;...by. On the other hand, as a; |Za;_;...ao

(by (1)) and a;—1 C b;—1 C acly(a;—1, ...(jiao), then a; |Hb;_;...by. This imptllii(;s1 by
transitivity that b; | b;—s...bp for i <mn — 1. i

Note also that ?):: IJ/ by_o...bg by definition of A’ and the characterization of
canonical bases in TiZT‘}TI

Claim 3. For i < n—1 we have acl(bprlbi,l...bo)ﬁacl(bibi,l...bo) = acl(bi,l...bo).
Because, for every i < n,
acl(b;...bg) = acly(a;...ap),
then by (2)
aCl(ai+1bi,1...b0) n aCl(bibl‘,l...bo) = acl(bi,l...bo).

SO, if acl(aiﬂbi,l...bo) N acl(bibi,l...bo) g aCl(biJrlbi,l...bo) N (bibifl...bo), then by
exchange there exists a € acl(aj, ;) Nacl(aj;1b;...bg). Contradiction.

Therefore, Claims 2, 3 and non n-ampleness of T imply that b, | bg, moreover

b1Nbgy
we get that a,h | ap because h C ' and by Nby = ay N by.
aiNag
Hence, again by definition of h and characterization of canonical bases, a,, | ao.
ai1Nag
O
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