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Abstract We prove part of the Tannakian duality, namely the fact that one
can recover a group from its category of representations, for generalized differ-
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generalization of Galois-theoretic results on difference fields.

Keywords Tannakian category - binding group - generalized differential ring

Mathematics Subject Classification (2000) 03C60 - 03C98 - 13L05 -
18D10

Introduction

The aim of this work is to prove a model-theoretic version of the Tannakian
formalism for the generalized differential rings. The notion of a generalized
differential ring is developed in [1], section II. It provides a unified framework
for the analysis of structures including both differential and difference rings.
In the same article, Yves André also develops the notion of a connection on
a module, which is the analogue of the notion of a differential module, and
which André uses to prove a Tannakian duality ([1], theorem II1.2.1.1 and
thereafter). For an exposition of the Tannakian duality, one can consult [5].
The model-theoretic proof of this duality in this general context is inspired by
the work of Moshe Kamensky in [8], where the special case of this theorem
corresponding to pure fields of characteristic zero is proved using model theory.
The proof exposed here, working in a more general framework, is nevertheless
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not far from Kamensky’s. It is centered around the model-theoretic notions of
internality and binding groups, and heavily uses the latter.

Intuitively speaking, the Tannakian formalism, as presented here, says that
one can reconstruct an affine algebraic group defined over a given field, con-
sidering only the category of its finite-dimensional representations over that
field. A major motivation for studying this subject using model theory is that
it permits to analyze interdefinability problems between fields — or rings —
and groups.

Our methods yield also a modest improvement of a result of [3] (theorem 2.9
there) on difference Galois groups; with relatively little effort, the arguments
in [3] and the results about Picard-Vessiot extensions can be generalized to
the context of generalized differential fields, and hence hold in particular for
the theory ACF A.

The plan of the article is as follows. The first section aims at defining
stable embedding and internality, in order to prove the (type-)definability of
the binding group associated to such an internality. The end of the section
presents a Galois correspondence, a particular case of which will be used in
section 3. Section 2 presents the notions of a generalized differential ring and a
connection as they are presented in [1], sections II.1 and II.2. We define here a
generalized differential ring and an appropriate language to turn it into a first
order structure. Some hypotheses on the rings in question are also made there.
Section 3, which is the central section to this article begins with a presentation
of a construction of the Tannakian category generated by a module with a
connection satisfying certain hypotheses. Most of the proofs are omitted, since
they can essentially be found in [1], section II. This category is then seen as a
first order structure containing in particular the generalized differential ring,
and a proof of the Tannakian formalism (at least of a certain version of it) is
given, based on the observation of the fact that this category is internal to the
ring; the construction of the binding group follows. Section 4 compares the
different definitions of a Picard-Vessiot extension for generalized differential
fields that can be found in [11], [1], and [3], and proves a generalization of a
theorem in [3] comparing the Galois groups associated to such extensions.

In the sequel, all the rings will be commutative and unitary, and the theories
will be first order theories.

This work was realized during my Ph.D., under the supervision of Tuna
Altinel.
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1 Stable embedding, internality, and binding groups

The notion of stable embedding of a definable set in a model of a first order
theory means intuitively that one can control the parameters involved in the
definition of subsets of this set. In a stable theory, every definable set is stably
embedded. One can find a proof of the caracterisations of the stable embedding
presented below in [4], in the appendix.

Definition 1.1 (Stable embedding) Let T be a first order theory, and let
A be a set definable without parameters in a model of this theory. One says
that A is stably embedded if for every set B definable with parameters, and
every n € N, A" N B is definable with parameters in A.

Lemma 1.2 Let T be a first order theory, M one of its models, and A defin-
able in M without parameters. The following conditions are then equivalent:

1. the set A is stably embedded;
2. for all o € M, there exists a subset Ay of A of cardinality at most |T| such
that tp(a/Ao) has the same set of realizations as tp(a/A);

3. for all « € M, the type tp(a/A) is definable over a set of parameters
Ag C A.

When T has saturated models, the stable embedding of A is characterized
by a certain "A-homogeneity" of those models:

Lemma 1.3 Let T be a first order theory, M a saturated model (in its own
cardinality) of T with a regular cardinality, and A a definable set. The following
conditions are then equivalent:

1. the set A is stably embedded;

2. for all a,b € M such that tp(a/A) = tp(b/A), there exists o € Aut(M/A)
such that o(a) = b;

3. any automorphism of the structure A lifts to an automorphism of M.

We will work with the following version of internality:

Definition 1.4 (Internality) Let A and B be two definable sets in a model
of a first order theory. The set B is said to be internal to A, or A-internal,
if there exists an injective map i : B — A which is definable (eventually with
parameters).

The definability of the binding group in the frame of an internality to a
stably embedded set is proved in [6], proposition 1.6. In fact, a more general
result is proved there, namely the definability of the binding groupoid. This
definability is well-known for certain classes of theories, such as stable theories.
One can consult [10], theorem 7.4.8, for a treatment of this case.
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Theorem 1.5 (Binding group) Let T be a first order theory eliminating
imaginaries, M a model of T, and A and B two definable sets in M. Assume
that A is stably embedded, B is A-internal, and the model M is saturated
in its own regular cardinal. Then, the group Aut(B/A) of the functions from
BU A into itself induced by an automorphism of M fizing A pointwise is type-
definable (as well as its action on B) over a set of parameters Ag C A of size
at most |T|. It is called the binding group of B in A, and is denoted BG(B/A).

The binding group can be seen as a model-theoretic Galois group, and one
can in particular obtain a certain Galois correspondence between its definable
subgroups and certain definably closed sets. We will need later a particular
case of this correspondence, so we will make its formulation explicit.

The following general and easy group-theoretic lemma will frequently be
used in the sequel:

Lemma 1.6 Let G be a group acting freely on a set X. Then no proper sub-
group of G has a G-invariant orbit.

Proof If H is a subgroup of G with H.c (for some ¢ € X) a G-invariant orbit,
then G.(H.c) = H.c = (GH).c = G.c. Since the action of G on G.c is free, this
proves that G = H.

O

The previous lemma is central in the construction of Galois correspondence.
We give below the best version we know of such a correspondence in our
context. It will not be needed in the sequel.

Theorem 1.7 (Galois correspondence for binding groups) Let T be
a first order theory, M a saturated model (in its own regular cardinality) of
T, and A a definable stably embedded set. Assume that M is A-internal, and
that this internality is witnessed by an injective map f. : M — A. Denote by
BG the binding group BG(M/A), and assume that it is type-definable over
a set of parameters Ag. The application ¢ associating to a subgroup of BG
the set of points fixed by this subgroup defines an injection from the set of the
definable subgroups of BG into the set of the definable definably closed sets
of M containing A; its "inverse" is the application associating to a definable
definably closed set D the binding group BG(M /D).

{G/G < BG} — {dcl(D)/A C D}
G MC

sociating to a subgroup G of BG the set of points in M fixed by G (denoted

by M%). We will consider the restriction of this map to the set of defin-

able subgroups of BG, denoting this restriction ¢, and we will now prove

that ¢ is an injection and that for any definable subgroup G of BG, we have

G = BG(M/4(G)).

Proof Denote by 1 : ’ the application as-
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Remark that ¢ actually takes its values in the definable definably closed
sets containing A. Indeed, since BG fixes A, any subgroup of BG fixes A as
well, and if an element a is definable over ME, then it is obviously fixed by
G, and is then already in M%. Moreover, M is obviously definable when G
is. Every set ¢(G) is then definable, definably closed, and contains A.

Now, we can prove that ¢ is injective. Let G and H be two definable
subgroups of BG such that M¢ = M. We want to prove that G = H. We
will in fact prove that G is the binding group BG(M /M), which is enough to
conclude (since in this case, H will be the same group). In particular, it also
proves the remainder of the theorem. The set M is definable and definably
closed, hence it is stably embedded: if S is a subset of (M)™ definable with
parameters in M, then the canonical parameter of S is in dcl(M ), and is then
in M¢. The group BG(M/ME) is then type-definable (by theorem 1.5), and
one has by definition G < BG(M/M%), and G and BG(M/ME) fix the same
elements in M. By lemma, 1.6, this implies G = BG(M/M®). The application
¢ is then injective.

O

2 Generalized differential rings and connections
Recall that all the considered rings are commutative and unitary.

The definitions and the treatment of the generalized differential rings and
the connections presented in this section come from [1], sections II.1 and II.2.
The rare interventions of model theory are quite natural, and will be useful
in the next section. The next proposition is admitted, but one can find in
[9], corollary of the theorem 7.12, a proof of the fact that on a commutative
(unitary) ring, a finitely presented module is projective if and only if it is flat.
The rest of the proof is easier.

Proposition 2.1 Let A be a commutative noetherian ring, and M an A-
module. The module M is faithful, finitely generated and projective if and only
if it is faithfully flat and finitely presented.

Definition 2.2 (Generalized differential ring) We call generalized differ-
ential ring aring k, a k-algebra A, and an A-A-bimodule (2 (that is, an abelian
group with a left and a right scalar multiplications - and -p) together with
a bimodule homomorphism d : A — {2 (which we will call the derivation),
satisfying the condition

d(ab) =a o d(b)+d(a) ‘o b
and such that ker(d) = k. The ring k is called the ring of constants of A.

Pure rings can be seen as generalized differential rings with k = 2 = A and
d = 0. The ordinary differential rings are generalized differential rings, with
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2 = A and d the usual derivation on A. One can also see a difference ring (A, o)
as a generalized differential ring: put 2 = A with the usual multiplication as
left A-module structure; the multiplication "twisted" by o as right A-module
structure: for « € A and w € 2, w o a = o(a) o w; and the derivation
defined by d(a) = o(a) — a.

Let (k, A, 2,d) be a generalized differential ring.

Hypothesis 1 FEzxcept when otherwise stated, we will need the following as-
sumptions in the sequel :

1. A is noetherian;

2. the ring k is a field;

3. 2 is reduced, that is to say generated (as a left module, or right module,
or bimodule, those three conditions being equivalent) by d(A);

4. (2 is faithful, projective, and finitely generated over A (or, equivalently by
proposition 2.1, is faithfully flat and finitely presented) as a right A-module.

Consider the following language and theory to describe this structure:
Definition 2.3 The language L is defined as the language containing:

— a sort A endowed with the language of rings;

— a unary predicate k, and ternary predicates +; and Xxg;

— ternary predicates -4, +4 and X 4;

— a n-ary predicate {2, and (n + 1)-ary predicates g, -, a 3n-ary predicate
+¢ and a n-ary relation Fq;

— a function symbol d : A — A™.

We define T' as the theory of the structure (k, A, §2,d) in this language,
each of the predicate symbol being interpreted in the way suggested by the
corresponding symbol.

When the module (2 is finitely presented (hypothesis 1.4), it can be ex-
pressed as a quotient of A™ by an equivalence relation E definable (with pa-
rameters) in the A-module structure of A™. The equivalence relation is defined
by a finite set of relations which is a presentation of {2 (the parameters in-
volved in the definition of E are then the generators of {2 chosen to make this
presentation explicit).

Define now the notion of a connection, which permits to generalize to the
case of generalized differential rings the notion of a differential module.

Definition 2.4 (Connection) Consider a finitely generated and projective
left A-module M. A connection is an additive application Vjy; : M — Q@4 M
satisfying the following relation:

Vu(am) = a.Vy(m) +d(a) @ m

We define in the same way a connection for a right A-module.
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If A is a pure ring, then a connection is just a linear application. When A
is an ordinary differential ring, a module together with a connection is exactly
a differential module.

The derivation is (canonically isomorphic to) a connection on A. If M is
a left (or right) A-module, then we can define a connection on M putting
V(am) = (a + d(a)) ® m. Then, for all m, V(m) = 14 ® m, and we obtain
V(am) = aV(m) + d(a) ® m. The application V defined this way is then a
connection on M. Any connection isomorphic to such a connection is called
trivial connection. In particular, one can define a connection (on the right or
on the left) on (2 this way.

Hypothesis 2 The module (2 is endowed with the trivial connection, denoted
V.

3 The Tannakian formalism

In this section, we consider a generalized differential ring A in the language
defined in the preceding section, satisfying the same hypotheses. The aim of
this section is to consider the first-order structure constituted by the category
of finite-dimensional representations of an algebraic group, to prove that this
whole structure is internal to the field over which the group is defined, and to
show that the resulting binding group is actually equal to the original group,
using the lemma 1.6 and an analysis of the imaginaries in this category.

We will consider here categories C endowed with a bifunctor ® satisfying
some constraints. An associativity constraint is an isomorphism of functors
papc: AR(B®C) — (AR B)®C for which we ensure that the different ways
of computing several tensor products are all isomorphic for all A, B, and C. A
commutativity constraint is an isomorphism of functors ¢4 p: AQ B -+ BRA
for which we ensure that 14 g o 9p, 4 is the identity of A for all objects A, B.

A category is said to be a tensor category if it has:

— an identity object 1 for ®;
— an associativity constraint;
— a commutativity constraint;

and these two constraints interact the same way as usual tensor products.

The internal hom associated to X and Y is the object Hom(X,Y') repre-
senting the functor Z — Hom(Z ® X,Y) when it is representable. The dual
of X is X* = Hom(X,1), and X is said to be reflexive when X is canoni-
cally isomorphic to its bidual X**. The tensor category C is said to be rigid
if every internal hom is defined, the morphisms Hom(X,Y) ® Hom(Z,T) —
Hom(X ® Z,Y ® T) are isomorphisms, and every object is reflexive.
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It is possible to define easily the notion of tensor functor, that is a functor
respecting the structure given by ®; similarly, one can define a morphism of
functors, and an equivalence of tensor categories. In the following, we will
consider tensor categories that are also abelian; the typical example is the
category Mod 4 of finitely generated A-modules over a commutative ring A,
endowed with the usual tensor product.

Finally, we define a fibre functor on an A-linear tensor category to be
a faithful exact A-linear tensor from C' to Moda, the category of finitely
generated A-modules. We can now define a neutral Tannakian category:

Definition 3.1 (Neutral Tannakian category) A category C is said to
be neutral Tannakian over A if it is a A-linear abelian rigid tensor category,
endowed with a fibre functor w.

We will now try to define a first-oder context which will allow us to describe
Tannakian categories over a given ring A.

Definition 3.2 We consider the following language Lc:

— the language of generalized differential rings for A defined in definition 2.3,
with a constant symbol for each element of A;

— a sort Sy for each object V of C, and a function symbol vy for each arrow
f in C between the corresponding sorts;

— the language of k-vector spaces on each sort Sy;

— a function symbol by v : Sy X Syr — Sy, v for all vV, V.

If C is a neutral Tannakian category over A, then we call T its elementary
theory in the language Lc.

When A is noetherian (hypothesis 1.1), we know that a finitely generated
module M is noetherian (as a left or right A-module). Hence, any submodule
of M is finitely generated; such a submodule is then the quotient of a free
finitely generated module by one of its submodules, and this submodule is
again finitely generated (by noetherianity); hence, any submodule of M is
finitely presented. Moreover, if N and N’ are two finitely presented and flat
modules, then N®4 N’ and N& N’ are also finitely presented and flat (and, by
proposition 2.1, are finitely generated and projective). The category generated
by a module M is the category whose objects are the subquotients of the
modules obtained by tensor product, direct sum, and dualization, starting
from M. If C is generated by a unique object M, then we also denote T by
T

We will now prove a general proposition about imaginaries in a neutral
Tannakian category on which a “nice” group acts. This will be fundamental in
the proof of the Tannakian formalism, theorem 3.18.
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Definition 3.3 (Good polynomials) A language is said to give good poly-
nomials if it is the language of rings augmented with unary function symbols.

The algebra of good polynomials denoted A[z] over a tuple of variables
x = (21,...,T,) associated to a structure A in this language is the algebra
defined as the set of terms with parameters over A, endowed with the addition,
multiplication, and composition of polynomials.

An example of such a language (which is the one we will be interested in)
is the language of generalized differential rings. In this case, the polynomi-
als are the generalized differential polynomials. In particular, in the situation
of a usual differential ring, the polynomials are the differential polynomials,
and in the case of difference rings, the polynomials are the usual difference
polynomials.

Proposition 3.4 Assume that the language of A gives good polynomials. Let
H be an affine algebraic group defined over A, and C a Tannakian category
over A, over which H acts. Then every H-orbit of the form H.c with ¢ a basis
of a module V in C is coded by an element of a projective space associated to
an object of C.

Proof The group H is defined by a polynomial equation on A, say P(z) =0
(z may be a tuple of variables). The basis ¢ permits to identify the set of
polynomials A[z] and the symmetric space S(V*), sending the variable z; to
the i*" element of the dual basis of c. We denote by ¢, this identification map
from A[x] to S(V*) induced by the basis c¢. This identifies the ideal (P) of
Alx] generated by P and an ideal I of S(V*), generated by the element corre-
sponding to P in S(V*). If u is an automorphism of the Tannakian structure,
then w sends H.c to the set H.u(c). Call I’ the image of the ideal (P) under
the identification ¢,,(.) induced by the basis u(c). Then u sends I to I', and u
fixes setwise the orbit H.c if and only if I = I’, so we will try to find a code
for the ideal I.

This ideal being generated by a single element, it is completely determined
by its intersection with a finitely generated submodule W of S(V*), and this
intersection W NI is itself a finitely generated submodule of S(V*); the sym-
metric space S(V*) is constructed from V using only dualization, direct sums,
and tensor products. Consequently, the ideal I is completely determined by
its intersection with an object of C, since C is stable under all those opera-
tions. Taking the exterior power of W in an appropriate degree, we obtain a
new object of C (for the same reasons), such that W N I is a submodule of
dimension 1 of it. Consequently, W N I corresponds to the unique element of
the projective space associated to the exterior power of W, and this element
is a code for the orbit H.c.

O

We will now use this proposition to prove that if G is an affine algebraic
group over A, then its category of finitely generated representations over A-
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modules is a neutral Tannakian category, and the group of automorphisms of
the fibre functor Aut®(w) is definably isomorphic to G in A.

3.1 A Tannakian category

To check that a category is a Tannakian category requires to verify various
closure properties under tensor products, dualizations, and subquotients; in the
case of modules with a connection, the conditions implying these properties
were checked by André in [1], and this will be briefly revised in the following
subsections for the ease of the reader.

3.1.1 The tensor product

Consider Vj; and V, two connections on two A-modules M and N. We
want to define a connection on the module M ® 4 N induced by those two
connections (recall that the module structures used to construct M ®4 N are
the left module structure for M and the right module structure for IV, so that
a(m ®@n)b = (am) ® (nd)). If 2 is a commutative bimodule, we can proceed
as follows: define Vg, n(m @ n) = Vyr(m) @ n 4+ o(m @ Vy(n)), ¢ being
the canonical isomorphism M ® 2 ® N — 2 ® M ® N. The resulting map is
a connection on M ® 4 N.

If £2 is not commutative, then for any A-module with a connection M, we
want to build an exchange morphism ¢ : M ® 2 — 2® M such that M ® 4 N
becomes a module with a connection. The following proposition adresses this
problem:

Proposition 3.5 ([1], Proposition I1.4.1.1) Under the hypothesis 1.3 (2
is reduced), for any A-module with a connection M, there exists a unique
morphism ¢ = ¢pr : M R4 2 — 2 @4 M such that for any A-module with a
connection N, the application

Vmg n(m@n)=Vy(m)@n+ (¢@idy)(me Vy(n))

15 a connection.

3.1.2 Dualization

Definition 3.6 (Rigidity) A module with a connection is said to be rigid if
it has a dual in the category of the A-modules with a connection.

Recall that M* = Hom (M, A) is the dual of M, considered as an A-
module.
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Proposition 3.7 ([1], Lemma I1.3.3.4) Under the hypothesis 1.8 (£2 is
reduced), if the application ¢p; defined in the proposition 3.5 is invertible,
then the application V-« : M* — 2 @4 M* defined by

p((ide @ €)(Var- (n*) @ m)) = d(n*(m)) — p((e ® ido)(n* @ 63/ (Var(m))))

(e : M*® M — A being the application of evaluation and p being either one of
the two product operations A4 M — M or M @4 A — M) is a connection
on M*, and the application ¢pr~ satisfies, for all m € M,

plide ® €)(¢u+(n* @ w) @m) = p(n* @ide)(dy/ (w®m))

The formulas in the preceding proposition can seem obscure, but they are
nothing more than the formal translation of the fact that we want to define a
connection on the dual of M (see [1] for the details). This proposition permits
in particular to prove the following:

Proposition 3.8 ([1], Lemma I1.4.2.1) A module with a connection M is
rigid if and only if it is projective and finitely generated and the application
d(Var) is invertible.

3.1.8 Subquotients

To achieve the closure of the category under subquotients, we need the follow-
ing additional hypothesis :

Hypothesis 3 Denote by Q(A) the total ring of fractions of A. Assume that
Q(A) is semisimple (which means in particular that Q(A) is a finite product
of fields), that (A, d) is simple (that is its only differential ideals are 0 and A),
and that 2 ®4 Q(A) ~ Q(A) ®4 12

Proposition 3.9 ([1], Theorem I1.5.3.2) Under the hypotheses 3, 1.1 (A
is noetherian), 1.3 (12 is reduced), and 1.4 (2 is faithful and projective finitely
generated), any subquotient of a finitely generated projective module M with a
connection which is rigid is also rigid.

Under those hypotheses, we define the category Cj; to be the subcategory
of the category of A-modules with a connection generated by M and the tensor
product, the direct sum, the dualization and the subquotients.

Proposition 3.10 ([1], Theorem I1.5.3.2) Under the hypotheses 3, 1.1 (A
is noetherian), 1.3 (12 is reduced), and 1.4 (12 is faithful and projectif finitely
generated), the category Cys is abelian, monoidal, symmetric, and rigid. Any
set of morphisms has an A-module structure. Moreover, the "forgetful” functor
w: Cyr — Mody respects the rigid monoidal symmetric structure, and the A-
module structure on the sets of morphisms.



12 Simon Tosti

3.2 Model-theoretical study

We will assume in this section that A is a commutative generalized differen-
tial ring, and that Cj; is a Tannakian category over A, with M an object
generating C);. We also assume that any object in C,; is finitely presented,
though we will only need this assumption from lemma 3.13. We will study
some model-theoretic properties of the resulting theory Ty,.

We begin by proving a result about elimination of quantifiers in Ty, though
this will not be used in the sequel :

Proposition 3.11 (Elimination of quantifiers for T);) The theory Ty
eliminates quantifiers for formulas involving any sort but the sort for A.

Proof The proof uses a back-and-forth argument. Consider a model Cj; of Ty,
(which we assume to be saturated in a cardinal strictly greater to the cardinal
of the substructures we will consider in the following), and two substructures
D and D’ of Cy;, of which the restriction to the sort of A are the same,
with an isomorphism v : D — D’ fixing A pointwise. We consider an element
a € Cypr \ D, and we try to find o’ such that we can extend the isomorphism
u to an isomorphism between the substructure generated by D U {a} and the
substructure generated by D’ U {a’} sending a on a’.

What is a substructure D of Cy; ? Each sort in Cj; is nonempty in D
since D contains at least the zero vector of each module; by assumption, D
also contains the whole sort A. Moreover, the fact that each sort in D is stable
by multiplication by a scalar means that each sort of D is a module over A.
The choice of an element of C,; not belonging to D is the same as the choice
of an element a in a sort S of Cjs not belonging to the module corresponding
to this sort. To choose the image of a, we know that we have to choose it in
the same sort, and not belonging to the corresponding module (in D’). Choose
such an o', and define u(a) = a’. Since each sort in Cj; is endowed with the
language of modules, the structure generated by D and a corresponds on the
sort S to the module generated by D|s and a. The application u extends then
naturally to all this module, its image being extended to the module generated
by D’|s and a’.

The language of T); contains — beyond the language of modules on each
sort, — some symbols of functions between the sorts coding the linear applica-
tions, symbols of functions coding the tensor product, and symbols of functions
coding the applications V. Any of those functions send a to an element ag: in
a certain sort S’, and we can as above extend u on the modules generated by
those elements. The application u obtained is then an isomorphism between
the substructure generated by D and a and the substructure generated by D’
and o’
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Hence, the theory T}, eliminates quantifiers in this language as long as the
sort for A is not involved.
O

We will now try to build the binding group BG(Cjs/A), which we want
to be type-definable in the theory Th,. We need for this to prove that Cj; is
internal to A, and that the sort of A is stably embedded in T);.

Proposition 3.12 (Internality in Th;) Each sort of T is internal to the
generalized differential ring A.

Proof The choice of a generating family of M permits, using the different
categorical operations studied above, to deduce a generating family for each
module in the category Cjy;: For the direct sum, this is obvious; for the tensor
product, the tensor product of two generating families is a generating family;
for the dual, consider the dual family; same thing for the quotient; finally,
a submodule of N is the dual of a quotient of N. Hence, the choice of this
generating family of M permits to define a definable function from any of the
objects of Cj; into the underlying model of T, which gives the internality of
Ty into T'.

O

We will now prove (proposition 3.15) that the sort of the ring A is stably
embedded in T/, and that any subset of some A™ which is definable in Ty,
is already definable in A ; in order to do this, we need a description of the
terms and the formulas in the language, given in the following lemmas. A
term can be seen as a map from a cartesian product of sorts to another sort,
t : [[, Ni = N. The modules in Tj; being finitely presented, there exists
isomorphisms u; : N; — A™ /I; for all i and u : N — A™/I, for some integers
n; and n and some finitely generated submodules I; of A™ and I of A™. Note
that the equivalence relations defined by the submodules I; is definable in A,
because of the finite generation of these. Hence, the modules A™ /I; are in
Ael,

Lemma 3.13 (Description of the terms in Ty;) Consider a term t (with
parameters in a model of Tyr) and the isomorphisms u; and u with notations
as above. Then there exists a first-order formula t4 in the language of A,
with parameters from A¢Y, such that the isomorphisms u; and u realize an
isomorphism restricted to the graph of t, with image the set defined by t 4.

Proof We prove it by induction on the size of the terms.

If the term ¢ consists of only a variable symbol, then it corresponds to
the identity on some sort N, and clearly corresponds to the formula t4 in
the language of A¢? defined by x = y in A™/I. If the term consists of only a
constant symbol ¢, then t4 is the formula defined by the constant = u(c)
with u(c) an element of A™/I.
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The language 3.2 contains function symbols for the A-module structures on
the sorts, for the morphisms in the category Cj;, and for the tensor product
of any two sorts.

For the A-module structure, consider two terms ¢ and ¢’ with values in
N. Then, the term ¢ +y t' corresponds to the formula 3y € t4,2z € t/y,z =
Yy +an/; 2z If tis a term with values in A and ¢’ a term with values in N,
then the term ¢.5t" corresponds to the formula Jy € ta,z € t/y, 2 =y .an /s 2.

For the maps in the category Cjy, if t is a term with values in N, and f is a
function symbol for a map in the category Cjy, then the term f(¢) corresponds
to the formula (with variables x and 2) “Jy,ta(x) =y Az = fa(y)”, where fa
is defined as follows : f being an A-linear map, it is completely determined
by the images of some generating family of its domain N in its codomain
N’ ; so we choose such a generating family (z;);, and we associate to it the
corresponding tuple (Z;); with &; € A™/I for all ¢, and we do the same for the
family (f(x;)); in A™ /I, associating to it the tuple (Z});. Then f, is defined
as the definable map sending (Z;); to (Z});, extended by linearity (since the
generating family is finite, this can be expressed as a first order term in the
language of A°7).

For the tensor product, consider two terms ¢ and ¢’ with values in N and
N’ respectively. Then the term by, n/(¢,t’) corresponds to the formula (with
variables z, 2/, and z) “Jy, v, ta(x) =y At/y(z') =y ANz =0ba(y,y’)”, where
ba is defined as follows : as above, we choose generating families (x;); and
(z%;); for N and N’, and consider their images in N ® N’ ; to each of these

families is associated the corresponding element in A™/I, A" /I, and A™" /1"
(the last one being isomorphic to N ® N’), and the definable map b4 is defined
by extending it by bilinearity.

At this point, all the function symbols in the language of Tj; have been
taken care of, so by induction on the size of the terms, the lemma is true.
O

Lemma 3.14 (Description of the formulas in T);) Using the same nota-
tions as above, given a formula ¢(x1,...,x,) defining a subset Xy of [[, Ni,
there exists a formula ¥g(y1,...,yn) in the language of A°? with parameters
from A°Y such that the map [[, u; realizes an isomorphism restricted to X,
with image Xy, .

Proof We prove it by induction on the size of ¢.

If ¢ is an atomic formula, then it is of the form ¢ = ¢’ for two terms ¢ and
t', and by linearity, we may assume that it is of the form ¢ = 0. By lemma
3.13, the map [[, u; realize a map between the graph of ¢ and the set defined
by ta in the language of A°? ; hence the formula ), can be taken as being
(x,0) € ta.
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If ¢ and ¢’ are two formulas for which the lemma is true, then clearly the
formula -4 is 1Py, and the formula ¥gae is the formula g A 1hg .

If ¢(x1,...,2,) is a formula for which the lemma is true, we seek the
formula 93, ¢. In this case, the existential quantifier is over x; which is in
some sort N corresponding to some A™! /I, so it is enough, when we replace
¢ by 1y, to replace the quantification over Ny by a quantification over A™/I
in A°? ; the formula 3,, ¢ is then 3y;, 14, and the induction is done.

O

Proposition 3.15 (Stable embedding of A in T);) The sort of A is stably
embedded in Ty, and Th; does not define any new definable set on the models
of Th(A).

Proof Let X4 be a subset of some A", definable in T3, by some formula
¢(x1,...,x,) whose free variables lie in the sort of A. By lemma 3.14, there
exists a formula ¢y (21, ..., 2,) in the language of A°? over the same variables
(since we can obviously choose the isomorphisms u; to be the identity in this
case), such that Xy, is equal to X4. The formula being in the language of A,
we know by the “?-construction that there exists a formula 6(x1, ..., z,) in the
language of A (eventually with parameters from A) such that 0(x1,...,x,) is
equivalent modulo Th(A) to ¢g(z1,...,z,). Hence, any subset of some A™ de-
finable in T); with parameters from a model of T); is in fact definable in the
structure of generalized differential ring of A with parameters from A, which
concludes the proof.

O

Remark 3.16 We could have done the preceding reasonings, and obtain the
same conslusions, for other kinds of categories. What we use there is only the
linear or multilinear nature of the function symbols in the theory. So, if we
replace the Tannakian category by a category endowed with function symbols
being interpreted as multilinear maps (such as the tensor product), and keep
assuming the finite presentation of all the modules involved, then the category
is still stably embedded in the sort of the ring A, which is stably embedded
(and we have a similar description of the terms and formulas in the theory).

3.3 The Tannakian formalism

We can now prove the Tannakian formalism, still following the inspiration
given by [8]. We will admit the following proposition, proved in [7], proposition
12, saying that any (type-definable) binding group is in fact an w-group:

Proposition 3.17 ([7], proposition 12) Let BG be the binding group asso-
ciated to the internality of B into A, A being stably embedded, and the inter-
nality being witnessed by the function f. whose parameter c is in the definable
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set C'. Then BG is equal to the intersection of the groups of bijections from B
to itself fixing a finite subset of the definable sets in B, and each of which is
definable.

Recall that given a group H, a H-torsor is a set on which H acts freely
and faithfully.

Theorem 3.18 (Tannakian formalism) Let G be an affine algebraic group
in the theory T having a faithful representation in a finitely generated projective
A-module with a connection M, this representation generating the category of
its finitely generated representations. Then, G is definably (in Ths) isomorphic
to the group Aut®(w) of the automorphisms (preserving the tensor structure)
of the forgetful functor w from the category of A-modules with a connection to
the category of A-modules.

Proof Under these hypotheses, we can construct the theory Th; as above,
and consider its binding group BG associated to the internality of Ths in T
(see propositions 3.12 and 3.15). Denote by Cjs the model of Tj; considered
here, with M the corresponding generator of C. The group BG — which is
type-definable (as its action) in Th; — acts by automorphisms on each of
the representations of G generated by M, so necessarily, G and its action
are type-definably (in 7)) isomorphic to a type-definable subgroup of BG
endowed with the induced action.

Start by proving that the subgroup of BG corresponding to G is in fact
definable in T}. By proposition 3.17, there exists a group G' Ly of permutations
of a model of Ty, definable in T);, and admitting BG as a subgroup. We can
now define the subgroup of BG corresponding to G (that is, the set of elements
in BG whose action on a generating family of M corresponds to the action
of one of the elements of G) in the following way. The group G is the set of
elements of GL; whose action on a generating family of M is the same as the
action of one of the elements of G. The groups GL; (as a binding group) and
G (as an affine group) are both definable in Ths (as is their action), so this
group is definable in T;. We can then suppose that G is a subgroup of BG
which is definable, and not only type-definable.

Next, we prove that a torsor of the form G.c is fixed setwise by the group
BG. This will permit us to use the lemma 1.6 to prove the equality between
G and BG.

By proposition 3.4, and since G is defined by good polynomials, a torsor
of G of the form G.c for ¢ a generating family of M is coded by an element
a of some projective space. Thus, the element a corresponds then to a repre-
sentation (which is generated by only one element) of GG, and hence is a sort
of Ty, since Ty is, by assumption, (equivalent to) the category of finitely
generated representations of G on A; in particular, it is a 0-definable set, and
BG also stabilizes it. Hence, a is fixed by BG. By lemma 1.6, we have then
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that G ~ BG. The isomorphism in question is even type-definable, since in
order to define it, it is enough to fix a generating family of M and to define
the image of g € G as the element ¢’ € BG having the same action on this
family.

To conclude, consider the forgetful functor w : Cp; — Mods . By con-
struction of Ty, the binding group BG is necessarily the group Aut®(w) of
the (tensor) automorphisms of w: it preserves the operations (used to construct
Cys) of tensor product, dual, direct sum and subquotient.

O

We conclude this section by stating the other part of what is usually called
the “Tannakian duality”, and explaining how it fits into our context.

Proposition 3.19 (5], theorem 2.11) If C is a neutral Tannakian category
over A, let G be the group Aut®(w); then the category of finitely generated
representations of G over A is equivalent (as a tensor category) to the category

C.

The obstacle to prove this statement in full generality is the following: if
C is a neutral Tannakian category over A, then we can build its associated
binding group G in the same way as above, and conclude that it is type-
definable and isomorphic to the group Aut®(w). We can then build its category
of representations, and consider its associated binding group. But in order to
prove that these groups are the same, we should use again the lemma 1.6.
But not knowing if G is defined by polynomial formulas, we cannot use the
proposition 3.4.

We prove below a partial remedy to this obstacle:

Proposition 3.20 If the group H can be defined by a boolean combination of
ezistential formulas, and if C is a Tannakian category over which H acts, then
every H-orbit of the form G.c with ¢ a basis of a module V in C is coded by
an element of a projective space associated to an object of C.

Proof We can assume that H is defined by a formula of the form “3y, ¢(x, y)”,
the formula ¢ being a polynomial equation. If H is defined by the formula ¢,
then the reasoning of the proof of proposition 3.4 works identically.

Consider the subset X of A™ defined by ¢(z,y).c, m being the number of
variables in « and y. The choice of the generating family c of V' gives a basis for
every object of the Tannakian category under consideration, and there exists

such an object W, generated by m elements, such that V is a submodule of
W.

The set X is defined by a polynomial equation; it is thus coded by the
ideal generated by these polynomials in A[X;,..., X,,], which corresponds
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to a finitely generated ideal I of S(W™*). The set S, being the projection of
X on the subspace V, is then coded by the quotient of I by the submodule
S(V*), so by a submodule of S(W*)/S(V*). Since the Tannakian category is
closed under quotienting, we know that this module (or rather again a finitely
generated submodule of it) is a sort of the theory T¢ (that is, an object of the
category C), and the reasoning is the same as in proposition 3.4 to conclude
(passing to the exterior power, then to the projective space).

O

This result, however partial, covers an important case. In the article [4],
1.6, it is proved that in ACF A, any formula is equivalent to a disjunction
of existential formulas. Hence, we obtain the following ACF' A version of the
Tannakian duality:

Corollary 3.21 Let C' be a neutral Tannakian category over a model K of
ACF A, and let G be the group Aut®(w); then the category of finitely generated
representations of G over K is equivalent (as a tensor category) to the category

C.

4 Applications of Tannakian methods

The aim of this section is to generalize some of the results of [3] on difference
fields to the case of generalized differential fields, using in this respect the
model-theoretic techniques developed in this paper. Namely, we will prove
that two distinct ways of defining the Galois group associated to an equation
over a generalized differential field lead to essentialy the same Galois group,
up to the algebraical closedness of the constants.

In [1], a general notion of a Picard-Vessiot extension associated to module
with a connection is introduced. We start the section by stating this definition,
and verifying that the notion of a Picard-Vessiot extension defined in [3] is a
particular case of it. In the next two subsections, we first verify that our
model-theoretical tools fit in the context of [1], and finally state and prove the
theorem of comparison of the several notions of Galois groups.

We consider a generalized differential ring A, and a module M with a
connection V over A. We denote by w4/ the functor associating to a module
N in the Tannakian category generated by M over A’ the module Ker(V, N),
and we denote by < .,. > the evaluation map from M* x M to A.

Definition 4.1 ([1], definition I11.4.1.1) An extension A’ of A is called a
Picard-Vessiot extension for M if:

— A’, as a pure ring, is faithfully flat over A;
— A’ is simple as a generalized differential ring (that is, has no nontrivial
d-invariant ideal);
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— the constants Cy of A’ are the constants C'4 of A;

— the connection on M is trivial when extended to A’;

— A’) as an A-algebra, is generated by the elements of < M* wa/(M) > and
< M,war (M*) >.

We will compare this definition with the definition of a Picard-Vessiot
extension in [11] (extended to generalized differential rings, instead of differ-
ence rings). For this definition, we need to consider an equation of the form
dX = BX for some B € GL,(A). We recall that a fundamental system of
solutions of this equation is a matrix C' € GL,,(A’) in some extension A’ of A
such that each column of C is a solution.

Definition 4.2 ([11], definition 1.5) Assume that A is a field. Then a
Picard-Vessiot extension of the equation is an extension ring A’ such that

— A’ is simple as a generalized differential ring;
— A’ is generated by a fundamental system of solutions of the equation.

We will prove that a Picard-Vessiot extension of the equation in the sense
of definition 4.2 is a Picard-Vessiot extension for the module M generated by
a fundamental system of solutions in the sense of definition 4.1, provided that
the constants of A are algebraically closed. We assume in the following that
A’ is a Picard-Vessiot extension in the sense of definition 4.2, and that C4 is
algebraically closed.

Proposition 4.3 If A is a generalized differential field with an algebraically
closed field of constants, then any Picard-Vessiot extension of A for some
equation over A (in the sense of definition 4.2) is a Picard-Vessiot extension
for the module of solutions M (in the sense of definition 4.1).

Proof First, we note that the simplicity condition appear in both definitions.

We then prove that A’ is faithfully flat over A. Since A is a field, A’ is an A-
vector space, hence it is free, which implies that it is flat. By [2], proposition
1.9, we only need to prove that for every left A-module F', the canonical
isomorphism = — 1 ® x from F to A’ ® F is injective, which is obvious since
Ais a field and A’ and F are A-vector spaces.

The fact that the connection on M is trivial when extended to A’ comes
from the fact that M is generated by a fundamental system of solutions. The
connection on M describes the action of d on the solutions of the equation,
hence it is trivial on M @ A'.

The condition that A’ is generated as an A-algebra by < M*,wa/ (M) >
and < M,wa/(M*) >, for the same reason as in the preceding paragraph, is
satisfied because A’ is generated by a fundamental system of solutions of the
equation, since M is generated by such a system.
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Finally, the fact that C4 is algebraically closed implies that C 4/ is equal to
it, since C'y is necessarily a finite algebraic extension of C'4 (theorem I11.4.3.1
of [1]). This completes the proof.

O

4.1 Correspondence between fibre functors and Picard-Vessiot extensions

In [1], theorem II1.4.2.3, it is proven that there is an equivalence between the
category of the fibre functors on a neutral Tannakian category associated to
an equation and the strong Picard-Vessiot extensions of this equation. This
equivalence involves the construction of a Picard-Vessiot extension associated
to a fibre functor (which we will not discuss here), and the construction of an
isomorphism between two particular fibre functors; for this second part of the
proof, we can use some of our Tannakian tools to recover this isomorphism.

We first fix a generalized differential field &£ with algebraically closed con-
stant field, an equation over k, and a Picard-Vessiot extension R associated to
this equation. We define the Galois group associated to it :

Definition 4.4 The strong Galois group of k is the group of automorphisms
of R over k.

If Cjps is a neutral Tannakian category with fibre functor w, we construct
a Picard-Vessiot extension R as it is done in [1], and consider the functor
wy, associated to it (that is, the functor associating to N the Cy-vector space
Ker(V,N ® R)). The aim is then to prove that w and wy, are isomorphic.

Note that by proposition 4.3 and lemma I11.4.1.4 in [1], we know that wy
is a fibre functor.

Under the assumptions of proposition 3.20, it is possible to prove the exis-
tence of an isomorphism between the groups of tensor automorphisms of the
two fibre functors, using as above the proposition 3.4: the group Aut®(w) is
a subgroup of Aut®(wy), and the latter fixes every torsor for the former since
such a torsor is coded by an element of a projective space, which corresponds
to a representation of Aut®(w); this representation becomes a representation
of Aut®(wy,) by tensoring by R, and so is fixed by the latter group; we conclude
by using the lemma 1.6. This isomorphism gives an isomorphism between the
two considered functors, which is what we are aiming at.

4.2 Identification of different Galois groups

In the paper [3], the authors describe, in the context of difference fields, several
definitions of the Galois group associated to an equation; they prove that the
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different suggested definitions lead to the same Galois group, up to an exten-
sion of the constants to the algebraic closure of the constants. They then use
Tannakian ideas to reprove this statement in a particular case (concerning the
field of meromorphic functions over C). Their arguments fit in the context of
generalized differential rings and, supported by the model-theoretic techniques
we presented above, yield a slight generalization of their theorem 2.9.

We start by recalling another definition of the Galois groups that we will
try to compare with those introduced in section 4.1. This one is a Tannakian
version, that is the binding group of the category generated by the module
generated by a fundamental system of solutions of the considered equation.
The one presented in section 4.1 is a more Galois-theoretic version, defined as
the group of automorphisms of some generalized difference field fixing a given
subfield. For a discussion about the motivation for both of them, we refer to

[3]-

Following the terminology of [3], we define another notion of Picard-Vessiot
extensions to which we will associate their Galois groups:

Definition 4.5 ([3], definition 2.1) We call weak Picard- Vessiot ring of the
equation over k a ring R extending k such that:

- CR = Ok, and
~ R=k[Z,det(Z)™!] for a Z € GL,(R) whose columns are solutions of the
equation.

If R is the quotient field of such a ring, still with the same constants as k,
then R is called a weak Picard-Vessiot field of the equation. The weak Galois
group of k is defined to be the group of automorphisms of R over k when R is
a weak Picard-Vessiot field.

We will try to compare these two Galois groups by realizing them as binding
groups of a particular Tannakian category. One of them will be a subgroup of
the other, and a reasoning as in the preceding section will allow us to identify
them in some situations. We assume in all of the following that the constants
Cy, of k are algebraically closed.

Given a finitely generated module with a connection M over k, call Cj; the
category generated by M using the direct sum, the dualization, the subquoti-
enting and the tensor product. If K is a field extension of k, then call Mg the
module M ®;, K, and Cjy,. the corresponding category. We will define a fibre
functor associated to each of these categories, so that we will be able to build
the binding group associated to it, and define them as the strong and weak
Galois group of the equation, then proving equality of these groups when we
extend the constants to their algebraic closure.
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From now on, we assume that there exists a weak Picard-Vessiot exten-
sion field R of the equation, and a Picard-Vessiot extension R’ of the exten-
sion (which has been proven to exist when Cj; is Tannakian by [1], theorem
I11.4.2.3).

We define wg in the same way we defined wy, in the previous section, with
the notations above, and the same reasoning proves that it is also a fibre
functor. Finally, both Cjys and Cjy,. endowed with these functors are neutral
Tannakian categories, and we can build their binding groups G and Gy, .

We now prove the following theorem:

Theorem 4.6 (|3], theorem 2.9) The groups Gas and Gy, are identified
respectively with the group of the k-automorphisms of R, and the group of the
K -automorphisms of R'. We have

Gu ®Ck =Gy ®Ck

Proof To prove that the binding groups can be identified with the automor-
phisms groups of the different kinds of Picard-Vessiot extensions, we use the-
orem 3.2 in [5]: for any fibre functor n of Cys over k, the functor N
Hom®(wy,nn) is representable by Spec(R), and similarly for C,y, . Hence,
each of the groups Gjs and Gy, can be identified with the corresponding
group of automorphisms of the (weak) Picard-Vessiot extension.

To prove the equality between these groups over the algebraic closure of
the constants, we first extend the functor wy to the category Cys,. by putting
Wk (N) = ker(6, N @k (R ®y K)). We will first prove that Aut®(wg) @ Cx =
Aut®(wy). Since any tensor automorphism of wy induces an automorphism of
wy, fixing the constants of K, we see immediately that Aut® (W) C Aut® (wy)®
Ck . Moreover, the group Aut®(wy) being a binding group, the proposition 3.17
implies that it is equal to an intersection of definable subgroups of Aut®(wy)®
Ck. We will prove that each of them is equal to Aut®(wy) ® Ck, which will
prove the desired equality. Let G be one of these definable subgroups.

We can now use the same reasoning as in theorem 3.18 to prove equality
between G and Aut®(wy,) ® Ck: if we consider a G-torsor, then by proposition
3.4, it is coded by an element of some projective space of an object in the
category Cjz,; this element corresponds to a subrepresentation of the group
G over Ok, and is then fixed by the group Aut®(wy) ® Ck. The lemma 1.6
then proves that the two groups are equal.

We will now prove that the group Aut®(wy) is equal to the group Gy, =
Aut®(wg ) when we extend the constants to their algebraic closure. But wx
and wy, are two fiber functors over Cx for the category Cyy,. . As in the proof of
the theorem 3.1 of [3], we use the fact that these functors become isomorphic
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over the algebraic closure of the base field to say that the two groups, tensored
by Ck, are isomorphic. This concludes the proof of the theorem.
O

In particular, we know that the existence of the different Picard-Vessiot
extensions considered here is ensured when we are in the situation of a dif-
ference field, or a differential field. The theorem above is then true in these
situations, permitting in particular to recover the theorem 2.9 of [3].
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