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Abstract. A collection C of finite L-structures is a 1-dimensional asymptotic
class if for every m ∈ N and every formula ϕ(x, ȳ), where ȳ = (y1, . . . , ym),

(i) There is a positive constant C and a finite set E ⊂ R>0 such that for
every M ∈ C and ā ∈ Mm, either |ϕ(M, ā)| ≤ C, or for some µ ∈ E,˛̨

|ϕ(M, ā)| − µ|M |
˛̨
≤ C|M |

1
2 .

(ii) For every µ ∈ E, there is an L-formula ϕµ(ȳ), such that ϕµ(Mm) is
precisely the set of ā ∈ Mm with˛̨

|ϕ(M, ā)| − µ|M |
˛̨
≤ C|M |

1
2 .

One-dimensional asymptotic classes are introduced and studied here. These
classes come equipped with a notion of dimension that is intended to provide
for the study of classes of finite structures a concept that is central in the
development of model theory for infinite structures. Connections with the
model theory of infinite structures are also drawn.

1. Introduction

Dimension theory, so-called, has become a pervasive theme in contemporary
model theory. Roughly speaking, this term covers several different contexts in which
a notion of dimension is assigned to definable sets. This program has been carried
out with great success in the development of model theory for infinite structures;
see some of the articles in the collection [18], for example. This paper attempts to
take a first step to develop a dimension theory for classes of finite structures.

As has often been the case in model theory for infinite structures, this work is
directly inspired by model-theoretic investigations of algebraic structures. More
specifically, our approach has its origins in the following beautiful theorem of
Chatzidakis, van den Dries, and Macintyre:

Theorem 1.1 ([6]). Let ϕ(x1, . . . , xn; y1, . . . , ym) be a formula in the language of
rings. Then there is a positive constant C and finitely many pairs (di, µi), i ≤ K
with di ∈ {0, 1, . . . , n} and µi a positive rational number such that for each finite
field Fq, where q is a prime power, and each ā ∈ Fmq , if the set

ϕ(Fnq , ā) := {b̄ ∈ Fnq : Fq |= ϕ(b̄, ā)}

is nonempty, then

(∗)
∣∣|ϕ(Fnq , ā)| − µiq

di
∣∣ < Cqdi−(1/2)
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for some i ≤ K. Moreover, for each pair (di, µi), there is a formula ψi(y1, . . . , ym)
in the language of rings such that ψi(Fmq ) consists of those ā ∈ Fmq for which the
corresponding inequality holds.

Each pair (d, µ) in the definition thus represents in finite combinatorial form the
dimension d and measure µ of those definable sets in finite fields to which the pair
corresponds.

In some of the most basic classical model-theoretic contexts in which a notion
of dimension plays a central role, the strongly minimal and o-minimal theories for
example, the definition places a condition only on definable sets in one variable.
Then it is proved that the definition has dimension-theoretic consequences for de-
finable sets in several variables. Following this pattern, we now define the classes
of finite structures that we study in this paper.

Definition 1.2. Let L be a first order language, and C be a collection of finite
L-structures. Then C is a 1-dimensional asymptotic class if the following hold for
every m ∈ N and every formula ϕ(x, ȳ), where ȳ = (y1, . . . , ym).

(i) There is a positive constant C and a finite set E ⊂ R>0 such that for every
M ∈ C and ā ∈ Mm, either |ϕ(M, ā)| ≤ C if ϕ(M, ā) is non-empty or for some
µ ∈ E, ∣∣|ϕ(M, ā)| − µ|M |

∣∣ ≤ C|M | 12 .
(ii) For every µ ∈ E, there is an L-formula ϕµ(ȳ), such that, for all M ∈ C,

ϕµ(Mm) is precisely the set of ā ∈Mm with∣∣|ϕ(M, ā)| − µ|M |
∣∣ ≤ C|M | 12 .

There are several variations on this definition. For example, R. Elwes, a Ph.D.
student of the first author, has developed the notion of an N -dimensional asymp-
totic class, for N ≥ 1. It is also possible to relax (or strengthen) the error term, for
example requiring that ∣∣|ϕ(M, ā)| − µ|M |

∣∣ = o(|M |).
We choose the above error term by analogy with [6], which provides our main
examples.

We also note that the analogue of condition (ii) does not appear in the definition
of a strongly minimal or o-minimal structure. In these settings, an analogous
condition follows from the definition. The uniformity that such a condition provides
is ensured in these contexts because in each case the definition involves a first-order
theory . This is not the case for the classes of structures covered by our definition.
The additional clause in the definition thus is necessary; see Example 2.3.

We now offer a brief outline of the paper. Section 2 establishes some basic facts
about 1-dimensional asymptotic classes. The most important of these, Theorem 2.1,
shows that the definition of a 1-dimensional asymptotic class does indeed have con-
sequences for definable sets in more than one variable. This result might be viewed
as a finite combinatorial cell decomposition theorem. Section 3 develops a range of
examples. Besides the motivating example of finite fields, this section includes sev-
eral 1-dimensional asymptotic classes of graphs, classical geometries, and groups,
including the class of all finite cyclic groups. The next section, Section 4 elabo-
rates the connections between 1-dimensional asymptotic classes C and the infinite
structures that arise as the ultraproducts of members of C. Here we draw explicit
links with stable and simple structures of classical infinite model theory. Section 5
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builds on the observation in [6] that the dimension and measure on definable sub-
sets of finite fields naturally induces a dimension and measure on the definable
subsets of a pseudofinite field. In this section, measurable structures, infinite struc-
tures whose definable sets come equipped with a dimension and measure satisfying
natural axioms satisfied by pseudofinite fields, are introduced and studied. The
paper concludes with an appendix containing a theorem of Scanlon unpublished
elsewhere. The argument in this proof is used in the proof of Theorem 5.18 (i).

Since the first draft of this paper was written, there have been substantial fur-
ther developments. Most of these will be surveyed in [14]. For example, Elwes has
developed a notion of N -dimensional asymptotic class, and among other results
has shown that any smoothly approximable structure has a sequence of ‘envelopes’
which forms an asymptotic class. Ryten has exhibited 1-dimensional asymptotic
classes consisting of finite fields with extra structure (namely a power of the Frobe-
nius of suitable order) and has thereby shown that for any d, any family of finite
simple groups of Lie rank d is an asymptotic class. The notion of measurable theory
has also been further developed.

The notation throughout is standard; any unexplained terminology or notation
is defined where it arises.

Acknowledgements. We are extremely grateful to Thomas Scanlon for allowing
us to include Theorem 6.1 and its proof. This ensures that our slight adaptation of
his proof, in Theorem 5.18, does not refer in an essential way to unpublished work.
We also thank Zoé Chatzidakis for a helpful conversation.

2. Some Basic Properties of One-dimensional Asymptotic Classes

We first prove that Definition 1.2 is analogous to strong minimality and o-
minimality in the following sense: though it is a condition on definable sets in
one variable, so often is easily verifiable, it gives information on definable sets in
several variables.

Theorem 2.1. Suppose C is a 1-dimensional asymptotic class of finite L-structures.
Then the following holds, for every m,n ∈ N and every formula ϕ(x̄, ȳ), where
x̄ = (x1, . . . , xn) and ȳ = (y1, . . . , ym).

i. There is a positive constant C and a finite set D of pairs (d, µ) with d ∈
{0, . . . , n} and µ ∈ R>0, such that for every M ∈ C and ā ∈ Mm, if
ϕ(Mn, ā) is non-empty then for some (d, µ) ∈ D we have:∣∣|ϕ(Mn, ā)| − µ|M |d

∣∣ ≤ C|M |d− 1
2 .

ii. For every (d, µ) ∈ D, there is an L-formula ϕd,µ(ȳ), such that, for all
M ∈ C, ϕd,µ(Mm) is precisely the set of ā ∈Mm with∣∣|ϕ(Mn, ā)| − µ|M |d

∣∣ ≤ C|M |d− 1
2 .

Proof. We use induction on n. Assume thus that the result holds for formulas
ϕ(x̄, ȳ) with `(x̄) < n. Now consider a formula ϕ(z, x̄, ȳ), where `(x̄) = n and `(ȳ) =
m. By the n = 1 case, there is a positive integer c, a constant C, µ1, . . . , µt ∈ R>0,
and formulas χi(x̄, ȳ), for i = 0, . . . , c+ t, such that for M ∈ C and (b̄, ā) ∈Mn+m,
either |ϕ(M, b̄, ā)| = i for some i ≤ c—and χi(b̄, ā) holds—or for some i = 1, . . . , t
we have ∣∣|ϕ(M, b̄, ā)| − µi|M |

∣∣ ≤ C|M | 12
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(and χc+i(b̄, ā) holds).
By induction, for each i = 0, . . . , c + t there are positive integers ci, ri, positive

constants Ci ∈ R, and sets of pairs (di1, νi1), . . . , (diri , νiri), with each νij ∈ R>0

and each dij ∈ N>0, and formulas ρi0(ȳ), . . . , ρi,ci+ri(ȳ), so that the following hold.
If M ∈ C and ā ∈Mm, either |χi(Mn, ā)| = j for some j ≤ ci, and ρij(ā) holds, or
for some j = 1, . . . , ri,∣∣|χi(Mn, ā)| − νij |M |dij

∣∣ ≤ Ci|M |dij− 1
2

and ρici+j(ā) holds.
We shall consider only structures M ∈ C which are sufficiently large so that

for all (b̄, ā) ∈ Mn+m there is exactly one i ∈ {0, . . . , c + t} for which χi(b̄, ā)
holds , and so that for each such i and each ā ∈ Mm, ρij(ā) holds for exactly one
j ∈ {0, . . . , ci + ri}. Let X be the set of all functions f : {0, . . . , c + t} → N, such
that f(i) ∈ {0, . . . , ci + ri} for each i ∈ dom(f). Then for all large enough M ∈ C
and for each ā ∈Mm, there is a unique fā ∈ X such that ρi,fā(i)(ā) holds for each
i = 0, . . . , c + t. We set Ptp(ā) := fā in this case. Observe that tp(ā) (in M)
determines Ptp(ā).

For each ā ∈Mm, put

Si(ā) := {(z, x̄) ∈Mn+1 : ϕ(z, x̄, ā) ∧ χi(x̄, ā)}.

Note that ϕ(Mn+1, ā) is the disjoint union of S0, . . . , Sc+t. Suppose now that
ā ∈Mm and f = Ptp(ā). Then the following hold:

a. If i ≤ c and f(i) ≤ ci, then |Si(ā)| = if(i).
b. If i ≤ c and f(i) = ci + j > ci, then

|Si(ā)| − iνij |M |dij
∣∣ ≤ iCi|M |dij− 1

2 .

c. If i = c+ i′ > c and f(i) = j ≤ ci, then∣∣|Si(ā)| − jµi′ |M |
∣∣ ≤ jC|M | 12 .

d. If i = c+ i′ > c and f(i) = ci + j > ci, then(
νij |M |dij − Ci|M |dij− 1

2
)(
µi′ |M | − C|M | 12

)
≤ |Si(ā)|

≤
(
νij |M |dij + Ci|M |dij− 1

2
)(
µi′ |M |+ C|M | 12

)
.

Hence, in case (d),∣∣|Si(ā)| − µi′νij |M |dij+1
∣∣ ≤ νij |M |dijC|M | 12 + Ci|M |dij− 1

2µi′ |M |+ CCi|M |dij ,

which is less than C ′|M |(dij+1)− 1
2 if C ′ is chosen large enough.

Notice that the possibilities depend only on the pair (i, f(i)). For each function
f ∈ X and i = 0, . . . , c+ t, define g : {0, . . . , c+ t} → N× R by

g(i) := (g1(i), g2(i)) =


(0, if(i)) if (a) holds
(dij , iνij) if (b) holds
(1, jµi′) if (c) holds
(dij + 1, µi′νij) if (d) holds.

For each f ∈ X, let d := max{g1(i) : 0 ≤ i ≤ c + t} and A := {i : 0 ≤ i ≤
t ∧ g1(i) = d}. Then put µ := Σi∈Ag2(i). It is now easily checked for all ā ∈ Mm
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such that Ptp(ā) = f that
∣∣|ϕ(Mn+1, ā)| − µ|M |d

∣∣ ≤ C ′′|M |d− 1
2 for some constant

C ′′. Assertion (i) of the lemma follows.
It remains to check that clause (ii) holds for ϕ. Since the formulas ρij(ā) de-

termine Ptp(ā), and the latter determines the function g for the parameters ā,
assertion (ii) is immediate. �

Remark 2.2. The above proof shows that if the elements µ of the set D in Defini-
tion 1.2 are rational, then the corresponding µ in Proposition 2.1 also are rational
(as for finite fields).

We give an example to show that if C is a 1-dimensional asymptotic class of
L-structures and L− ⊂ L, then the set of reducts C− := {M �L− : M ∈ C} may not
be a 1-dimensional asymptotic class. Clause (i) of Definition 1.2 is preserved under
reducts; the problem is with the definability clause (ii). Thus the definability con-
dition (ii) in Definition 1.2 does not follow from (i), unlike the analogous situation
in the case of strong minimality and o-minimality.

Example 2.3. Let L be a language with a binary predicate E and two unary
predicates P and Q, and let L− just have E. Let C be the collection of all L-
structures consisting of a set of size 3n, where n ∈ N>0, with E interpreted by an
equivalence relation with two classes, one class of size 2n, the other of size n. The
realizations of P are the elements of the class of size 2n, and Q is interpreted by
the class of size n. There is a uniform quantifier elimination for the class C, and it
follows that C is a 1-dimensional asymptotic class. However, if C− is the collection
of reducts of members of C to L−, then C− is not a 1-dimensional asymptotic class.
The reason is that it is not possible, uniformly in members M of C−, to define
{x : |E(x,M)| = |M |/3}.

This example suggests we should not assume that C is the collection of finite
models of some theory. To illustrate, suppose that L is a language with a single
binary relation E, and C consists of all finite L-structures of even size in which E is
interpreted by an equivalence relation with just two classes, both of the same size.
If Σ is any set of L-sentences true of all members of C, then the set of all finite
models of Σ is not a 1-dimensional asymptotic class. However, C is a 1-dimensional
asymptotic class.

The next lemma is immediate.

Lemma 2.4. Let C be a 1-dimensional asymptotic class whose language is L, let D
be a set of constant symbols not in L, and let L+ := L∪D. Then C+, the collection
of all expansions of C to L+, is a 1-dimensional asymptotic class.

The following two facts are helpful in developing examples, and will be applied
in Section 3.

Lemma 2.5. Let C be a class of finite L-structures, and suppose that every infinite
ultraproduct of members of C is strongly minimal. Then C is a 1-dimensional
asymptotic class.

Proof. Let ϕ(x, ȳ) be a formula, and let M ∈ C. By strong minimality, there
is a positive integer Nϕ such that for all ā ∈ Mm, either |ϕ(M, ā)| ≤ Nϕ, or
|¬ϕ(M, ā)| ≤ Nϕ. Clause (i) in Definition 1.2 follows, with µ = 1. Clause (ii) is a
straightforward consequence of strong minimality as well. �
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We often use the final lemma in this section without explicit reference to verify
that a class of finite structures is an asymptotic class.

Lemma 2.6. Let C be a collection of finite structures, and suppose that there is
a unique complete theory T such that all infinite ultraproducts of members of C
satisfy T . Let M |= T be countably infinite. Suppose that for every formula ψ(x, ȳ)
there are formulas ϕ1(x, ȳ), . . . , ϕt(x, ȳ), each isolating a complete type relative to
T , for which (i) and (ii) of Definition 1.2 hold for C and such that T |= ψ(x, ȳ) ↔∨t
i=1 ϕi(x, ȳ). Then C is a 1-dimensional asymptotic class.

Proof. Let ψ(x, ȳ) be an arbitrary formula inm+1 variables, and ϕ1(x, ȳ), . . . , ϕt(x, ȳ)
be as in the hypothesis of the lemma. Then, for sufficiently large P ∈ C, and all
ā ∈ Pm, |ψ(M, ā)| = Σti=1|ϕi(M, ā)|. The conclusion follows. �

3. Examples

In this section we give a variety of examples, to show that 1-dimensional asymp-
totic classes arise in a broad range of contexts. Examples arise from supersimple
pseudofinite structures. Indeed, it will be shown in Lemma 4.1 that any infinite ul-
traproduct of a 1-dimensional asymptotic class is supersimple, so does not have the
strict order property. In particular, we draw attention to the following non-example.

Example 3.1. The class of all finite totally ordered sets is not a 1-dimensional
asymptotic class. For the formula x < y can pick out an arbitrary proper initial
segment of a structure, as a varies.

Example 3.2. By the main theorem of [6], the class of finite fields (in the language
of rings) is a 1-dimensional asymptotic class.

Example 3.3. (i) Let d be a positive integer, and Cd be a class of arbitrarily large
finite vertex transitive graphs of valency d. Then Cd is a 1-dimensional asymptotic
class.

To see this, we apply Lemma 2.5. Let (Mi : i ∈ ω) be a collection of non-
isomorphic members of C, and let U be a non-principal ultrafilter on ω. We show
that M := Πi∈ωMi/U is strongly minimal. Let L be a 2-sorted language, with a
sort P , with a binary relation R, for graphs, and a sort Q, with language (.,−1, 1))
for groups, together with a function P ×Q→ P for an action of a group on a graph
(so we write automorphisms on the right). The structure Πi∈ω(Mi,Aut(Mi))/U
consists of a graph, with domain the sort P , together with a vertex transitive
group of automorphisms. The graph is isomorphic to M , and so in particular, M
is a vertex transitive infinite graph of finite valency d. It is well known that such
graphs are strongly minimal—see, for example, [2] Lemma 2.2.11 for a more general
result.

(ii) Let d be a positive integer, and let C be an infinite class of finite graphs of
valency d containing just finitely many graphs of any given girth (the girth of a
graph is the shortest length of a cycle). If M is an infinite ultraproduct of members
of C, them M has no cycles, so is a forest, i.e., a union of trees. Since M also has
valency d, it is vertex transitive. Hence, again by Lemma 2.5, C is a 1-dimensional
asymptotic class.

Example 3.4. For each prime power q ≡ 1 ( mod 4), let Pq be the Paley graph
on the finite field Fq of q elements, that is, the graph whose vertex set is Fq, with
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a joined to b if a − b is a square. This relation is symmetric. We claim that
Cq := {Pq : q ≡ 1 ( mod 4)} is a 1-dimensional asymptotic class.

The main ingredient is the following result of Bollobás and Thomason ([3], see
also Theorem 10 in Ch. XIII.2 of [4]): let U and W be disjoint sets of vertices of
the Paley graph Pq with |U ∪W | = m, and let v(U,W ) be the number of vertices
not in U ∪W joined to each vertex of U and no vertex of W ; then

|v(U,W )− 2−mq| ≤ 1
2
(m− 2 + 2−m+1)q

1
2 +m/2.

Suppose now that P is an infinite ultraproduct of Paley graphs. Let σm be the
sentence saying that if U and W are disjoint sets of vertices with |U ∪W | = m,
then there is a vertex joined to every member of U and to no member of W . Then
σm holds in sufficiently large finite Paley graphs, by the inequality above, and so
holds in P . In particular, P is elementarily equivalent to the random graph, so its
theory has quantifier-elimination. Thus, every formula ψ(x, ȳ) has a quantifier-free
equivalent in sufficiently large finite graphs. Hence, it suffices to check clauses (i)
and (ii) of Definition 1.2 for quantifier-free formulas ϕ(x, ȳ).

Let ȳ = (y1, . . . , ym). We may suppose that ϕ(x, ȳ) is a disjunction of t formulas
of the form ∧

i∈A
x ∼ yi ∧

∧
i∈B

x 6∼ yi,

where the disjunction ranges over t partitions {1, . . . ,m} = A ∪ B, and ∼ denotes
graph adjacency. The formula ϕ also could involve atomic formulas x = yi or
x 6= yi, but we may ignore these; for example, inequalities affect the solution sets of
ϕ(x, ȳ) by a uniformly bounded number depending only on ϕ(x, ȳ) and independent
of ȳ. In particular, for q ≡ 1( mod 4) and ā ∈ Pmq ,∣∣|ϕ(Pq, ā)| − tq/2m

∣∣ ≤ t

2
(m− 2 + 2−m+1)q

1
2 + tm/2.

Conditions (i) and (ii) of Definition 1.2 follow easily.

Example 3.5. For each prime power q ≡ 3 ( mod 4), let Pq be the Paley tour-
nament, with vertex set Fq and with u → v if and only if u − v is a square in Fq.
Let C := {Pq : q ≡ 3 ( mod 4)}. The asymptotic result for Paley tournaments
corresponding to the one above for Paley graphs is due to Graham and Spencer
[17]. It yields as above that C is a 1-dimensional asymptotic class, and that any
infinite ultraproduct of members of C is elementarily equivalent to the countable
universal homogeneous tournament.

We now consider asymptotic classes of 3-hypergraphs. Recall that a two-graph is
a 3-hypergraph (H,E) (where E, the edge set, is a collection of 3-element subsets
of H) such that every 4-element subset of H contains an even number of members
of E. If (H,∼) is a graph, then there is a two-graph (H,E) whose edges are
the 3-subsets of H which contain an odd number of graph-edges. In fact, every
two-graph (H,E) arises in this way from a graph (H,∼), and two graphs (H,∼1)
and (H,∼2) give the same two-graph if and only if they are ‘switch-equivalent’,
i.e., there is a partition H = U ∪ V of the vertex set such that ∼2 is obtained
from ∼1 by interchanging edges and non-edges for pairs {a, b} which meet both
U and V . For more on two-graphs, see Chapter 11 of [16]. There is a countable
universal homogeneous two-graph. It can be constructed by amalgamation of finite
two-graphs, and is the two-graph of the random graph.
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Example 3.6. For each prime power q ≡ 1 ( mod 4), let Hq be the 3-hypergraph
with vertex set Fq, with {a, b, c} an edge if and only if (a − b)(b − c)(a − c) is a
square of Fq. Then Hq is the two-graph of Pq, and hence if C consists of the set
of all such Hq, every infinite ultraproduct of C is elementarily equivalent to the
countable universal homogeneous two-graph.

It follows easily from the result of Bollobás and Thomason cited above that C
is a 1-dimensional asymptotic class. To see this, let Hq ∈ C and U ⊂ Hq with
|U | = m. Suppose that a ∈ Hq \U , and let X be the collection of 2-element subsets
{u, v} of U such that {u, v, a} is an edge of Hq. Let

U(X) := {z ∈ Hq \U : (∀x, y ∈ U, x 6= y){x, y, z} is an edge in Hq ↔ {x, y} ∈ X)}.

For each z ∈ Hq \ U , let N(z) be the set of neighbors of z in U in the underlying
Paley graph Pq. It can be checked for all z ∈ Hq \ U that

z ∈ U(X) ↔
(
N(z) = N(a) ∨N(z) = U \N(a)

)
.

It follows that ∣∣|U(X)| − 2−(m−1)q
∣∣ ≤ (m− 2 + 2−m+1)q

1
2 +m.

Hence, by quantifier elimination for the countable universal homogeneous two-
graph, we see that C is a 1-dimensional asymptotic class.

Remark 3.7. (1) There is a notion of ‘two-tournament’ analogous to that of ‘two-
graph’. A two-tournament on a set X is a ternary relation R on X obtained from
a tournament (X,→) by putting Rx1x2x3 if x1, x2, x3 are distinct, and an odd
number of the relations x1 → x2, x2 → x3, x1 → x3 hold. For each prime power
q ≡ 3 ( mod 4), let Tq be the two-tournament on Fq obtained from the Paley
tournament in this way. Then the collection of all such Tq forms a 1-dimensional
asymptotic class.

(2) It also is possible to find asymptotic classes of two-graphs or two-tournaments
living on the projective line PG1(Fq), where q is congruent to 1 or 3 modulo 4, re-
spectively. These admit the 2-transitive group PSL2(q) of automorphisms with two
orbits on ordered triples of distinct elements. Their ultraproducts are elementarily
equivalent to the universal homogeneous two-graph and two-tournament, respec-
tively.

The next result concerns the ‘smoothly approximable structures’ described in
detail in [9]. First, recall from Definition 2.1.1 of [9] that a finite substructure N of
a structure M is k-homogeneous if all ∅-definable relations on M induce ∅-definable
relations on N , and for every pair of k-tuples ā, b̄ of N , ā and b̄ have the same type
in N if and only if they have the same type in M . A structure M is smoothly ap-
proximable if its theory is ℵ0-categorical, and every finite subset of M is contained
in a finite substructure N of M which is |N |-homogeneous in M . Since the choice of
language is not an issue, it is convenient to assume that M has quantifier elimina-
tion, in which case this holds also for the finite homogeneous substructures. By [8,
Corollary 7.4], every ℵ0-categorical ω-stable structure is smoothly approximable.

In [9], a class of Lie geometries is defined. A structure is Lie coordinatizable
if it is bi-interpretable with a structure which is Lie coordinatized, that is, built
from Lie geometries in a carefully prescribed treelike way, where the tree has finite
height. A countable Lie coordinatizable structure is a direct limit of a sequence
of ‘envelopes’, essentially, a sequence of finite |N |-homogeneous substructures N of
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M . It also is elementarily equivalent to any infinite ultraproduct of the envelopes.
It is shown in [9] that Lie coordinatizability and smooth approximation coincide for
countably infinite structures. For the geometries in the theorem below the finite
envelopes are just the natural finite approximating structures. In these examples,
unlike the example of all finite fields, the field is fixed, but a vector space dimension
is unbounded.

Theorem 3.8. Let M be a smoothly approximable linear, affine, or projective
geometry, and C the collection of finite envelopes of M . Then C is a 1-dimensional
asymptotic class.

Before proceeding to the proof, we note that Elwes [13] has shown that for every
smoothly approximable structure M (equivalently, Lie-coordinatizable structure),
there is a subcollection E of the set of finite envelopes of M which for some k forms
a k-dimensional asymptotic class and witnesses that M is smoothly approximated.
Here k is determined by M – again, see [9]. The definition of a k-dimensional
asymptotic class is given in [13], and uses slightly weaker error terms than those of
Definition 1.2.

Proof of Theorem 3.8. Observe first that if the conclusion holds for some M over
a language L, then by 2.4 it holds for any expansion of M by constants.

We further assert that if it holds for M , with class of envelopes C, then it
holds for every smoothly approximable reduct M ′ of M to a language L′ ⊂ L,
whose corresponding class C′ consists of reducts N ′ of members N of C. Indeed,
clause (i) of Definition 1.2 is immediate. To see that (ii) holds for C′, let ϕ(x, ȳ)
be an L′-formula with ȳ = (y1, . . . , ym), and let µ1, . . . , µr be the measures of
the 1-dimensional sets defined by ϕ(x, ȳ) in members of C′. There are finitely
many inequivalent formulas in m variables in M ′, say ρ1, . . . , ρt. If N ′ ∈ C′ then
{ȳ ∈ (N ′)m : ϕ(N ′, ȳ) has measure µi} is 0-definable in N ′, and thus is defined
by some ρj(ȳ). The danger is that µi may correspond to a different formula ρk
in a different member of C′. As C is a 1-dimensional asymptotic class, there is
an L-formula ψi(ȳ) which, in all sufficiently large N ∈ C, defines {ȳ ∈ Nm :
ϕ(N, ȳ) has measure µi}. If for some j we have that ∀ȳ[ψi(ȳ) ↔ ρj(ȳ)] holds in
some sufficiently large N ∈ C, then it holds in all sufficiently large N ∈ C. It follows
that ρj defines {ȳ : ϕ(N ′, ȳ) has measure µi} in all sufficiently large N ′ ∈ C′, as
required.

A similar argument shows that if C is a 1-dimensional asymptotic class of en-
velopes of M , and ϕ(x) is a formula which defines a smoothly approximable sub-
structure, then the set of restrictions of members of C to the set of realizations of
ϕ(x) is a 1-dimensional asymptotic class (as we assumed M has quantifier elimina-
tion, this set has the full structure induced from M). The same holds if here x is a
tuple of variables, provided the set defined by ϕ has dimension 1. Likewise, if E is
a 0-definable equivalence relation with all classes of the same (finite) size, then the
class of envelopes of M/E is a 1-dimensional asymptotic class.

Putting together these collected facts, we only need to prove the theorem for
the weak linear geometries described in Definition 2.1.4 of [9]. As a consequence
of the result above on reducts we may further suppose any Galois group involved
is trivial, and hence, in the notation of Definition 2.1.4 of [9], that K = L and
its elements are named by constants. This avoids, for example, having to handle
separately structures with automorphism group GL(ℵ0, q) or ΓL(ℵ0, q).
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All six cases in the definition are now relatively straightforward. For example,
consider a vector space with a nondegenerate symplectic form, Case 4 with σ trivial
and the bilinear form β (here denoted 〈−,−〉) symplectic. In this case, a complete
non-algebraic type p(x, ā) over a tuple of parameters ā = (a1, . . . , am) is determined
by the values for 1 ≤ i ≤ m of 〈x, ai〉 in the field K, so has dimension 1 and
measure 1/qd where d is the vector space dimension of the span of ā. An arbitrary
non-algebraic formula ϕ(x, ȳ) is a finite disjoint union of such non-algebraic types—
possibly after addition or removal of finitely many points—and so its measure is
the corresponding finite sum, so depends just on the dimension of the span of ȳ.

Case 6, the quadratic geometries, is slightly more complicated. There is an al-
ternative description of this class of geometries, which appears, for example, in the
proof of Case (ii) of Lemma 4.1 in [24], and makes the argument here more di-
rect. Let V be a vector space over a field Fq of characteristic 2 equipped with
a quadratic form Q of type O− and corresponding bilinear form 〈−,−〉. Let
d, d′, e1, . . . , en, f1, . . . , fn be a basis for V as in that proof. Let G be the stabi-
lizer of 〈d〉 in PO−(2n+ 2, q) and let U be an orbit of G on non-singular 2-spaces
containing d. Then the permutation structure induced by G on U is a geometry
that falls under Case 6, and all such geometries arise in this way. It follows from
the first three paragraphs above that these geometries also form a 1-dimensional
asymptotic class. �

Apart from examples arising from Lemma 2.5 and the class of finite cyclic groups
given below in Theorem 3.14, the examples we present of 1-dimensional asymptotic
classes are all derived from finite fields. It is possible to produce 1-dimensional
asymptotic classes which are not uniformly interpretable in finite fields but have
unstable ultraproducts. To illustrate, let f be a slowly growing, strictly increasing
function. Then let C be the set of all graphs on Fq, where q ≡ 1 ( mod 4),
obtained from the Paley graph on Fq by interchanging edges and non-edges on at
most f(q) pairs from Fq. Also, the first author’s PhD student Mark Ryten has
shown that there are N -dimensional asymptotic classes whose members are certain
finite difference fields, and these classes are not uniformly interpretable in finite
fields either.

The next two results show that smoothly approximable Lie geometries are inter-
pretable in pseudofinite fields.

Lemma 3.9. Let q be a prime power. Then:
(i) For each fixed q, the 2-sorted structure consisting of a vector space V over Fq

of dimension n and a nondegenerate symmetric bilinear form 〈−,−〉 : V ×
V → Fq is parameter-definable in the finite field Fqn uniformly in n.

(ii) The analogue of (i) also holds if we assume instead that 〈−,−〉 is a nonde-
generate alternating bilinear form.

Proof. (i) Put F := Fqn . Then F is an n-dimensional vector space over Fq.
Consider the trace function Tr : F → Fq. This is an Fq-linear map, and by Hilbert’s
Theorem 90 (see for example Theorem 6.3 of [27], Ch. VIII), ker(Tr) = {y−yq : y ∈
F}. Note that this definition is uniform in n provided that q is fixed. Furthermore,
|F : ker(Tr)| = q, and so is constant as n varies. It follows that Tr is definable
uniformly as n varies, as it suffices to specify the value of Tr on each of the q cosets
of ker(Tr) in F . We now define 〈x, y〉 on F by 〈x, y〉 = Tr(xy). Then 〈−,−〉 is a
symmetric bilinear form on F .
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(ii) In the alternating case, we treat Fq2n as a vector space over Fq with a
definable nondegenerate alternating form, all interpretable in the field Fqn . To this
end, we first observe that the field Fq2n is interpretable in the field Fqn uniformly in
n, as we have fixed q. Since Fq2n is a 2-dimensional vector space over Fqn , there is
a definable nondegenerate alternating bilinear form 〈−,−〉a over Fqn . Now define
〈−,−〉 : Fq2n × Fq2n → Fq by putting 〈u, v〉 = Tr(〈u, v〉a), where Tr is the trace
function Fqn → Fq. It is easily checked that 〈−,−〉 is an alternating bilinear form.
To see that it is nondegenerate, let u ∈ Fq2n with u 6= 0. We now choose b ∈ Fqn

so that the polynomial x−xq − b has no root in Fqn—this clearly is possible—then
choose v ∈ Fq2n with 〈u, v〉a = b. Then 〈u, v〉 = Tr(〈u, v〉a) = Tr(b) 6= 0 by the
choice of b and Hilbert’s Theorem 90. �

Corollary 3.10. Every linear, affine, or projective smoothly approximable Lie ge-
ometry is interpretable in a pseudofinite field.

Proof. As in the proof of Theorem 3.8, we work through examples (1)-(6) in
Definition 2.1.4 of [9]. Observe that the projective and affine geometries are inter-
pretable in these. Cases (1) and (2) are easy. The orthogonal space (5) is done
in Lemma 3.9(i) above, and the symplectic case of (4) is dealt with in (ii). The
quadratic geometry (6) is handled as in Theorem 3.8—it is interpretable in an
orthogonal space.

To handle the self-dual geometry (3), consider the proof of Lemma 3.9(ii), with
the triple (Fq,Fqn ,Fq2n). Let w ∈ Fq2n \Fqn , and let V := Fqn and W := {aw : a ∈
Fqn}. It is easily checked that Fq2n , regarded as a vector space over Fq, is a direct
sum of V and W . The restriction to V ×W of the bilinear map 〈−,−〉 defined
above now puts a self-dual geometry on V ×W .

Lastly, we must show that a vector space with a hermitian form—the remaining
case of (4)—is interpretable in a pseudofinite field. This can be done just as in
Lemma 3.9(ii): we simply replace the alternating form 〈−,−〉a on Fq2n over Fqn by
a hermitian form 〈−,−〉h. �

The final examples in this section deal with groups. Proposition 3.11 provides
examples of 1-dimensional asymptotic classes of groups that Theorem 3.12 demon-
strates are in fact typical. The last result of this section, Theorem 3.14, establishes
that the class of all finite cyclic groups forms a 1-dimensional asymptotic class.

A group G is extraspecial if for some p we have

G′ = Z(G) = Φ(G) ∼= Zp,
where Φ(G) denotes the Frattini subgroup of G. See [11, Section 20], for example,
for further information about extraspecial groups. Countably infinite extraspecial
groups were shown by Felgner in [15] to be ℵ0-categorical.

Proposition 3.11. Let p be an odd prime and let Cp be the class of finite ex-
traspecial groups of exponent p. Then Cp is a 1-dimensional asymptotic class.

We emphasis that in this proposition the prime p is fixed.

Proof. We first observe that an extraspecial group of exponent p and order p2n+1

is uniformly—in n, but not in p—interpretable in a vector space V of dimension 2n
over Fp, endowed with a symplectic form 〈−,−〉. Indeed, let G = V ×Fp, endowed
with the binary operation ∗ given by

(u, λ) ∗ (v, µ) = (u+ v, λ+ µ+
1
2
〈u, v〉)
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for (u, λ), (v, µ) ∈ V × Fp. Then—see [11, 20.6])—(G, ∗) is extraspecial of order
p2n+1 and exponent p, and is the unique such group up to isomorphism.

It is easily verified that the extraspecial group of exponent p and order ℵ0 is
smoothly approximable by finite extraspecial groups; for example, apply the de-
scription of the automorphism groups of finite extraspecial groups in [11, 20.8].
Since the 2-sorted structure (V,Fp) of the preceding paragraph is essentially a Lie
geometry, the collection of such structures forms an asymptotic class. The lemma
now follows easily, as in the first two paragraphs of the proof of Theorem 3.8. �

The next result shows that the class of extraspecial p-groups for a fixed prime p
is in some sense a typical 1-dimensional asymptotic class of groups. The theorem
says that any 1-dimensional asymptotic class of groups consists of groups which are
‘bounded-by-abelian-by-bounded.’ Below, and elsewhere in the paper, H ′ denotes
the derived subgroup of H, and ‘uniformly definable’ means that there is a single
defining formula across members of C.

Theorem 3.12. Let C be a 1-dimensional asymptotic class of groups. Then there
is a positive integer d such that if G ∈ C, then G has a uniformly ∅-definable that
|G : H| ≤ d, H ′ ≤ Z(H) and |H ′| ≤ d.

Proof. Since the conjugacy relation on a group is definable, there is a constant
c such that for all G ∈ C, each conjugacy class of G has size at most c or has
positive measure. We call a conjugacy class small if it has size at most c. More
generally, given a formula ϕ(x, ȳ), a group G ∈ C, and ā ∈ Gm, we may refer to
ϕ(G, ā) as small or of positive measure, with the obvious meaning. In particular,
every definable subgroup H of G is either small or of small index: if H has positive
measure, then its cosets are disjoint and of the same positive measure, whence their
number is bounded.

Observe that if g, h ∈ G each have at most c conjugates, then gh has at most
c2 conjugates. It follows that there is a positive integer e such that if |G| > e,
the union of the small conjugacy classes is a normal subgroup N(G) of G, and
is definable, uniformly in the class C. Also, there is t ∈ ω and e′ > e such that
if |G| > e′ then either N(G) contains at most t elements, or N(G) has positive
measure, and just one of these alternatives holds. We now define

C1 := {G ∈ C : |G| > e′ ∧N(G) has positive measure}
and

C2 := {G ∈ C : |G| > e′ ∧ |N(G)| ≤ t}.
Then {G ∈ C : |G| > e′} is the disjoint union of C1 and C2. We now establish

Claim. The class C2 is finite.

Proof of Claim. We assume not for a contradiction. For each G ∈ C2 and M with
N(G) ≤ M ≤ G, write M := M/N(G). There is a positive integer d such that if
G ∈ C2 then Ḡ has at most d conjugacy classes, all except the trivial one having
preimage in G of positive measure. In particular, G has a bounded number of
non-trivial normal subgroups, all uniformly interpretable, as each is a union of at
most d conjugacy classes, and each with preimage in G of positive measure. The
group G cannot have two distinct non-trivial minimal normal subgroups. Indeed,
as two such subgroups intersect in the identity, each would be of unbounded order
and index and thus the groups G ∈ C2 would have a definable subgroup of positive
measure and unbounded index, which is impossible. Hence, such a group G has a
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unique smallest non-trivial normal subgroup M , with preimage M , and |G : M | is
bounded. As M has boundedly many conjugacy classes, it is easy to see that M
must be non-abelian.

The groupM is characteristically simple, and hence is a direct productM = S1×
. . .× Sr of isomorphic non-abelian simple groups. Since G/M acts transitively on
{S1, . . . , Sr}, we see that r is bounded. As M has a bounded number of conjugacy
classes, it follows that Si is (uniformly) definable for each i = 1, . . . , r. As each Si
has positive measure we see that t = 1, that is, M is a non-abelian simple group.

Let |M | = pa1
1 . . . pak

k , where p1, . . . , pk are distinct primes, and a1, . . . , ak > 0.
As G ranges over C2, we see that the groupsM have a bounded number of conjugacy
classes, and so we can bound k. It follows that some Sylow subgroup S of M is
large. Since S has non-trivial center, we may choose g ∈ Z(S) \ {1}. The group
Cg := CM (g) is large as well, and thus has bounded index in M as we range over
G ∈ C2. Since M is simple, we see that such a group Cg must equal M ; otherwise
the kernel of the action of M on the left cosets of Cg by left multiplication would be
a proper and, as [M : Cg] is bounded, non-trivial normal subgroup of M . However,
if Cg = M then g ∈ Z(M). It then follows by simplicity that M is abelian, a
contradiction, and the Claim is proved.

By the Claim, we may assume C = C1. Then N = N(G) has positive measure
for each large enough G ∈ C. As its cosets have the same positive measure, there
is some r ∈ N such that |G : N | ≤ r. By a result of Wiegold [36] (see also 5.14 of
I.D. Macdonald [28]), there is some u ∈ N depending only on the maximal size of
a conjugacy class of N such that |N ′| ≤ u. In particular, N ′ is uniformly definable
as G ranges through C. Now put K := CN (N ′). Then K is uniformly definable,
and there is fixed v ∈ N such that |G : K| ≤ v, again as N consists of the small
conjugacy classes in G. We have K ∩ N ′ ≤ Z(K) ≤ K. If Z(K) has positive
measure, then we may put H := Z(K). If not, then there is some w ∈ N for which
|Z(K)| ≤ w for all G ∈ C. Then K/(K ∩ N ′) ∼= KN ′/N ′ ≤ N/N ′ is abelian, and
hence K/Z(K) is abelian. We then put H := K and d := max{v, w}, and the proof
is complete. �

Remark 3.13. The above proof did not require the full strength of Definition 1.2;
dimension but not measure was used. The result would hold of any class C of
finite groups such that any infinite ultraproduct of members of C is supersimple of
S1-rank 1 (see Lemma 4.1 below).

Theorem 3.14. Let C be the class of all finite cyclic groups. Then C is a 1-
dimensional asymptotic class.

Proof. Below, we regard the cyclic group Zn as having domain {0, . . . , n − 1},
with addition modulo n. We thus sometimes treat an element as a member of both
Zn and Z).

By Szmielew’s definability theorem ([33]; see also Theorem A.2.2 on p. 663 of
[19]), every formula ϕ(x, ȳ) in the language of groups is equivalent, uniformly in
all abelian groups, to a Boolean combination of formulas of the form pm|t(x, ȳ) or
t(x, ȳ) = 0, where p is a prime, t(x, ȳ) is a term, and division is with respect to the
group, that is, pm|t(x, ȳ) means

(∃z) z + . . .+ z︸ ︷︷ ︸
pm terms

= t(x, ȳ).
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Thus, we may suppose that ϕ(x, ȳ) is a disjunction of conjunctions of expressions of
the above form and their negations. By increasing the number of conjunctions, we
may assume further that they are pairwise inconsistent. It follows that we may now
suppose that ϕ(x, ȳ) is just a conjunction of such conditions and their negations.

As a further simplification, by an inclusion-exclusion argument, we may suppose
that all the conditions are positive; that is, ϕ(x, ȳ) is a conjunction of conditions
of the above form. A term t(x, ȳ) has the form `x + Σri=1`iyi, where `x is an
abbreviation for the sum of ` copies of x, but we may easily reduce to the case
when it has form `x+ y.

Suppose one of the conjuncts has the form `x+ y = 0. This holds in the cyclic
group Zn if and only if (`, n)|y in Z, and if it has solutions, it has exactly (`, n) of
them in Zn. It follows that if the formula ϕ(x, ȳ) involves such a conjunct, then in
all Zn it has a bounded number of solutions, namely at most `. Trivially we can
define the set of ȳ where ϕ(x, ȳ) has a given (bounded) number of solutions in all
Zn. Thus, we may suppose that ϕ(x, ȳ) has the form

r∧
i=1

pni
i

∣∣ `ix+ yi.

For each i = 1, . . . , r, let ei := pmi
i = (pni

i , n) . Now

Zn |= pni
i

∣∣ `ix+ yi ⇔ (∃z) pni
i z ≡ `ix+ yi ( mod n) in Z

⇔ ei
∣∣ `ix+ yi in Z.

Thus, the number of solutions in Zn of ϕ(x, ȳ) is the number of solutions in the
set {0, . . . , n− 1} of the simultaneous integer congruences

`ix+ yi ≡ 0 ( mod ei) for i = 1, . . . , r.

Let di := (`i, ei). Also, for all i, j ≤ r let

∆ij :=
`iyj − `jyi

didj
.

By a classical fact about simultaneous linear congruences—see Theorem 5.4.3 of
Shapiro [32] for example), the system of congruences above has a simultaneous
solution if and only if

di
∣∣ yi for i = 1, . . . , r

and

∆ij ≡ 0
(

mod
(
ei
di
,
ej
dj

))
for all i, j ∈ {1, . . . , r}. Furthermore, if these conditions hold, then the solution
is unique modulo L := lcm{ e1d1 , . . . ,

er

dr
}. Thus, either the system of equations has

no solution, or it has exactly n/L many solutions. Since di ≤ ei ≤ pni
i , the value

of L is bounded in terms of the original formula ϕ. This shows that clause (i) of
Definition 1.2 holds for C.

To prove that (ii) of Definition 1.2 holds, we show that there is a formula χL(ȳ)
such that for each n and ȳ ∈ Zrn,

Zn |= χL(ȳ)
⇔ ϕ(x, ȳ) (which is

∧r
i=1 p

ni
i

∣∣`ix+ yi) has exactly n/L solutions in Zn.
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Note, for i = 1, . . . , r, that fi := (`i, pni
i ) depends only on the formula ϕ. As

di = (`i, pni
i , n), we see that di = (fi, n). To state that ϕ(x, ȳ) has exactly n/L

solutions in Zn, it suffices to see the following.

a. For each divisor di of fi, there is a sentence σi,di
, such that σi,di

holds in
Zn precisely if di = (fi, n).

b. Given that di = (fi, n), for each i, there is a formula ψi(yi) which expresses
that di|yi in Z.

c. Assuming that di = (fi, n) and di|yi, we can express the conditions in-
volving the ∆ij , for each i, j, di, dj , ei, ej ; that is, there is a formula with
parameters yi, yj that, uniformly in Zn, expresses that

didj

(
ei
di
,
ej
dj

)∣∣∣∣ `iyj − `jyi.

For (a), it suffices to note that for any integer r there is a sentence τr that holds
in Zn just if r|n in Z. Indeed, let τr be the sentence

(∃x) rx = 0 ∧
∧

0<s<r

sx 6= 0.

If r|n, with rk = n then Zn |= τr with k as a witness for x; conversely, if Zn |=
(rx = 0 ∧

∧
0<s<r sx 6= 0), then there is t ∈ Z with rx = tn. The minimality of r

ensures that (r, t) = 1, and hence, as r|tn, that r|n.
For (b), first observe that di|n in Z. We assert that

di|yi in Z if and only if Zn |= (∃x) dix = yi.

The left-to-right direction is immediate. For the converse, suppose Zn |= (∃x) dix =
yi. Then in Z |= (∃k) (∃x) dix − yi = kn. As di|n in Z there is an m ∈ Z with
n = dim. Hence, in Z we have di(x− km) = yi and thus di|yi.

For (c), first observe that didj |`iyj − `jyi, so the condition can be rewritten as(
ei
di
,
ej
dj

)∣∣∣∣ `iyj − `jyi
didj

.

Since ei|n, the method for (b) gives that this is expressible. �

4. Ultraproducts of asymptotic classes

In the next two sections, we shall assume familiarity with S1-rank and D-rank,
as defined for example in Section 6 of [25]. It is shown there that if X ⊂ Mk is a
definable subset of a supersimple structure M , and any of the D-rank, SU-rank or
S1-rank of X is finite, then they are all finite and equal. If moreover T is a complete
theory relative to which all formulas have finite D-rank, then T is supersimple.

Lemma 4.1. Let C be a 1-dimensional asymptotic class, and let M be an infinite
ultraproduct of members of C. Then Th(M) is supersimple of S1-rank 1.

Proof. Suppose that M = Πi∈ωMi/U is an infinite ultraproduct of structures
Mi ∈ C, and the formula x = x has S1-rank greater than 1. Then there is a formula
ϕ(x, ȳ), a natural number N , and a sequence (āj : j ∈ ω) of elements of Mm such
that the sets ϕ(M, āj) are infinite, and |ϕ(M, āj) ∧ ϕ(M, āj′)| ≤ N for all distinct
j, j′ ∈ ω. As C is a 1-dimensional asymptotic class there is a µ ∈ R with 0 < µ ≤ 1,
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a constant c, and for every r ∈ ω a set Ur ∈ U such that for each k ∈ Ur there are
āj ∈Mm

k for j = 1, . . . r in the finite structure Mk, where |Mk| = mk, satisfying∣∣|ϕ(Mk, āj)| − µmk

∣∣ ≤ cm
1
2
k

for each j, and for distinct j, j′ ∈ {1, . . . , r},
|ϕ(Mk, āj) ∧ ϕ(Mk, ā

′
j)| ≤ N.

It follows that

|
r⋃
j=1

ϕ(Mk, āj)| ≥ r(µmk − cm
1
2
k )−

(
r

2

)
N.

For sufficiently large r the expression on the right is greater than mk, a contradic-
tion.

Thus, in M the formula x = x has S1-rank 1. It follows easily that this formula
has D-rank 1. Hence, by Lemma 2.4 of [10], if x̄ = (x1, . . . , xn) then x̄ = x̄ has
D-rank n. It follows that all formulas have finite D-rank, so M is supersimple. �

Proposition 4.2. Let C be a 1-dimensional asymptotic class. Then the following
are equivalent.
(i) Some ultraproduct of members of C is unstable.
(ii) There is m ∈ ω and a formula ϕ(x, ȳ) (with `(ȳ) = m) such that for each k ∈ N,
there are M ∈ C and ā1, . . . , āk ∈Mm with

a. |ϕ(M, āi)| ≥ k for each i = 1, . . . , k
and
b. |ϕ(M, āi)4ϕ(M, āj)| ≥ k for all distinct i, j ∈ {1, . . . ,m}.

Proof. (i) ⇒ (ii). Assume (i) holds. By Lemma 4.1, no ultraproduct of members
of C has the strict order property, so some ultraproduct has the independence
property. Hence, there is a formula ϕ(x, ȳ) such that for all n ∈ ω the following
holds: there is M ∈ C and {ai : 1 ≤ i ≤ n} such that for every S ⊂ {1, . . . , n} there
is b̄S ∈Mm such that for all i ∈ {1, . . . , n}, we have ϕ(ai, b̄S) ⇔ i ∈ S. Condition
(ii) now follows easily.

(ii) ⇒ (i). Assume that (ii) holds for some m and ϕ(x, ȳ). We shall show
that ϕ(x, ȳ) is an unstable formula in some ultraproduct of members of C. For
this, it suffices to show that for all t there is an Mt ∈ C, and b1, . . . , bt ∈ M and
ā1, . . . , āt ∈Mm such that ϕ(bi, āj) ⇔ i ≥ j for all i, j ∈ {1 . . . , t}.

By condition (ii) and Ramsey’s Theorem, there is a constant c and positive
rationals µ, ν such that for arbitrarily large r, there is M ∈ C, and a set A :=
{ā1, . . . , ār} ∈Mm, such that

1. for each i ∈ {1, . . . , r}, we have
∣∣|ϕ(M, āi)| − µ|M |

∣∣ ≤ c|M | 12 ,
2. for i, j ∈ {1, . . . , r} with i < j, we have

∣∣|ϕ(M, āi) \ ϕ(M, āj)| − ν|M |
∣∣ ≤

c|M | 12 .
Furthermore, we may arrange that (āi : 1 ≤ i ≤ r) is indiscernible with respect

to any given finite set of formulas; in particular, for a fixed K, with respect to
formulas defining the asymptotics of sets

{x : ϕ(x, āi1) ∧ . . . ∧ ϕ(x, āik) ∧ ¬ϕ(x, āik+1) ∧ . . . ∧ ¬ϕ(x, āiK )},
where i1 < . . . < iK .

Fix a particular K, and choose M and a very large set {ā1, . . . , ār} ⊂Mm with
respect to K, with the above properties, including the indiscernibility.
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We claim that for each 1 ≤ p ≤ q ≤ K, there is a positive real number ρ = ρ(p, q)
such that∣∣∣∣∣∣

∣∣∣∣∣∣
x :

∧
1≤i≤p

ϕ(x, āi) ∧
∧

p+1≤j≤q

¬ϕ(x, āj)


∣∣∣∣∣∣− ρ|M |

∣∣∣∣∣∣ ≤ c|M | 12 .

Observe that this assertion is true for the pairs (1, 1) and (1, 2). Now suppose it
is true for the pair (p, q) but not for (p, q + 1), where 1 < q < K. Put ` := q − 1.
Let A1, . . . , As ⊂ {āi : p + 1 ≤ i ≤ r} be disjoint `-sets for s = b(r − p)/`c. There
is a positive rational ν such that with S(Ai) := {x : ϕ(x, ā1) ∧ . . . ∧ ϕ(x, āp) ∧∧
ȳ∈Ai

¬ϕ(x, ȳ)}, we have ∣∣|S(Ai)| − ν|M |
∣∣ ≤ c|M | 12 .

By the assumption that the claim is not true for (p, q + 1) and the fact that C is a
1-dimensional asymptotic class, there is a constant c′ such that |S(Ai)∩S(Aj)| ≤ c′

for all i 6= j. This is clearly impossible for large enough r: consider |
⋃

(S(Ai) :
p+ 1 ≤ i ≤ r)|. Hence the assertion holds for (1, q + 1).

A similar argument shows that if the result holds for (p, q) for p < q ≤ K then
it holds for (p + 1, q). Together, these assertions prove that ϕ is unstable in some
infinite ultraproduct. �

Lemma 4.3. There is a 1-dimensional asymptotic class C such that every infinite
ultraproduct is superstable of U -rank 1, but no infinite ultraproduct is ω-stable.

Proof. Let L be a language with a binary relation En for each n. For each k ∈ ω
let Mk be the L-structure with domain of size 2k, such that for each n ≤ k the
relation En is interpreted as an equivalence relation on Mk with 2n-classes, each of
size 2k−n, with En+1 refining En. For n ≥ k, En is the equivalence relation with
singleton clases. It is easily checked that any C is a 1-dimensional asymptotic class.
If M is an infinite ultraproduct of members of C then M consists of a descending
sequence indexed by ω of equivalence relations, each of index 2 in the previous one,
so has U -rank 1 but is not ω-stable. �

We show next that in a 1-dimensional asymptotic class, algebraic closure satisfies
a version of the exchange property. It is immediate that the exchange property holds
in any infinite ultraproduct of such a class, since the ultraproduct is supersimple
of rank 1. This could also be deduced from the proposition below.

Suppose that C is a 1-dimensional asymptotic class, M ∈ C and ϕ(x, ȳ) is a
formula with associated data C, E, and formulas ϕµ(ȳ), for µ ∈ E, as in Defini-
tion 1.2. We further suppose that C is chosen sufficiently large that these data hold
for any formula obtained from ϕ(x, ȳ) by permuting the variables—that is, if the
first argument, the variable x is replaced by some variable yi—and that E is chosen
as small as possible, so it only includes measures that actually occur for ϕ.

We now say that a ∈ M is in the ϕ-closure of D ⊂ M , written a ∈ clϕ(D), if
there is some d̄ ∈ D such that M |= ϕ(a, d̄) and ϕµ(d̄) does not hold for any µ ∈ E.
Observe that this second condition guarantees that |ϕ(M, d̄)| ≤ C. For a set of
formulas Σ, we say that a ∈ clΣ(D) if a ∈ clϕ(D) for some ϕ(x, ȳ) ∈ Σ.

For a formula ϕ(x, y1, . . . , ym) with data as above, let Γ(ϕ) be the set of all
formulas ψ(yi, x, y1, . . . , yi−1, yi+1, . . . , ym) which express, for some i = 1, . . . ,m



18 DUGALD MACPHERSON AND CHARLES STEINHORN

and t ≤ C, that ϕ(x, ȳ) ∧ |ϕ(M, ȳ)| = t . Also, let ∆(ϕ) be the set of formulas
consisting of:

i. all formulas ψ(x, y1, . . . , yi−1, yi+1, . . . , ym) of the form

∃yi (ϕ(x, ȳ) ∧ |ϕ(M, ȳ)| = t) ,

where 1 ≤ i ≤ m and t ≤ C;
ii. all formulas ψ(x, y1, . . . , yi−1, yi+1, . . . , ym) expressing

(∃>t
′
yi) (ϕ(x, ȳ) ∧ |ϕ(M, ȳ)| = t) ,

where 1 ≤ i ≤ m, t ≤ C and t′ is chosen sufficiently large that ∃>t′ and ∃∞
agree for the formula in any infinite ultraproduct of members of C.

The subject of the next proposition is a version of the exchange property for 1-
dimensional asymptotic classes. The slight imprecision in the statement—the term
‘large enough’—could be avoided by introducing additional notation that we wish to
avoid. Also, for a formula ϕ(x̄, ȳ), a 1-dimensional asymptotic class C, a structure
M ∈ C and ā ∈Mm, we sometimes say that ϕ(Mn, ā) is small meaning that it has
size at most C, where C is the associated constant of Theorem 2.1.

Proposition 4.4. Suppose that C is a 1-dimensional asymptotic class, M ∈ C, and
D ⊂M . Suppose also a, b ∈M , and that a ∈ clϕ(Db) \ cl∆(ϕ)(D). Then, assuming
that M is large enough relative to D and ϕ, we have b ∈ clΓ(ϕ)(Da).

Proof. We may suppose that d̄ is a sequence from D, and that ϕ(a, d̄, b) holds
and |ϕ(M, d̄, b)| = t, with t ≤ C. Let

S := {(x, y) : ϕ(x, d̄, y) ∧ |ϕ(M, d̄, y)| = t}.

If {y : |ϕ(M, d̄, y)| = t} is small, then S is small and hence a ∈ cl∆(ϕ)(D), via a
formula of type (i), a contradiction. Thus, there is some µ ∈ R for which S has size
approximately µ|M |. Suppose first that the fiber Sa ⊂ M of S is large. It follows
that the number of x such that Sx is large must be small. In particular, a ∈ clψ(D)
for some formula ψ ∈ ∆(ϕ) of type (ii) above, again a contradiction. Thus the fiber
Sa is small, from which it follows that b ∈ clΓ(ϕ)(Da), as required. �

It is immediate that the quantifier ‘there exist infinitely many’ is eliminable in
any ultraproduct of a 1-dimensional asymptotic class. It follows from this and the
result above that algebraic closure defines a pregeometry in any such ultraproduct.
We show next that if the pregeometry is trivial—that is, acl(A) = ∪{acl(a) : a ∈
A}—this can be recognized by asymptotic information on the finite structures.

Proposition 4.5. Let C be a 1-dimensional asymptotic class. Then the following
are equivalent:

i. for every formula ϕ(x, ȳ) there is a formula ψ(x, z̄) and some K ∈ ω such
that if M ∈ C with |M | > K and A ⊂M , then clϕ(A) ⊂

⋃
a∈A clψ({a});

ii. in any infinite ultraproduct M of members of C, if A ⊂ M then acl(A) =⋃
a∈A(acl({a});

iii. for every ϕ there is a natural number Kϕ such that for all M ∈ C with
|M | > Kϕ, if A ⊂M then | clϕ(A)| ≤ Kϕ|A|.

Proof. (i) ⇒ (iii). This is immediate.
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(iii) ⇒ (ii). Suppose that (ii) is false. We work in a suitably saturated
elementary extension N of M . Then, after naming parameters in N if neces-
sary, there are a1, b1, c11 ∈ N , none of them algebraic over any other, such that
c11 ∈ acl(a1, b1) via ϕ. Now, successively choose b2, . . . , bn ∈ N realizing tp(b1/a1)
with bi 6∈ acl(a1, b1, . . . , bi−1} for each 1 < i ≤ n. For i > 1 let σi ∈ Aut(N) fix
a1 and map b1 to bi, and let c1i := σi(c11). Note that c1i ∈ acl(a1, bi). For each
i = 2, . . . , n choose τi ∈ Aut(N) fixing b1, . . . , bn, and such that ai := τi(a1) 6∈
acl(b1, . . . , bn, a1, . . . , ai−1). That this is possible follows by induction from the ex-
change property, as for each i, we have a1 6∈ acl(b1, . . . , bn, a2, . . . , ai−1). Lastly,
put cij := τi(c1j). It is easy to check inductively that all the cij are distinct, and
cij ∈ acl(aibj). It follows that acl(a1, . . . , an, b1, . . . , bn) ≥ n2 for each n, uniformly
via the formula ϕ. This behavior is realized in M by ω-saturation, from which we
see easily that (iii) fails.

(ii) ⇒ (i). Assume (ii) holds. By compactness and ω-saturation of M , for each
formula ϕ(x, ȳ) there are finitely many formulas ψ1(x, z), . . . , ψr(x, z) such that if
ā ∈ M and ϕ(b, ā) witnesses that b ∈ acl(ā), then for some i and j the formula
ψi(b, aj) witnesses that b ∈ acl(aj). It is now easy to construct from the ψi a
formula ψ that satisfies (i). �

Note that the proof of (iii) ⇒ (ii) above shows that if the growth rate of φ-closure
is faster than linear, then it has at least quadratic polynomial growth.

We close this section with a result about graphs of S1-rank 1 that is proba-
bly well-known—it is an immediate consequence of the Independence Theorem. It
indicates that if algebraic closure is assumed to be trivial, then 1-dimensional as-
ymptotic classes of graphs are highly constrained. This is not to say that such a
class is uninteresting—see Example 3.4.

Proposition 4.6. Let Γ = (V Γ, E) be a countably infinite graph of S1-rank 1, such
that

a. for all A ⊂ V Γ, acl(A) = A,
and

b. there is a 0-definable finite equivalence relation ≡ on V Γ that has no 0-
definable proper refinement.

Let C1, . . . , Ck be the ≡-classes. Then
i. each Ci is an infinite complete graph, an infinite null graph, or a copy of

the random graph,
and

ii. for any distinct i, j ∈ {1, . . . , k}, either every vertex in Ci is adjacent to
every vertex in Cj, or every vertex in Ci is not adjacent to every vertex in
Cj, or, once edges within Ci and within Cj are deleted, the graph induced
on Ci ∪ Cj is the random bipartite graph.

Furthermore, for any choice of data in (i) and (ii), there is at most one countably
infinite graph satisfying the assumptions and realising the data which also is univer-
sal subject to the data and homogeneous once C1, . . . , Ck are named by predicates.
In particular, there are at most 3k × 3(k

2) such graphs up to isomorphism.

We cannot say there is a graph satisfying the assumptions and a given set of
data, since for some sets of data the equivalence relation might not be definable.
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To illustrate, there is no example with k = 2 and with C1 and C2 each isomorphic
to the random graph, and with both edges and non-edges between C1 and C2; such
a graph would be isomorphic to the random graph, and the partition would not be
definable. Before proving the proposition, we note

Corollary 4.7. Let Γ be a countably infinite graph of S1-rank 1 such that there is
no proper 0-definable finite equivalence relation on the vertex set and such that for
every set A of vertices, acl(A) = A. Then Γ is isomorphic to the countably infinite
complete graph or null graph, or to the random graph.

Proof of Proposition 4.6. Expanding the language, we may suppose each of
the ≡-classes C1, . . . , Ck is named by a unary predicate; this does not affect the
assumptions on S1-rank, algebraic closure, or finite equivalence relations. For each
set of data as described in (i) and (ii) above (with the predicates), there is a universal
homogeneous structure satisfying the conditions, obtained by amalgamation.

We now consider a set S of partial data, by which we mean a specification for each
Ci whether or not Ci has an edge, and whether or not it has a non-edge, and for each
distinct i and j, whether or not there is an edge between Ci and Cj , and whether
or not there is a non-edge. We show that any structure MS = (V Γ, E, C1, . . . , Ck)
satisfying such data and our other assumptions—S1-rank 1, trivial algebraic closure,
no 0-definable finite equivalence relation properly refining ≡—is universal subject
to the data, and homogeneous when the Ci are named by predicates.

For a function f : {1, . . . , r} → {1, . . . , k}, a sequence ε̄ ∈ {−1, 1}r, and an
` ∈ {1, . . . , k}, let σf,ε̄,` be the sentence

∀u1, . . . , ur

∧
i 6=j

ui 6= uj ∧
r∧
i=1

Cf(i)ui → ∃x

(
C`x ∧

r∧
i=1

Eεi(x, ui)

) ,

where E1(x, y) denotes E(x, y), and E−1(x, y) denotes ¬E(x, y). We say that σf,ε̄,`
is consistent with S if, for each i ∈ {1, . . . , r}, the following hold:

1. if f(i) = ` and εi = 1 then S specifies that C` has edges, and if f(i) = `
and εi = −1 then S specifies that C` has non-edges;

2. if f(i) 6= ` and εf(i) = 1 then S specifies that there are edges between
Cf(i) and C`, and if f(i) 6= ` and εf(i) = −1 then S specifies that there are
non-edges between Cf(i) and C`.

To prove that MS is universal and homogeneous with respect to a set S of
partial data, it is enough to show that if σf,ε̄,` is consistent with S, then MS

satisfies σf,ε̄,`. This is done by induction on r, and it clearly holds for r = 1.
Now let a1, . . . , ar be distinct elements of MS such that Cf(i)(ai) holds for each i.
Put A := {a1, . . . , ar−1} and B := {ar}. Then by the assumption that algebraic
closure is trivial, A and B are independent over ∅ (in the sense of non-forking
in simple theories). Let ϕ(x) be the formula with parameters from A asserting
that C`(x) ∧

∧r−1
i=1 E

εi(x, ai)), and let ψ(x) be the formula C`(x) ∧ Eεr (x, ar). By
induction hypothesis, ϕ is consistent and non-algebraic, and by the r = 1 case the
same holds for ψ. Let a realize ϕ, and b realize ψ. Since a and b are in the same
class C`, they realize the same strong type over ∅, so by Theorem 3.1 of [5], they
realize the same Lascar strong type over ∅. Hence, by the Independence Theorem
for Lascar strong types (Theorem 5.8 of [25]), there is an element c 6∈ acl(A ∪ B)
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such that tp(c/A) = tp(a/A) and tp(c/B) = tp(b/B). Then c is a witness for
∃x(C`x ∧

∧r
i=1E

εi(x, ai)), as required. �

5. Measurable structures

This section has its source in [6], where it is observed that the dimension and
measure on definable subsets of finite fields naturally induces a dimension and mea-
sure on the definable subsets of a pseudofinite field. In this section we introduce
in Definition 5.1 the concept of a measurable structure, an infinite structure whose
definable sets come equipped with a dimension and measure satisfying certain nat-
ural axioms that are of course satisfied by pseudofinite fields. We investigate how
measurability relates to other familiar model theoretic properties and obtain some
preliminary structural results on measurable groups and fields.

For a structure M we denote by Def(M) the union, over all positive integers n,
of the collection of non-empty subsets of Mn that are definable with parameters.

Definition 5.1. The structure M is measurable if there is a function h : Def(M) →
N × R>0 satisfying the following conditions (where we write h(X) := (dim(X),
meas(X))):

i. If X ∈ Def(M) is finite (and non-empty) then h(X) = (0, |X|);
ii. For all X ∈ Def(M), D(X) ≤ dim(X), where D(X) is the D-rank of X;
iii. For every formula ϕ(x̄, ȳ) there is finite set Dϕ ⊂ N× R>0 so that

a. for all ā ∈Mm, h(ϕ(Mn, ā)) ∈ Dϕ.
b. for all (d, µ) ∈ Dϕ, the set {ȳ ∈ Mm : h(ϕ(Mn, ȳ)) = (d, µ)} is 0-

definable;
iv. Let X,Y ∈ Def(M) and f : X → Y be a definable surjection. As guaran-

teed by (iii), there is a positive integer r and (d1, µ1), . . . , (dr, µr) ∈ N×R>0

so that if Yi := {ȳ ∈ Y : h(f−1(ȳ)) = (di, µi)}, then Y = Y1 ∪ · · · ∪ Yr is a
partition of Y into non-empty disjoint definable sets. Let h(Yi) = (ei, νi)
for i = 1, . . . , r, and let c := max{d1 + e1, . . . , dr + er}, where we suppose
that this maximum is attained by the values d1 + e1, . . . , ds + es. Then
h(X) = (c, µ1ν1 + · · ·+ µsνs).

If h(X) = (d, µ) as in the preceding definition, we call d the dimension of X,
µ the measure of X, and h the measuring function. We often write hi(X), where
i = 1, 2, for the projection of h(X) to the ith coordinate. A measure µ on M is said
to be normalized if M itself has measure 1.

It is easily checked that if M is measurable and M ≡ N then N is measurable.
That is, if M is measurable then so is Th(M). This justifies saying that a complete
theory T is measurable if it has a measurable model, equivalently all its models are
measurable. Note also that Condition (ii) implies that Th(M) is supersimple of
finite rank if M is measurable.

Remark 5.2. Mark Ryten and independently Richard Elwes have shown that
Condition (ii) is redundant. Indeed, Conditions (i), (iii) and (iv) imply that if
{Xi : i ∈ ω} is a collection of definable subsets of dimension n of a definable set
X, and Xi1 ∩ . . . ∩ Xik = ∅ for all i1 < . . . < ik < ω, then dim(X) ≥ n + 1.
Hence, if D(X) = D(Xi) + 1, then dim(X) > dim(Xi), which yields (ii). A proof
by induction on k is included in [14], but it also follows, for example, from Lemma
2.8 of [21]. This yields in particular that supersimplicity follows from (i), (iii), (iv).
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From now on we assume this, so when verifying measurability we do not separately
verify (ii).

We note several basic facts about measurable structures.

Proposition 5.3. Let M be measurable with measuring function h. Then:
1. If f : X → Y is a definable bijection, then h(X) = h(Y ).
2. If X1, . . . , Xr ∈ Def(M) are disjoint and h(Xi) = (d, µi) for each i, then
h(X1 ∪ . . .∪Xr) = (d, µ1 + . . .+ µr). Likewise, if X1, . . . , Xr are definable
then dim(X1 ∪ . . . ∪Xr) = max{dim(X1), . . . ,dim(Xr)}.

3. For Y1, . . . , Yr ∈ Def(M), we have dim(Y1 × . . . × Yr) = dim(Y1) + . . . +
dim(Yr) and µ(Y1 × · · · × Yr) = µ(Y1) × · · · × µ(Yr). In particular, if µ is
a normalized measure on M then Mn has measure 1 for each n < ω.

4. Let A ⊂ M and X ⊂ Mn be A-definable with h(X) = (t, ν). There is an
Aut(M/A)-invariant finitely additive probability measure ρ on the collection
of definable subsets of Y ⊂ X given by ρ(Y ) = 0 if dim(Y ) < t and
ρ(Y ) = meas(Y )/ν if dim(Y ) = t.

5. Suppose that h(M) = (e, ν). Then there is a normalized measuring function
h′ for M obtained from h by putting h′(X) = (d, λ

νd/e ) for each definable
X ⊂M with h(X) = (d, λ).

6 If M is measurable via a function h, then h is determined by its restriction
to the definable subsets of M , that is, 1-variable sets.

Proof. Statements (1)– (4) easily follow from conditions (i) and (iv). For (5),
we first note that if we put h′(X) = (d, λ

νd/e ) for each definable X ⊂ Mn with
h(X) = (d, λ) and all n < ω, then it is a simple matter to check that we do obtain
a normalized measure as required. The proof of (6) is inductive – for definable
X ⊂ Mn, consider the projection to the first coordinate, and apply induction to
the fibers. �

Ultraproducts of asymptotic classes are easily seen to be measurable.

Lemma 5.4. Let C be a 1-dimensional asymptotic class, and M an infinite ultra-
product of members of C. Then M is measurable of dimension 1.

Proof. For each formula ϕ(x̄, ȳ) and possible pair (d, µ) arising from Proposi-
tion 2.1, there is a corresponding formula ϕd,µ(ȳ). We use this formula to assign a
dimension and measure to each set ϕ(Mn, ā) in the ultraproduct M . The axioms
for measurability hold since the (counting) analogues of them hold in the members
of C.

Remark 5.5. R. Elwes has developed a notion of N -dimensional asymptotic class
(see [13]). He has shown that if C is an N -dimensional asymptotic class, then
any ultraproduct is measurable of dimension N , under some measuring function.
Suppose that L is a language with just a unary predicate P and C is a class of finite
L-structures M for which |P (M)| =

√
|M | ). Then under Elwes’ definition, C is a

2-dimensional asymptotic class, and so an ultraproduct M̂ of C has a measuring
function satisfying dim(M̂) = 2. Note that M̂ is just a set with an infinite, coinfinite
subset named by P , so naturally has D-rank 1. Moreover, it is evident that M̂ can
be obtained as the ultraproduct of a 1-dimensional asymptotic class. The slightly
curious clause (ii) in Definition 5.1—in which it is not required that dim(X) =
D(X)—ensures that the proof of Lemma 5.4 remains valid.
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We now investigate measurability for strongly minimal structures. Observe first
that if (F,+, .) is an algebraically closed field, then F is not measurable. For
example, in characteristic 0, the map f : F \ {0} → F \ {0} given by f(x) = x2

is surjective with all fibers of size two, which clearly contradicts condition (iv) in
Definition 5.1. This is not accidental.

Recall that a strongly minimal structure M is unimodular [20] if, whenever U
and V are definable sets of tuples from M and fi : U → V , for i = 1, 2, are definable
maps such that f−1

i (a) contains a finite number ki of elements for all a ∈ V , then
k1 = k2. It is immediate that every measurable strongly minimal set is unimodular.
Thus, by the main theorem of [20], we obtain

Proposition 5.6. If M is measurable and strongly minimal then M is locally
modular.

The converse is certainly false. Hrushovski provides examples of both a disinte-
grated strongly minimal set (a unary function with fibres of size 2) and a locally
modular non-disintegrated strongly minimal set that are not unimodular, hence not
measurable.

We now develop a criterion for measurability in the spirit of Definition 1.2 and
Lemma 2.1 for 1-dimensional asymptotic classes. There is no crude criterion based
on clauses (i)–(iii) of Definition 5.1 restricted to definable sets in one variable.
Indeed, as noted above, the field of complex numbers is not measurable, but a
one-variable version of measure is provided by cardinality. In the criterion below
for measurability, we only assume a very special version of Definition 5.1 (iv), and
clause (i) below is required only for a single variable x.

Proposition 5.7. Let M be a structure and h : Def(M) → N×R>0 be a function
satisfying the following conditions (with the same notation as Definition 5.1, and
with h(X) = (h1(X), h2(X))):

i. For each formula ϕ(x, ȳ) there are (n1, µ1), . . . , (nt, µt) ∈ N×R>0 such that
for each ā ∈Mm, if ϕ(M, ā) 6= ∅ then h(ϕ(M, ā)) ∈ {(n1, µ1), . . . , (nt, µt)},
and for each i = 1, . . . , t, the set {ȳ : h(ϕ(M, ȳ)) = (ni, µi)} is 0-definable
in M.

ii. For each n ∈ ω and ā ∈Mn we have h({ā}) = (0, 1).
iii. For all n ∈ ω and disjoint definable subsets X,Y ⊂ Mn, we have h2(X ∪

Y ) = h2(X)+h2(Y ) if h1(X) = h1(Y ) and h2(X ∪Y ) = h2(X) if h1(Y ) <
h1(X).

iv. For each n ∈ ω and i ∈ {1, . . . , n}, the following hold. Let X ⊂ Mn be
definable, and let π : Mn →M be projection to the ith coordinate. Suppose
there is (d, µ) that for all a ∈ π(X), we have h(π−1(a)∩X) = (d, µ). Then
h1(X) = h1(π(X)) + d and h2(X) = h2(π(X))× µ.

Then M is measurable, via the function h.

Proof. We first prove that clause (iv) of Definition 5.1 holds. For this we estab-
lish:

Claim. Let r < n be positive integers, S ⊂ Mn be definable over D ⊂ M , and π :
Mn →Mr be a projection onto some set r of the coordinates of Mn. Suppose also
that π(S) = Y1∪ . . .∪Yk is a partition into D-definable sets such that for each i and
all y ∈ Yi, the function h1 assumes the constant value di and h2 takes the constant
value µi on the fibers π−1(y). Let h(Yi) = (ei, νi) for each i ≤ k. If the maximum
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value of di+ ei is assumed for i = 1, . . . , t, then h(S) = (d1 + e1, µ1ν1 + . . .+µtνt).

Clause (iv) of Definition 5.1 follows almost immediately from the Claim. Given
a definable function f : X → Y with X ⊂ Mp and Y ⊂ Mq, we apply the claim
to R := {(x̄, f(x̄)) : x̄ ∈ X}, the graph of f , with π the projection onto the last
q coordinates. Observe that if we apply the claim to the projection to the first s
coordinates, dim(X) = dim(R). So we proceed to:
Proof of the Claim. We focus on h2; the argument for h1 is similar.

We first show, by (downward) induction on r < n, that for all D-definable
S ⊂Mn and projections π : Mn →Mr onto some set r of the coordinates of Mn,
there are K < ω and finitely many pairs (d`, µ`) for ` ≤ K such that

a. for all b̄ ∈Mr there is some ` ≤ K for which h(S ∩ π−1(b̄)) = (d`, µ`);
b. {b̄ ∈Mr : h(S ∩ π−1(b̄)) = (d`, µ`)} is uniformly definable over D.

For r = n − 1, these assertions follow from the hypotheses (i) and (iv). For the
induction step, we assume, for ease of notation, that the projection is onto the last
r coordinates.

Let π′ : Mn →Mr+1 be projection onto the last r+1 coordinates. By induction
hypothesis, there are N < ω and pairs (es, νs) for s ≤ N such that for each
(a, b̄) ∈ π′(S) there is some s ≤ N for which h(S ∩ π′−1(a, b̄)) = (es, νs). For each
s and b̄ ∈ π(S), let

Ts(b̄) := {a ∈M : h(S ∩ π′−1(a, b̄)) = (es, νs)}.
Clearly, by the induction hypothesis, each set {(x, ȳ) : x ∈ Ts(ȳ)} is D-definable.
It follows by hypothesis (i) that there are L = L(s) < ω and pairs (f`, ρ`) for ` ≤ L
such that for all b̄ ∈ π(S) there is a value ` ≤ L for which h(Ts(b̄)) = (f`, ρ`) and
moreover that for each ` ≤ L the set of all b̄ ∈ π(S) for which h(Ts(b̄)) = (f`, ρ`) is
D-definable. Finally, for every s ≤ N and ` ≤ L, and every b̄ ∈ π(S), we complete
the induction step by applying hypothesis (iv) to

{(c̄, a) ∈Mn−r : (c̄, a, b̄) ∈ S ∧ h(S ∩ π′−1(a, b̄)) = (es, νs) ∧ h(Ts(b̄)) = (f`, ρ`)}.
The definability condition (b) follows easily from the above; the last details are left
to the reader.

Now we turn to the claim proper. It is proved by induction on r. For r = 1,
the claim follows from hypotheses (iii) and (iv). Turning to the induction step, it
follows easily from the hypothesis (iii) that we may assume k = 1, and hence that
h is constant on fibers of π. Let π1 : Mr → M denote projection onto the first
coordinate, and π2 := π1 ◦ π. Statements (a) and (b) above allow us to suppose
further that h is constant also on fibers of π2. Choose b̄ ∈ π(S), and put b̄ = (a, b̄′)
so a = π1(b̄). Also put R := π(S).

By our assumption (iv),

(1) h2(S) = h2(π2(S))× h2(π−1
2 (a) ∩ S),

and by (iv) applied to R, we have

(2) h2(R) = h2(π1(R))× h2(R ∩ π−1
1 (a)).

Let S′ := π−1
2 (a) ∩ S and πr−1 : Mr → Mr−1 denote projection onto the last

r − 1 coordinates, and define π′ : Mn → Mr−1 by π′ := πr−1 ◦ π. By (a), (b),
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and hypothesis (iii), we may assume further that h is constant on fibers of π′, and
hence by induction hypothesis,

(3) h2(S′) = h2(π′(S′))× h2(π′
−1(b̄′) ∩ S′).

Furthermore,

(4) h2(π′(S′)) = h2(π−1
1 (a) ∩R),

by induction applied to πr−1 �π(S′) and hypothesis (ii).
Finally,

h2(S) = h2(π2(S))× h2(S′) (by (1) and the definition of R)

= h2(π1π(S))× h2(S′)

= h2(π1(R))× h2(S′)

= h2(π1(R))× h2(π′(S′))× h2(π′
−1(b̄′) ∩ S′) (by (3))

= h2(π1(R))× h2(π−1
1 (a) ∩R)× h2(π′

−1(b̄′) ∩ S′) (by (4))

= h2(R)× h2(π′
−1(b̄′) ∩ S′) (by (2))

= h2(R)× h2(π−1(b̄) ∩ S) (as π′−1(b̄′) ∩ π−1
2 (a) = π−1(b)).

This yields the claim.
To complete the proof of the proposition, note that clause (i) of Definition 5.1

trivially follows from conditions (ii) and (iii) of the Proposition, and clause (iii) of
the definition follows from (a) and (b) above. �

Proposition 5.8. Suppose M is strongly minimal, and that Th(M) has the de-
finable multiplicity property and definable Skolem functions. Then Th(M) is mea-
surable, and there is a measuring function h such that for all n and all definable
subsets X ⊂ Mn, the function h1(X) is the Morley rank of X and h2(X) is the
Morley degree of X.

In particular, by Proposition 5.6, such M must be locally modular.

Proof. We first verify that Morley rank and degree together satisfy clause (iv)
in Definition 5.1. To this end, suppose that f : X → Y is a definable surjection
between definable sets. We assume for all y ∈ Y that Xy := f−1(y) has Morley
degree d, and prove that X has Morley degree de, where e is the Morley degree of
Y . The proof is by induction on d, over all f , X, and Y .

If d = 1 the conclusion is easily verified. So we suppose that d > 1. We assume
that f,X, Y are definable over a set A. By the finite equivalence relation, for each
y there is an Ay-definable equivalence relation Ey on Xy whose classes have the
same rank as Xy and Morley degree 1. By compactness, we may suppose that Ey is
uniformly definable in y. The existence of definable Skolem functions implies that
there is an A-definable function g : Y → X with g(y) ∈ Xy for each y ∈ Y . Let

X ′ :=
⋃
y∈Y

{x ∈ X : xEyg(y)}.

By the d = 1 case, X ′ has Morley degree e. Furthermore, by induction, X \X ′ has
Morley degree (d− 1)e. Hence, X has Morley degree (d− 1)e+ e = de, as required.
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Finally, Morley rank is definable in all strongly minimal structures, and by as-
sumption, Morley degree is definable. Thus, Definition 5.1 (iii) holds, and the result
follows. �

Corollary 5.9. Let V be a vector space over a field F , regarded as a structure in
the language of modules over F . Then V is measurable.

Proof. If F is a finite field, the conclusion is a consequence of Theorem 3.8 and
Lemma 5.4. Now suppose that F is infinite. Then V is strongly minimal. In this
case, Th(V ) has quantifier elimination in the language specified above, and every
non-trivial substructure of V—i.e., subspace of dimension greater than 0—is easily
seen to be elementarily equivalent to V . It follows by Theorem 2.1 of [12] that if
v0 ∈ V \ {0}, then Th(V, v0) has definable Skolem functions. Proposition 5.8 hence
implies that (V, v0) is measurable. Since Morley degree is definable in vector spaces,
it follows that V is measurable. �

We shall say that a many-sorted structure M is measurable if the restriction of
M to any finite sub-collection of sorts is measurable in the sense of Definition 5.1.

Proposition 5.10. Let M be measurable. Then every structure obtained from M
by the addition of any collection of sorts from M eq, with all the induced structure,
also is measurable.

Proof. It suffices to show that if M is measurable, n is a positive integer, and E
is a 0-definable equivalence relation on Mn, then the structure M∗ is measurable,
where M∗ is obtained by adjoining the single new sort Mn/E to M together with
all the induced structure from M , a unary predicate P for Mn/E, and the natural
map ρ : Mn →Mn/E.

To this end, let h be a measuring function on M . We must extend h to a
measuring function h′ on M ∪Mn/E. Let R ⊂Mk ×P ` be a definable set and let

R∗ := {(x̄, ȳ1, . . . , ȳ`) ∈Mk ×Mn` : (x̄, ȳ1/E, . . . , ȳ`/E) ∈ R}.

Also, let f : Mk+n` →Mk×P ` be the map (x̄, ȳ1, . . . , ȳ`) 7→ (x̄, ȳ1/E, . . . , ȳ`/E).
As M is measurable, there is a partition R = R1 ∪ . . . ∪Rt into M∗-definable sets
and pairs (d1, µ1), . . . , (dt, µt) ∈ N × R>0 such that h(f−1(ū)) = (di, µi) for each
i ∈ {1, . . . t} and ū ∈ Ri. Let R∗

i := f−1(Ri) and note that each R∗
i is definable in

M . For each i ≤ t let h(R∗
i ) = (ei, νi). We then define h′(Ri) = (ei − di, νi/µi). It

can be checked by Proposition 5.7 that h′ is a measuring function on M ∪ P . �

The next theorem shows, at least under the assumption acl = dcl, that the
adjunction of a generic predicate as in [7] preserves measurability. We believe
that the assumption acl = dcl is unnecessary, but the arguments become rather
more intricate than those we present below. Hrushovski [23, Proposition 11.1], has
proved an analogous result about the fixed point set of a generic automorphism of
a strongly minimal set with the definable multiplicity property.

Theorem 5.11. Let T be a complete measurable theory over a language L with
quantifier elimination, eliminating the quantifier ∃∞, such that for all M |= T and
A ⊂M , acl(A) = dcl(A). Let P be a unary predicate not in L, let L′ := L∪{P}, let
S be a sort of T , and let TP,S be the model companion of the theory of L′-structures
satisfying T , with P interpreted by a subset of S. Let T ′ be any completion of TP,S.
Then T ′ is measurable.
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Proof. It is convenient to suppose that L has an additional constant symbol ∞,
and has been expanded slightly to ensure that all definable partial functions are
given by terms, with introduced functions taking value ∞ if necessary.

Recall [7, 2.4] that the model companion TP,S exists and is axiomatized by
T together with sentences of the following form, where ϕ(x̄, z̄) is an L-formula,
x̄ = (x1, . . . , xm), and I is any subset of {1, . . . ,m}:

∀z̄

([
∃x̄ϕ(x̄, z̄) ∧ (x̄ ∩ aclT (z̄) = ∅) ∧

m∧
i=1

S(xi)

]

−→

∃x̄ϕ(x̄, z̄) ∧
∧
i∈I

(xi ∈ P ) ∧
∧
i 6∈I

(xi 6∈ P )

 .

Let M |= T ′, with reduct ML to L. Since measurability is preserved under
elementary equivalence, we assume that M is (sufficiently) saturated. By assump-
tion, there are measure and dimension functions dimT and µT on the collection of
definable subsets of powers of the reduct ML. We will define dimension and mea-
sure functions, dim and µ, for the collection of definable subsets of powers of M ,
prove this assignment is well-defined, and finally show they satisfy the hypotheses
in Proposition 5.7.

Let p be a real number with 0 < p < 1. We shall assign a measure to M so that

µ ({x ∈ S : P (x)}) = pµT (S).

Let x̄ = (x1, . . . , xm), ȳ = (y1, . . . , yn), and z̄ = (z1, . . . , zk). By [7, Corollary 2.6],
every L′-formula in the variables x̄ and ȳ—the variables ȳ are taken to be parameter
variables—is equivalent modulo T ′ to a finite disjunction of formulas ϕ(x̄, ȳ) of the
form

(5) ∃z̄

ψ(x̄, ȳ, z̄) ∧
∧̀
i=1

P (ti(x̄, ȳ, z̄)) ∧
`′∧
i=1

¬P (t′i(x̄, ȳ, z̄))

 ,

where ψ is a quantifier-free L-formula, t1, . . . , t` and t′1, . . . , t
′
`′ all are L-terms, and

c̄ ∈ aclT (ā, b̄) for every (ā, b̄, c̄) satisfying ψ. The assumptions that acl = dcl in
models of T , and that definable partial functions are given by terms, enable us to
eliminate the existential quantifier in the cited result. Thus we assume further that
every L′-formula is equivalent modulo T ′ to a finite disjunction of formulas ϕ(x̄, ȳ)
of the form

(6) ψ(x̄, ȳ) ∧
∧̀
i=1

P (ti(x̄, ȳ)) ∧
`′∧
i=1

¬P (t′i(x̄, ȳ)),

where ψ is an L-formula, and t1, . . . t`, t′1, . . . t
′
`′ all are L-terms.

For every L-formula ψ(x̄, ȳ) and term t(x̄, ȳ), and b̄ ∈Mn, there are just finitely
many c ∈M such that dimT (t−1(c)∩ψ(Mm, b̄)) = dimT (ψ(Mm, b̄). Hence all such
c lie in dcl(b̄).

We shall call the formula ϕ(x̄, ȳ) as in (6) good if:
(i) ψ(x̄, ȳ) implies that t1(x̄, ȳ), . . . , t`(x̄, ȳ), t′1(x̄, ȳ), . . . , t

′
`′(x̄, ȳ) are all distinct,

and that the terms ti, t′i only assume values in S;
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(ii) for each b̄ ∈Mn and each i, the ti-fibers on ϕ(Mm, b̄) – that is, sets t−1
i (c)∩

ϕ(Mm, b̄) – have constant dimension of value less than dim(ϕ(Mm, b̄)), and likewise
for t′i.

For a good formula ϕ(x̄, ȳ) and b̄ ∈Mn, we assign to the definable set ϕ(Mm, b̄)
the measure µp`(1− p)`′ , where µ := µT (ψ(Mm, b̄)). Its dimension is defined to be
dimT (ψ(Mm, b̄)).

Every formula of the form (5) thus is easily seen to be equivalent to a finite
disjunction of pairwise inconsistent formulas, each of which has the form

(7) χ(x̄, ȳ) ∧
k∧
i=1

P (ui(ȳ)) ∧
k′∧
i=1

¬P (u′i(ȳ)),

where χ is good. The ui arise from the ti in (6) which depend just on ȳ. For b̄ ∈Mn,
the measure and dimension of each such disjunct is defined to be either the same
as for µ(χ(Mm, b̄)), or measure 0 and dimension 0, according to whether or not∧k
i=1 P (ui(b̄)) ∧

∧k′
i=1 ¬P (u′i(b̄)) holds. Thus, in considerations of measure we can

essentially just work with disjunctions of good formulas (a slight but harmless over-
simplification). This definition of dimension and measure is extended by specifying
that the measure of a finite disjoint union of definable sets of the same dimension is
the sum of their measures, and the dimension is the maximum of their dimensions.

We must show this assignment of measure and dimension is well-defined. We
focus only on measure. To this end, suppose that the set X has two definitions
X = X1 ∪ . . . ∪Xr = Y1 ∪ . . . ∪ Ys as disjoint unions of sets defined by formulas of
the form (7). Since we may replace the each of the sets Yj by the union of the sets
Xi∩Yj for i = 1, . . . , r, we may suppose that each of the Xi is the union of some of
the Yj , and thereby reduce to the case that r = 1, that is X = Y1 ∪ . . .∪ Ys. Thus,
we may assume that X is defined by the good formula

ψ(x̄, b̄) ∧
∧̀
i=1

P (ti(x̄, b̄)) ∧
`′∧
i=1

¬P (t′i(x̄, b̄)),

and that Yi, for i = 1, . . . s, is defined by the good formula

χi(x̄, c̄i) ∧
ki∧
j=1

P (uij(x̄, c̄i)) ∧
k′i∧
j=1

¬P (u′ij(x̄, c̄i)).

We now assert that ψ(Mm, b̄) =
⋃s
i=1 χi(M

m, b̄i). Indeed, the equality X =
Y1 ∪ . . . ∪ Ys, the axioms for TP,S , and the definition of ‘good formula’, imply via
compactness that these two sets can differ at most by a lower dimensional set, and
we can modify the formulas to erase this difference. By a further decomposition,
we may suppose that all the sets χi(Mm, b̄i) are equal. Let Z = ψ(Mm, b̄), and so
Z equals each χi(Mm, b̄i)).

Let i ∈ {1, . . . , s}. Arguing as in the last paragraph (again using the axioms
of TP,S), for each x̄ ∈ Z, we see that tj(x̄, b̄) ∈ {ui1(x̄, c̄i), . . . , ui,ki

(x̄, c̄i)} for
j = 1, . . . , `, and t′j(x̄, b̄) ∈ {u′i1(x̄, c̄i), . . . , u′i,k′i(x̄, c̄i)} for j = 1, . . . , `′; otherwise,
Yi 6⊆ X. Thus, we may suppose additionally that for each x̄ ∈ Z and i = 1, . . . , s, we
have tj(x̄, b̄) = uij(x̄, c̄i) for j = 1, . . . , `, and t′j(x̄, b̄) = u′ij(x̄, c̄i) for j = 1, . . . , `′.
(Some additional decomposition of X and the Yi may be necessary here; it might
happen, say, that for some x̄, t1(x̄) = ui1(x̄), and for other x̄, t1(x̄) = ui2(x̄).)
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Hence, if we set

Y ′
i := χi(x̄, c̄i) ∧

∧̀
j=1

P (uij(x̄, c̄i)) ∧
`′∧
j=1

¬P (u′ij(x̄, c̄i)),

then X = Y ′
1 = · · · = Y ′

s , and Y ′
i ⊇ Yi for each i.

Let w1(x̄), . . . , wN (x̄) list the terms in {ui,`+1(x̄, c̄i), . . . , ui,ki(x̄, c̄i) : i = 1, . . . , s},
where we suppress the parameters for notational convenience. Since X does not
properly contain Y1∪ . . .∪Ys, as we have argued above, genericity of P implies that
s = 2N , each i = 1, . . . , s is identified with a different function σi : {1, . . . , N} →
{−1,+1}, and

Yi :=

x̄ ∈ X :
∧

{j:σi(j)=1}

P (wj(x̄)) ∧
∧

{j:σi(j)=−1}

¬P (wj(x̄))

 .

If µT (ψ(Mm, b̄)) = ν, then by definition, µ(X) = νp`(1− p)`
′
. Finally, calculating

the measure of X via the decomposition given by the Yi’s, we see that

µ(X) = µp`(1− p)`
′
N∑
j=1

(
N

j

)
pj(1− p)N−j = νp`(1− p)`

′
,

since
∑N
j=1

(
N
j

)
pj(1− p)N−j = 1.

Note that definability of dimension and measure for L′-formulas is easily seen to
follow from how we assign dimension and measure to these formulas above, using
that definability holds for T . We omit the details.

It remains to verify that this assignment of dimension and measure for T ′ satisfies
the conditions in Proposition 5.7. We shall focus on Condition (iv). Let π : Mm →
M denote projection onto the first coordinate, and let R ⊂ Mm be definable. We
may suppose R is defined by the good formula

ψ(x̄, b̄) ∧
∧̀
i=1

P (ti(x̄, b̄)) ∧
`′∧
i=1

¬P (t′i(x̄, b̄)),

and we now drop reference to the parameter b̄. Let R′ := ψ(Mm). Also, set
S := π(R) and S′ := π(R′). For a ∈ S, let Ra := π−1(a)∩R and R′

a := π−1(a)∩R′

denote the fibers over a in R and R′, respectively. Definability of dimension and
measure allows us to suppose, by refinement if necessary, that all the sets Ra for
a ∈ S have the same dimension and measure, and likewise for the sets R′

a for a ∈ S′;
likewise we may assume that the ti|Ra and t′i|Ra have fibers of constant dimension,
and that this does not vary with a.

By quantifier elimination for TP,S , we see that S can be defined by a formula
χ(x1) ∧

∧k
i=1 P (ui(x1)) ∧

∧k′
i=1 ¬P (u′i(x1)); infact, (it might be defined by a dis-

junction of such formulas, but we can handle each disjunct separately. We may
assume, making further refinements if needed, that S′ := χ(M), that u1, . . . , uk oc-
cur among t1, . . . , t`, and that u′1, . . . , u

′
k appear among t′1, . . . , t

′
`′ . For notational

convenience, we assume that ui = ti for i = 1, . . . , k and u′i = t′i for i = 1, . . . , k′.
It follows that for all a ∈ S, the fiber Ra can be defined by the good formula

(8) ψ(x̄′) ∧
∧̀

i=k+1

P (ti(x̄′)) ∧
`′∧

i=k′+1

¬P (t′i(x̄
′)),
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where x̄′ := (a, x2, . . . , xm). Likewise, R′
a is defined by ψ(x̄′).

Since the reduct of M to L is measurable, dimT (R′) = dimT (R′
a)+dimT (S′) for

all a ∈ S′. As dimT (R′) = dim(R), dimT (S′) = dim(S), and dimT (R′
a) = dim(Ra),

we obtain dim(R) = dim(Ra) + dim(S), as required. Finally, let µT (R′) = ν. It
follows that µ(R) = νp`(1−p)`′ . Likewise, if µT (S′) = ρ. then µ(S) = ρpk(1−p)k′ .
By measurability of the L-reduct of M , for all a ∈ S′ the fiber R′

a has measure
ν/ρ. From the good formula (8) which defines the fiber Ra, we see that µ(Ra) =
(ν/ρ) p`−k(1− p)`

′−k′ . It follows that µ(R) = µ(Ra)× µ(S), as required. �

We recall that a k-hypergraph is a structure (M,R) where R is a k-place relation
on M , and

R(x1, . . . , xk) →
∧
i 6=j

xi 6= xj ∧
∧
π∈Sn

R(xπ(1), . . . , xπ(k)).

The (countable) universal homogeneous k-hypergraph can be regarded as the ran-
dom k-hypergraph, based on edge probability p for any fixed p with 0 < p < 1.
We now show that the universal homogeneous k-hypergraphs are all measurable of
dimension 1 for all such p. We do now know if for k > 2 they are elementarily
equivalent to ultraproducts of 1-dimensional asymptotic classes.

Proposition 5.12. Let (M,R) be the universal homogeneous k-hypergraph, and
let p ∈ (0, 1). Then there is a measure on M such that M has dimension 1, and
{(x1, . . . , xk) : R(x1, . . . , xk)} has measure p.

Proof. By ω-categoricity and quantifier elimination, it suffices to specify the
measure of complete types over finite sets, and show that this assignment satisfies
Proposition 5.7.

Let ā = (a1, . . . , as), and let q be a complete n-type over ā whose realizations
are disjoint from ā. Let b̄ := (b1, . . . , bn) realize q. For each S ⊂ {1, . . . , s} with
|S| ≤ k, let āS denotes the subtuple of ā with entries indexed by S and let αS
be the number of increasing subsequences i1 < . . . < ik−|S| of (1, . . . , n) such that
R(āS , bi1 , . . . , bik−|S|). Also, let βS =

(
n

k−|S|
)
− αS . For each m ≤ s let Fm denote

the set of subsets of {1, . . . , s} of size at most m. The set of realizations of q has
dimension n and measure

ΠS∈Fk−1p
αS (1− p)βS .

Such a measure extends naturally to a measure on all definable sets, and clearly
the measure and dimension are definable.

We now verify that the set X of realizations of q satisfies the hypothesis (iv) of
Proposition 5.7 with respect to projection π : Mn → M onto the first coordinate.
Let α denote the number of increasing subtuples of āb1 with last entry b1 which
satisfy the relation R, and let β :=

(
s

k−1

)
−α. Then π(X) has measure pα(1− p)β .

We now calculate the measure of X ′, the set of realizations of tp(b2 . . . bn/āb1). For
each S ⊂ {1, . . . , s} of size at most k − 2, let α′S be the number of subtuples b̄′ of
b2 . . . bn such that R(āS , b1, b̄′) holds, and let α′′S be the number of subtuples b̄′ of
b2 . . . bn such that R(āS , b̄′) holds. Clearly α′S + α′′S = αS . For a (k − 1)-subset S
of {1, . . . , n}, let α′′S be the number of elements b′ from among b2, . . . , bn such that
R(āS , b′). In all these cases put β′S :=

(
n−1

k−|S|−1

)
−α′S and β′′S :=

(
n−1
k−|S|

)
−α′′S . Then

X ′ has measure

ΠS∈Fk−2p
α′S (1− p)β

′
Spα

′′
S (1− p)β

′′
S ΠS⊂{1,...,s},|S|=k−1p

α′′S (1− p)β
′′
S .
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We must verify that meas(X ′)×meas(π(X)) = meas(X), that is,

meas(X ′)× pα(1− p)β = ΠS∈Fk−1p
αS (1− p)βS .

Since α′S + α′′S = αS and likewise β′S + β′′S = βS , this reduces to showing that

ΠS⊂{1,...,s},|S|=k−1p
α′′S (1− p)β

′′
S × pα(1− p)β = ΠS⊂{1,...,s},|S|=k−1p

αS (1− p)βS .

This follows directly from the definitions; on each side, the power of p is the number
of subtuples of āb̄ with k − 1 elements from ā which satisfy R. �

Remark 5.13. 1. There is an alternative proof of Proposition 5.12. Start with a
pure set M of size ℵ0, and adjoin to M the sort consisting of ordered k-element
subsets of M . The universal homogeneous k-hypergraph can be regarded as a
generic predicate on S, so Theorem 5.11 can be applied.

2. M. Albert [1] considered finitely additive automorphism invariant probability
measures on the definable subsets (in 1 variable) of the random graph. Such a
measure is determined by its value on any complete 1-type. It was shown in [1]
that any such measure on a complete 1-type p(x, ā) over ā depends only on the
size of ā and the number of entries of ā which p asserts are adjacent to x. Since
any measuring function on the random graph in our sense induces one in his sense,
Albert’s result restricts possible measuring functions on the random graph.

Theorems 5.15 and 5.17 below the strength of the measurability assumption.
Indeed, it is not known, just assuming supersimplicity, if every group of rank 1 is
finite-by-abelian-by-finite, or if every group has an infinite abelian subgroup (c.f.,
Section 5.4 of [35]). First, we prove a lemma which may have further applications.

Lemma 5.14. Let G be a measurable group. Then some non-identity g ∈ G has
infinite centralizer.

Proof. Suppose for a contradiction that each g ∈ G \ {1} has finite centralizer.
For g ∈ G, let Cg be the conjugacy class of G, and let αg : G→ Cg be the definable
surjection αg : G → Cg, given by αg(h) := h−1gh. The fibres of αg are all cosets
of CG(g), so have dimension 0 and measure |CG(g)|. It follows by Definition 5.1
that dim(Cg) = dim(G) and meas(Cg) = 1/|CG(g)|. As the conjugacy classes are
uniformly definable, by dimension considerations there are finitely many of them,
say C1, . . . , Ct. Put µi := meas(Ci) for each i = 1 . . . , t.

Since centralizers have finite bounded size, the group G has finite exponent n.
Let p1, . . . , pr be the primes dividing n.

Case 1. All the pi are odd.
In this case, we define an equivalence relation ∼ on {C1, . . . , Ct} by putting

Ci ∼ Cj if there are g ∈ Ci and h ∈ Cj of the same order with h a power of
g (i.e., they generate the same cyclic subgroup of G). Let Ci1 , . . . , Cis be a set
of representatives of the ∼-classes, and for each j = 1, . . . , s let Dj be the union
of the conjugacy classes ∼-equivalent to Cij . For j = 1, . . . , s and gj ∈ Cij , let
p
a1,j

1 · · · par,j
r be the order of gj . By assumption each CG(gj) is finite, and we let

p
b1,j

1 · · · pbr,j
r be its order. Finally, let pc1,j

1 . . . p
cr,j
r be the order of the group induced

on 〈gj〉 by its normalizer NG(〈gj〉) in G. Observe that the ai,j , bi,j and ci,j do not
depend on the choice of Cij in its ∼-class, or on gj ∈ Cij . Also, all the ak,j , bk,j ,
and ck,j are nonnegative.

If g and h generate the same cyclic group then they have the same centralizer. It
follows that for each j = 1, . . . , s, all the conjugacy classes ∼-equivalent to Cij have
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measure 1/pb1,j

1 . . . p
br,j
r . Furthermore, under the action of NG(〈gj〉) on 〈gj〉, the

generators of 〈gj〉 fall into orbits of size pc1,j

1 . . . p
cr,j
r . As there are ϕ(pa1,j

1 . . . p
ar,j
r )

many generators of 〈gj〉, where ϕ denotes the Euler ϕ-function, the number of
conjugacy classes ∼-equivalent to Cij is

ϕ(pa1,j

1 . . . p
ar,j
r )

p
c1,j

1 . . . p
cr,j
r

.

Since each of these conjugacy classes has measure 1/pb1,j

1 . . . p
br,j
r , the measure of

Dj is
ϕ(pa1,j

1 . . . p
ar,j
r )

p
c1,j

1 . . . p
cr,j
r p

b1,j

1 . . . p
br,j
r

.

For k = 1, . . . , r and j = 1, . . . , s, put dk,j := bk,j + ck,j . Then, since the measure
of G—which is 1—is the sum of the measures of the Dj , we have

1 =
s∑
j=1

ϕ(pa1,j

1 . . . p
ar,j
r )

p
d1,j

1 . . . p
dr,j
r

.

For k = 1, . . . , r, let dk := max{dk,1, . . . , dk,s}. Clearing denominators, from the
last equation we obtain

pd11 . . . pdr
r = Σsj=1ϕ(pa1,j

1 . . . par,j
r )pd1−d1,j

1 . . . pdr−dr,j
r .

Since each p1, . . . , pr all are odd, the left-hand side above is odd. As each ϕ(pa1,j

1 . . . p
ar,j
r )

is even, the right-hand side is even, a contradiction that eliminates Case 1.
Case 2. Some pk is even.
In this case, G has an involution g. Let the conjugacy class of g be C1. For

each h ∈ C1, we have (gh)g = hg = (gh)−1. Hence, if S(g) := {x ∈ G : xg =
x−1 ∧ x 6= 1} then dim(S(g)) = dim(C1) = dim(G). Let k be the maximum size of
the centralizer of a non-identity element of G. Then the uniformly definable family
of sets {S(g) : g ∈ C1} is (k + 2)-inconsistent. Indeed, if x ∈ S(g1) ∩ . . . ∩ S(gk+2),
then the k + 1 distinct elements gigk+2, for i = 1, . . . , k + 1, all centralize x, which
is impossible. It follows that G must have D-rank at least dim(G) + 1, which is
impossible. �

Theorem 5.15. Let G be a measurable group of dimension 1. Then G has an
∅-definable finite-by-abelian normal subgroup N of finite index in G.

Note that we cannot here obtain ‘abelian-by-finite’ as a conclusion. For an odd
prime p, infinite extraspecial p-groups of exponent p are measurable of dimension 1
by Proposition 3.11 and Lemma 5.4, and are finite-by-abelian but not abelian-by-
finite.

Proof. As G has dimension 1, every infinite definable subgroup of G has finite
index in G. In particular, by Lemma 5.14, there is some g ∈ G \ {1} such that
CG(g) is infinite. As CG(g) has finite index, the conjugacy class of g is finite.

The finite conjugacy classes of G have bounded size, as otherwise a simple com-
pactness argument yields that G would have infinitely many infinite conjugacy
classes, and so would have S1-rank greater than 1. Consequently, the union of
the finite conjugacy classses of G forms a non-trivial definable normal subgroup
N of G. If N were finite, then it could be shown—see Proposition 5.10—that
G/N would be a measurable group of S1-rank 1 with no finite conjugacy classes,
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again contrary to Lemma 5.14 above. Hence N is infinite, and so |G : N | is finite.
Furthermore, N is a BFC group, that is, a group with conjugacy classes of finite
bounded size. By Theorem 3.1 of [29], we conclude that N ′ is finite, and finally
that G is finite-by-abelian-by-finite. �

Remark 5.16. Mark Ryten and Richard Elwes have extended the last result, and
shown that any rank 1 supersimple group which is unimodular (as defined before
Proposition 5.6) is finite-by-abelian-by-finite. The proof is similar.

Theorem 5.17. Let G be an ω-saturated infinite measurable group. Then G has
an infinite abelian subgroup.

We cannot here expect an infinite definable abelian subgroup – consider again
infinite extraspecial p-groups of exponent p.

Proof. Suppose the theorem is false. Let G be an infinite measurable group of
minimal dimension such that G has no infinite abelian subgroup. We may assume
additionally that G has finite exponent; for otherwise, by ω-saturation G has an
element g of infinite order, and CG(CG(g)) is an abelian subgroup of G which
contains 〈g〉, so is infinite. Furthermore, by the minimality hypothesis, every infinite
definable subgroup of G has finite index.

Let N := {g ∈ G : gG is finite}. As N is a definable subgroup, it is either finite
or of finite index. We claim that N 6= {1}. Indeed, by Lemma 5.14, there is some
g ∈ G \ {1} such that CG(g) is infinite. Then |G : CG(g)| is finite, and so g ∈ N .

Next, suppose that N is infinite. Since N is definable, |G : N | is finite, so,
replacing G by N if necessary, we may assume that N = G. Then |G : CG(g)| is
finite for all g ∈ G \ {1}. It is now easy to construct an infinite abelian subgroup of
G: choose a sequence (yi : i ∈ ω) from G, where yi ∈

⋂
j<i CG(yj) for each i, and

take the subgroup generated by {yi : i ∈ ω}. This again contradicts the hypothesis.
Finally, we consider the case that N is finite but non-trivial. If G contains an

infinite subgroup H > N such that H/N abelian, then it is easily checked that the
centralizer of every element of H has finite index in H. As in the last paragraph
it follows that H contains an infinite abelian subgroup, contrary to hypothesis.
Thus, invoking Proposition 5.10, we reduce to the situation that G/N is an infinite
measurable group of the same dimension as G, with no infinite abelian subgroups
and with all conjugacy classes infinite. This is impossible by the second paragraph,
above. The proof is now complete. �

The final result of the paper provides some evidence that every measurable field
may be pseudofinite.

Theorem 5.18. Let (F,+, .) be an infinite measurable field. Then:
i. F is quasifinite, that is, F has a unique extension of each finite degree;
ii. F is perfect;
iii. for every finite Galois extension K of F , the norm map NK/F : K∗ → F ∗

is surjective.

Proof. Suppose F is measurable, and so has finite S1-rank t. Assertions (ii)
and (iii) hold for any supersimple field of finite S1-rank: the statement (ii) is easy
and is proved in [30], and (iii) is the main theorem of [31].

Statement (i) is proved almost exactly as in Scanlon’s Theorem 6.1, given in the
Appendix below. In Theorem 6.1, it is assumed that the field admits a strong Euler
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characteristic rather than that it is measurable. Specifically, the assumption is that
there is a partially ordered ring R and a map χ : Def(F ) → R, from the collection
of definable subsets of the cartesian powers of F to the set of non-negative elements
of R, satisfying:

1. χ(X) = χ(Y ) if X,Y are in definable bijection;
2. χ(X × Y ) = χ(X)χ(Y );
3. χ(X ∪ Y ) = χ(X) + χ(Y ) if X ∩ Y = ∅;
4. if f : E → B is a definable surjection and c = χ(f−1(b)) for every b ∈ B,

then χ(E) = c · χ(B).

The Euler characteristic is nontrivial if 0 < 1 in R and the image of χ is not just
{0}.

Each of these conditions hold for measure except for the additivity condition
for disjoint unions, which is guaranteed to hold only if X and Y have the same
dimension.

Lemma 6.3 is unchanged in our context, and Lemma 6.4 is not needed. In the
proof of Lemma 6.5, from

Fn = In ∪
∐

{g:w̃(g)=n,g(n,1)=0}

Qg,

Scanlon obtains an expression for χ([In]). The latter depends on the additivity
property, so requires that In and all the Qg have the same dimension as Fn, namely
nt. For this, it suffices to show inductively for all m that Im has rank tm. If this
is assumed for all m < n, then, arguing as in the fourth paragraph in the proof
of Lemma 6.5, it follows for all g satisfying w̃(g) = n and g(n, 1) = 0 that Qg
has S1-rank tn. If the dimension of In were less than tn, the end of the proof of
Lemma 6.5 would yield 0 = 1

nχ([I])n +O(χ([I])n−1), which is impossible.
Lemma 6.6 also adapts to the context of measure. Note, though, that in the last

sentence, χ([S]) is equal to a summation over those s such that Es has the same
dimension as S – and this suffices for the argument. Our conclusion then follows
from Lemmas 6.5 and 6.6, in the context of measure. �

Remark 5.19. It seems likely that Scanlon’s argument in the Appendix can be
modified so that R is a semiring rather than a ring. In this case, in above proof
one could directly quote Scanlon’s result, rather than adjust his proof. Define
a semiring structure in the natural way on the pairs (d, µ). For addition, put
(d1, µ1)+(d2, µ2) = (d, µ), where d = Max {d1, d2}, and µ = µ1 +µ2 if d1 = d2, and
otherwise µ = µi if d = di. For multiplication, (d1, µ1)× (d2, µ2) = (d1 + d2, µ1µ2).
We have not checked this carefully.

6. Appendix due to Thomas Scanlon

This appendix contains the details of an assertion made in [26] to the effect that
fields admitting a nontrivial strong ordered Euler characteristic are quasifinite.

The main theorem of this appendix is the following. Both the result and its
presentation here are due to Scanlon.

Theorem 6.1. Any field admitting a nontrivial strong ordered Euler characteristic
is quasifinite.



ONE-DIMENSIONAL ASYMPTOTIC CLASSES OF FINITE STRUCTURES 35

As the conclusion of Theorem 6.1 holds for finite fields, we may restrict attention
to infinite fields. Throughout the rest of this note K denotes an infinite field given
together with a nontrivial strong ordered Euler characteristic χ : Def(K) → R.

Lemma 6.2. K is perfect.

Proof. If K has characteristic zero, then there is nothing to prove. So we may
assume that the characteristic of K is p > 0. The map x 7→ xp on K is a definable
bijection so χ([K]) = χ([Kp]). The inclusionKp ↪→ K shows that χ([Kp]) ≤ χ([K])
with equality only if K = Kp. Thus, K = Kp. That is, K is perfect as claimed. �

We now aim to show by a counting argument that for each positive integer n
there is a unique extension of K of degree n. We need a simple combinatorial
lemma.

Lemma 6.3. For a multi-index α ∈ Z+
ω define w(α) :=

∑∞
n=0 nαn. Then for any

natural number N we have
∑

{α:w(α)=N}
∏∞
n=1

1
nαn (αn!) = 1.

Proof.
∞∑
N=0

(
∑

{α:w(α)=N}

∞∏
n=1

1
nαn(αn!)

)XN =
∞∏
n=1

(
∞∑
m=0

1
nm(m!)

Xnm)

=
∞∏
n=1

exp(
Xn

n
)

= exp(
∞∑
n=1

1
n
Xn)

= exp(log(
1

1−X
))

=
1

1−X

=
∞∑
N=0

XN

Equating the coefficients of XN we obtain the statement of the lemma. �

Lemma 6.4. Let R′ := R ⊗ Q. There is a unique structure of a partially ordered
ring on R′ for which ν : R → R′ is morphism of partially ordered ring. Moreover,
R′ 6= 0.

Proof. The positive elements in R′ are exactly those of the form x⊗r with x > 0
in R and r > 0 in Q. The rest of the proof is routine. �

We let χ̃ := ν ◦ χ : Def(K) → R′.
We define In := {(a0, . . . , an−1) ∈ Kn : Xn +

∑n−1
i=0 aiX

i is irreducible over K}.

Lemma 6.5. For any positive integer n we have χ̃([In]) = 1
n χ̃([K])n+O(χ̃([K])n−1).

Proof. We prove the lemma by induction on n with the case of n = 1 being
trivial as I1 = K.

For each n-tuple a = (a0, . . . , an−1) ∈ Kn, let α(a) : Z+ → ω be defined by
α(a)m := the number of irreducible factors of Xn +

∑n−1
i=0 aiX

i of degree m. Let
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β(a) : Z2
+ → ω be defined by β(a)(m, r) := the number of irreducible factors of

Xn +
∑n−1
i=0 aiX

i of degree m appearing with multiplicity exactly r.
For a given function f : Z+ → ω with w(f) = n, let Pf := {a ∈ Kn : α(a) = f}.

Likewise, for a given g : Z2
+ → ω with w̃(g) :=

∑∞
m=1,r=1 r ·m · g(r,m) = n, let

Qg := {a ∈ Kn : β(a) = g}. We define u(g) :=
∑∞
m=1,r=1m · g(r,m).

Given g with w̃(g) = n, let ψg :
∏
m,r I

g(m,r)
m → Kn be the coefficient map

associated to the composition of multiplication of polynomials with exponentia-
tion of polynomials to the power r. Note that the image of ψg is Qg. More-
over, ψg is

∏
m,r g(m, r)!-to-one over it image. Therefore, (

∏
m,r g(m, r)!)χ̃([Qg]) =∏

m,r χ̃([Im])g(m,r) =
∏
m,r

1
mg(m,r) χ̃([K])u(g) +O(χ̃([K])u(g)−1.

We have Kn = In
·
∪
∐
{g:w̃(g)=n,g(n,1)=0}Qg. Thus,

χ̃([In]) = χ̃([K])n −
∑

{g:w̃(g)=n,g(n,1)=0}

(
∏
m,r

1
mg(m,r)(g(m, r)!)

)χ̃([K])u(g) +O(χ̃([K])n−1)

= (1−
∑

{f :w(f)=n,f(n)=0}

∏
m

1
mf(m)(f(m)!)

)χ̃([K])n +O(χ̃([K])n−1)

=
1
n
χ̃([K])n +O(χ̃([K])n−1)

as claimed. �

Lemma 6.6. Let L/K be an extension of degree n. Let S := {a ∈ Kn : Xn +∑n−1
i=0 aiX

i is the monic minimal polynomial of some b ∈ L}. Then χ̃([S]) ≥
1
n χ̃([K])n +O(χ̃([K])n−1).

Proof. Let B := {b ∈ L : K(c) 6= L}. As the extension L/K is finite and
separable, B =

⋃
K≤M<LM where the union runs over the finitely many proper

subfields of L containing K. Each of these is a finite dimensional vector space over
K of dimension strictly less than n. Thus, χ̃([L \B]) = χ̃([K])n +O(χ̃([K])n−1).

For each 1 ≤ s ≤ n let Es := {a ∈ L\B : a has exactly s conjugates in L overK}.
Let f : (L \ B) → Kn be defined by f(a) = (b0, . . . , bn−1) where Xn +

∑n−1
i=0 biX

i

is the monic minimal polynomial of a over K. Note that when restricted to Es, the
function f is s-to-one. Then S =

∐n
s=1 f(Es). Thus, χ̃([S]) =

∑n
s=1

1
s χ̃([Es]) ≥∑n

s=1
1
n χ̃([Es]) = 1

n χ̃([L \B]) = 1
n χ̃([K])n +O(χ̃([K])n−1) as claimed. �

Proof of Theorem 6.1. Combining the last two lemmata we see that there is a
unique (Galois!) field extension of each degree. �
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