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ABSTRACT

Given a group (G, ·), G ⊆Mm, definable in a first order structureM = (M, . . .) equipped with
a dimension function and a topology satisfying certain natural conditions, we find a large open
definable subset V ⊆ G and define a new topology τ on G with which (G, ·) becomes a topological
group. Moreover, τ restricted to V coincides with the topology of V inherited from Mm. Likewise
we topologize transitive group actions and fields definable in M. These results require a series of
preparatory facts concerning dimension functions, some of which might be of independent interest.

0 Introduction

A. Pillay in [Pi2] adapts Hrushovski’s unpublished proof of a special case of Weil’s ‘group chunk
theorem’ [W] to show that a group definable in an o-minimal structure can be definably equipped
with a topology making it a topological group and a definable manifold. The topology in question
on a large definable subset of the considered definable group coincides with the usual topology
induced by ordering of the structure. It follows that a field definable in an o-minimal structure
can be definably made into a topological field.

As observed by A. Mosley in [Mo], Pillay’s method works for groups and fields definable in
sufficiently saturated first order topological structures (introduced in [Pi1]) on which certain very
natural conditions have been imposed, like for example the exchange property of the algebraic
closure. Among those topological structures we have several important classes of models satisfying
various minimality conditions, namely: models of weakly o-minimal/C-minimal theories in which
acl has the exchange property as well as P -minimal structures. Both [Pi2] and [Mo] extensively
use the theory of generics.

This paper contains an alternative approach towards the problem of topologization of definable
algebraic objects. Instead of imposing the exchange property on acl, we consider topological
structures equipped with so called dimension function.

Such a context is related to that of [Mo] but does not coincide with it. For example, it is
easy too see that if M is a weakly o-minimal structure and for any N �M, acl has the exchange
property, then the usual topological dimension (dim) is a dimension function in the sense of [vdD1].
On the other hand, if dim is a dimension function in a weakly o-minimal structure M, then acl
has the exchange property in M (see [We06] for details).

The paper is organized as follows. In §1 we fix some notation and discuss the basic notions that
are used throughout the paper, like dimension functions and first order topological structures. In
§2 we consider the issue of covering a group G definable in a first order structure equipped with
a (weak) dimension function by a finite number of its translates. We give effective bounds on the
number of translates of a large definable subset of G needed to cover G.

Some of the preparatory results proved in §2 are used in §3–§5 to investigate groups, group
actions and fields definable in first order topological structures equipped with a dimension function.
The key idea comes from the following fact.

1Research supported by the Polish Government grants N201 018 32/0800 and N N201 545938.
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Fact 0.1 [Pi2, Remark 1.14] Assume that M = (M,≤, . . .) is a sufficiently saturated o-minimal
L-structure, ϕ(x, y) ∈ L, |x| = m, |y| = n, b ∈ Mn and X ⊆ Mm is a non-empty definable set.
The following conditions are equivalent.

(a) dim(X \ ϕ(M, b)) < dim(X);
(b) M |= ϕ(a, b) whenever a is a generic of X over b.

Fact 0.1 makes it possible to transform the relevant proofs from [Pi2] so that every statement
about a generic point satisfying certain property is replaced by its counterpart saying that the set
of points with the property in question is large. In this way, modulo some dimension calculations,
one obtains generics-free proofs of variants of Pillay’s topologization results. An advantage of these
modified proofs is that it is not necessary to work in a sufficiently saturated model.

1 Preliminaries

Let M be a first order structure whose underlying set is M . For m ∈ N+, by Defm(M) we will
denote the family of all subsets of Mm that are definable in M. We will also use the notation

Def(M) :=
⋃

m∈N+

Defm(M).

A function d : Def(M) −→ N ∪ {−∞} is said to be definable if for every i ∈ N ∪ {−∞} and
any sets X,Y, S ∈ Def(M), S ⊆ X × Y , each of the sets

{a ∈ X : d(Sa) = i}, {b ∈ Y : d(Sb) = i}

is definable over the parameters needed to define X,S and Y, S respectively.
Following [vdD1], we will say that d : Def(M) −→ N ∪ {−∞} is a dimension function on M

if the following conditions (A1)–(A6) are satisfied.

(A1) (∀m ∈ N+)(∀X ∈ Defm(M))(d(X) = −∞⇐⇒ X = ∅).

(A2) (∀a ∈M)(d({a}) = 0).

(A3) d(M) = 1.

(A4) (∀m ∈ N+)(∀X1, X2 ∈ Defm(M))(d(X1 ∪X2) = max{d(X1), d(X2)}).

(A5) (∀m ∈ N+)(∀σ ∈ Sm)(∀X ∈ Defm(M))(d(Xσ) = d(X)), where Xσ = {〈xσ(1), . . . , xσ(m)〉 ∈
Mm : 〈x1, . . . , xm〉 ∈ X}.

(A6) (∀m ∈ N+)(∀X ∈ Defm+1(M))(∀i ∈ {0, 1})(d({〈x, y〉 ∈ X : x ∈ X(i)}) = d(X(i)) + i),
where X(i) := {a ∈ Mm : d(Xa) = i} is definable for i = 0, 1 over parameters needed to
define X.

A function d : Def(M) −→ N ∪ {−∞} satisfying (A1)–(A5) will be called a weak dimension
function on M. As shown in [vdD1], a weak dimension function on M satisfies (A6) iff it is
definable and the following condition (called addition property) holds:

(∀m,n ∈ N+)(∀X ∈ Defm+n(M))(∀i ≤ m)(d({〈x, y〉 ∈ X : x ∈ X(i)}) = d(X(i)) + i).
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In particular this means that dimension functions are definable.
As in (A6) we care about parameters over which X(i) is definable, our definition of dimension

function slightly differs from that od L. van den Dries.
Assume that d : Def(M) −→ N∪ {−∞}, m ∈ N+ and X,Y ∈ Defm(M). We say that the set

X is d-large in Y if d(Y \ X) < d(Y ). It is easy to see that a weak dimension function d on M
satisfies (A6) iff for any m ∈ N+ and any X ∈ Defm+1(X), if π denotes the projection dropping
the last coordinate, then the set X(0) = {a ∈ π[X] : d(Xa) = 0} is definable over the parameters
needed to define X and d(X) = d(π[X]) iff X(0) is d-large in π[X].

Suppose now that d : Def(M) −→ N∪{−∞} is a dimension function. Then d is invariant under
injective definable maps and satisfies the product rule, meaning that whenever X,Y ∈ Def(M)
then d(X × Y ) = d(X) + d(Y ). If X,Y ∈ Def(M) and f : X −→ Y is a definable function, then
for every k ∈ N ∪ {−∞}, the set {a ∈ Y : d(f−1[a]) = k} is definable over the parameters needed
to define X,Y and

d(
⋃
{f−1[a] : a ∈ Y, d(f−1[a]) = k}) = k + d({a ∈ Y : d(f−1[a]) = k}).

In particular d(f [X]) ≤ d(X). One may also easily show that whenever n ≥ 2, X ∈ Defn(M) and
d(X) < n, then there is a projection π : Mn −→Mn−1 such that d(X) = d(π[X]).

We say that d : Def(M) −→ N ∪ {−∞} is monotone if for any X,Y ∈ Defm(M), X ⊆ Y
implies that d(X) ≤ d(Y ). Obviously, d satisfying (A4) is monotone.

The usual topological dimension in o-minimal structures is a dimension function (see [vdD2,
Chapter 4]). In case M is a weakly o-minimal structure, the usual topological dimension on M is
only a definable weak dimension function invariant under injective definable maps and satisfying
the product rule (see [MMS] and [We06]). Moreover, a set definable inM has dimension 0 iff it is
non-empty and finite.

Although in the weakly o-minimal context in general we cannot expect the topological dimen-
sion to have the addition property, two important weaker conditions (defined below) called weak
addition properties of the first and of the second kind are satisfied.

Definition 1.1 Assume that M is a first order structure, d : Def(M) −→ N∪{−∞} is definable
and f : N −→ N+.

(a) We say that d has the weak addition property of the first kind iff for any m,n ∈ N+, any
definable sets X ⊆Mm, Y ⊆Mn and S ⊆ X × Y , if {a ∈ X : Sa is d-large in Y } is d-large in X,
then S is d-large in X × Y .

(b) We say that d has the weak addition property of the second kind for a function f iff for any
m,n ∈ N+, any definable sets X ⊆Mm, Y ⊆Mn and S ⊆ X × Y , if S is d-large in X × Y , then
the set {〈a1, . . . , af(d(Y ))〉 ∈ Xf(d(Y )) : Sa1 ∪ . . . ∪ Saf(d(Y ))

is d-large in Y } is d-large in Xf(d(Y )).

It is not difficult to see that dimension functions have the weak addition property of the first
kind and the weak addition property of the second kind for any function f : N −→ N+. On the
other hand, if f, g : N −→ N+ are functions such that (∀n ∈ N)(f(n) ≤ g(n)), d is definable,
monotone and satisfies the product rule and the weak addition property of the second kind for f ,
then d has the weak addition property of the second kind for g.

It was demonstrated in [We06] that the usual topological dimension in weakly o-minimal struc-
tures has the weak addition property of the first kind and the weak addition property of the second
kind for the function f(n) = 2n. Moreover, the example at the end of §3 of [We06] shows that
there exists a weakly o-minimal structureM in which the topological dimension does not have the
weak addition property of the second kind for the identity function.
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In this paper we will investigate algebraic objects definable in first order structures equipped
with a topology. An important class of such structures was isolated by A. Pillay in [Pi1] and
investigated by L. Matthews in [Ma1] and [Ma2].

Definition 1.2 [Pi1] Assume that M = (M, . . .) is a first order L-structure and ϕ(x; y) ∈ L,
where |y| = n ∈ N+. Then M is said to be a first order topological structure with respect to ϕ if
the set {ϕ(M ; a) : a ∈Mn} is a basis of a topology on M .

Note that every weakly o-minimal structure is a first order topological structure with respect
to the formula ϕ(x; y1y2) = (y1 < x < y2).

If M = (M, . . .) is a first order topological structure with respect to some formula ϕ and τ
is the topology on M determined by ϕ, then we can define the product topology on all cartesian
powers of M . Clearly, if X ⊆Mn is a definable set, then the interior of X, the closure of X and the
boundary of X are definable over the parameters needed to define X. Suppose that additionally
d : Def(M) −→ N ∪ {−∞}. We will say that M has the continuity property with respect to d
and the topology determined by ϕ if for any set A ⊆M , A-definable non-empty sets X ⊆ Y ⊆Mn

satisfying d(X) = d(Y ) and any A-definable function f : Y −→ M , there exists an A-definable
set V ⊆ X, d-large in X and open in Y , such that the function f restricted to V is continuous.
Theorem 2.11 from [We06] shows that weakly o-minimal structures have the continuity property
with respect to the usual topological dimension and the topology determined by ordering.

LetM = (M, . . .) be a first order topological structure with respect to some formula ϕ. Denote
by τ the topology determined by ϕ. Following [Ma2] (see Definition 6.2), we say that a definable
set C ⊆ Mn is a cell if it is a singleton or for some m ∈ N+, m ≤ n, there exists a projection
π : Mn −→Mm such that π[C] is τ -open in Mm and π � C is a τ -homeomorphism. In particular,
τ -open definable sets in Mn for every n ∈ N+ are cells. It is not difficult to see that if τ is T2,
then every cell is a finite Boolean combination of open sets definable over the parameters needed
to define C. As in Definition 6.3 of [Ma2], we say that M has the cell decomposition property
(CDP) if for any A ⊆M , an A-definable set X ⊆Mn and any A-definable function f : X −→M ,
there exists a partition of X into A-definable cells X1, . . . , Xk such that f � Xi is continuous for
i = 1, . . . , k. For example, o-minimal structures, p-adically closed fields and (by [We07]) weakly
o-minimal non-valuational expansions of groups have the CDP. Note that if M has the CDP and
τ is T2, then every set definable in M is a finite Boolean combination of open sets.

Assume that M = (M, . . .) is a first order topological structure with respect to some formula
ϕ and d : Def(M) −→ N ∪ {−∞} is a dimension function. If non-empty open definable subsets
of M have d-dimension 1, then (using the addition property) we can easily show that non-empty
open definable subsets of Mn are of d-dimension n. If additionally M has the CDP, then for any
non-empty definable set X ⊂Mn and any k ∈ N+, d(X) ≥ k iff X contains a cell C which projects
onto an open subset of Mk. Consequently, d(X) ≥ k iff there is a projection π : Mn −→Mk such
that π[X] has non-empty interior.

2 Covering groups with translations of large sets

Suppose that M is a first order structure equipped with a (weak) dimension function d, G is a
group definable in M and V ⊆ G is a set definable in M which is d-large in G. The goal of this
section is to find effective bounds (depending on d(G) and d(G \ V )) on the number of translates
of V sufficient to cover G, under various assumptions on d andM. Throughout the section we will
refer to the conditions (A1)–(A6) defining the dimension function. Some results obtained here will
be used in sections 3–5. The following lemma is obvious.
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Lemma 2.1 Assume that M is a first order structure and d : Def(M) −→ N ∪ {−∞} is a
function invariant under injective definable maps. If (G, ·) is a group definable in M and V ⊆ G
is a definable set, d-large in G, then each of the sets g ·V · h and g ·V −1 · h is d-large in G for any
g, h ∈ G.

Lemma 2.2 Assume that M is a first order structure, d : Def(M) −→ N ∪ {−∞} is a function
satisfying the product rule and invariant under injective definable maps, (G, ·) is a group definable
in M and V,W are non-empty definable subsets of G. If d(G) = n, d(W ) = k and d(G \ V ) = l,
then

(a) each of the sets

S1 := {〈a, b〉 ∈ G×G : b ∈W \ (a · V )}, S2 := {〈a, b〉 ∈ G×G : b ∈W \ (V · a)}

has d-dimension equal to k + l;
(b) each of the sets

S′1 : =

(⋃
a∈G
{a} × (a · V )

)
∩ (G×W ) = {〈a, b〉 ∈ G×G : b ∈ (a · V ) ∩W},

S′2 : =

(⋃
a∈G
{a} × (V · a)

)
∩ (G×W ) = {〈a, b〉 ∈ G×G : b ∈ (V · a) ∩W}

has d-dimension equal to k + d(V );
(c) (under additional assumption that d satisfies (A4)) if V is d-large in G, then each of the

sets ⋃
a∈G
{a} × (a · V ),

⋃
a∈G
{a} × (V · a)

is d-large in G×W .

Proof. We will prove each part of the lemma for the first set only. Consider a definable bijection
f : G×G −→ G×G given by f(a, b) = 〈b, a−1 · b〉.

(a) As f [S1] = W × (G \ V ), by our assumptions we have that

d(S1) = d(f [S1]) = d(W ) + d(G \ V ) = k + l.

(b) Note that f [S′1] = W × V . Consequently,

d(S′1) = d(f [S′1]) = d(W ) + d(V ) = k + d(V ).

(c) Note that (G×W ) \ S′1 = S1. If V is d-large in G, then l < n. By (A4), d(V ) = n. Hence
d(S1) = k + l < k + n = k + d(V ) = d(S′1). This proves that the set

⋃
a∈G
{a} × (a · V ) is d-large in

G×W .

Lemma 2.3 Assume that M is a first order structure and d : Def(M) −→ N ∪ {−∞} is a
dimension function. If (G, ·) is a group definable in M and W,V ⊆ G are definable sets such that
W 6= ∅ and V is d-large in G, then each of the sets

{a ∈ G : a · V is d-large in W}, {a ∈ G : V · a is d-large in W}

is d-large in G.
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Proof. Let d(G) = n, d(W ) = k, and d(G \ V ) = l. Our assumptions guarantee that n ≥ k ≥ 0
and n > l. The case V = G is trivial, so let V 6= G (i.e. l ≥ 0). We will only show that the set
{a ∈ G : a · V is d-large in W} is d-large in G. Define

S = {〈a, b〉 ∈ G×G : b ∈W \ (a · V )}.

For a ∈ G and b ∈W we have

Sa := {b ∈ G : 〈a, b〉 ∈ S} = W \ (a · V );

Sb := {a ∈ G : 〈a, b〉 ∈ S} = G \ (b · V −1) = b · (G \ V )−1.

Note that for a ∈ G, a · V is not d-large in W iff d(Sa) = k. Also d(Sb) = d(G \ V ) = l < n.
Suppose for a contradiction that the set {a ∈ G : a · V is d-large in W} is not d-large in G.

Then
d({a ∈ G : a · V is not d-large in W}) = n,

which means that
d({a ∈ G : d(Sa) = k}) = n.

By monotonicity of d and the addition property we have that

d(S) ≥ d

 ⋃
{a∈G:d(Sa)=k}

{a} × Sa

 = d({a ∈ G : d(Sa) = k}) + k = n+ k.

On the other hand, Lemma 2.2(a) implies that d(S) = k + l < k + n, a contradiction.

Lemma 2.4 Assume that M is a first order structure and d : Def(M) −→ N ∪ {−∞} is a
dimension function. If (G, ·) is a group definable in M such that d(G) = n and V ( G is a
definable set, d-large in G, then some d(G \ V ) + 2 left (right) translates of V cover G.

Proof. We will only show that there are d(G \ V ) + 2 left translates of V covering G. Let
k = d(G \ V ). Using Lemma 2.3, we inductively find a0, . . . , ak+1 ∈ G such that

d(G \ (a0 · V ∪ . . . ∪ ai · V )) < k − i+ 1

whenever i ≤ k + 1. For i = k + 1 this means that G = a0 · V ∪ . . . ∪ ak+1 · V .

Corollary 2.5 Assume that M is a first order structure and d : Def(M) −→ N ∪ {−∞} is a
dimension function. If (G, ·) is a group definable in M such that d(G) = n and V ⊆ G is a
definable set, d-large in G, then some n+ 1 left (right) translates of V cover G.

Remark 2.6 Assume that M is a first order structure and d : Def(M) −→ N ∪ {−∞} is a
function satisfying (A1), (A4) and invariant under injective definable maps. Assume also that
(G, ·) is a group definable in M, W ⊆ G is a finite set and V ⊆ G is a definable set, d-large in G.
Then for some b ∈ G,

W ⊆ (b · V ) ∩ (V · b) ∩ (b · V −1) ∩ (V −1 · b).

Proof. The above inclusion holds for all b from
⋂
a∈W

[(a · V ) ∩ (V · a) ∩ (a · V −1) ∩ (V −1 · a)].
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Lemma 2.7 Assume that M is a first order structure, d : Def(M) −→ N ∪ {−∞} is definable
and invariant under injective definable maps, satisfies (A1), (A4), the product rule and the weak
addition property of the second kind for a function f : N −→ N+. If (G, ·) is a group definable
in M, V ⊆ G is a definable set, d-large in G, and W ⊆ G is a non-empty definable set with
d(W ) = k < d(G). Then

(a) each of the sets

{〈a1, . . . , af(k)〉 ∈ Gf(k) : a1 · V ∪ . . . ∪ af(k) · V is d-large in W},
{〈a1, . . . , af(k)〉 ∈ Gf(k) : V · a1 ∪ . . . ∪ V · af(k) is d-large in W}

is d-large in Gf(k).

(b) W can be covered with some
k∑
i=0

f(i) left (right) translates of V ;

(c) G can be covered with some 1 +
d(G\V )∑
i=0

f(i) left (right) translates of V (meaning that the

sum equals 0 in case V = G).

Proof. (a) Let W ⊆ G be a definable set of d-dimension k. By Lemma 2.2(c), the set S :=⋃
a∈G
{a} × (a · V ) is d-large in G ×W , so by assumption the first set is d-large in Gf(k). For the

second we reason in a similar way.
(b) We proceed inductively on d(W ). Suppose first that W ⊆ G is a definable set with

d(W ) = 0. By Lemma 2.2(c), the set S :=
⋃
a∈G
{a}× (a ·V ) is d-large in G×W , so by assumption,

there are a1, . . . , af(0) ∈ G such that Sa1 ∪ . . .∪ Saf(0)
= W . In other words, a1 · V ∪ . . .∪ af(0) · V

covers W . So the lemma holds for d(W ) = 0.
Assume now that W ⊆ G is a definable set with d(W ) = l + 1 < d(G) and suppose that the

Lemma holds for dimension l. Again, by Lemma 2.2(c), the set
⋃
a∈G
{a} × (a · V ) is d-large in

G×W . Our assumption guarantees that there are tuples a1, . . . , af(l+1) ∈ G such that the union
a1 ·V ∪ . . .∪af(l+1) ·V is d-large in W . By inductive hypothesis, the set W \(a1 ·V ∪ . . .∪af(l+1) ·V )

can be covered with some
l∑
i=0

f(i) left translates of V . Consequently, some
l+1∑
i=0

f(i) left translates

of V cover W . For right translates the proof is similar.
(c) is an immediate consequence of (a).

The above lemma and Theorem 3.6 from [We06] imply that if (G, ·) is a group definable in a
weakly o-minimal structure and V ( G is a definable set, large in G, then V is generic. More
precisely, G can be covered with some 2dim(G\V )+1 left (right) translates of V .

The following lemma strengthens Lemma 2.7.

Lemma 2.8 Assume that M is a first order structure and d : Def(M) −→ N ∪ {−∞} is a
definable function invariant under injective definable maps and satisfying (A1), (A4), the product
rule, the weak addition property of the first kind and the weak addition property of the second kind
for a function f . Assume also that (G, ·) is a group definable in M and V,W are definable subsets
of G, V is d-large in G and d(G) > d(W ) = k ≥ 0. For m ∈ N+ define

Lm = {〈a1, . . . , am〉 ∈ Gm : W ⊆ a1 · V ∪ . . . ∪ am · V };
Rm = {〈a1, . . . , am〉 ∈ Gm : W ⊆ V · a1 ∪ . . . ∪ V · am}.
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(a) For every m ≥
k∑
i=0

f(i), the sets Lm and Rm are d-large in Gm.

(b) If d satisfies the addition property, then for every m ≥ k + 1, the sets Lm and Rm are
d-large in Gm.

Proof. For l ∈ {0, . . . , k}, let g(l) =
l∑

s=0
f(k − s). We will inductively show that for l = 0, . . . , k,

the set
Xl := {〈a1, . . . , ag(l)〉 ∈ Gg(l) : d(W \ (a1 · V ∪ . . . ∪ ag(l) · V )) < k − l}

is d-large in Gg(l). Note that for l = 0 the claim holds by Lemma 2.7(a). So let 0 ≤ l < k and
suppose that the set Xl is d-large in Gg(l). Again, by Lemma 2.7(a), for every 〈a1, . . . , ag(l)〉 ∈ Xl,

the set of all tuples 〈b1, . . . , bf(k−l−1)〉 ∈ Gf(k−l−1) for which

d(W \ (a1 · V ∪ . . . ∪ ag(l) · V ∪ b1 · V ∪ . . . ∪ bf(k−l−1) · V )) < k − l − 1

is d-large in Gf(k−l−1). Hence, by the weak addition property of the first kind, the set of all tuples
〈a1, . . . , ag(l+1)〉 ∈ Gg(l+1) for which d(W \ (a1 ·V ∪ . . .∪ag(l+1) ·V ) < k− l−1 is d-large in Gg(l+1).

This shows that Lf(0)+...+f(k) is d-large in Gf(0)+...+f(k). By the weak addition property of the

first kind (or just by the product rule), the set Lm is d-large in Gm whenever m ≥
k∑
i=0

f(i). In a

similar manner we prove that Rm is d-large in Gm for m ≥
k∑
i=0

f(i).

If the function d satisfies the addition property, then it satisfies the weak addition property for
the function f identically equal to 1. From this (b) follows.

Corollary 2.9 Assume that M is a first order structure and d : Def(M) −→ N ∪ {−∞} is a
definable function invariant under injective definable maps and satisfying (A1), (A4), the product
rule, the weak addition property of the first kind and the weak addition property of the second kind
for a function f . Assume also that (G, ·) is a group definable in M and V ⊆ G is a definable set,
d-large in G. For m ∈ N+ define

Lm = {〈a1, . . . , am〉 ∈ Gm : a1 · V ∪ . . . ∪ am · V = G};
Rm = {〈a1, . . . , am〉 ∈ Gm : V · a1 ∪ . . . ∪ V · am = G}.

For every m ≥ 1 +
∑

0≤i≤d(G\V )

f(i), the sets Lm and Rm are d-large in Gm. In particular, if d

is a dimension function, then for every m ≥ max(1, d(G \V ) + 2), the sets Lm and Rm are d-large
in Gm.

Theorem 2.10 Assume that M = (M, . . .) is a first order L-structure which is (|L| + |A|)+-
saturated for some A ⊆M and d : Def(M) −→ N∪{−∞} is a definable function invariant under
injective definable maps and satisfying (A1), (A4), the product rule, the weak addition property
of the first kind and the weak addition property of the second kind for a function f . Assume also
that (G, ·) is a group definable in M over A and X ⊆ G is an A-type-definable set such that all
A-definable sets V ⊆ G containing X are d-large in G.

(a) G can be covered with some 1 +
∑

i<d(G)

f(i) left (right) translates of X.

(b) If d has the addition property in M, then G can be covered with d(G) + 1 left (right)
translates of X.
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Proof. We will prove part (a) only for left translates. Let k = 1+
∑

i<d(G)

f(i). For every A-definable

set V ⊆ G containing X let H(V ) be the following A-definable set:

H(V ) := {〈a1, . . . , ak〉 ∈ Gk : a1 · V ∪ . . . ∪ ak · V = G}.

By Lemma 2.8, all sets H(V ) are d-large in Gk. By (|L|+ |A|)+-saturatedness of M, the set

H :=
⋂
{H(V ) : X ⊆ V ⊆ G and V is A-definable}

is non-empty. Fix 〈a1, . . . , ak〉 ∈ H. It is clear that a1 · V ∪ . . .∪ ak · V = G whenever V ⊆ G is an
A-definable set containing X. We claim that a1 ·X ∪ . . .∪ ak ·X = G. Suppose for a contradiction
that there exists a ∈ G \ (a1 ·X ∪ . . . ∪ ak ·X). This means that a 6∈ ai ·X for i = 1, . . . , k. So
there are A-definable sets V1, . . . , Vk such that X ⊆ Vi ⊆ G for i = 1, . . . , k and a 6∈ ai · Vi. Let
V = V1 ∩ . . . ∩ Vk. Clearly, V is A-definable, X ⊆ V ⊆ G, and a 6∈ a1 · V ∪ . . . ∪ ak · V . This
contradicts our choice of 〈a1, . . . , ak〉.

(b) is an immediate consequence of (a).

3 Topologization of definable groups

Lemma 3.1 Assume that M = (M, . . .) is a first order structure and d : Def(M) −→ N∪{−∞}
a function invariant under injective definable maps satisfying (A1) and (A4). If (G, ·) is a group
definable in M and V ⊆ G is a definable set, d-large in G, then

(∀g ∈ G)(∃g1, g2 ∈ V )(g = g1 · g2).

Proof. Let g ∈ G. By Lemma 2.1, the set g ·V −1 is d-large in G. (A4) implies that the intersection
V ∩ g · V −1 is also d-large in G and has d-dimension equal to d(G). By (A1), V ∩ g · V −1 6= ∅. So
take an arbitrary g1 ∈ V ∩ g · V −1. Then g1 = g · g−12 for some g2 ∈ V . Hence g1 · g2 = g.

The proof of Lemma 3.1 in fact shows that for any g ∈ G, the set {x ∈ V : x−1 · g ∈ V } is
d-large in G. Similarly one can show that the set {x ∈ V : g · x−1 ∈ V } is d-large in G.

Lemma 3.2 Assume that M = (M, . . .) is a first order structure and d : Def(M) −→ N∪{−∞}
a function invariant under injective definable maps satisfying (A1) and the product rule. If G is a
group definable in M, and V ⊆ G is a definable set, d-large in G, then

d({〈a, b〉 ∈ G×G : a · b 6∈ V }) = d(G) + d(G \ V ).

In particular, the set {〈a, b〉 ∈ G×G : a · b ∈ V } is d-large in G×G.

Proof. The lemma is obvious when V = G. So assume that V 6= G and let X = {〈a, b〉 ∈ G×G :
a · b 6∈ V }. Note that the function f : X −→ G× (G \ V ) given by f(a, b) = 〈a, a · b〉 is a definable
bijection. Therefore our assumptions about d imply that

d(X) = d(G× (G \ V )) = d(G) + d(G \ V ) < d(G) + d(G) = d(G×G).
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Lemma 3.3 Assume that M = (M, . . .) is a first order structure and d : Def(M) −→ N∪{−∞}
is a dimension function. If G is a group definable in M, V ⊆ G is a definable set, d-large in G
and Y ⊆ G×G is a definable set, d-large in G×G, then the sets

W1 := {a ∈ V : {b ∈ G : 〈b, a〉 ∈ Y } is d-large in G};

W2 := {a ∈ V : {b ∈ G : 〈b−1, b · a〉 ∈ Y } is d-large in G}.

are both d-large in G.

Proof. Suppose for a contradiction that W1 is not d-large in G. Then d(V \W1) = d(G). For
a ∈ V \W1, d({b ∈ G : 〈b, a〉 6∈ Y }) = d(G). Since

(G×G) \ Y =
⋃
a∈G

(
{b ∈ G : 〈b, a〉 6∈ Y } × {a}

)
⊇

⋃
a∈V \W1

(
{b ∈ G : 〈b, a〉 6∈ Y } × {a}

)
,

we get d((G×G) \ Y ) = d(G×G). This means that Y is not d-large in G×G, a contradiction.
To prove that W2 is d-large in G, suppose for a contradiction that d(G \W2) = d(G). Then

also d(V \W2) = d(G). Observe that

V \W2 = {a ∈ V : {b ∈ G : 〈b−1, b · a〉 ∈ Y } is not d-large in G} =

= {a ∈ G : d({b ∈ G : 〈b−1, b · a〉 6∈ Y }) = d(G)}

Denote the group operation by f (i.e. f(a, b) = a · b for a, b ∈ G). Since for every a ∈ G, the map

x 7→ 〈x−1, x · a〉 is a definable bijection between {b ∈ G : 〈b−1, b · a 6∈ Y 〉} and f−1(a) \ Y , we get

V \W2 = {a ∈ V : d(f−1(a) \ Y ) = d(G)}.

Now,

(G×G) \ Y =
⋃
a∈G

(f−1(a) \ Y ) ⊇
⋃

a∈V \W2

(f−1(a) \ Y ).

Consequently,

d(G×G) ≥ d((G×G) \ Y ) ≥ d(V \W2) + d(G) = 2d(G) = d(G×G),

which contradicts the fact that Y is d-large in G×G.

It is interesting to note that the above lemma has a variant in case d is a weak dimension
function invariant under definable injections and satisfying the product rule together with the
weak addition property of the second kind for some function h.

Lemma 3.4 Assume that M = (M, . . .) is a first order structure and d : Def(M) −→ N∪{−∞}
is a definable weak dimension function invariant under injective definable maps and satisfying the
product rule and the weak addition property of the second kind for a function h : N −→ N. Assume
also that G is a group definable in M, V ⊆ G is a definable set, d-large in G and Y ⊆ G×G is a
definable set, d-large in G×G.

(a) The set

W1 := {〈a1, . . . , ah(d(G))〉 ∈ V h(d(G)) :

h(d(G))⋃
i=1

{b ∈ G : 〈b, a〉 ∈ Y } is d-large in G}
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is d-large in Gh(d(G)).
(b) The set

W2 := {〈a1, . . . , ah(d(G))〉 ∈ V h(d(G)) :

h(d(G))⋃
i=1

{b ∈ G : 〈b−1, b · a〉 ∈ Y } is d-large in G}

is d-large in Gh(d(G)).

Proof. (a) The set Y is d-large in G×G, so the set

W ′1 = {〈a1, . . . , ah(d(G))〉 ∈ Gh(d(G)) :

h(d(G))⋃
i=1

Y ai is d-large in G}

is d-large in Gh(d(G)). As W1 = W ′1 ∩ V h(d(G)), the set W1 is also d-large in Gh(d(G)).

(b) Denote by g the bijection from G×G onto itself defined by the formula: g(a, b) = 〈b−1, b ·a〉.
The set Y is d-large in G×G, so the set

W ′2 := {〈a1, . . . , ah(d(G))〉 ∈ Gh(d(G)) :

h(d(G))⋃
i=1

g−1[Y ]ai}

is d-large in Gh(d(G)). As W2 = W ′2 ∩ V h(d(G)), the set W2 is also d-large in Gh(d(G)).

Theorem 3.5 Assume that M is a first order topological structure with respect to some formula
ϕ(x; y), d : Def(M) −→ N ∪ {−∞} is a dimension function and M has the continuity property
with respect to d and the topology determined by ϕ. Assume also that (G, ·) is a group definable
over some A ⊆M in M with G ⊆Mm and d(G) = n. Then there exist an A-definable set V ⊆ G
and a topology τ on G such that

(a) (G, ·) with the topology τ is a topological group;
(b) V is d-large in G and τ -open in G;
(c) the topology τ restricted to V coincides with the product topology induced from Mm;
(d) some n+ 1 left (right) translates of V cover G.

Proof. Let (G, ·) be a group definable inM over A with G ⊆Mm and d(G) = n. By assumption,
there is an A-definable set V0 ⊆ G which is open in G (with respect to the topology determined by
ϕ), d-large in G and such that the inversion map restricted to V0 is continuous. The set V0 ∩ V −10

is A-definable and d-large in G, so again, there is an A-definable set V1 ⊆ V0 ∩ V −10 such that V1
is d-large in G and open in G. Note that the inversion restricted to V1 is a continuous map from
V1 into V0. Denote the group operation · by f (i.e. f(a, b) = a · b whenever a, b ∈ G). By Lemma
3.2, the set f−1[V0] is d-large in G × G. Hence also (V0 × V0) ∩ f−1[V0] is d-large in G × G. As
previously, there is an A-definable set Y0 ⊆ (V0 × V0) ∩ f−1[V0] such that Y0 is open in G × G,
d-large in G×G, and f � Y0 is continuous. Now define:

W1 = {a ∈ V1 : {b ∈ G : 〈b, a〉 ∈ Y0} is d-large in G};

W2 = {a ∈ V1 : {b ∈ G : 〈b−1, b · a〉 ∈ Y0} is d-large in G}.

The sets W1 and W2 are both definable over A and (by Lemma 3.3) d-large in G.
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The set V ′1 := W1 ∩W2 is A-definable and d-large in G. Again, one can find an A-definable set
V2 ⊆ V ′1 such that V2 is open in G and d-large in G. The set V −12 is A-definable, open in G and
d-large in G. Hence the set V := V2 ∩ V −12 is A-definable, open in G and d-large in G. Moreover,
V = V −1. Similarly V × V is A-definable, open in G×G and d-large in G×G. Let

Y = (V × V ) ∩ {〈x, y〉 ∈ Y0 : x · y ∈ V } = (V × V ) ∩ Y0 ∩ f−1[V ].

The set Y is A-definable, open in G × G and d-large in G × G. We know that for every a ∈ V ,
each of the sets:

{b ∈ G : 〈b, a〉 ∈ Y0}, {b ∈ G : 〈b−1, b · a〉 ∈ Y0}

is d-large in G. Since for a ∈ V we have:

{b ∈ G : 〈b, a〉 ∈ Y } = V ∩ V a−1 ∩ {b ∈ G : 〈b, a〉 ∈ Y0} and

{b ∈ G : 〈b−1, b · a〉 ∈ Y } = V ∩ V a−1 ∩ {b ∈ G : 〈b−1, b · a〉 ∈ Y0},

also each of the sets
{b ∈ G : 〈b, a〉 ∈ Y }, {b ∈ G : 〈b−1, b · a〉 ∈ Y }

is d-large in G whenever a ∈ V . Summing up, our reasoning shows that:
(a) the set V is A-definable, open in G and d-large in G;
(b) inversion is a continuous map from V onto V ;
(c) the set Y ⊆ V × V is A-definable, open in G × G and d-large in G × G; moreover, the

function f � Y is continuous and assumes values in V ;

(d) for every a ∈ V , the sets {b ∈ G : 〈b, a〉 ∈ Y }, {b ∈ G : 〈b−1, b · a〉 ∈ Y } are d-large in G;
hence, for any a ∈ V and a′ ∈ G, the set {b ∈ G : 〈b · a′, a〉 ∈ Y } is d-large in G;

(e) (by Corollary 2.9) there are a0, . . . , an ∈ G such that

a0 · V ∪ . . . ∪ an · V = V · a0 ∪ . . . ∪ V · an = G.

Claim 1. For any a, b ∈ G, the set

Z(a, b) := {x ∈ V : a · x · b ∈ V }

is open in V (and in G) and the map x 7−→ a · x · b is a homeomorphism (in V ) from Z(a, b) onto
a · Z(a, b) · b.

Proof of Claim 1. Let a, b ∈ G. We will show that for every x0 ∈ Z(a, b), there exists a subset
of Z(a, b) containing x0 which is open in V and on which the map x 7−→ a · x · b is continuous.
This is sufficient.

Fix x0 ∈ Z(a, b). By Lemma 3.1, b = b1 · b2 for some b1, b2 ∈ V . (d) implies that the set

Z0 := {c ∈ V : 〈c · a, x0〉 ∈ Y, 〈c · a · x0, b1〉 ∈ Y, 〈c · a · x0 · b1, b2〉 ∈ Y, 〈c−1, c · a · x0 · b〉 ∈ Y }

is d-large in G. In particular Z0 6= ∅. Fix c ∈ Z0 and let

Z1 := {x ∈ V : 〈c · a, x〉 ∈ Y, 〈c · a · x, b1〉 ∈ Y, 〈c · a · x · b1, b2〉 ∈ Y, 〈c−1, c · a · x · b〉 ∈ Y }.
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Clearly, x0 ∈ Z1 ⊆ Z(a, b). Note that

Z1 =
(
f−1[Y b1 ] ∩ Y

)
c·a
∩
(
f−1[(f−1[Y b2 ] ∩ Y )b1 ] ∩ Y

)
c·a
∩(

f−1[(f−1[(f−1[Yc−1 ] ∩ Y )b2 ] ∩ Y )b1 ] ∩ Y
)
c·a
.

Hence Z1 is open in V . The function x 7−→ a · x · b restricted to Z1 is a continuous map from Z1

to V , because it is a composition of the continuous maps:

x 7−→ 〈c · a, x〉 7−→ c · a · x 7−→ 〈c · a · x, b1〉 7−→ c · a · x · b1 7−→
〈c · a · x · b1, b2〉 7−→ c · a · x · b 7−→ 〈c−1, c · a · x · b〉 7−→ a · x · b.

This finishes the proof of Claim 1.

Claim 2. For any a, b ∈ G, the set

Z ′(a, b) := {〈x, y〉 ∈ V × V : a · x · b · y ∈ V }

is open in V × V and the function 〈x, y〉 7−→ a · x · b · y is a continuous map from Z ′(a, b) to V .

Proof of Claim 2. Let a, b ∈ G. We will show that for every 〈x0, y0〉 ∈ Z ′(a, b), there exists a
subset of Z ′(a, b) containing 〈x0, y0〉 which is open in V ×V and on which the map 〈x, y〉 7−→ a·x·b·y
is continuous. This is sufficient.

Fix 〈x0, y0〉 ∈ Z ′(a, b). By Lemma 3.1, b = b1 · b2 for some b1, b2 ∈ V . As in the proof of Claim
1, the set

Z ′0 := {c ∈ V : 〈c · a, x0〉 ∈ Y, 〈c · a · x0, b1〉 ∈ Y,
〈c · a · x0 · b1, b2〉 ∈ Y, 〈c · a · x0 · b, y0〉 ∈ Y, 〈c−1, c · a · x0 · b · y0〉 ∈ Y }

is d-large in G. In particular Z ′0 6= ∅. Fix c ∈ Z ′0 and let

Z ′1 := {〈x, y〉 ∈ V × V : 〈c · a, x〉 ∈ Y, 〈c · a · x, b1〉 ∈ Y,
〈c · a · x · b1, b2〉 ∈ Y, 〈c · a · x · b, y〉 ∈ Y, 〈c−1, c · a · x · b · y〉 ∈ Y }.

Note that like in Claim 1, 〈x0, y0〉 ∈ Z ′1 ⊆ Z ′(a, b), Z ′1 is open in V × V and the function
〈x, y〉 7−→ a · x · b · y restricted to Z ′1 is a continuous map from Z ′1 to V . This finishes the proof of
Claim 2.

Now, define the topology τ on G: Z ⊆ G is τ -open iff for any g ∈ G, (g · Z) ∩ V is open
in V . Clearly, if Z ⊆ V is definable in M, then Z is open in G iff Z is τ -open. The product
G×G is naturally equipped with the product τ -topology, and it is easy to see that a definable set
Z ⊆ G×G is τ -open iff for any g1, g2 ∈ G, (〈g1, g2〉 · Z) ∩ (V × V ) is open in V × V .

Claim 3. Inversion is a τ -homeomorphism on G.

Proof of Claim 3. Let W ⊆ G be a τ -open set. We will be done if we prove that W−1 is τ -open.
Since

W−1 = (W ∩ (a0 · V ∪ . . . ∪ an · V ))−1 =
⋃
i≤n

(W ∩ (ai · V ))−1,
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it is enough to show that (W ∩(a ·V ))−1 is τ -open whenever a ∈ G. Let a ∈ G and Z = W ∩(a ·V ).
The set W is τ -open, so (a−1 ·W ) ∩ V = a−1 · Z is open in V . By (b), (a−1 · Z)−1 = Z−1 · a is
open in V . By Claim 1, if g ∈ G, then (g · (Z−1 · a) · a−1) ∩ V = (g · Z−1) ∩ V is open in V . So
Z−1 is τ -open.

Claim 4. The group operation · is τ -continuous on G.

Proof of Claim 4. Let W ⊆ G be a τ -open set. We must prove that the set f−1[W ] is τ -open
in G×G. Since

f−1[W ] = f−1[W ∩ (a0 · V ∪ . . . ∪ an · V )] =
⋃
i≤n

f−1[W ∩ (ai · V )],

it is enough to show that f−1[W ∩ (a · V )] is τ -open whenever a ∈ G.
Fix a ∈ G. The set W is τ -open, so (a−1 ·W )∩V is open in V . By Claim 2, if g1, g2 ∈ G, then

the set
Z := {〈x, y〉 ∈ V × V : a−1 · g−11 · x · g

−1
2 · y ∈ V 〉}

is open in V × V and the map Fg1,g2 : Z −→ V defined by

Fg1,g2(x, y) = a−1 · g−11 · x · g
−1
2 · y

is continuous. Hence F−1g1,g2
[(a−1 ·W ) ∩ V ] is open in Z, so in V × V . Note that

F−1g1,g2
[(a−1 ·W ) ∩ V ] = {〈x, y〉 ∈ V × V : a−1 · g−11 · x · g

−1
2 · y ∈ (a−1 ·W ) ∩ V } =

{〈g1 · x, g2 · y〉 ∈ V × V : x · y ∈W ∩ (a · V )} =

(〈g1, g2〉 · f−1[W ∩ (a · V )]) ∩ (V × V )

whenever g1, g2 ∈ G. Thus f−1[W ∩ (a · V )] is τ -open.

Modifying accordingly the proof of Theorem 3.5, we obtain the following variant of the above
result.

Theorem 3.6 Assume that M is a first order topological structure with respect to some formula
φ and d : Def(M) −→ N ∪ {−∞} is a dimension function. Assume also that M has the cell
decomposition property and the continuity property with respect to d and the topology determined
by ϕ. If (G, ·) is a group definable in M over A with G ⊆ Mm and d(G) = n, then there are an
A-definable set V ⊆ G and a topology τ on G such that

(a) (G, ·) with the topology τ is a topological group;
(b) V is d-large in G and open in G;
(c) if n ≥ 1, then V is a union of finitely many τ -open A-definable pairwise disjoint sets which

are A-definably homeomorphic with A-definable open subsets of Mn;
(d) the topology τ restricted to V coincides with the topology of V induced from Mm;
(e) some n+ 1 translates of V cover G.

Under assumptions of Theorem 3.6, using the properties of the topology τ and the fact that
finitely many translates of V cover G, one can easily show that every definable subset of G is a
finite Boolean combination of τ -open definable subsets of G (or equivalently, a union of finitely
many locally τ -closed sets). Consequently using §2 of [Pi1], as in §2 [Pi2], one can show that any
definable subgroup of G is τ -closed.
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It is quite clear that if G is a group definable in a first order structureM equipped with a weak
dimension function d invariant under injective definable maps and H is a definable subgroup of G
with [G : H] finite, then d(H) = d(G). Note that this implication in general cannot be reversed, a
counterexample being a real closed field with a nontrivial valuation.

Groups definable in o-minimal structures satisfy the DCC on definable subgroups. This prop-
erty in general is not satisfied by groups definable in weakly o-minimal structures as illustrated by
the following example. Denote byM0 = (Q,≤,+) the ordered group of rationals and let for i < ω,
Mi+1 be a proper elementary extension of Mi in which the type {0 < x < a : a ∈ Mi, a > 0} is
realized. Denote by M = (M,≤,+) the direct limit of the elementary chain M0 ≺M1 ≺ . . . and
let

Pi = {x ∈M : (∀y ∈Mi \ {0})(|x| < |y|)}.
As previously, the structure N := (M,≤,+, (Pi)i<ω) has a weakly o-minimal theory and

(P0,+) > (P1,+) > (P2,+), . . .

is a descending chain of groups definable in N .

4 Definable group actions

Suppose thatM = (M, . . .) is a first order structure, (G, ·) is a group definable inM [over A ⊆M ]
and X ⊆ Mr is a non-empty set definable in M [over A]. A map ∗ : G × X −→ X definable in
M [over A] is called a definable group action [a group action definable over A] iff eG ∗ a = a and
g ∗ (h ∗ a) = (g · h) ∗ a for any g, h ∈ G and a ∈ X. If ∗ is a group action of (G, ·) on X, then
in a natural way the group G × G acts on G ×X, and this action will also be denoted by ∗, i.e.
〈g1, g2〉 ∗ 〈g, a〉 = 〈g1 · g, g2 ∗ a〉.

Lemma 4.1 Assume thatM is a first order structure and d : Def(M) −→ N∪{−∞} is a function
invariant under injective definable maps. Assume also that ∗ is a transitive definable group action
of a group (G, ·) on a set X. If a, b ∈ X, then

d(Ga) = d(Gb) = d({g ∈ G : g ∗ a = b}) = d({g ∈ G : g−1 ∗ a = b}).

Proof. If a, b ∈ X, h ∈ G and h ∗ a = b, then Gb = h ·Ga · h
−1

, {g ∈ G : g ∗ a = b} = h ·Ga and

{g ∈ G : g−1 ∗ a = b} = Ga · h
−1

. The equality of all d-dimensions is a consequence of invariance
of d under injective definable maps.

Lemma 4.2 Assume that M is a first order structure and d : Def(M) −→ N ∪ {−∞} is a
dimension function. Assume that ∗ is a transitive definable group action of a group (G, ·) on a set
X definable in M. If a ∈ X, then

d(G) = d(X) + d(Ga).

Proof. Fix a ∈ X and define a surjection f : G −→ X by setting f(g) = g ∗ a. By Lemma 4.1,
d(f−1(b)) = d(Ga) whenever b ∈ X. Since G =

⋃
b∈X

f−1(b), by our assumption we are done.

Lemma 4.3 Assume that M is a first order structure and d : Def(M) −→ N ∪ {−∞} is a
dimension function. Assume also that ∗ is a transitive definable group action of a group (G, ·) on
a set X definable in M, U,W ⊆ X are definable sets, W 6= ∅, and U is d-large in X. Then the
set {g ∈ G : g ∗ U is d-large in W} is d-large in G.
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Proof. Denote the d-dimensions of the sets G,X,W,X \ U by n, s, k and l respectively. The case
U = X being trivial, let U 6= X. Our assumptions guarantee that n ≥ s > l ≥ 0 and s ≥ k ≥ 0.
Consider the following set S:

S = {〈g, a〉 ∈ G×X : a ∈W \ (g ∗ U)}.

For a ∈W let fa : G −→ X be the map given by fa(g) = g−1 ∗ a. If a ∈W and g ∈ G, then

Sg := {a ∈ X : 〈g, a〉 ∈ S} = W \ (g ∗ U);

Sa := {g ∈ G : 〈g, a〉 ∈ S} = f−1a [X \ U ].

Note that for g ∈ G, the set g ∗ U is not d-large in W iff d(Sg) = k. Moreover, if a, b ∈ X, h ∈ G
and h ∗ a = b, then f−1a (b) = Ga · h

−1
and d(f−1a (b)) = d(Ga). Consequently, by addition property

of d and Lemma 4.2,

d(Sa) = d

 ⋃
b∈X\U

fa−1(b)

 = d(X \ U) + d(Ga) = d(X \ U) + d(G)− d(X) = l + n− s

whenever a ∈W. This implies that d(S) = d(W ) + l + n− s = k + l + n− s < k + n.
Suppose for a contradiction that the set {g ∈ G : g ∗ U is d-large in W} is not d-large in G.

Then d({g ∈ G : d(Sg) = k}) = n. The addition property together with (A4) imply that

d(S) ≥ d

 ⋃
{g∈G:d(Sg)=k}

{g} × Sg

 = d({g ∈ G : d(Sg) = k}) + k = n+ k,

which contradicts our previous calculations.

Lemma 4.4 Assume that M is a first order structure and d : Def(M) −→ N ∪ {−∞} is a
dimension function. Assume also that ∗ is a transitive definable group action of a group (G, ·) on
a set X definable in M and U ⊆ X is a definable set, d-large in X. Then there are g0, . . . , gs ∈ G
such that X = (g0 ∗ U) ∪ . . . ∪ (gs ∗ U), where s = d(X).

Proof. Using Lemma 4.3, we inductively find g0, . . . , gs ∈ G such that for every i ≤ s,

d(X \ ((g0 ∗ U) ∪ . . . ∪ (gi ∗ U))) < s− i.

For i = s this means that X = (g0 ∗ U) ∪ . . . ∪ (gs ∗ U).

Lemma 4.5 Assume that M is a first order structure and d : Def(M) −→ N ∪ {−∞} is a
dimension function. Assume also that ∗ is a transitive definable group action of a group (G, ·) on
a set X definable in M, V ⊆ G and U ⊆ X are definable sets, V is d-large in G, U is d-large in
X. Then for every b ∈ X, the set Y := {〈g, a〉 ∈ V ×U : g ∗ a = b} has d-dimension equal to d(G).

Proof. Fix b ∈ X. By Lemma 4.3, the set Z := {g ∈ G : b ∈ g ∗ U} is d-large in G, so its
intersection with V is also d-large in G. Note that

Y = {〈g, g−1 ∗ b〉 ∈ G×X : g ∈ Z ∩ V }.

Our assumptions guarantee that d is invariant under injective definable maps, so d(Y ) = d(Z∩V ) =
d(G).
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Theorem 4.6 Assume that M is a first order topological structure with respect to some formula
ϕ(x; y), d : Def(M) −→ N ∪ {−∞} is a dimension function and M has the continuity property
with respect to d and the topology determined by ϕ. Assume also that A ⊆M and ∗ : G×X −→ X
is a transitive A-definable group action of an A-definable group (G, ·) on an A-definable set X in
M. There are A-definable sets V ⊆ G and U ⊆ X, and topologies τ1, τ2, τ on G, X and G × X
respectively such that

(a) (G, ·, τ1) is a topological group;
(b) the set V is d-large in G and open in G, some d(G) + 1 left (right) translates of V cover

G, V = V −1, and the inversion map as well as the group operation are continuous functions with
respect to τ1;

(c) the topology τ1 restricted to V agrees with the topology of V induced by the topology of M ;
(d) the set U is d-large in X, open in X, and U = (g0∗U)∪. . .∪(gs∗U), for some g0, . . . , gs ∈ G

where s = d(X);
(e) the topology τ2 restricted to U agrees with the topology of U induced by the topology of M ;
(f) τ is the product topology determined by τ1 and τ2;
(g) the maps 〈g, a〉 7−→ g ∗ a and 〈g, a〉 7−→ g−1 ∗ a are continuous with respect to the topologies

τ and τ2;
(h) if a ∈ X, then the maps g 7−→ g∗a and g 7−→ g−1∗a are continuous surjections from G to X

with respect to the topologies τ1 and τ2; if additionally ∗ is faithful, then they are homeomorphisms
from G onto X;

(i) if g ∈ G, then the map a 7−→ g ∗ a is a homeomorphism from X onto X with respect to the
topology τ2.

Proof. The existence of an A-definable set V ⊆ G and a topology τ1 on G for which the conditions
(a)–(c) are satisfied is guaranteed by Theorem 3.5 and its proof. Moreover (by the prof of Theorem
3.5), there exists an A-definable set Y ⊆ V ×V such that Y is open in G×G and d-large in G×G,
the group operation · restricted to Y is continuous and for every a ∈ V , the sets

{b ∈ G : 〈b, a〉 ∈ Y }, {b ∈ G : 〈b−1, b · a〉 ∈ Y }

are d-large in G.
Denote the group action ∗ by F (i.e. F (g, a) = g ∗ a whenever g ∈ G and a ∈ X). There is an

A-definable set Y0 ⊆ G×X such that Y0 is open in G×X, d-large in G×X and F restricted to
Y0 is continuous. Let

W1 = {a ∈ X : {g ∈ G : 〈g, a〉 ∈ Y0} is d-large in G};
W2 = {a ∈ X : {g ∈ G : 〈g−1, g ∗ a〉 ∈ Y0} is d-large in G}.

The sets W1,W2 are both A-definable and reasoning as in the proof of Theorem 3.5 shows that
they are both d-large in X. There exists an A-definable set U ⊆W1 ∩W2 which is open in X and
d-large in X. The remaining part of (d) is a consequence of Lemma 4.4. As in the prof of Theorem
3.5, we get the following claim.

Claim 1. (a) For any g ∈ G and a ∈ X, the set

Z(g, a) := {x ∈ V : (g · x) ∗ a ∈ U}

is open in V and the function x 7−→ (g ·x)∗a is a continuous map from Z(g, a) onto (g ·Z(g, a))∗a.
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(b) For any g, h ∈ G, the set

Z ′(g, h) := {〈x, y〉 ∈ V × U : (g · x · h) ∗ y ∈ U}

is open in V ×U , and the function 〈x, y〉 7−→ (g · x · h) ∗ y is a continuous map from Z ′(g, h) to U .
Define the topology τ2 on X as follows: a set Z ⊆ X is τ2-open iff for any g ∈ G, the set

(g ∗ Z) ∩ U is open in U . Clearly, if Z ⊆ U , then Z is τ2-open iff Z is open in U . Let τ be the
product topology on G×X determined by τ1 and τ2.

Claim 2. A definable set Z ⊆ G×X is τ -open iff

(∀g1, g2 ∈ G)((〈g1, g2〉 ∗ Z) ∩ Y is τ -open in G×X).

Proof of Claim 2. For the left-to-right implication assume that Z ⊆ G × X is a τ -open set,
g1, g2 ∈ G, and 〈g, a〉 ∈ (〈g1, g2〉 ∗Z)∩Y . Since Y is open in G×X, there are V1 ⊆ G and U1 ⊆ X
such that V1 is open in G, U1 is open in X and

〈g, a〉 ∈ V1 × U1 ⊆ Y ⊆ V × U.

Note that
〈g−11 · g, g

−1
2 ∗ a〉 ∈ Z ∩ (〈g−11 , g−12 〉 ∗ Y ).

Since Z is τ -open, there are V2 ⊆ G and U2 ⊆ X such that V2 is τ1-open, U2 is τ2-open and

〈g−11 · g, g
−1
2 ∗ a〉 ∈ V2 × U2 ⊆ Z.

It is clear that the sets (g1 · V2) ∩ V and (g2 ∗ U2) ∩ U are open in G and X respectively, and

〈g, a〉 ∈ ((g1 · V2) ∩ V )× ((g2 ∗ U2) ∩ U) ⊆ 〈g1, g2〉 ∗ Z.

In this way we have shown that the set (〈g1, g2〉 ∗ Z) ∩ Y is τ -open.
For the right-to-left direction assume that Z ⊆ G×X,

(∀g1, g2 ∈ G)((〈g1, g2〉 ∗ Z) ∩ Y is τ -open in G×X),

and 〈g, a〉 ∈ Z. There are g1, g2 ∈ G such that

〈g1 · g, g2 ∗ a〉 ∈ (〈g1, g2〉 ∗ Z) ∩ Y ⊆ V × U.

So there are sets U1 ⊆ X and V1 ⊆ G such that U1 is open in X, V1 is open in G and

〈g1 · g, g2 ∗ a〉 ∈ V1 × U1 ⊆ (〈g1, g2〉 ∗ Z) ∩ Y.

Then g−11 · V1 is τ1-open, g−12 ∗ U1 is τ2-open, and

〈g, a〉 ∈ (g−11 · V1)× (g−12 ∗ U1) ⊆ Z.

So Z is τ -open.

Claim 3. The maps 〈g, a〉 7−→ g ∗ a and 〈g, a〉 7−→ g−1 ∗ a are continuous with respect to the
topologies τ and τ2.
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Proof of Claim 3. Let W ⊆ X be a τ2-open set. We will be done if we prove that F−1[W ] is
τ -open. Of course it is enough to show that the set F−1[W ∩ (g ∗ U)] is τ -open whenever g ∈ G.

Fix g ∈ G. The set W is τ -open, so (g−1 ∗W ) ∩ U is open in X. By Claim 1 (b), the set

Z := {〈x, y〉 ∈ V × U : (g−1 · g−11 · x · g
−1
2 ) ∗ y ∈ U}

is open in V × U and the map Fg1,g2 : Z −→ U defined by Fg1,g2(x, y) = (g−1 · g−11 · x · g
−1
2 ) ∗ y is

continuous. Hence the set F−1g1,g2
[(g−1 ·W ) ∩ U ] is open in G×X. Note that

F−1g1,g2
[(g−1 ·W ) ∩ U ] = {〈x, y〉 ∈ V × U : (g−1 · g−11 · x · g

−1
2 ) ∗ y ∈ (g−1 ∗W ) ∩ U} =

{〈g1 · x, g2 ∗ y〉 ∈ V × U : x ∗ y ∈W ∩ (g ∗ U)} =

(〈g1, g2〉 ∗ F−1[W ∩ (g ∗ U)]) ∩ (V × U)

whenever g1, g2 ∈ G. Thus by Claim 2, the set F−1[W ∩ (g ∗ U)] is τ -open.
The above argument and the fact that the inversion map is τ1-continuous on G imply that the

map 〈g, a〉 7−→ g−1 ∗ a is continuous with respect to the topologies τ and τ2.

(h) and (i) are easy consequences of (g). Alternatively, one could use Claim 1(a) to show that
the map g 7−→ g−1 ∗ a is continuous with respect to the topologies τ1 and τ2.

5 Definable fields

Let M = (M, . . .) is a first order structure and A ⊆ M . A field (K,+, ·) is said to be definable
in M [over A] iff there is a positive integer m such that K ⊆ Mm is a definable [over A] set and
there are definable [over A] sets X,Y ⊆ K3 ⊆M3m such that for any a, b, c ∈ K,

〈a, b, c〉 ∈ X iff a+ b = c, and 〈a, b, c〉 ∈ Y iff a · b = c.

It is easy to see that if K is a field definable inM and L is its finite extension, then L is isomorphic
to a field definable in M.

Theorem 5.1 Assume thatM = (M, . . .) is a first order topological structure with respect to some
formula ϕ(x; y), d : Def(M) −→ N ∪ {−∞} is a dimension function and M has the continuity
property with respect to d and the topology determined by ϕ. Assume also that (K,+, ·) is a field
definable in M over A with K ⊆ Mm and d(K) = n. Then there are an A-definable set V ⊆ K
and a topology τ on K such that

(a) (K,+, ·) with the topology τ is a topological field;
(b) V is d-large in K and open in K;
(c) the topology τ restricted to V coincides with the topology of V induced from Mm;
(d) some n+ 1 additive translates of V cover K and some n+ 1 multiplicative translates of V

cover K∗.

Proof. There exists an A-definable set V0 ⊆ K such that 0K 6∈ V0, V0 is open in K and d-large
in K, and both the additive and multiplicative inverses restricted to V0 are continuous. By the
continuity property, there is an A-definable set

V1 ⊆ V0 ∩ (−V0) ∩ V −10 ∩ (−V −10 )
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such that V1 is open in K and d-large in K. Both the additive and multiplicative inversions
restricted to V1 are continuous maps from V1 to V0. Denote the addition and multiplication by f
and g respectively. It is easy to see that the set (V0 × V0) ∩ f−1[V0] ∩ g−1[V0] is A-definable and
d-large in K ×K. Hence there exists an A-definable set Y0 ⊆ (V0 × V0) ∩ f−1[V0] ∩ g−1[V0] which
is open in K ×K and d-large in K ×K. Moreover, f � Y0 g � Y0 are continuous maps from Y0 to
V0. Now define

W1 = {a ∈ V1 : {b ∈ K : 〈b, a〉 ∈ Y0} is d-large in K};
W2 = {a ∈ V1 : {b ∈ K : 〈−b, b+ a〉 ∈ Y0} is d-large in K};

W3 = {a ∈ V1 : {b ∈ K∗ : 〈b−1, b · a〉 ∈ Y0} is d-large in K}.

Repeating a suitable argument from the proof of Theorem 3.5, we see that the set V ′1 := W1∩W2∩
W3 is A-definable and d-large in K. There is an A-definable set V2 ⊆ V ′1 such that V2 is open in
K and d-large in K. Let

V = V2 ∩ (−V2) ∩ V −12 ∩ (−V −12 ).

V is A-definable, open in K and d-large in K. Moreover, V = −V = V −1 = −V −1. Also V × V
is A-definable, open in K ×K and d-large in K ×K. Let

Y = (V × V ) ∩ Y0 ∩ f−1[V ] ∩ g−1[V ].

The set Y is A-definable, open in K × K and d-large in K × K. Addition and multiplication
restricted to Y are continuous maps from Y to V . Moreover, if a ∈ V , then the sets

{b ∈ K : 〈b, a〉 ∈ Y }, {b ∈ K : 〈−b, b+ a〉 ∈ Y }, {b ∈ K : 〈b−1, b · a〉 ∈ Y }

are all A-definable and d-large in K. Define the topology τ on K as follows: X ⊆ K is τ -open
iff for all k ∈ K, (k + X) ∩ V is open in V . Clearly, the topology τ restricted to V agrees with
topology topology of V induced from Mm. By the proof of Theorem 3.5, (K,+, τ) is a topological
group.

Claim 1. (a) If a ∈ K, then the set X(a) := {x ∈ V : a · x ∈ V } is open in V and the function
x 7−→ a · x is a continuous map from X(a) to V . If a 6= 0K , then this map is a homeomorphism
from X onto a ·X.

(b) If a, b, c ∈ K, then the set

Z(a, b, c) := {〈x, y〉 ∈ V × V : c+ a · x+ b · y + x · y ∈ V }

is open in V , and the function 〈x, y〉 7−→ c+ a · x+ b · y + x · y is a continuous map from Z(a, b, c)
to V .

Proof of Claim 1. (a) is proved as Claim 1 in the proof of Theorem 3.5. For the proof of (b),
fix a, b, c ∈ K. We will show that for every 〈x0, y0〉 ∈ Z(a, b, c), there exists a subset of Z(a, b, c)
containing 〈x0, y0〉 which is open in V × V and on which the map

〈x, y〉 7−→ c+ a · x+ b · y + x · y

is continuous. This is sufficient.
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Fix 〈x0, y0〉 ∈ Z(a, b, c) and define

Z0 = {d ∈ V : 〈d · a, x0〉 ∈ Y, 〈d · b, y0〉 ∈ Y, 〈d, x0〉 ∈ Y, 〈d · x0, y0〉 ∈ Y,

d · (c+ a · x0 + b · y0 + x · y) ∈ V, 〈d−1, d · (c+ a · x0 + b · y0 + x0 · y0)〉 ∈ Y }.

The set Z0 is large in K so it is nonempty. Fix d ∈ Z0 and let

Z1 = {〈x, y〉 ∈ V × V : 〈d · a, x〉 ∈ Y, 〈d · b, y〉 ∈ Y, 〈d, x〉 ∈ Y, 〈d · x, y〉 ∈ Y,

d · (c+ a · x+ b · y + x · y) ∈ V, 〈d−1, d · (c+ a · x+ b · y + x · y)〉 ∈ Y }.

Obviously, 〈x0, y0〉 ∈ Z1 ⊆ Z(a, b, c). The set Z1 is open in V × V and the function

〈x, y〉 7−→ c+ a · x+ b · y + x · y

restricted to Z1 is a continuous map from Z1 to V .

Claim 2. (a) Multiplication is a τ -continuous map from K ×K to K.
(b) Multiplicative inversion is a τ -homeomorphism from K∗ to K∗.

Proof of Claim 2. (a) Let W ⊆ K be a τ -open set. We will be done if we show that the set
g−1[W ] is τ -open. By Lemma 2.5, there are c0, . . . , cn ∈ K such that K = (c0 +V )∪ . . .∪ (cn+V ).
Since

g−1[W ] = g−1[W ∩ ((c0 + V ) ∪ . . . ∪ (cn + V ))] =
⋃
i≤n

g−1[W ∩ (ci + V )],

it is enough to show that g−1[W ∩(c+V )] is τ -open whenever c ∈ K. So fix c ∈ K. By assumption,
(−c+W ) ∩ V is open in V . Claim 1 (b) implies that for any a, b ∈ K, the set

{〈x, y〉 ∈ V × V : (−c+ a · b)− b · x− a · y + x · y ∈ (−c+W ) ∩ V } =

(〈a, b〉+ g−1[W ∩ (c+ V )]) ∩ (V × V )

is open in V × V . This means that the set g−1[W ∩ (c+ V )] is τ -open.
The proof of (b) is similar to the proof of Claim 3 in the proof of Theorem 3.5.

The proof of the following theorem is a rather straightforward modification of the above proof
of Theorem 5.1.

Theorem 5.2 Assume that M is a first order topological structure with respect to some formula
φ(x; y) and d : Def(M) −→ N∪ {−∞} is a dimension function. Assume also that M has the cell
decomposition property and the continuity property with respect to d and the topology determined
by ϕ. If (K,+, ·) is a field definable in M over A with K ⊆ Mm and d(K) = n, then there exist
an A-definable set V ⊆ K and a topology τ on K such that

(a) (K,+, ·) with the topology τ is a topological field;
(b) V is d-large in K and open in K;
(c) if n ≥ 1, then V is a union of finitely many τ -open A-definable pairwise disjoint sets which

are A-definably homeomorphic with A-definable open subsets of Mn;
(d) the topology τ restricted to V coincides with the topology of V induced from Mm;
(e) some n+ 1 additive translates of V cover K and some n+ 1 multiplicative translates of V

cover K∗.
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