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Abstract : the paper concerns the relations between the relative Manin-Mumford conjecture
and Pink’s conjecture on unlikely intersections in mixed Shimura varieties. The variety
under study is the 4-dimensional Poincaré biextension attached to a universal elliptic curve.
A detailed list of its special subvarieties is drawn up, providing partial verifications of Pink’s
conjecture in this case, and two open problems are stated in order to complete its proof.1

1 Introduction

In [3], [5] and [4], semi-abelian surface schemes are studied in the context of the relative
Manin-Mumford conjecture. Due to the possible presence of Ribet sections (cf. [3], [5]),
this conjecture does not hold in general, but as is shown in [4], they are the only obstruction
to its validity.

More precisely, let Qalg be the algebraic closure of Q in C, and let S be an irreducible
algebraic curve over Qalg. For any group scheme G over S , we write Gtor for the union of
all the torsion points of the various fibers of G→ S. Then, we have :

Theorem 1 ([4], §1). – Let E/S be an elliptic scheme over the curve S/Qalg, and let G/S
be an extension of E/S by Gm/S. Let further s : S → G be a section of G/S. Assume that
the image W = s(S) of s contains infinitely many points of Gtor. Then,

i) either s is a Ribet section,
ii) or s factors through a strict subgroup scheme of G/S.

The scheme G/S admits Ribet sections s = sR if and only if it is not isoconstant and
E/S admits complex multiplications, which forces E/S to be isoconstant, i.e. isomorphic,
after a finite base extension, to E0 × S for some elliptic curve E0/Qalg, with complex
multiplications. Under these assumptions, which imply that the extension G/S does not
split, both Conclusions (i) and (ii) actually occur, and are mutually exclusive. The image
WR = sR(S) of a Ribet section will be called a Ribet curve of G.
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In [3], §2, it was observed that although Ribet curves cannot be interpreted in terms of
subgroups schemes of G/S, they are special curves in the moduli view-point provided by
Pink’s extension of the André-Oort and Zilber conjectures to mixed Shimura varieties, see
[12], Conjecture 1.2. The relevent mixed Shimura variety is here the Poincaré bi-extension
P0 attached to the CM elliptic curve E0.

In this note, we pursue this study by looking at “unlikely intersections” for a curve W
in P0, or more generally in the Poincaré bi-extension P attached to a general family of
elliptic curves. The statement of Pink’s conjecture for this case will be found in Section 5.
Most of the present work is directly inspired by §§5 and 6 of Pink’s preprint [12].

2 Special points

Let X be a modular curve, say X = Y (2), parametrizing isomorphism classes of elliptic
curves with some level structure, let E be the universal elliptic scheme over X, with dual
Ê , and let P be the Poincaré bi-extension of E ×X Ê by Gm. This is a mixed Shimura
variety of dimension 4, which parametrizes points P on extensions G of elliptic curves E
by Gm. A point of P(C) can be represented by a triple (E,G, P ) , and is called special if
the attached Mumford-Tate group is abelian, which is equivalent to requiring that E has
complex multiplication, that G is an isotrivial extension, and that P is a torsion point on
G. Denote by Psp the set of special points of P . Following [12], we further say that an
irreducible subvariety of P is special if it is a component of the Hecke orbit of a mixed
Shimura subvariety of P . The special subvarieties of P of dimension 0 are the special
points; those of higher dimensions are described below (for the full list, see Section 3).

Corollary 1. Let W/Qalg be an irreducible closed algebraic curve in P. Assume that
W ∩ Psp is infinite. Then, W is a special curve.

To make this corollary more explicit - and to prove it -, we distinguish the various cases
provided by the projection $ : P → X and its canonical section (rigidification) σ : X → P
above the zero section of E ×X Ê , whose image σ(X) is made up of points of the type
(E,Gm × E, 0) ∈ P :

- either the restriction of $ to W is dominant : the corollary then says that W lies in
the Hecke orbit of the curve σ(X). Indeed, up to Hecke transforms,
• σ(X) is the only one-dimensional (mixed, but actually pure) Shimura subvariety of

P dominating X.
This case, however, is a red herring, in the sense that for $|W dominant, the corollary

follows not from Theorem 1, but from André’s theorem [1], p. 12, on the special points of
the mixed Shimura variety E , combined with an easy analogue for Gm/X (which is actually
covered by [10], Thm. 1.1 with n = ` = 1,m = 0) .

- or $(W ) is a point x0 of X, necessarily of CM type. In particular, W lies in the
fiber P0 of $ above x0. This fiber P0 is a 3-dimensional mixed Shimura subvariety of P ,
which can be identified with the Poincaré biextension of E0× Ê0 by Gm, where E0 denotes
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an elliptic curve in the isomorphism class of x0. An analysis of the generic Mumford-Tate
group of P0 as in [2], p. 52, shows that up to Hecke transforms, there are exactly four
types of special curves in P0 :

• (Gm)x0 = the fiber above (0, 0) of the projection P0 → (E ×X Ê)x0 = E0 × Ê0;
•(×3) the images ψB(B) of the elliptic curves B ⊂ E0 × Ê0 passing through (0, 0)

such that the Gm-torsor P0|B is trivial, under the corresponding (unique) trivialization
ψB : B → P0|B. As recalled in [3], Remark 2, there are, up to isogenies, three types of

such elliptic curves B : the obvious ones E0 × 0 and 0× Ê0 (whose images we will simply
denote by ψ(E0 × 0), ψ(0 × Ê0)), and the graphs of antisymmetric isogenies from Ê0 to
E0, in which case ψB, composed with the induced map Ê0 → B, corresponds precisely to
a Ribet section (of the semi-abelian scheme G0/Ê0 to be described presently).

Corollary 1 now follows from Theorem 1, on interpreting P0/Ê0 as the universal ex-
tension G0 of E0 by Gm, viewed as a group scheme over Ê0, so that Psp ∩ P0 ⊂ (G0)tor.

More precisely, suppose that W dominates Ê0 : then, it is the image of a multisection of
G0/Ê0, and after a base extension, the theorem implies that W is a Ribet curve ψB(B) of
G0 = P0, or that it lies in a torsion translate of Gm/Ê0

= Gm× Ê0, where a new application
of the theorem (or more simply, of its constant version [7]) shows that it must coincide
with a Hecke transform of Gm = (Gm)x0 or of ψ(0× Ê0). By biduality (i.e. reverting the
roles of Ê and E), the same argument applies if W dominates E0. Finally, if W projects
to a point of E0 × Ê0, then, this point must be torsion, and W lies in the Hecke orbit of
(Gm)x0 . Being closed, W is therefore a special curve of P in all cases.

3 Unlikely intersections

Although insufficient in the presence of Ribet curves, the argument devised by Pink to
relate the Manin-Mumford and the André-Oort settings often applies (see the proof of
Theorems 5.7 and 6.3 of [12], and the discussion in [5] on abelian schemes). In the present
situation, one notes that given a point (E,G, P ) in P(C), asking that it be special as
in Corollary 1 gives 4 independent conditions, while merely asking that P be torsion on
G as in Theorem 1 gives 2 conditions. Now, unlikely intersections for a curve W in P
precisely means studying its intersection with the union of the special subvarieties of P
of codimension ≥ 2 (i.e. of dimension ≤ 2), and according to Pink’s Conjecture 1.2 of
[12], when this intersection is infinite, W should lie in a special subvariety of dimension
≤ 1 + 2 = 3 < 4, i.e. a proper one. Similarly, if W lies in the fiber P0 of P above a CM
point x0 and meets infinitely many special curves of this 3-fold, then, it should lie in a
special surface of the mixed Shimura variety P0. In these directions, we have :

Corollary 2. Let W/Qalg be an irreducible algebraic curve in P. Assume that the inter-
section of W with the union of all the special surfaces of P dominating X is infinite. Then,
W lies in a special 3-fold of P.

Corollary 3. Let W/Qalg be an irreducible algebraic curve in the fiber P0 of P above a
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CM point x0 of X. Assume that the intersection of W with the union of all the special,
but not Ribet, curves of P0 is infinite. Then, W lies in a special surface of P0.

To get a grasp on these results, we first list all the special subvarieties of P , announcing
them by 1, 2, or 3 bullets according to their dimensions, and with the occasional symbol
(×n) to indicate that n types of special subvarieties are listed at that stage. By inspection,
one deduces that “special surfaces” can be replaced by “special subvarieties of dimension
≤ 2” in Corollary 2 ; similarly, Corollary 3 can be formulated in apparently broader terms,
involving special points and special curves of P .

An analysis of the generic Mumford-Tate group of P as in [2], p. 59, shows that up to
Hecke transforms, there are only
• • • one type of special 3-folds of P dominating X, namely its restrictions P|B to the

various flat elliptic (subgroup) schemes B of E ×X Ê over X;
• • (×3) three types of special surfaces in P dominating X, namely the restriction

Gm × σ(X) of P above the zero section of E ×X Ê , and the images ψB(B) of the elliptic
subschemes B as above such that the Gm-torsor P|B is trivial, under the corresponding
(unique) trivialization ψB : B → P|B. Since E/X has no complex multiplications, this

occurs if and only if B ⊂ E ×X Ê projects to the zero section of one of the factors, and by
abuse of notations, we will denote by ψ(0× Ê) and ψ(E × 0) the two corresponding special
surfaces of P .
• one special curve dominating X, namely the already met σ(X).

The other special subvarieties of P are contained in
• • • the fibers P0 of P above the various CM point x0 of X, for which we recall the

notations and references of the previous section. Thus, up to Hecke transforms,
•• the only type of special surfaces of a fiber P0 is given by its restrictions P0|B to the

various elliptic subgroups B of E0 × Ê0;
•(×4) the already met special curves of P0 are in the Hecke orbit of (Gm)x0 , ψ(E0× 0),

ψ(0× Ê0), or (when B is the graph of an antisymmetric isogeny) of a Ribet curve ψB(B).

Theorem 1 (+ [8]) ⇒ Corollary 2

To deduce Corollary 2 from the theorem, we follow the lines of [12] and first consider
the case when W does not dominate X, i.e. $(W ) = x is a point (which we can assume
to be non CM, otherwise, the fiber Px is a special 3-fold of P containing W ). So, W
lies in the non-special 3-fold Px, which we can identify with the Poincaré biextension of(
E ×X Ê

)
x

= Ex× Êx by Gm, where Ex/Qalg denotes an elliptic curve representing x. Now,

- if W meets the Hecke orbit of Gm × σ(X) infinitely often, then either its projection
to Ex× Êx is a torsion point, in which case W lies in the Hecke orbit of the special surface
Gm × σ(X), or this projection contains infinitely many torsion points. We then deduce
from Raynaud’s theorem on curves in Ex× Êx (combined with End(Ex) = Z) that W lies
in the Hecke orbit of a special 3-fold of the type P|B for some elliptic subgroup scheme B
of E ×X Ê ;
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- suppose thatW projects to a point q ∈ Êx(Qalg), i.e. lies in the extensionGq = Px|Ex×q
of Ex by Gm. We can assume that q is not torsion (otherwise, W lies in the Hecke orbit
of the special 3-fold P|E×0). So, W does not meet the Hecke orbit of ψ(E × 0) at all. And

if its its intersection with the Hecke orbit of ψ(0 × Ê) is infinite, then, W , viewed in the
non isotrivial extension Gq, contains infinitely many points of (Gq)tor. By the theorem (or
Hindry’s [7]), W must then lie in a torsion translate of Gm = Px|(0×q), hence in the Hecke

orbit of P|0×Ê = Gm × ψ(0× Ê).

- by biduality, we can now assume that W dominates both Êx and Ex. In particular, it
is the image of a multisection of the universal extension Gx := Px of Ex by Gm, viewed as
a group scheme over Êx. If W meets the Hecke orbit of ψ(0× Ê) infinitely often, then, W ,
viewed as a curve in the group scheme Gx/Êx, contains infinitely many points of Gx,tor, and
the theorem implies that W lies in a torsion translate of Gm/Êx

⊂ P|0×Ê . This contradicts

the assumption that W dominates Ex. Inverting the roles of E and Ê , we similarly deduce
that W cannot intersect the Hecke orbit of ψ(E × 0) infinitely often.

Finally, assume that W dominates X. Then, after a finite base extension if necessary,
the projection of W to Ê (resp. E) defines a section q of Ê/X, hence an extension G/X
of E/X by Gm, (resp. a section p of E/X), and W is the image of a multisection of G/X
lifting p. Now,

- if W meets the Hecke orbit of Gm × σ(X) infinitely often, its projection to E ×X Ê
either is a torsion section (and W lies in the Hecke orbit of Gm×σ(X)) or meets infinitely
many torsion sections of this abelian scheme. We then deduce from the theorem of Masser
and Zannier [8] (i.e. the relative version of Raynaud’s) that W lies in the Hecke orbit of a
special 3-fold of the type P|B.

- if W meets the Hecke orbit of ψ(0 × Ê) infinitely often, then, W , viewed as a curve
in the group scheme G/X, contains infinitely many points of Gtor, and the theorem implies
that W lies in the Hecke orbit of the special 3-fold P|0×Ê if G/X is a non isotrivial extension;

otherwise, q is a torsion section of Ê/X, and W may alternatively lie in the Hecke orbit of
the special surface ψ(E × 0) ⊂ P|E×0.

- by biduality, the same argument applies if W intersects the Hecke orbit of ψ(E × 0)
infinitely often.

Theorem 1 (+ [8]) ⇒ Corollary 3

Since Ribet curves are discarded, the argument goes along the same lines as the one
concerning $(W ) = x, with the base X replaced by the point x0, and B by (the vaster
choice of) an elliptic curve B in E0 × Ê0.

NB : when B is the graph of a non-rational isogeny, the special surface P0|B does not lie in
any of the special 3-folds of P dominating X. This has no impact on Corollary 3 , where
these surfaces occur in the conclusion. On the other hand, they are the precise reason why
we had to restrict the hypothesis of Corollary 2 to surfaces dominating X; we discuss this
further in section 5, together with the restriction to non Ribet curves in Corollary 3.
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Our last corollary of Theorem 1 concerns the remaining special 3-folds of P , of type
P|B, where B is an elliptic (subgroup) scheme in E ×X Ê dominating X.

Corollary 4. Let W/Qalg be an irreducible algebraic curve in the special 3-fold P|B .
Assume that the intersection of W with the union of all the special curves of P|B is infinite.
Then, W lies in a special surface of P|B.

As already suggested after the statement of Corollary 3, one can replace “special curves”
by “special subvarieties of dimension ≤ 1”, and “of P|B” by “of P”, since any special point
is contained in the Hecke orbit of a special curve of the type (Gm)x0 , while the special
curves not contained in P|B meet this 3-fold along special points. This fact explains why
Ribet curves need not be discarded in Corollary 4 : P|B contains no such curve, since even
above a CM point x0, the fiber B = Bx0 of B/X is not the graph of a non-rational isogeny.

Theorem 1 (+ [1] ) ⇒ Corollary 4

We first assume that W dominates X. Suppose that there are infinitely many points
in the intersection of W with the Hecke orbit of

- the special curve σ(X) : as explained above (and after a base extension), we can
view W as a curve in a semi-abelian scheme G/X, and these intersections as points in Gtor.
The theorem implies that W lies in the Hecke orbit of Gm × σ(X), P|0×Ê or P|E×0, and all

intersect P|B along its special surface Gm × σ(X) if B is not one of the factors of E ×X Ê .
Otherwise, we can assume by biduality that B = E × 0, in which case W lies in the Hecke
orbit of Gm × σ(X) or of the special surface ψ(E × 0) of P|E×0.

- the union of the special curves contained in the fibers P0 above the various CM
point x0 of X (i.e. those of type (Gm)x0 , ψ(E0 × 0), ψ(0 × Ê0) and the Ribet curves) :
by André’s theorem [1], applied to the the special points of the mixed Shimura variety
B/X, the projection of W to B must be a torsion section, and W lies in the Hecke orbit
of Gm × σ(X).

The case when $(W ) is a non-CM point x is proved along similar lines. Finally, assume
that $(W ) is a CM point x0, and let B ⊂ E0 × Ê0 be the fiber above x0 of the elliptic
scheme B/X. Then, W lies in the special surface P0|B = P|B ∩ P0.

4 Back to group schemes

First of all, since the four “corollaries” above have requested the help of [1], p. 12, and of
[8], it is fairer to gather them under a new heading, as follows. We recall from [12] that the
special closure of an irreducible curve W in the mixed Shimura variety P is the intersection
of all the special subvarieties of P containing W .

Theorem 2. Let W/Qalg be an irreducible curve in the mixed Shimura 4-fold P, and let
δW be the dimension of the special closure of W .

i) Suppose that δW = 4; then, the intersection of W with the union of all the special
surfaces of P dominating X is finite;
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ii) Suppose that δW = 3; then, the intersection of W with the union of all the special
non-Ribet curves of P is finite;

iii) Suppose that δW = 2; then, the intersection of W with the union of all the special
points of P is finite.

This statement is equivalent to the union of the four corollaries : we leave it to the reader
to check that (ii) is equivalent to Corollaries 3 + 4 and that (i) + (ii) + (iii) implies
Corollary 1 (the Hecke orbit of any special point meets a special curve of type (Gm)x0 ,
which is contained in the special surface Gm × σ(X)).

In the next section, we will discuss how far Theorem 2 stands from Pink’s general
conjecture for curves. In the reverse direction, following [12], §6 (and [11], Remark 2.13),
we now prove that

Theorem 2 ⇒ Theorem 1 ,

and in fact, the following weaker version of Theorem 2 will suffice :
(i′) : in (i), constrain the conclusion to the Hecke orbit of the special surface ψ(0× Ê);
(ii′) : in (ii), constrain the conclusion to the Hecke orbits of the special curves σ(X)

and ψ(0× Ê0), where E0 runs through the CM fibers of E → X.

So, let G → S and W = s(S) satisfy the hypotheses of Theorem 1. The universal
property of P provides canonical morphisms φ : S → Ê (above the “modular” map λ
attached to the elliptic scheme E/S) and Φ : G → P above φ such that the following
diagram commutes :

W ↪→ G
Φ−−→ P

↖s ↓ ↓ \
S

φ−−→ Ê $

↘λ ↓ /
X

.

Furthermore, Φ induces a morphism of group schemes from G/S to P/Ê , where we view
the latter as the canonical extension of the elliptic scheme EÊ by Gm.

Assume first that Φ(W ) is a point of P . Then, G/S must be an isoconstant scheme, of
which s is an isoconstant section. Since W meets Gtor, s is a torsion section and W does
lie in a strict subgroup scheme of G/S. So, we can now assume that W ′ = Φ(W ) is a curve
in P .

By the universal property of P , the image of Gtor under Φ lies in the Hecke orbit of the
special surface ψ(0× Ê). Theorem 2.(i’) then implies that δW ′ < 4, so W ′ lies in the Hecke
orbit of a special 3-fold. Performing a Hecke transform, we henceforth assume that W ′ lies
in P|B for some B ⊂ E × Ê , or in the fiber P0 of P above some CM point x0, represented
by a CM curve E0.

Let us first assume that W ′ lies in P|0×Ê . Then, up to a torsion translate, W lies in the
fiber of G→ E above the 0 section, i.e. in the strict subgroup scheme Gm/S of G/S.

Let us now assume that W ′ lies in P|B, where B is the graph of a homomorphism E → Ê .

Then, the intersection of P|B with ψ(0 × Ê) is the special curve σ(X), and since Φ(Gtor)
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lies in the Hecke orbit of ψ(0 × Ê), the curve W ′ ⊂ P|B meets the Hecke orbit of σ(X)
infinitely often. By Theorem 2.(ii’), W ′ must lie in the Hecke orbit of a special surface.
Postponing to the next step the case when this surface is above a CM point, we conclude
that up to a Hecke transform, W ′ lies in Gm × σ(X), in which case a torsion translate of
W lies in the subgroup scheme Gm/S of G/S, or that B = E ×0, with W ′ lying in ψ(E ×0),
in which case G/S must be an isotrivial extension and after an isogeny, W lies in a torsion
translate of its subgroup scheme E/S.

Let us finally assume that W ′ lies in a CM fiber P0. Then, up to an isogeny, G is
an extension of E0 × S by Gm, and Φ(Gtor) lies in the Hecke orbit of the special curve
ψ(0×Ê0) of P0. By Theorem 2.(ii’), W ′ must then lie in the Hecke orbit of a special surface
of the type P0|B, where B is an elliptic (subgroup) curve in E0 × Ê0. We can assume that

B 6= 0× Ê0, otherwise, W lies in a torsion translate of the fiber Gm/S of G→ E0×S above
the zero section.

We are at last reduced to the case when B is the graph of a homomorphism E0 → Ê0,
and W ′ lies in the special surface P0|B. But again, Φ(Gtor) lies in the Hecke orbit of the

special curve ψ(0×Ê0), which meets such a surface P0|B transversally, and therefore, along
special points of P . So, W ′ contains infinitely many special points, and by Theorem 2.(iii),
must be a special curve of P0|B, necessarily of type (Gm)x0 , or ψ(E0× 0) if B = E0× 0, or
a Ribet curve of P0 otherwise. In the first case, W lies in a torsion translate of Gm/S; in
the second one, G/S is an isotrivial extension and W lies in a torsion translate of E0 × S;
and in the last one, G/S is not isoconstant, and W is a Ribet curve of G/S.

5 Pink’s conjecture for curves in P

We close this note by discussing how far we now stand from Pink’s conjecture for a curve
W in the mixed Shimura variety P . As is timely to recall, this asserts that whatever the
dimension δW of the special closure of W is,

Conjecture 1.2 of [12] for curves in P : (?) the intersection of a curve W of P with
the union of the special subvarieties of P of dimension ≤ δW − 2 is finite.

We again point out that, in the case of our mixed Shimura variety P , the sign ≤ can
equivalently be replaced by = in this statement. So, to prove the conjecture, it suffices
to lift the restrictions “dominating X” and “non-Ribet” in the conclusions of Theorem
2. We now state the two corresponding problems in concrete terms, and mention possible
approaches.

Going back to the list of special subvarieties of P established above, we see that the
only special surfaces left out by the restriction “dominating X” are of the type P0|B for

B ⊂ E0 × Ê0, where E0 = Ex0 is the fiber of E/X above a CM point x0. Therefore, lifting
this restriction amounts to a positive answer to the following

Question 1 : let E be a non isoconstant elliptic scheme over a curve S/Qalg, and let p, q
be two sections of E/S defined over Qalg. Assume that there are infinitely many points
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λ ∈ S(Qalg) such that the fiber Eλ of E/S above λ admits complex multiplications, and
such that the points p(λ) and q(λ) are linearly dependent over End(Eλ). Must the sections
p and q then be linearly dependent over Z ?

This problem can alternatively be viewed as a special case of Pink’s conjecture for
curves in the n-th fibered power of E over X, with n = 2. As already mentioned, this
special case is established by André [1] for n = 1. The theorem of Masser and Zannier
[8] used above provides a partial answer for n = 2. See Habegger [6] for further results in
higher dimensions.

Although it adresses constant elliptic schemes, the work of Buium and Poonen on
Heegner-type points in a given group of finite rank may provide an approach to Question
1. See Pila’s proof [9] of André’s theorem for further suggestions.

As for lifting the restriction “non-Ribet”, here is a way to state the problem. We fix
a CM elliptic curve E0/Qalg and a curve S/Qalg. Given an extension G/S of E0 × S by
Gm which admits Ribet sections, we define a Ribet point as any point (not necessarily
torsion) of G(Qalg) lying on a Ribet curve of G. We denote by q ∈ E0(S) the image under
the standard polarization Ê0 ' E0 of the section of Ê0 × S representing the isomorphism
class of the extension G/S. Given a section s of G/S, we denote by p = π ◦ s ∈ E0(S) its
composition with the projection π : G→ E0 × S.

Question 2 : let G/S be a non isoconstant extension of E0×S by Gm, and let s be a section
of G/S defined over Qalg. Assume that there exists infinitely many points λ ∈ S(Qalg) such
that s(λ) is a Ribet point of G. Must the sections p and q then be linearly dependent over
End(E0) ?

Notice that at each λ such that s(λ) is a Ribet point, the points p(λ) and q(λ) of
E0(Qalg) are linearly dependent over End(E0). That the lift s(λ) of p(λ) is a Ribet point
gives a second condition, and both constraints are unlikely to hold infinitely often.

As a possible approach to Question 2, we mention the existence of a canonical non-
trivial relative height on semi-abelian varieties, which has the property that the relative
height of any Ribet point on G(Qalg) vanishes.

6 Conclusion

Apart from clearing the way towards Pink’s conjecture, presenting the view-point of mixed
Shimura varieties was motivated by two aims :

- to get a more uniform statement of Theorem 1. Obviously, Theorem 2 is not a
satisfactory answer; Corollary 1 is better in this respect, but is too weak.

- to put some order into the array of cases which the proof of Theorem 1 in [4] leads
to, particularly when E/S is isoconstant.

This second aim is only partially fulfilled : the list of cases to be distinguished during this
proof does not always parallel the list of cases encountered in the present note. The basic
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reason is that differential Galois groups are not fully controlled by Mumford-Tate groups.
So, a unified proof of Theorem 1 should probably put more emphasis on the study of the
generic Mumford-Tate groups of the special subvarieties coming into play.
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[10] J. Pila : O-minimality and the André-Oort conjecture for Cn, Annals Math.173 (2011),
1779-1840.

[11] R. Pink : A combination of the conjectures by Mordell-Lang and André-Oort;
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