DEFINABLY CONNECTED NONCONNECTED SETS

ANTONGIULIO FORNASIERO

ABSTRACT. We give an example of a structure R on the real line, and a manifold M definable in R, such that M is definably connected but is not connected.

1. Introduction

Let \mathcal{R} be an expansion of the real field $\mathbb{R} := \langle \mathbb{R}, +, \cdot, < \rangle$. Let M be a definable subset of \mathcal{R} . We remind that M is called **definably connected** if there is no clopen definable subset Y of M such that $\emptyset \neq Y \neq M$.

Main Theorem. There exists a structure \mathcal{R} expanding \mathbb{R} and set M definable in \mathcal{R} , such that:

- (1) M is a 1-dimensional embedded C^1 submanifold of \mathbb{R}^3 ,
- (2) M has 2 connected components,
- (3) M is definably connected.

We know that such \mathcal{R} cannot be o-minimal, because in an o-minimal expansion of \mathbb{R} every definable and definably connected set is arc-connected (and hence connected). However, we can find \mathcal{R} as above which is also d-minimal (see [Mil05] for the definition and main properties of d-minimal structures).

The main ingredient is the following result, which follows easily from the proof of [MT06, Theorem 1]; we will give some details of the proof in §3.

Lemma 1.1. There exists a sequence $P = \langle c_n : n \in \mathbb{N} \rangle$ of real numbers, such that

- (1) P is strictly increasing and unbounded;
- (2) the set $Q := \{c_n : n \text{ even}\}$ (as a set) is not definable in \mathbb{R} , the expansion of \mathbb{R} with a new predicate for P (where P is also regarded as a set).

Moreover, we can find P as above such that \mathcal{R} is also d-minimal.

We will show that \mathcal{R} as in the above lemma satisfies the conclusion of the Main Theorem.

1.1. Application to Pfaffian functions. Let \mathcal{R} and M be as in the proof of the Main Theorem. In [Fra06], S. Fratarcangeli introduced the relative Pfaffian closure of \mathbb{R} inside \mathcal{R} . Consider the following 1-form on \mathbb{R}^3 $\omega(x,y,z) \coloneqq dz$. Let L be the xy-coordinate plane. Notice that L is a Rolle Leaf with data $\langle \mathbb{R}^2, \omega \rangle$, according to the definition in [Spe99]. Let X_0 be the translate of M along the z-axis, such that the endpoints of M are on L, X_1 be its mirror image along the xy-plane, and $X \coloneqq X_0 \cup X_1$. Then, X is a 1-dimensional \mathcal{C}^1 manifold which is definable in \mathcal{R} and definably connected, which intersects L in 2 points, but which is never orthogonal to ω . Thus, L is not a \mathcal{R} -Rolle Leaf, according to [Fra06, Definition 5.2]: therefore, it is not always the case that a Rolle Leaf (à la Speissegger) definable in \mathcal{R} and with data definable in \mathbb{R} is a \mathcal{R} -Rolle Leaf à la Fratarcangeli.

Date: 18 Mar 2011.

²⁰¹⁰ Mathematics Subject Classification. Primary 03Cxx; Secondary 12J15, 03C64.

Key words and phrases. Connected, definably connected.

Thanks to Immanuel Halupczok and Philipp Hieronymi for their help in writing this article.

2. Proof of the Main Theorem

 \mathcal{R} is the structure introduced in Lemma 1.1. We have to produce the manifold M. Let C_0 be the double helix in \mathbb{R}^3 obtained as union of the helices

$$\begin{cases} x = \sin(\theta) \\ y = \cos(\theta) \\ z = \theta/\pi, \end{cases} \text{ and } \begin{cases} x = -\sin(\theta) \\ y = -\cos(\theta) \\ z = \theta/\pi, \end{cases}$$

with $0 \le \theta \le 1$. Let C be an embedded 1-dimensional manifold definable in \mathbb{R} , of the "same shape" as C_0 , such that the endpoints of C and C_0 coincide. What we mean is the following:

- (1) C is the union of 2 disjoint C^1 arcs, C_1 and C_2 , where C_1 is the graph of a C^1 function $g_1:[0,1] \to [-1,1]^2$ (with domain the z-axis), and the same for C_2 ;
- (2) $g_1(0) = \langle 0, 1 \rangle, g_1(1) = \langle 0, -1 \rangle, g_2(0) = \langle 0, -1 \rangle, g_1(1) = \langle 0, 1 \rangle;$
- (3) $g_i(t) \in (-1,1)^2$ for i = 1,2 and $t \in (0,1)$;
- (4) We also ask that $\langle 0,0\rangle = g_1'(0) = g_1'(1) = g_2'(0) = g_2'(1)$ (notice that this latter condition is not satisfied by C_0).

For every $n \in N$, let D_n be the double helix obtained from C by translation and dilation along the z-axis, such that the lower endpoints of D_n are $\langle 0, \pm 1, c_n \rangle$ and the upper endpoints are $\langle 0, \pm 1, c_{n+1} \rangle$. Finally, let $M := \bigcup_n D_n$. We claim that M satisfies the conclusion of the Main Theorem. The fact that M is definable in \mathcal{R} and has 2 connected components M_1 and M_2 is clear (where M_1 is the component containing the point $\langle 0, 1, d_0 \rangle$). The fact that M is C^1 is clear from (4). It remains to show that M is definably connected. If not, then M_1 would be definable in \mathcal{R} . However, $\langle 0, 1, z \rangle \in M_1$ iff $z \in Q$: hence, Q would be definable in \mathcal{R} , contradiction.

3. Proof of Lemma 1.1

In this section we sketch the proof of Lemma 1.1. Let $1 < c \in \mathbb{R}$ and P be the sequence $\{c^{2^n} : n \in \mathbb{N}\}$, and $\mathcal{R} := \bar{\mathbb{R}}(P)$. By [MT06, Corollary 7], \mathcal{R} is d-minimal. In the proof of [MT06, Theorem 1], Miller and Tyne establish the following result.

Fact 3.1. Let $\bar{\mathcal{L}} := \langle 0, 1, +, \cdot, < \rangle$ be the language of ordered fields, and $\bar{\mathcal{L}}(P)$ be its extension by the new unary predicate P (thus, \mathcal{R} is naturally an $\bar{\mathcal{L}}(P)$ -structure). Let $\langle \mathbb{F}, P^* \rangle$ be an elementary extension of $\langle \mathbb{R}, P \rangle$. Let b and b' be in P^* , such that b and b' be in P^* , such that satisfy the same $\bar{\mathcal{L}}$ -type over \mathbb{R} . Then, b and b' satisfy the same $\bar{\mathcal{L}}(P)$ -type over \mathbb{R} .

Assume now, by contradiction, that Q, the subset of P given by the elements with even index, is definable in \mathcal{R} , by an $\bar{\mathcal{L}}(P)$ -formula (with parameters from \mathbb{R}) $\phi(x)$. Let $\langle \mathbb{F}, P^* \rangle$ be an ω -saturated elementary extension of \mathcal{R} . Let b be in P^* , such that $b > \mathbb{R}$ and $\phi(b)$ holds. Let b' be the successor of b in P^* . Then, $\neg \phi(b')$ holds. However, b and b' satisfy the same $\bar{\mathcal{L}}$ -type over \mathbb{R} , contradicting Fact 3.1.

References

- [Fra
06] Sergio Fratarcangeli, Rolle leaves and o-minimal structures, Ph.D. Thesis, McMaster
University, April 2006. ↑1
- [Mil05] Chris Miller, Tameness in expansions of the real field, Logic Colloquium '01, Lect. Notes Log., vol. 20, Assoc. Symbol. Logic, Urbana, IL, 2005, pp. 281–316. MR2143901 (2006j:03049) ↑1
- [MT06] Chris Miller and James Tyne, Expansions of o-minimal structures by iteration sequences, Notre Dame J. Formal Logic 47 (2006), no. 1, 93–99, DOI 10.1305/ndjfl/1143468314. MR2211185 (2006m:03065) \uparrow 1, 2
- [Spe99] Patrick Speissegger, The Pfaffian closure of an o-minimal structure, J. Reine Angew. Math. 508 (1999), 189–211, DOI 10.1515/crll.1999.026. MR1676876 (2000j:14093) $\uparrow 1$

Institut für Mathematische Logik, Einsteinstr. 62, 48149 Münster, Germany URL: http://www.dm.unipi.it/~fornasiero/ $E\text{-}mail\ address$: antongiulio.fornasiero@googlemail.com