DEFINABLY CONNECTED NONCONNECTED SETS #### ANTONGIULIO FORNASIERO ABSTRACT. We give an example of a structure R on the real line, and a manifold M definable in R, such that M is definably connected but is not connected. ### 1. Introduction Let \mathcal{R} be an expansion of the real field $\mathbb{R} := \langle \mathbb{R}, +, \cdot, < \rangle$. Let M be a definable subset of \mathcal{R} . We remind that M is called **definably connected** if there is no clopen definable subset Y of M such that $\emptyset \neq Y \neq M$. **Main Theorem.** There exists a structure \mathcal{R} expanding \mathbb{R} and set M definable in \mathcal{R} , such that: - (1) M is a 1-dimensional embedded C^1 submanifold of \mathbb{R}^3 , - (2) M has 2 connected components, - (3) M is definably connected. We know that such \mathcal{R} cannot be o-minimal, because in an o-minimal expansion of \mathbb{R} every definable and definably connected set is arc-connected (and hence connected). However, we can find \mathcal{R} as above which is also d-minimal (see [Mil05] for the definition and main properties of d-minimal structures). The main ingredient is the following result, which follows easily from the proof of [MT06, Theorem 1]; we will give some details of the proof in §3. **Lemma 1.1.** There exists a sequence $P = \langle c_n : n \in \mathbb{N} \rangle$ of real numbers, such that - (1) P is strictly increasing and unbounded; - (2) the set $Q := \{c_n : n \text{ even}\}$ (as a set) is not definable in \mathbb{R} , the expansion of \mathbb{R} with a new predicate for P (where P is also regarded as a set). Moreover, we can find P as above such that \mathcal{R} is also d-minimal. We will show that \mathcal{R} as in the above lemma satisfies the conclusion of the Main Theorem. 1.1. Application to Pfaffian functions. Let \mathcal{R} and M be as in the proof of the Main Theorem. In [Fra06], S. Fratarcangeli introduced the relative Pfaffian closure of \mathbb{R} inside \mathcal{R} . Consider the following 1-form on \mathbb{R}^3 $\omega(x,y,z) \coloneqq dz$. Let L be the xy-coordinate plane. Notice that L is a Rolle Leaf with data $\langle \mathbb{R}^2, \omega \rangle$, according to the definition in [Spe99]. Let X_0 be the translate of M along the z-axis, such that the endpoints of M are on L, X_1 be its mirror image along the xy-plane, and $X \coloneqq X_0 \cup X_1$. Then, X is a 1-dimensional \mathcal{C}^1 manifold which is definable in \mathcal{R} and definably connected, which intersects L in 2 points, but which is never orthogonal to ω . Thus, L is not a \mathcal{R} -Rolle Leaf, according to [Fra06, Definition 5.2]: therefore, it is not always the case that a Rolle Leaf (à la Speissegger) definable in \mathcal{R} and with data definable in \mathbb{R} is a \mathcal{R} -Rolle Leaf à la Fratarcangeli. Date: 18 Mar 2011. ²⁰¹⁰ Mathematics Subject Classification. Primary 03Cxx; Secondary 12J15, 03C64. Key words and phrases. Connected, definably connected. Thanks to Immanuel Halupczok and Philipp Hieronymi for their help in writing this article. #### 2. Proof of the Main Theorem \mathcal{R} is the structure introduced in Lemma 1.1. We have to produce the manifold M. Let C_0 be the double helix in \mathbb{R}^3 obtained as union of the helices $$\begin{cases} x = \sin(\theta) \\ y = \cos(\theta) \\ z = \theta/\pi, \end{cases} \text{ and } \begin{cases} x = -\sin(\theta) \\ y = -\cos(\theta) \\ z = \theta/\pi, \end{cases}$$ with $0 \le \theta \le 1$. Let C be an embedded 1-dimensional manifold definable in \mathbb{R} , of the "same shape" as C_0 , such that the endpoints of C and C_0 coincide. What we mean is the following: - (1) C is the union of 2 disjoint C^1 arcs, C_1 and C_2 , where C_1 is the graph of a C^1 function $g_1:[0,1] \to [-1,1]^2$ (with domain the z-axis), and the same for C_2 ; - (2) $g_1(0) = \langle 0, 1 \rangle, g_1(1) = \langle 0, -1 \rangle, g_2(0) = \langle 0, -1 \rangle, g_1(1) = \langle 0, 1 \rangle;$ - (3) $g_i(t) \in (-1,1)^2$ for i = 1,2 and $t \in (0,1)$; - (4) We also ask that $\langle 0,0\rangle = g_1'(0) = g_1'(1) = g_2'(0) = g_2'(1)$ (notice that this latter condition is not satisfied by C_0). For every $n \in N$, let D_n be the double helix obtained from C by translation and dilation along the z-axis, such that the lower endpoints of D_n are $\langle 0, \pm 1, c_n \rangle$ and the upper endpoints are $\langle 0, \pm 1, c_{n+1} \rangle$. Finally, let $M := \bigcup_n D_n$. We claim that M satisfies the conclusion of the Main Theorem. The fact that M is definable in \mathcal{R} and has 2 connected components M_1 and M_2 is clear (where M_1 is the component containing the point $\langle 0, 1, d_0 \rangle$). The fact that M is C^1 is clear from (4). It remains to show that M is definably connected. If not, then M_1 would be definable in \mathcal{R} . However, $\langle 0, 1, z \rangle \in M_1$ iff $z \in Q$: hence, Q would be definable in \mathcal{R} , contradiction. # 3. Proof of Lemma 1.1 In this section we sketch the proof of Lemma 1.1. Let $1 < c \in \mathbb{R}$ and P be the sequence $\{c^{2^n} : n \in \mathbb{N}\}$, and $\mathcal{R} := \bar{\mathbb{R}}(P)$. By [MT06, Corollary 7], \mathcal{R} is d-minimal. In the proof of [MT06, Theorem 1], Miller and Tyne establish the following result. **Fact 3.1.** Let $\bar{\mathcal{L}} := \langle 0, 1, +, \cdot, < \rangle$ be the language of ordered fields, and $\bar{\mathcal{L}}(P)$ be its extension by the new unary predicate P (thus, \mathcal{R} is naturally an $\bar{\mathcal{L}}(P)$ -structure). Let $\langle \mathbb{F}, P^* \rangle$ be an elementary extension of $\langle \mathbb{R}, P \rangle$. Let b and b' be in P^* , such that b and b' be in P^* , such that satisfy the same $\bar{\mathcal{L}}$ -type over \mathbb{R} . Then, b and b' satisfy the same $\bar{\mathcal{L}}(P)$ -type over \mathbb{R} . Assume now, by contradiction, that Q, the subset of P given by the elements with even index, is definable in \mathcal{R} , by an $\bar{\mathcal{L}}(P)$ -formula (with parameters from \mathbb{R}) $\phi(x)$. Let $\langle \mathbb{F}, P^* \rangle$ be an ω -saturated elementary extension of \mathcal{R} . Let b be in P^* , such that $b > \mathbb{R}$ and $\phi(b)$ holds. Let b' be the successor of b in P^* . Then, $\neg \phi(b')$ holds. However, b and b' satisfy the same $\bar{\mathcal{L}}$ -type over \mathbb{R} , contradicting Fact 3.1. ## References - [Fra
06] Sergio Fratarcangeli, Rolle leaves and o-minimal structures, Ph.D. Thesis, McMaster
University, April 2006. ↑1 - [Mil05] Chris Miller, Tameness in expansions of the real field, Logic Colloquium '01, Lect. Notes Log., vol. 20, Assoc. Symbol. Logic, Urbana, IL, 2005, pp. 281–316. MR2143901 (2006j:03049) ↑1 - [MT06] Chris Miller and James Tyne, Expansions of o-minimal structures by iteration sequences, Notre Dame J. Formal Logic 47 (2006), no. 1, 93–99, DOI 10.1305/ndjfl/1143468314. MR2211185 (2006m:03065) \uparrow 1, 2 - [Spe99] Patrick Speissegger, The Pfaffian closure of an o-minimal structure, J. Reine Angew. Math. 508 (1999), 189–211, DOI 10.1515/crll.1999.026. MR1676876 (2000j:14093) $\uparrow 1$ Institut für Mathematische Logik, Einsteinstr. 62, 48149 Münster, Germany URL: http://www.dm.unipi.it/~fornasiero/ $E\text{-}mail\ address$: antongiulio.fornasiero@googlemail.com