
LOCAL ANALYSIS FOR SEMI-BOUNDED GROUPS
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Abstract. An o-minimal expansion M = 〈M, <, +, 0, . . . 〉 of an ordered

group is called semi-bounded if it does not expand a real closed field. Pos-

sibly, it defines a real closed field with bounded domain I ⊆ M . Let us call a
definable set short if it is in definable bijection with a definable subset of some

In, and long otherwise. Previous work by Edmundo and Peterzil provided

structure theorems for definable sets with respect to the dichotomy ‘bounded
versus unbounded’. In [Pet3], Peterzil conjectured a refined structure theorem

with respect to the dichotomy ‘short versus long’. In this paper, we prove

Peterzil’s conjecture. In particular, we obtain a quantifier elimination result
down to suitable existential formulas in the spirit of [vdD1]. Furthermore, we

introduce a new closure operator that defines a pregeometry and gives rise
to the refined notions of ‘long dimension’ and ‘long-generic’ elements. Those

are in turn used in a local analysis for a semi-bounded group G, yielding the

following result: on a long direction around each long-generic element of G the
group operation is locally isomorphic to 〈Mk, +〉.

1. Introduction

For an o-minimal expansion M = 〈M,<,+, 0, . . . 〉 of an ordered group, there
are naturally three possibilities: M is either (a) linear, (b) semi-bounded (and
non-linear), or (c) it expands a real closed field. Let us define the first two.

Definition 1.1. Let Λ be the set of all partial ∅-definable endomorphisms of 〈M,<
,+, 0〉, and B the collection of all bounded definable sets. Then M is called linear
([LP]) if every definable set is already definable in 〈M,<,+, 0, {λ}λ∈Λ〉, and it
is called semi-bounded ([Ed, Pet1]) if every definable set is already definable in
〈M,<,+, 0, {λ}λ∈Λ, {B}B∈B〉.

Obviously, if M is linear then it is semi-bounded. By [PeSt], M is not linear if
and only if there is a real closed field defined on some bounded interval. By [Ed],
M is not semi-bounded if and only if M expands a real closed field if and only if
for any two intervals there is a definable bijection between them.

It is largely evident from the literature that among the three cases, (a) and (c)
have provided the most accommodating settings for studying general mathematics.
For example, the definable sets in a real closed field are the main objects of study
in semialgebraic geometry (a classical reference is [DK]). Moreover, o-minimal
linear topology naturally extends the classical subject of piecewise linear topology

Date: March 10, 2010.
2000 Mathematics Subject Classification. 03C64.
Key words and phrases. O-minimality, semi-bounded structures, definable groups,

pregeometries.
Research supported by the Fundação para a Ciência e a Tecnologia grants

SFRH/BPD/35000/2007 and PTDC/MAT/101740/2008.

1



2 PANTELIS E. ELEFTHERIOU

and has the potential to tackle problems that arise in the study of algebraically
closed valued fields (see, for example, [HL]). From an internal aspect, the study
of definable groups in both of these two settings has been rather successful (see
further comments below).

On the other hand, the middle case (b) remains as elusive as interesting from
a classification point of view. Although a local field may be definable, and thus
the definable structure can get quite rich, there is no global field, and hence many
known technics do not apply. In particular, little is known with respect to structure
theorems of definable groups in this setting. In this paper, we set forth a project
of analyzing semi-bounded groups, mainly motivated by two conjectures asked by
Peterzil in [Pet3]. Let us describe our project.

For the rest of the paper, we fix a semi-bounded o-minimal expansion
M = 〈M,<,+, 0, . . . 〉 of an ordered group, which is not linear. We fix an
element 1 > 0 such that a real closed field, whose universe is (0, 1) and
whose order agrees with <, is definable in M.

Let L denote the underlying language of M. By ‘definable’ we mean ‘definable
in M’ possibly with parameters. A group G is said to be definable if both its
domain and its group operation are definable. Definable sets and groups in this
setting are also referred to as semi-bounded. If they are defined in the linear reduct
Mlin = 〈M,<,+, 0, {λ}λ∈Λ〉 of M, we call them semi-linear. The underlying
language of Mlin is denoted by Llin.

An interval I ⊆M is called short if there is a definable bijection between I and
(0, 1); otherwise, it is called long. An element a ∈M is called short if either a = 0
or (0, |a|) is a short interval; otherwise, it is called tall. A tuple a ∈ Mn is called
short if |a| := |a1|+ · · ·+ |an| is short, and tall otherwise. A definable set X ⊆Mn

(or its defining formula) is called short if it is in definable bijection with a subset of
(0, 1)n; otherwise, it is called long. Notice that this is compatible, for n = 1, with
the notion of a short interval.

In [Pet1] and [Ed] the authors proved structure theorems about definable sets
and functions. (See also [Bel] for an analysis of semi-bounded sets in a different con-
text.) The gist of those theorems was that the definable sets can be decomposed into
‘cones’, which are bounded sets ‘stretched’ along some unbounded directions. Con-
jecture 1 from [Pet3] asks if we can replace ‘bounded’ by ‘short’, and ‘unbounded’
by ‘long’, in the definition of a cone and still obtain a structure theorem. We answer
this affirmatively (the precise terminology to be given in Section 2 below).

Theorem 2.23 (Refined Structure Theorem). Every A-definable set X ⊆Mn is a
finite union of A-definable long cones. (In particular, a short set is a 0-long cone.)
Furthermore, for every A-definable function f : X ⊆ Rn → R, there is a finite
collection C of A-definable long cones, whose union is X and such that f is almost
linear with respect to each long cone in C.

As noted in Remark 2.24 below, it is not always possible to achieve disjoint
unions in our theorem.

This theorem implies, in particular, a quantifier elimination result down to suit-
able existential formulas in the spirit of [vdD1] (see Corollary 2.25). The proof of
the Refined Structure Theorem involves an induction on the ‘long dimension’ of
definable sets, which is a refinement of the notion of ‘linear dimension’ from [Ed].
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We then turn our attention to semi-bounded groups. Groups definable in o-
minimal structures have been a central object of study in model theory. The climax
of that study was the work around Pillay’s Conjecture (PC) and Compact Dom-
ination Conjecture (CDC), stated in [Pi3] and [HPP], respectively. In the linear
case, (PC) was solved in [ElSt] and (CDC) in [El]. The proofs involved a structure
theorem for semi-linear groups from [ElSt] that states that every such group is a
quotient of a suitable convex subgroup of 〈Mn,+〉 by a lattice. In the field case,
(PC) was solved in [HPP] and (CDC) in [HP] (see also [Ot] for an overview of all
preceding work). In the case of semi-bounded groups, (PC) was solved in [Pet3]
after developing enough theory to allow the combination of the linear and the field
cases. The (CDC) for semi-bounded groups remains open. Conjecture 2 from [Pet3]
asks if we can prove a structure theorem for semi-bounded groups in the spirit of
[ElSt]. In the second part of this paper, we prove a local theorem for semi-bounded
groups which we see as a first step towards Conjecture 2 from [Pet3].

The proof of the local theorem involves a new notion of a closure operator in
M, the ‘short closure operator’ scl, which makes (M, scl) into a pregeometry. The
rising notion of dimension coincides with the long dimension (Corollary 4.10). This
allows us to make use of desirable properties of ‘long-generic’ elements and ‘long-
large’ sets, by virtue of Claim 4.13 below. The local theorem is the following:

Theorem 5.3 Let G = 〈G,⊕〉 be a definable group of long dimension k. Then
every long-generic element a in G is contained in a k-long cone C ⊆ G, such that
for every x, y ∈ C,

x	 a⊕ y = x− a+ y.

In particular, on C, G is locally isomorphic to 〈Mk,+〉.

We expect that Theorem 5.3 will be the start point in subsequent work for
analyzing semi-bounded groups globally.

Structure of the paper and a few words for the proofs. Section 2 deals with the
proof of the Refined Structure Theorem. We first introduce the basic objects of
long cones and long dimension, then we generalize several lemmas from [Ed] and
finally prove our theorem.

Some difficulties that are incorporated in handling the long dimension are worked
out in Section 3, and they are the following: although it is fairly easy to see that
a definable set X which is the cartesian product of two definable sets with long
dimensions l and m has long dimension l + m (Lemma 2.21(iv)), it is not a priori
clear why if a definable set X is the union of a definable family of fibers each of
long dimension m over a set of long dimension n, then X has long dimension n+m.
We establish this in Lemma 3.2.

Section 4 deals with the new pregeometry coming from the ‘short closure oper-
ator’.

In Section 5 we prove the local theorem for semi-bounded groups.

Acknowledgements. I wish to thank M. Edmundo, A. Günaydin and Y. Peterzil for
numerous discussions that were helpful in this work. Early steps of this work were
carried out during my stay at the Fields Institute in Spring 2009, which I thank for
their hospitality.
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2. Semi-bounded sets

2.1. Preliminaries. We assume familiarity with the basic notions from o-minimality,
such as the inductive definition of cells either as graphs or ‘cylinders’ of definable
continuous functions, the cell decomposition theorem, dimension, generic elements,
definable closure, etc. The reader may consult [vdD2] or [Pi2] for these notions.

Let us fix some notation. For every i = 1, . . . , n, we denote by ei the standard
i-th unit vectors from Λn. For v ∈ Λ, we denote by dom(v) the domain of v. As
observed in [Pet3, Section 6], Λ modulo a suitable equivalence relation is an ordered
field, implying that for every λ, µ ∈ Λ, λµ = µλ. Given a > 0 in M , let Ma be the
subspace of 〈M,+〉 generated by the interval (−a, a). We let Λa denote the set of
restrictions to Ma of all those elements in Λ whose domain contains Ma. That is,

Λa = {v�Ma
: v ∈ Λ and Ma ⊆ dom(v)}.

By the above, Λa can easily be equipped with the structure of an ordered field.
A definable function f : A ⊆Mn →M is called affine on A if it has form

f(x1, . . . , xn) = λ1x1 + · · ·+ λnxn + a,

for some fixed λi ∈ Λ and a ∈ Mn. Given a definable function f : A ×M → M ,
with A ⊆Mn, we denote

∆tf(a, x) := f(a, x+ t)− f(a, x),

for all x, t ∈M and a ∈ A.

Lemma 2.1. Let f : I → Mn be a definable function, where I is a long interval.
If f(I) is short, then f is piecewise constant except for a finite collection of short
subintervals of I.

Proof. The function f is piecewise strictly monotone or constant. If it were strictly
monotone on a long subinterval of I, then on that subinterval f would be a definable
bijection between a long interval and a short set. �

Lemma 2.2. Let f : X ⊆Mn →M be a definable function. For every i = 1, . . . , n,
and x̄i := (x1, . . . , xi−1, xi+1, . . . , xn) ∈Mn−1, let

Xx̄i = {xi ∈M : (x1, . . . , xn) ∈ X}

be the fiber of X above x̄i and fx̄i : Xx̄i → M the map fx̄i(xi) = f(x̄). Consider
the set

A = {ā ∈ X : ∀i ∈ {1, . . . , n}, fx̄i is monotone in an interval containing ai}.

Then dim(X \A) < dim(X).

Proof. We may assume that f and X are ∅-definable. The set A is then also ∅-
definable and it clearly contains every generic element of X. �

2.2. Long cones. Here we refine the notion of a ‘cone’ from [Ed]. First let us
introduce some notation and terminology. If v = (v1, . . . , vn) ∈ Λn and t ∈ M , we
denote vt := (v1t, . . . , vnt). We say that v1, . . . , vk ∈ Λn are M -independent if for
all t1, . . . , tk ∈M ,

v1t1 + · · ·+ vktk = 0 implies t1 = · · · = tk = 0.
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If v = (v1, . . . , vn) ∈ Λn and µ ∈ Λ, we denote µv := (µv1, . . . , µvn). We say that
v1, . . . , vk ∈ Λn are Λ-independent if for all µ1, . . . , µk in Λ,

µ1v1 + · · ·+ µkvk = 0 implies µ1 = · · · = µk = 0.

Definition 2.3. Let k ∈ N. A k-long cone C ⊆Mn is a definable set of the form{
b+

k∑
i=1

viti : b ∈ B, ti ∈ Ji

}
,

where B ⊆ Mn is a short cell, v1, . . . , vk ∈ Λn are M -independent and J1, . . . , Jk
are long intervals each of the form (0, ai), ai ∈M>0 ∪ {∞}, with Ji ⊆ dom(vi). So
a 0-long cone is just a short cell. A long cone is a k-long cone, for some k ∈ N. We
say that the long cone C is normalized if for each x ∈ C there are unique b ∈ B
and t1 ∈ J1, . . . , tk ∈ Jk such that x = b+

∑k
i=1 viti. In this case, we write:

C = B +
k∑
i=1

viti|Ji.

In what follows, all long cones are assumed to be normalized, and we thus drop the
word ‘normalized’. We also often refer to v̄ = (v1, . . . , vk) ∈ Mn2

as the direction
of the long cone C. If we want to distinguish some vj , say vn, from the rest of the
vi’s, we write:

C = B +
k−1∑
i=1

viti|Ji + vn|Jn.

Remark 2.4. (i) The λ1, . . . , λn ∈ Λn are M -independent if and only if for any/some
α1, . . . , αn ∈M>0 the ‘open n-parallelogram’ ([ElSt])

H = {λ1t1 + · · ·+ λntn : −αi < ti < αi}

has dimension n. Indeed, the (⇒) is straightforward, whereas the (⇐) is by [El,
Corollary 2.5].

(ii) It follows that a (normalized) k-long cone C = B+
∑k
i=1 viti|Ji has dimension

k if and only if B is finite. In fact, dim(C) = dim(B) + k.

Definition 2.5. Let C = B +
∑k
i=1 viti|Ji be a k-long cone and f : C → M a

definable function. We say that f is almost linear with respect to C if there are
µ1, . . . , µk ∈ Λn and an extension f̃ of f to {b +

∑k
i=1 viti : b ∈ B, ti ∈ {0} ∪ Ji},

such that

∀b ∈ B, t1 ∈ J1, . . . , tk ∈ Jk, f̃

(
b+

k∑
i=1

viti|Ji

)
= f̃(b) +

k∑
i=1

µiti|Ji.

Remark 2.6. Let C = B +
∑k
i=1 viti|Ji be a k-long cone.

(i) If f : C →M is almost linear with respect to C, then, since C is normalized,
the µ1, . . . , µk and f̃ as above are unique. For this reason, we often abuse notation
and write f for f̃ .

(ii) If B = {b} and f : C → M is a definable function, then f is almost linear
with respect to C if and only if f is affine on C.

(iii) If f : C →M is almost linear with respect to C, then f(C) is a k-long cone.
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(iv) Let j ∈ {1, . . . , k} and assume Jj = (0, aj) with aj ∈M . Then

C = B + vjaj +
k∑
i=1

v′iti|Ji,

where v′j = −vj and for i 6= j, v′i = vi. If, moreover, f : C → M is almost linear
with respect to C and of the form

f

(
b+

k∑
i=1

viti|Ji

)
= f(b) +

k∑
i=1

µiti|Ji,

then

f

(
b+ vjaj +

k∑
i=1

v′iti|Ji

)
= f(b+ vjaj) +

k∑
i=1

µ′iti|Ji,

where µ′j = −µj and for i 6= j, µ′i = µi.

2.3. Generalizing the Lemma on Subcones [Ed, Lemma 3.4]. In this section
we prepare the ground for the proof of the Refined Structure Theorem by suitably
generalizing certain lemmas from [Ed].

Lemma 2.7. Let w, v1, . . . , vm ∈ Λn.
(i) If wt = v1t1 + · · · + vmtm for some t, t1, . . . , tm ∈ M , t 6= 0, then for every

t′ ∈M , there are t′1, . . . , t
′
m ∈ dom(w) such that wt′ = vt′1 + · · ·+ vmt

′
m.

(ii) If, in addition, b′+ws = b+
∑m
i=1 visi for some b, b′ ∈Mn and s, s1, . . . , sm ∈

M , then for every s′ ∈ dom(w), there are s′1, . . . s
′
m ∈ M such that b′ + ws′ =

b+
∑m
i=1 vis

′
i.

Proof. (i) This follows from [ElSt, Lemma 3.4], whose proof used only the fact that
M is an o-minimal expansion of an ordered group. Indeed, if |t′| < |t|, then by
convexity of the set A = {v1x1+· · ·+vmxm : xi ∈ dom(vi)} and the aforementioned
lemma, wt′ ∈ A. If |t′| > |t|, then by convexity of Mn \A, if it were wt′ 6∈ A, then
wt 6∈ A, a contradiction.

(ii) By (i), there are p1, . . . , pm ∈M such that

b′ + ws′ = b′ + ws+ w(s′ − s) = b+
m∑
i=1

visi +
m∑
i=1

vipi = b+
m∑
i=1

vi(si − pi).

Let s′i = si − pi. �

Lemma 2.8. Let w1, . . . , wn ∈ Λn be M -independent and λ1, . . . , λn ∈ Λn. Let
t1, . . . , tn ∈M be non-zero elements. Assume that:

w1t1 = λ1s
1
1 + · · ·+ λns

n
1

...

wntn = λ1s
1
n + · · ·+ λns

n
n



LOCAL ANALYSIS FOR SEMI-BOUNDED GROUPS 7

for some sji ∈M . Then there non-zero a1, . . . , an ∈M and bji ∈M , i, j = 1, . . . , n,
such that:

λ1a1 = w1b
1
1 + · · ·+ wnb

n
1

...

λnan = w1b
1
n + · · ·+ wnb

n
n

Proof. In the Appendix. �

Notation. If J = (0, a), we denote ±J := (−a, a). Let C = B +
∑m
i=1 viti|Ji be an

m-long cone. We set:

〈C〉 :=

{
m∑
i=1

viti : ti ∈ ±Ji

}
.

Lemma 2.9 (Lemma on subcones). If C ′ = B′ +
∑m′

i=1 witi|J ′i and C = B +∑m
i=1 viti|Ji are two long cones such that C ′ ⊆ C ⊆ Mn, then 〈C ′〉 ⊆ 〈C〉 (and

hence m′ ≤ m).

Proof. Fix b′ ∈ C ′ and j ∈ {1, . . . ,m′}, and denote for convenience J := J ′j . Then
∀u ∈ J, b′+wju ∈ C ′ ⊆ C, so there exist a unique b ∈ B and, for each i ∈ {1, . . . ,m},
a unique ti ∈ Ji such that b′ + wju = b +

∑m
i=1 vi(ti). This yields the following

definable functions:
• β : J → B, with u 7→ β(u)
• for each i ∈ {1, . . . ,m}, ti : J → Ji, with u 7→ ti(u),

where

b′ + wju = β(u) +
m∑
i=1

vi(ti(u)).

By Lemma 2.1 there is a long subinterval I ⊆ J on which β(u) is constant and
equal, say, to b. Now pick any u1 < u2 in I. We have:

wj(u2 − u1) =
m∑
i=1

vi(ti(u2)− ti(u1)).

Hence the condition of Lemma 2.7(i) is satisfied for w = wj . The condition of
Lemma 2.7(ii) is also true, since b′ + wju ∈ C.

Now fix any t′ ∈ J . We show that wjt′ ∈ 〈C〉. Let t0 ∈ J be small enough so
that s := t′ + t0 is still in J . By Lemma 2.7(ii) and since b′ + wjs ∈ C ′ ⊆ C, there
are si ∈ Ji such that

(1) b′ + wjs = b+
m∑
i=1

visi.

Similarly, there are t0i ∈ Ji such that

(2) b′ + wjt0 = b+
m∑
i=1

vit
0
i ,

By (1) and (2), we conclude that:

wjt
′ = wj(s− t0) =

m∑
i=1

vi(si − t0i ) ∈ 〈C〉.
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Finally, the fact that m′ ≤ m follows easily from Lemma 2.8. �

Remark 2.10. Observe that it is not always possible to get wjt
′ ∈ 〈C〉>0 :=

{
∑m
i=1 viti : ti ∈ Ji}, as in the corresponding conclusion of [Ed, Lemma 3.4].

Lemma 2.11. Let C ′ = B′ +
∑k′

i=1 v
′
iti|J ′i ⊆ C = B +

∑k
i=1 viti|Ji be two long

cones and f : C →M a definable function which is almost linear with respect to C.
Then f is almost linear with respect to C ′.

Proof. By the Lemma on Subcones, for each j = 1, . . . , k′, there is t > 0 such that
v′jt ∈ 〈C〉. It is then an easy exercise to check that f is affine in each v′j ; that is,
for every b′ ∈ B′, t1 ∈ J ′1, . . . , tk ∈ J ′k, and s > 0 such that tj + s ∈ J ′j ,

f

b′ + ∑
i 6=j

0<i,j≤k′

v′iti + v′j(tj + s)

− f
b′ + ∑

i 6=j
0<i,j≤k′

v′iti + v′jtj


is linear. This exactly means that f is almost linear with respect to C ′. �

2.4. Some more lemmas. The proofs of the following two lemmas are straight-
forward computations and are left to the reader.

Lemma 2.12. Any v1, . . . , vl ∈ Λn are Λ-independent if and only if they are M -
independent.

Lemma 2.13. Let v1, . . . , vl ∈ Mn and denote by π : Mn → Mn−1 the usual
projection. The following are equivalent:

(i) There are λ1, . . . , λn−1 ∈ Λ, such that for all t1, . . . , tl ∈M with ti ∈ dom(vi),
v1t1 + · · ·+ vltl has form:

v1t1 + · · ·+ vltl = (a1, . . . , an−1, λ1a1 + · · ·+ λn−1an−1).

(ii) π(v1), . . . , π(vl) are Λ-independent.

Corollary 2.14. If D = b +
∑l
i=1 viti|Ji ⊆ Mn is an l-long cone, then some

projection onto M l is a bijection whose image is an l-long cone.

Proof. By Lemmas 2.12 and 2.13. �

For the next lemma, recall the the notationMa from the beginning of this section.

Lemma 2.15. Let a > 0 in M abd v1, . . . , vl ∈ (Λa)n be M -independent. Then,
for every t1, . . . , tl ∈Ma,

v1t1 + · · ·+ vltl is short ⇒ t1, . . . , tl are short.

Proof. Since vi =

(
v1i
...
vn

i

)
, i = 1, . . . , l, are Λ-independent, the matrix

A =

v
1
1 . . . v1

l
... · · ·

...
vn1 . . . vnl


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has rank l. Let B be an l × l submatrix of A of rank l. Then B

(
t1
...
tl

)
=

(
s1
...
sl

)
,

for some short s1, . . . , sl ∈M . Hence

(
t1
...
tl

)
= B−1

(
s1
...
sl

)
and each row of the last

matrix consists of a short element. �

Corollary 2.16. Let C = b +
∑k
i=1 viti|Ji be a k-long cone. Let λ ∈ Λk be such

that for some positive t ∈ M , λt ∈ 〈C〉. Then there is a tall b ∈ M such that
λb ∈ 〈C〉.
Proof. Without loss of generality, we may assume that for some a, each vi ∈ (Λa)n.
Fix i. Let α = sup{x ∈M : λx ∈ 〈C〉}. It is easy to see that α = v1t1 + · · ·+ vktk,
with at least one of t1, . . . , tk, say ti, equal to |Ji|. Hence, by Lemma 2.15, α is tall.
Take b = 1

2α (since α is not in 〈C〉). �

Corollary 2.17. Let C ⊆ C ′ be two k-long cones and let v̄ be the direction of C ′.
Then there is a k-long cone of direction v̄ contained in C.

Proof. By the Lemma on Subcones, Lemma 2.8 and Corollary 2.16. �

2.5. Long dimension. Here we suitably refine the notion of linear dimension from
[Ed].

Definition 2.18. Let Z ⊆ Mn be a definable set. Then the long dimension of Z
is defined to be

lgdim(Z) = max{k : Z contains a k-long cone}.
The following lemma is a kind of converse to the Lemma on Subcones:

Lemma 2.19. Let C = b+
∑k
i=1 viti|Ji be a k-long cone. Let w1, . . . , wk ∈ Λn be

M -independent such that for every i, there is a positive si ∈M , wisi ∈ 〈C〉. Then
there is a k-long subcone C ′ ⊆ C of the form C ′ = c +

∑k
i=1 witi|(0, κi), for some

tall κi ∈M .

Proof. By Corollary 2.16, we may assume that each si is tall. Assume Ji = (0, ai).
Let c = b +

∑k
i=1

1
2viai and for each i, let κi = 1

2k |si|. Using Lemma 2.7(i), one
can easily check that C ′ = c+

∑k
i=1 witi|(0, κi) ⊆ C. �

The following corollary will not be used until Section 5.

Corollary 2.20. Let X ⊆Mn be a definable set of long dimension k. If C ⊆ X×X
is a 2k-long cone, then there are k-long cones C1, C2 ⊆ X, such that C1 ×C2 ⊆ C.

Proof. We may assume that C = b +
∑2k
i=1 viti|Ji. Let π : M2n → M2k be the

bijection given by Corollary 2.14. Denote by p1, p2 : Mn → Mk the obvious
projections (indeed, bijections) from Mn onto Mk so that π(C) ⊆ p1(X)× p2(X).
By Lemma 2.19, π(C) contains a 2k-long cone

C ′ = (b1, b2) +
2k∑
i=1

eiti|(0, a).

The pullbacks

C1 = p−1
1

(
b1 +

k∑
i=1

eiti|(0, a)
)
∩X
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and

C2 = p−1
2

(
b2 +

k∑
i=1

eiti|(0, a)
)
∩X

have the desired properties. �

Lemma 2.21. Let X,Y,X1, . . . , Xk be definable sets. Then:
(i) lgdim(X) ≤ dim(X).

(ii) X ⊆ Y ⊆Mn ⇒ lgdim(X) ≤ lgdim(Y ) ≤ n.
(iii) If C is a n-long cone, then lgdim(C) = n.
(iv) lgdim(X × Y ) = lgdim(X) + lgdim(Y ).
(v) lgdim(X1 ∪ · · · ∪Xk) = max{lgdim(X1), . . . , lgdim(Xk)}.

Proof. (i) and (ii) are clear, by Remark 2.4. Item (iii) follows from the Lemma on
Subcones 2.9. The proof of (iv) is word-by-word the same with the proof of [EdEl,
Fact 2.2(3)] after replacing ‘ldim’ by ‘lgdim’ and the notion of a cone by that of a
long cone we have here.

For (v), we prove by parallel induction on n ≥ 1 the following two statements.

(1)n For all k and all definable X1, . . . , Xk such that lgdim(X1 ∪ · · · ∪ Xk) = n,
there exists i ∈ {1, . . . , k} such that lgdim(Xi) = n.

(2)n Let C ⊆Mn be an n-long cone. For any definable set X ⊆ C with dim(X) ≤
n− 1 we have lgdim(C \X) = n.

STEP I: (2)1 follows from [Pet3, Lemma 3.4(2)].

STEP II: (1)n−1 and (2)l for l ≤ n− 1 imply (2)n, for n ≥ 2. Assume (1)n−1 and
(2)l for all l ≤ n− 1. We perform a sub-induction on dim(X). Observe that after
some suitable linear transformation we may assume that C has form

C =
n∑
i=1

eiti|Ji,

where the ei’s are the standard basis vectors.
If dim(X) = 0, then X is finite and, without loss of generality, we may assume

that X contains only one point a. Then it is easy to see that C \ {a} contains 2n

disjoint long cones of the form a+
∑n
i=1 eiti|J ′i such that, for at least one of them,

all J ′i ’s are long.
Suppose the result holds for all X with dim(X) ≤ l < n − 1, and assume now

that dim(X) = l + 1. If l + 1 < n − 1, then dim(π(X)) ≤ n − 2 and by (2)n−1,
lgdim(π(C) \ π(X)) = n− 1, which implies that lgdim(C \X) = n, by (iv).

So now assume that dim(X) = n − 1. By cell decomposition and by the Sub-
Inductive Hypothesis, we may assume that X is a finite union of cells X1, . . . , Xk,
each of dimension n− 1. We perform a second sub-induction on k.
Base Step: suppose k = 1. If X1 is not the graph of a function or lgdim(X1) < n−1,
then by (2)n−1 or (1)n−1, respectively, we have lgdim(π(C)\π(X1)) = n−1, which
implies lgdim(C \X) = n, by (iv). Thus it remains to examine the case where X1

is the graph of a function f : π(X1) → M and lgdim(X1) = n − 1. In this case,
lgdim(π(X1)) = lgdim(X1) = n− 1, where the first equality is by Lemma 2.13. Let
D ⊆ π(X1) be a (n− 1)-long cone. Let

A = {ā ∈ D : ∀i ∈ {1, . . . , n− 1}, fx̄i is monotone around ai}.
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according to the notation of Lemma 2.2. By that lemma,

dim(D \A) < dim(D) = n− 1.

Hence, by (2)n−1, A contains an (n− 1)-long cone E, and by Lemma 2.19, we may
assume that E = b +

∑n−1
i=1 eiti|(0, κ), for some tall κ. Let ā = b +

∑n−1
i=1 ei

1
2κ.

Since f is continuous on E, each fx̄i is monotone on its domain (0, κ). Without loss
of generality, we may assume that ∀i ∈ {1, . . . , n − 1}, fx̄i is increasing on (0, κ).
We split into two cases:

Case 1: f(ā) is short. Then the n-long cone

E1 = (b, f(ā)) +
n−1∑
i=1

eiti|(0, κ/2) + entn|Jn/2

is contained in X1.
Case 2: f(ā) is tall. Then the n-long cone

E1 = (ā, 0) +
n−1∑
i=1

eiti|(0, κ/2) + entn|Jn/2

is contained in X1. This completes the case k = 1.
Inductive Step: suppose the result holds for any X which is a union of less than k
cells of dimension n−1, and assume now that X is the union of the cells X1, . . . , Xk,
each of dimension n − 1. By Second Sub-Inductive Hypothesis, there is an n-long
cone F contained in C \ (X1 ∪ · · · ∪ Xk−1). Now, we reduce to the Base Step
for C equal to F and X1 equal to Xk. This completes the proof of the second
sub-induction, as well as that of Step II of the original induction.

STEP III: (2)n ⇒(1)n. Without loss of generality, we may assume that k = 2 and
X1 and X2 are disjoint. Since lgdim(X1∪X2) = n, we may also assume that X1∪X2

is an n-long cone C of dimension n. If X = bd(X1)∪ bd(X2), then dim(X) ≤ n− 1.
By (2)n, we conclude that either X1 or X2 contains an n-long cone. �

Lemma 2.22. Let X = (f, g)π(X) be a cylinder in Mn+1 such that π(X) is a k-long
cone and f and g are almost linear with respect to π(X). If there is an x ∈ π(X)
such that π−1(x) is long, then lgdim(X) = k + 1.

Proof. If k = 0, then there is an 1-long cone π−1(x) ⊆ X. Now assume k > 0 and
that for some x ∈ π(X), π−1(x) =

(
f(x), g(x)

)
is long. Since f, g are almost linear

on π(X), there is clearly a k-long cone Cx = x+
∑k
i=1 viti|(0, ai) ⊆ π(X) such that

for each element y ∈ Cx, g(y)−f(y) must be tall. Let α = inf{g(y)−f(y) : y ∈ Cx}.
Since f is affine,

∀t1 ∈ J1, . . . , tk ∈ Jk, f

(
x+

k∑
i=1

viti|Ji

)
= f(x) +

k∑
i=1

µiti|Ji,

for some µ1, . . . , µk ∈ Λn. Then clearly the (k + 1)-long cone

(
x, f(x)

)
+

k∑
i=1

(vi, µi)ti|Ji + en+1tk+1|(0, α)

is contained in X. �
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2.6. Proof of the Refined Structure Theorem. We are now in a position to
prove the main result of this paper.

Theorem 2.23. (Refined Structure Theorem). Let X ⊆Mn be an A-definable set.
Then

(i) X is a finite union of A-definable long cones.
(ii) If X is the graph of an A-definable function f : Y → M , for some Y ⊆

Mn−1, then there is a finite collection C of A-definable long cones, whose union is
Y and such that f is almost linear with respect to each long cone in C.

Proof. By cell decomposition we may assume that X is an A-definable cell. We
prove (i) and (ii), along with (iii) below, by induction on 〈n, lgdim(X)〉.

(iii) In the notation from (ii), Y contains an A-definable lgdim(Y )-long cone
such that f is almost linear with respect to it.

If n = 1, then (i), (ii) and (iii) are clear. Assume the Inductive Hypothesis (IH):
(i), (ii) and (iii) hold for {〈n, k〉}k≤n, and let X ⊆Mn+1 with lgdim(X) = k ≤ n+1.

Case (I): dim(X) < n+ 1. So, after perhaps permuting the coordinates, we may
assume that X is the graph of a continuous A-definable function f : Y →M .

(i) This is clear, by (IH)(ii) and Remark 2.6(iii).

(ii) By (IH)(i), we may further assume that Y = B′ +
∑k
i=1 viti|Ji is an A-

definable k-long cone, where k ≤ n. By applying a suitable linear transformation,
we may assume that Y = B +

∑k
i=1 en−k+iti|Ji. Let π : Mn → Mn−1 be the

usual projection. By [Pet3, Lemma 4.10] and its proof, there are A-definable linear
functions λ1, . . . , λl, A-definable functions a0, . . . , am : π(Y ) → M and a short
positive element b ∈ dcl(A) of M , such that for every x ∈ π(Y ),

• 0 = a0(x) ≤ a1(x) ≤ · · · ≤ am−1(x) ≤ am(x) = en|Jk|
• for every i, either |ai+1(x) − ai(x)| < b or the map t 7→ ∆tf(x̄, ai(x)) on

(0, ai+1(x)− ai(x)) is the restriction of some λj ; that is

(3) f(x̄, ai(x) + t)− f(x̄, ai(x)) = λj(t).

For every z = (x, y) ∈ Y , let bz := ai+1(x) − ai(x), where y ∈ (ai(x), ai+1(x)).
Observe that bz ∈ dcl(∅). Set

Y0 = {z ∈ Y : bz ≥ b},

and consider (by cell decomposition) a partition C of Y0 into cells so that for every
Z ∈ C,

• there is some λj such that the restriction of f on Z satisfies (3) above,
• Z is contained in {(x, y) : ai(x) ≤ y ≤ ai+1(x)}.

By (IH)(ii), there is a finite collection C′ of A-definable long cones, whose union is
π(Z) and such that each ai is almost linear with respect to each C ∈ C′. By (IH)(i),
there is a finite collection C′′ of A-definable long cones, whose union is Z ∩π−1(C).
Observe now that Z ∩ π−1(C) is contained in some long cone W on which f is
almost linear; namely, if C = D +

∑l
i=1 witi|Ki, then W is of the form

W = D × {d}+
l∑
i=1

witi|Ki + entn|Kn,
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where Kn is a long interval of length equal to max{ai+1(x) − ai(x) : x ∈ C}. By
Lemma 2.11, we conclude that f is almost linear with respect to each long cone in
C′′.

It remains to prove (i) for Y \ Y0. But this is given by (IH)(ii), since, in fact,
lgdim(Y \Y0) < k: assuming not, apply (IH)(iii) to get a k-long cone C ⊆ Y \Y0 ⊆
Y . By Corollary 2.17, there is a tall a ∈ M such that ena ∈ C. But then f is
linear in xn on some long interval contained in Y \ Y0, a contradiction. Hence
lgdim(Y \ Y0) < k.

(iii) In the above notation, for every i ∈ {0, . . . ,m− 1}, the set

Pi := {x̄ ∈ π(Y ) : ai+1(x̄)− ai(x̄) ≥ b}

is A-definable and, since Jn is long, π(Y ) =
⋃m−1
i=0 Pi. By Lemma 2.21(v), one of

the Pi’s, say Pj , must have long dimension k − 1. By (IH)(iii), there is a finite
collection C′ of A-definable long cones, whose union is Wj and such that each aj
and aj+1 are almost linear with respect to each C ∈ C′. By Lemma 2.22, there is
an A-definable k-long cone E ⊆ Y and, as before, f is almost linear with respect
to E.

Case (II): dim(X) = n + 1. The argument in this case is a combination of
the proofs of [ElSt, Lemma 3.6] and of [Pet1, Theorem 3.1]. So X = (g, h)Y is a
cylinder. By (IH)(ii) and Lemma 2.11, we may assume that Y = B +

∑k
i=1 viti|Ji

is a long cone and that g, h are almost linear with respect to it. Assume they are
of the form:

g

(
b+

k∑
i=1

viti|Ji

)
= g(b)+

k∑
i=1

niti|Ji and h

(
b+

k∑
i=1

viti|Ji

)
= h(b)+

k∑
i=1

miti|Ji.

Since g < h on Y , it follows that for every b ∈ B, g(b) < h(b). One of the following
two cases must occur:

Case (IIa): for all i = 1, . . . , k, we have ni = mi.
Case (IIb): for all i = 1, . . . , k, we have ni ≤ mi, and for at least one i we have

ni < mi. (We may assume so by Remark 2.6(iv).)

Proof of Case (IIa). We have

X =

{
(b, y) +

k∑
i=1

(vi, ni)ti : g(b) < y < h(b), b ∈ B, ti ∈ Ji

}
.

It is easy to check that, if (g(b), h(b)) is a long interval, then

X = {(b, g(b)) : b ∈ B}+
k∑
i=1

(vi, ni)ti|Ji + en+1tn+1|(0, h(b)− g(b))

is a (k + 1)-long cone, and if (g(b), h(b)) is short, then

X =
{
{b} × (g(b), h(b)) : b ∈ B

}
+

k∑
i=1

(vi, ni)ti|Ji

is a k-long cone.
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Proof of Case (IIb). We have

X =

{(
b+

k∑
i=1

viti, y

)
: g(b) +

k∑
i=1

niti < y < h(b) +
k∑
i=1

miti, b ∈ B, ti ∈ Ji

}
.

Notice that if h = +∞ on X (similarly, if g = −∞), then we are done because

X = {(b, g(b)) : b ∈ B}+
k∑
i=1

viti|Ji + entn|(0,+∞).

We partition X in the following way, going from “top” to “bottom”:

X1 =

{(
b+

k∑
i=1

viti, d

)
: h(b) +

k∑
i=1

niti < y < h(b) +
k∑
i=1

miti, b ∈ B, ti ∈ Ji

}
,

X2 =

{(
b+

k∑
i=1

viti, y

)
: y = h(b) +

k∑
i=1

niti, b ∈ B, ti ∈ Ji

}
,

X3 =

{(
b+

k∑
i=1

viti, y

)
: g(b) +

k∑
i=1

niti < y < h(b) +
k∑
i=1

niti, b ∈ B, ti ∈ Ji

}
.

By Remark 2.6(iii), X2 is a k-long cone, whereas X3 clearly satisfies the condition
of Case (IIa). Hence we only need to account for X1.

Let SX1 = {i = 1, . . . , k : ni < mi}. By induction on |SX1 | we may assume that
|SX1 | = 1. Indeed, if, say, n1 < m1 and n2 < m2, then we can partition X1 in the
following way, going again from “top” to “bottom”:

X ′1 =

{(
b+

k∑
i=1

viti, y

)
: h(b) + n1t1 +

k∑
i=2

miti < y < h(b) +
k∑
i=1

miti, b ∈ B, ti ∈ Ji

}
,

X ′′1 =

{(
b+

k∑
i=1

viti, y

)
: y = h(b) + n1t1 +

k∑
i=2

miti, b ∈ B, ti ∈ Ji

}
,

X ′′′1 =

{(
b+

k∑
i=1

viti, y

)
: h(b) +

k∑
i=1

niti < y < h(b) + n1t1 +
k∑
i=2

miti, b ∈ B, ti ∈ Ji

}
.

Observe then that X ′′1 is a k-long cone, and for X ′1 and X ′′′1 , each of the correspond-
ing SX′

1
and SX′′′

1
has size less than |SX1 |.

So assume now that |SX1 | = 1 with, say, n1 < m1 and ni = mi for i > 1. We
show that 〈X1〉 is the union of long cones which clearly implies that so is X1. If
J1 = (0,∞), then

〈X1〉 = (v1, n1)t1|J1 +
k∑
i=1

(vi,mi)ti|Ji
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is already a (k+ 1)-long cone. If J1 = (0, a1), with a1 ∈M , then 〈X1〉 is the union
of the following (k + 1)-long cones:

Y1 = (v1, n1)t1|(0,
a1

2
) + (v1,m1)t1|(0,

a1

2
) +

k∑
i=2

(vi,mi)ti|Ji,

Y2 = (v1, n1)
a1

2
+ (v1, n1)t1|(0,

a1

2
) +

k∑
i=2

(vi,mi)ti|Ji + entn|(0,
(m1 − n1)a1

2
)

Y3 = (v1, n1)
a1

2
+ (v1,m1)t1|(0,

a1

2
) +

k∑
i=2

(vi,mi)ti|Ji + entn|(0,
(m1 − n1)a1

2
)

�

Remark 2.24. As opposed to the corresponding results from [Ed] and [Pet1], it is
not always possible to achieve a disjoint union in (i) or (ii). We leave it to the
reader to verify that the following set cannot be written as a disjoint union of long
cones: let X be the ‘triangle’ with corners the origin, the point (a, a) and the point
(0, 2a), for some long element a.

As a first corollary, we obtain a quantifier elimination result down to suitable
existential formulas in the spirit of [vdD1].

Corollary 2.25. Every definable subset X ⊆ Mm is a boolean combination of
subsets of Mm defined by

∃y1 . . . ∃ymB(y1, . . . , ym) ∧ ϕ(x1, . . . , xm, y1, . . . , ym),

where B(y) is a short formula and ϕ(x, y) is a quantifier-free Llin-formula. In fact,
X is a finite union of such sets.

Another corollary is the following

Corollary 2.26. If f : X →Mn is a definable injective function, then lgdim(X) =
lgdim

(
f(X)

)
.

Proof. By the Refined Structure Theorem and Remark 2.6(iii). �

3. On definability of long dimension

The following example shows that we lack ‘definability of long dimension’.

Example 3.1. Let a > 0 be a tall element and let

X = {(x, y) : 0 ≤ x ≤ a, 0 ≤ y ≤ x}.

Denote by π : M2 →M the usual projection. Then, by [Pet3, Proposition 3.6], the
set

X1 = {x ∈ [0, a] : π−1(x) has long dimension 1}
is not definable.

However, X1 clearly contains a ‘suitable’ definable set; namely, a definable set of
long dimension 1. It follows from the lemmas of this section that the set of fibers of
any definable set X of a given long dimension l always lies between two definable
sets each of long dimension lgdim(X)− l (Corollary 3.4 below).
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Lemma 3.2. Let X ⊆Mn+m be a definable set such that the projection π(X) onto
the first n coordinates has long dimension k. Let 0 ≤ l ≤ m. Then

(i) lgdim(X) ≤ k +m.
(ii) lgdim(X) ≥ k + l if and only if π(X) contains a k-long cone C such that

every fiber Xc, c ∈ C, has long dimension ≥ l.

Proof. (i) By Lemma 2.21(ii)&(iv), since X ⊆ π(X)×Mm.
(ii) (⇐) Assume that every fiber Xc, c ∈ C, has long dimension l. We prove

that lgdim(X) ≥ k + l by induction on k. For k = 0, it is clear, since any fiber
above C contains a l-long cone. Now assume that it is proved for lgdim(C) < k,
and let lgdim(C) = k. Clearly, we may assume that π(X) = C. For the sake of
contradiction, assume lgdim(X) < k+ l. By the Refined Structure Theorem, X can
be covered by finitely many long cones X1, . . . , Xs, each with lgdim(Xi) < k + l.
By the inductive hypothesis, each π(Xi) has long dimension < k. But then C =
π(X1) ∪ · · · ∪ π(Xs) must have long dimension < k, a contradiction.

(⇒) This is clearly equivalent to the following:

Claim. Let

Xl = {x ∈ π(X) : π−1(x) has long dimension ≥ l}

Then there is a definable set Yl ⊆ Xl, such that

lgdim(Yl) = lgdim(X)− l.

The proof of the Claim is by induction on m.
Base Step: m = l = 1. By cell decomposition, X is a finite union of cells, and
by the Refined Structure Theorem the domain of each cell is a finite union of long
cones such that the corresponding restrictions of the defining functions of the cell
are almost linear with respect to each of the long cones. If a cell is a graph of a
function, or if its domain has long dimension < k, then clearly its long dimension is
at most k. Hence X contains a cylinder X1 = (f, g)π(X1), where π(X1) is a k-long
cone, such that X1 contains a (k + 1)-long cone C = b+

∑k+1
i=1 viti|(0, αi). We will

first show that for some elements x, y ∈ C in the closure of C, with ∀i = 1, . . . , n,
xi = yi, and (y − x)n+1 tall. This is straightforward and we only sketch its proof.

The projection π(C) is a union of long cones whose directions are tuples with
elements from the set {v1, . . . , vk+1}. By (i) and Lemma 2.21(v), there must be
subset of {v1, . . . , vk+1} of k elements, say {v1, . . . , vk}, whose projections onto the
first n-coordinates is an M -independent set. Without loss of generality, assume
A = {v1, . . . , vk}. It is then an easy exercise to see that there is an element y =
v1t1 + · · ·+ vk+1tk+1 ∈ C, such that the element

x = min{z ∈ C : ∀i ≤ n, zi = yi}

has form x = v1s1 + · · · + vk+1sk+1 ∈ C such that tk+1 − sk+1 is long. But then
y − x must be tall, by Lemma 2.15. It follows that (y − x)n+1 must be tall.

Now, we conclude that there is x ∈ π(X1), such that π−1(x) =
(
f(x), g(x)

)
is

long. Since f, g are almost linear on π(X1), it is easy to see that there is a k-
long cone Cx = x +

∑k
i=1 viti|(0, ai) ⊆ π(X1) such that for each element y ∈ Cx,

g(y)− f(y) is tall. We let Yl = Cx. Since, by (i), k ≥ lgdim(X)− 1, we are done.
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Inductive Step: assume we know the lemma for every n and X ⊆ Mn ×Mm, and
let X ⊆Mn ×Mm+1. Let q : Mn+m+1 →Mn+m and r : Mn ×Mm →Mn be the
usual projections. Of course, π = r ◦ q.

Case (I). lgdim(q(X)) = lgdim(X). In this case, by the Inductive Hypothesis,
the set

q(X)l = {x ∈ π(X) : lgdim(r−1(x)) ≥ l}
contains a definable set A such that

lgdim(A) = lgdim(q(X))− l = lgdim(X)− l.

Since, clearly, q(X)l ⊆ Xl, we are done.
Case (II). lgdim(q(X)) = lgdim(X)− 1. Let

Y1 = {x ∈ q(X) : lgdim(q−1(x)) = 1}.

By the Base Step, Y1 contains some definable set Y with lgdim(Y ) = lgdim(X)−1.
By the Inductive Hypothesis, the set

Yl = {x ∈ r(Y ) : lgdim(r−1(x)) ≥ l − 1}

contains a definable set A with

lgdim(A) = lgdim(Y )− (l − 1) = lgdim(X)− l.

But clearly Xl contains A and hence we are done. �

On the other hand, we have the following lemma. It will not be essential until
the proof of Proposition 5.4.

Lemma 3.3. Let X ⊆ Mn+m be a definable set and denote by π : Mn+m → Mn

the usual projection. For 0 ≤ l ≤ m, let

Xl = {x ∈ π(X) : π−1(x) has long dimension ≥ l}.

Then there is a definable subset Zl ⊆ π(X) with Xl ⊆ Zl such that

lgdim(Zl) = lgdim(X)− l.

Proof. The proof is by induction on m. For any m, if l = 0, then take Zl = π(X),
since, by Lemma 3.2(ii), lgdim(π(X)) ≤ lgdim(X).
Base Step: m = 1. Let X ⊆ Mn × M and l = 1. By cell decomposition and
Lemma 2.21(v), we may assume that X is a cell. If X is the graph of a function,
then let Zl be any subset of π(X) of long dimension lgdim(X)− 1. So assume X is
the cylinder (f, g)π(X) between two continuous functions f and g. By the Refined
Structure Theorem, we may further assume that π(X) is a long cone such that f
and g are both almost linear with respect to it. If lgdim(π(X)) = lgdim(X) − 1,
then take Zl = π(X). If lgdim(π(X)) = lgdim(X), then by Lemma 2.22, for every
x ∈ π(X), π−1(x) is short, in which case we let again Zl be any subset of π(X) of
long dimension lgdim(X)− 1.
Inductive Step: assume we know the lemma for every n and X ⊆ Mn ×Mm, and
let X ⊆Mn ×Mm+1. Let q : Mn+m+1 →Mn+m and r : Mn ×Mm →Mn be the
usual projections. Let

Y1 = {x ∈ q(X) : lgdim(q−1(x)) = 1}.
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By Lemma 3.2(ii), Y1 is contains some definable set Y with lgdim(Y ) = lgdim(X)−
1. Now, Xl is contained in the union of the following two sets:

A1 = {x ∈ r(Y ) : lgdim(r−1(x)) ≥ l − 1} and

B1 = {x ∈ r(q(X) \ Y ) : lgdim(r−1(x)) = l}.
By the Inductive Hypothesis, A1 is contained in a definable set A with

lgdim(A) = lgdim(Y )− (l − 1) = lgdim(X)− l

and B1 is contained in a definable set B with

lgdim(B) = lgdim(q(X) \ Y )− l ≤ lgdim(X)− l.

Hence Xl is contained in the definable set Zl = A ∪ B, satisfying lgdim(Zl) ≤
lgdim(X)− l. By Lemma 3.2(ii), lgdim(Zl) = lgdim(X)− l. �

We are finally in the position to prove the promised corollary on the definability
of long dimension. Note that this corollary is not needed in the rest of the paper,
but it is recorded here in the interests of completeness.

Corollary 3.4. Let X ⊆Mn+m be a definable set and denote by π : Mn+m →Mn

the usual projection. For 0 ≤ l ≤ m, let

l(X) = {x ∈ π(X) : π−1(x) has long dimension l}.

Then there are definable subsets Y,Z ⊆ π(X) with Y ⊆ l(X) ⊆ Z such that

lgdim(Y ) = lgdim(Z) = lgdim(X)− l.

Proof. With the notation of the previous two lemmas, let Y = Yl \ Zl+1 and Z =
Zl+1. Since lgdim(Yl) = max{lgdim(Y ), lgdim(Zl+1)}, it follows that lgdim(Y ) is
as desired (and, clearly, so is lgdim(Z)). �

4. Pregeometries

In this section we develop the combinatorial counterpart of the long dimension
and define the corresponding notion of ‘long-genericity’. This notion is used in the
application to definable groups in the next section.

Definition 4.1. A (finitary) pregeometry is a pair (S, cl), where S is a set and
cl : P (S)→ P (S) is a closure operator satisfying, for all A,B ⊆ S and a, b ∈ S:

(i) A ⊆ cl(A)
(ii) A ⊆ B ⇒ cl(A) ⊆ cl(B)
(iii) cl

(
cl(A)

)
= cl(A)

(iv) cl(A) = ∪{cl(B) : B ⊆ A finite}
(v) (Exchange) a ∈ cl(bA) \ cl(A)⇒ b ∈ cl(aA).

Definition 4.2. We define the short closure operator scl : P (M)→ P (M) as:

scl(A) = {a ∈M : there are b̄ ⊆ A and φ(x, ȳ) from L, such that

φ(M, b̄) is a short interval and M � φ(a, b̄)}.
We say that the formula φ(x, ȳ) ∈ L witnesses a ∈ scl(b̄) if φ(M, b̄) is a short
interval and M � φ(a, b̄).

We will omit, as usually, the bar from tuples.
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Remark 4.3. Given a formula φ(x, y) ∈ L witnessing a ∈ scl(b), we can form a
formula Sφa,b(x, y) ∈ L which is satisfied by the pair (a, b) and such that for every
b′ ∈Mn, Sφa,b(M, b′) is short. Indeed, let κ ∈M be short such that

∀z1, z2[φ(z1, b) ∧ φ(z2, b)→ |z1 − z2| < κ].

By [Pet3, Corollary 3.7(3)], κ may be taken in dcl(∅). We then let

Sφa,b(x, y) : φ(x, y) ∧ ∀z1, z2[φ(z1, y) ∧ φ(z2, y)→ |z1 − z2| < κ].

Lemma 4.4. a ∈ scl(b) ⇔ ∃a′ ∈ dcl(b), a− a′ is short.

Proof. (⇒). Let f be a ∅-definable Skolem function for Sφa,b(x, y), where φ witnesses
a ∈ scl(b); that is, for every c ∈M , |= ∃zSφa,b(z, c)→ Sφa,b(f(c), c). Let a′ = f(b).

(⇐). Assume φ(x, y) witnesses a′ ∈ dcl(b). Let κ ∈ dcl(∅) such that |a−a′| < κ.
Then a satisfies the following short formula:

∃x′φ(x′, b) ∧ (|x− x′| < κ).

�

Lemma 4.5. (M, scl) is a pregeometry.

Proof. Properties (i), (ii) and (iv) are straightforward.
(iii). This boils down to the fact that (Lemma 3.2(ii)) a short union of short sets

is short. We provide the details. Let a ∈ scl(b̄), where b̄ = (b1, . . . , bn) ∈Mn, such
that each bi ∈ scl(c̄), for some c̄ ⊆ A. Assume that ψ(x, b̄) witnesses a ∈ scl(b̄), and
that for each i = 1, . . . , n, φi(yi, c̄) witnesses bi ∈ scl(c̄), where ψ, φi ∈ L. Denote

S(ȳ, z̄) := Sφ1
b1,c̄

(y1, z̄) ∧ · · · ∧ Sφn

bn,c̄
(yn, z̄)

Then the set X defined by the formula

∃ȳS(ȳ, c̄) ∧ Sψ
a,b̄

(x, ȳ)

is c̄-definable and contains a. We show that X is short. Clearly, the set

X ′ =
⋃

ȳ∈S(M,c̄)

{ȳ} × Sψ
a,b̄

(M, ȳ)

has long dimension at least the long dimension of X, since the function f : (ȳ, x) 7→
x maps X ′ onto X. But X ′ is a short union of short sets and, by Lemma 3.2(ii), it
must have long dimension 0.

(v). Without loss of generality, assume A = ∅. Let φ(x, y) be a formula wit-
nessing a ∈ scl(b). We assume that b 6∈ scl(a) and show a ∈ scl(∅). Let f(x) be a
∅-definable Skolem function for Sφa,b(x, y). Let κ ∈ M be short and in dcl(∅) such
that

∀z1, z2[φ(z1, b) ∧ φ(z2, b)→ |z1 − z2| < κ].

(see Remark 4.3). Let

Y = {b′ ∈M : |f(b′)− a| < κ}.

Then since Y is a-definable and contains b, it must be long. By Lemma 2.1, there
is some interval contained in Y on which f is constant, equal say to a′. But then
a′ ∈ dcl(∅) and, by Lemma 4.4, a ∈ scl(∅). �
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Definition 4.6. Let A,B ⊆M . We say that B is scl-independent over A if for all
b ∈ B, b 6∈ scl

(
A ∪ (B \ {b})

)
. A maximal scl-independent subset of B over A is

called a basis for B over A.

By the Exchange property in a pregeometric theory, any two bases for B over A
have the same cardinality. This allows us to define the rank of B over A:

rank(B/A) = the cardinality of any basis of B over A.

Lemma 4.7. If p is a partial type over A ⊆M and a |= p with rank(a) = m, then
for any set B ⊇ A there is a′ |= p (possibly in an elementary extension) such that
rank(a′) ≥ m.

Proof. The proof of the analogous result for the usual rank (coming from acl) is
given, for example, in [G, page 315]. The proof of the present lemma is word-by-
word the same with that one, after replacing an ‘algebraic formula’ by a ‘short
formula’ in the definition of ΦmB ([G, Definition 2.2]) and the notion of ‘algebraic
independence’ by that of ‘scl-independence’ we have here. �

Definition 4.8. Let p be a partial type over A ⊂M . The short closure dimension
of p is defined as follows:

scl-dim(p) = max{rank(ā/A) : ā ⊂M and ā |= p}.

Let X be a definable set. Then the short closure dimension of X, denoted by
scl-dim(X) is the dimension of its defining formula.

In Corollary 4.10 below we establish that the cl-dimension of a definable set
coincides with its long dimension we defined earlier. We note that the equivalence
between the usual geometric and topological dimension was proved in [Pi1].

Lemma 4.9. Let ā ⊆ M be an n-tuple and A ⊆ M a set. Then rank(a/A) = n if
and only if ā does not belong to any A-definable set with long dimension < n.

Proof. (⇐) Assume ā = (a1, . . . , an) and rank(ā/A) < n. Then for some i, say
i = 1, a1 ∈ scl(A ∪ {a2, . . . , an}). Let φ(x, ȳ) be an L(A)-formula witnessing this
fact. Recall from Remark 4.3 that the L(A)-formula Sφā (x, ȳ) is satisfied by ā and
for every b′ ∈ Mn−1, Sφā (M, b′) is short. By Lemma 3.2(ii), Sφā (Mn) has long
dimension < n.

(⇒) We prove the statement by induction on n. For n = 1, it is clear. Suppose
it is proved for n. Let ā = (a1, . . . , an+1) be a tuple of rank, over A, equal to n+ 1
and assume, for a contradiction, that X is an A-definable set containing a with
lgdim(X) < n+ 1. By cell decomposition, we may assume that X is an A-definable
cell. If X is the graph of a function, then an+1 is in dcl(A∪{a1, . . . , an}) and hence
in scl(A∪{a1, . . . , an}), a contradiction. Now assume that X is a cylinder. By the
Refined Structure Theorem, we may assume that X = (f, g)π(X) is a cylinder whose
domain is an A-definable long cone such that f and g are almost linear with respect
to it. Since rank(ā/A) = n+ 1, g(a1, . . . , an)− f(a1, . . . , an) must be long. But by
Inductive Hypothesis, lgdim(π(X)) = n. Hence, by Lemma 2.22, lgdim(X) = n+1,
a contradiction. �

Corollary 4.10. For every definable X ⊆Mn,

lgdim(X) = scl-dim(X).



LOCAL ANALYSIS FOR SEMI-BOUNDED GROUPS 21

Proof. By Lemma 4.9 and the (easy) fact that every A-definable k-long cone con-
tains a tuple a with rank(a/A) = k. �

4.1. Long-generics. For a treatment of the classical notion of generic elements,
corresponding to the algebraic closure acl, see [Pi2]. Here we introduce the corre-
sponding notion for scl.

Definition 4.11. Let X ⊆Mn be an A-definable set, and let ā ∈ X. We say that
ā is a long-generic element of X over A if it does not belong to any A-definable set
of long dimension < lgdim(X). If A = ∅, we call ā a long-generic element of X.

In a sufficiently saturated o-minimal structure, long-generic elements always ex-
ist. More precisely, every A-definable set X contains a long-generic element over
A. Indeed, by Compactness and Lemma 2.21(v), the collection of all formulas
which express that x belongs to X but not to any A-definable set of long dimension
< lgdim(X) is consistent.

A definable subset V of a definable set X is called long-large in X if lgdim(X \
V ) < lgdim(X). In a sufficiently saturated o-minimal structure, V is long-large in
X if and only if for every A over which V and X are defined, V contains every
long-generic element a in X over A.

Two long-generics are called independent if one (each) of them is long-generic
over the other.

Let G be a definable abelian group. Let us recall the notion of a left generic
set (not to be confused with the notion of a generic element). A subset X ⊆ G is
called left n-generic if n left translates of X cover G. It is called left generic if it
is left n-generic for some n. We recall from [ElSt, Lemma 3.10] (see [PeS] for the
notion of definable compactness):

Fact 4.12 (Generic Lemma). Assume G is definably compact. Then, for every
definable subset X ⊆ G, either X or G \X is left generic.

The facts that (M, scl) is a pregeometry and that the scl-dim agrees with lgdim
imply:

Claim 4.13. Let G = 〈G, ·〉 be a definable group with lgdim(G) = n. Then
(1) If X ⊆ G long-large in G, then X is left (n+ 1)-generic in G.
(2) If a and g ∈ G are independent long-generics, then so are a and a · g.

Proof. The proof is standard. (1) is word-by-word the same with that of [Pet2,
Fact 5.2] after replacing: a) the notion of a ‘large’ set by that of a ‘long-large’ set,
b) the ‘dimension’ of a definable set by ‘long dimension’, and c) the ‘dimension’ of
a tuple by ‘rank’. (2) is straightforward using the Exchange property. �

Note that none of the notions ‘generic element’ and ‘long-generic element’ implies
the other.

Lemma 4.14. Let X,W be definable subsets of a definable group G. Assume that
X is a long-large subset of W and that W is left generic in G. Then X is left
generic in G.

Proof. This is similar to the proof of [PePi, Lemma 3.4(ii)]. Since W is left generic
we can write G = g1W ∪ · · · ∪ gmW . Let Y = W \X. Then Z = g1Y ∪ · · · ∪ gmY
has long dimension < lgdim(G). So, by Claim 4.13, finitely many left translates of
G \ Z cover G. It follows then that finitely many left translates of X cover G. �
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We record one more lemma, which however will not be used in this paper:

Lemma 4.15. Let G be a definable group and X a definable subset of G. If X is
left generic in G then lgdim(X) = lgdim(G).

Proof. Since the group conjugation is a definable bijection, the statement follows
from Lemma 2.21(v) and Corollary 2.26. �

5. The local structure of semi-bounded groups

We fix a ∅-definable group G = 〈G,⊕, eG〉, with dimension n and long
dimension k.

By [Pi2], we know that every group definable in an o-minimal structure can be
equipped with a unique definable manifold topology that makes it into a topological
group, called the t-topology. We refer the reader elsewhere for the basic facts about
the t-topology (which we will not make any essential use of, anyway). By [EdEl,
Fact 2.3], we may assume that G ⊆Mn.

Remark 5.1. By the Refined Structure Theorem, Lemma 2.20 and Corollary 4.10,
for any two independent long-generic elements a and b of G and any ∅-definable
function f : G ×G → G, there are k-long cones Ca and Cb in G containing a and
b, respectively, such that for all x ∈ Ca and y ∈ Cb,

f(x, y) = λx+ µy + d,

for some fixed λ, µ ∈M(n,Λ) and d ∈Mn. Moreover, λ and µ have to be invertible
matrices (for example, setting y = b, x⊕ b = λx+µb+d is invertible, showing that
λ is invertible).

Lemma 5.2. For every two independent long-generics a, b ∈ G, there is a k-long
cone Ca containing a, invertible λ, λ′ ∈ M(n,Λ) and c, c′ ∈ Mn, such that for all
x ∈ Ca,

x	 a⊕ b = λx+ c and 	 a⊕ b⊕ x = λ′x+ c′.

Proof. By Claim 4.13, since a and b are independent long-generics of G, a and
	a⊕ b are independent long-generics of G as well. Therefore, by Remark 5.1, there
are cones Ca of a and C	a⊕b of 	a ⊕ b in G, as well as invertible λ, µ ∈ M(n,D)
and d ∈Mn, such that ∀x ∈ Ca, ∀y ∈ C	a⊕b,

x⊕ y = λx+ µy + d.

In particular, for all x ∈ Ca, x	a⊕b = λx+µ(	a⊕b)+d. Letting c = µ(	a⊕b)+d
shows the first equality. The second equality can be shown similarly. �

We are now ready to prove the local theorem for semi-bounded groups.

Theorem 5.3. Let a be a long-generic element of G. Then there is a k-long cone
Ca ⊆ G, such that for every x, y ∈ Ca,

x	 a⊕ y = x− a+ y.

Proof. We first prove:

Claim. There is a k-long cone Ca ⊆ G containing a, and λ, µ ∈ M(n,Λ) and
d ∈Mn, such that for all x, y ∈ Ca,

x	 a⊕ y = λx+ µy + d.
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Proof of the Claim. Let a1 be a long-generic element of G independent from a.
Then a2 = a	a1 is also a long-generic element of G independent from a. By Lemma
5.2, we can find k-long cones C and C ′ in G containing a, and neighborhoods Va1

of a1 and Va2 of a2 in G, as well as λ1, λ2 ∈ M(n,Λ) and c1, c2 ∈ Mn, such that
∀x ∈ C, ∀y ∈ C ′:

x	 a2 = λ1x+ c1 ∈ Va1 and 	a1 ⊕ y = λ2y + c2 ∈ Va2 .

Since a is long-generic, it must be contained in a k-long cone Ca ⊆ C ∩ C ′, on
which, of course, every x and y satisfy the above equations.

Now, by Remark 5.1 and since a1 and a2 = a	a1 are independent long-generics of
G, there are k-long cones Ca1 and Ca2 containing a1 and a2, respectively, such that
for some fixed ν, ξ ∈ M(n,Λ) and o ∈ Mn, we have: ∀x ∈ Ca1 , ∀y ∈ Ca2 , x ⊕ y =
νx + ξy + ε. By continuity of ⊕, we could choose Ca so that Va1 ⊆ Ca1 and
Va2 ⊆ Ca2 . Then for all x, y ∈ Ca, we have:

x	 a⊕ y = x	 a⊕ a1 	 a1 ⊕ y
= (x	 a2)⊕ (	a1 ⊕ y)

= ν(λ1x+ c1) + ξ(λ2y + c2) + o

= νλ1x+ ξλ2y + νc1 + ξc2 + o

Setting λ = νλ1, µ = ξλ2, and d = νc1 +ξc2 +o finishes the proof of the lemma. �

By the Claim, for all x, y ∈ Ca,

y = a	 a⊕ y = λa+ µy + d

x = x	 a⊕ a = λx+ µa+ d

a = a	 a⊕ a = λa+ µa+ d.

Hence, x− a+ y = λx+ µy + d = x	 a⊕ y. �

We conclude with a stronger version of the local theorem that we expect to be
useful in a future global analysis for semi-bounded groups. By [Pi2], we know that
the t-topology of G coincides with the subspace topology on a large open subset
WG. The proof of the following proposition involves all machinery developed so
far.

Proposition 5.4. Assume G is definably compact. There is a left generic k-long
cone C contained in G, on which the two topologies coincide, and for every a ∈ C,
there is a relatively open subset Va of a+ 〈C〉 containing a, such that ∀x, y ∈ Va,

(4) x	 a⊕ y = x− a+ y.

Proof. By the Refined Structure Theorem, WG is the union of finitely many long
cones C1, . . . , Cl. Let v̄j = (vj1, . . . , vjkj ) be the direction of each Cj . By the
Generic Lemma, one of the Cj ’s, say C1, is a left generic k-long cone.

Every long-generic element a is contained in some k-long cone contained in G
with direction some v̄j on which (4) holds: indeed, by Theorem 5.3, a is contained
in some k-long cone D on which (4) holds. Now, if a is also contained in Cj , then,
by Corollary 2.17, it is not hard to see that some k-long cone with direction v̄j must
be contained in D and contain a.

Consider now the following property, for an element a ∈ C1:
(*) there is a relatively open subset Va of a + 〈C1〉 containing a, such that

∀x, y ∈ Va, (4) holds.
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The set X of elements of C1 that satisfy (*) is clearly definable. We claim that
it is also long-large in C1.

Clearly, it suffices to prove that every long-generic element of C1 satisfies (*).
Let a be a long-generic element of C1. If a belongs to a k-long cone of direction
v̄1 on which (4) holds, then we are done. Hence, by the second paragraph above,
it clearly suffices to show that for every j 6= i, the set Aj of all elements of C1

that belong to a k-long cone of direction v̄j but do not satisfy (*), is contained in
a definable set of long dimension < k. To see this, note that if a ∈ Aj , then by
Corollaries 2.16 and 2.17, one of the vj1, . . . , vjkj

, say vj1, must be so that for every
t ∈M , vj1t 6∈ 〈C1〉. Let κ be a tall element and Dj = {vj1t : t ∈ (0, κ)}. The set

Kj = (C1 +Dj) ∩G

has long dimension ≤ k, as a subset of G. Hence, by Lemma 3.3, and since each
Dj has long dimension 1, Aj is contained in a definable set of long dimension
≤ lgdim(Kj)− 1.

We have proved that X is long-large in C1. By Lemma 4.14, X is generic. By
the Refined Structure Theorem, the Generic Lemma and the Lemma on Subcones,
there is a generic k-long cone C contained in X with the desired property. �

6. Appendix

Lemma 2.8 will follow from the following statement.

Lemma 6.1. Let w1, . . . , wn, wn+1, . . . , wn+k ∈ Λn be M -independent and λ1, . . . , λn ∈
Λn. Let t1, . . . , tn ∈ M be non-zero elements and, for every i = 1, . . . , n, let
r1
i , . . . , r

k
i ∈M be such that:

w1t1 +
k∑
j=1

wn+jr
j
1 = λ1s

1
1 + · · ·+ λns

n
1

...

wntn +
k∑
j=1

wn+jr
j
n = λ1s

1
n + · · ·+ λns

n
n

for some sji ∈ M . Then there non-zero a1, . . . , an ∈ M and bji ∈ M , i = 1, . . . , n,
j = 1, . . . , n+ k, such that:

λ1a1 = w1b
1
1 + · · ·+ wn+kb

n+k
1

...

λnan = w1b
1
n + · · ·+ wn+kb

n+k
n

Proof. By induction on n. For n = 1, it is trivial. Assume n > 1 and that we know
the statement for < n equations. Since w1, . . . , wn+k ∈ Λn are M -independent and
t1 6= 0, w1t1 +

∑k
j=1 wn+jr

j
1 6= 0. Hence there is some sj1, say s1

1, which is not zero.
Since

(5) λ1s
1
1 = w1t1 +

k∑
j=1

wn+jr
j
1 − (λ2s

2
1 + · · ·+ λns

n
1 ),
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Lemma 2.7 gives, for every i = 2, . . . , n,

λ1s
1
i = w1Ti +

k∑
j=1

wn+jR
j
i − (λ2S

2
i + · · ·+ λnS

n
i )

for some S2
i , . . . , S

n
i , Ti, R

1
i , . . . R

k
i ∈M . By substituting into the original system of

equations, we obtain:

w2t2 − w1T1 +
k∑
j=1

wn+j(r
j
2 −R

j
2) = λ2(s2

2 − S2
2) + · · ·+ λn(sn2 − Sn2 )

...

wntn − w1T1 +
k∑
j=1

wn+j(rjn −Rjn) = λ2(s2
n − S2

n) + · · ·+ λn(snn − Snn)

Now apply the Inductive Hypothesis, use Lemma 2.7 to solve for each of λ2s
2
1, . . . , λns

n
1

in terms of w1, . . . , wn+k and, finally, substitute into (5). �
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