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Abstract

We prove a model theoretic Baire category theorem for τ̃ flow-sets
in a countable simple theory in which the extension property is first-
order and show some of its applications. We also prove a trichotomy
for minimal types in countable nfcp theories: either every type that
is internal in a minimal type is essentially-1-based by means of the
forking topology or T interprets a strongly-minimal formula or T in-
terprets an infinite definable 1-based group of finite D-rank.

1 Introduction

The goal of this paper is to generalize a result from [S1] and to give some
applications. In [S1] The first step for proving supersimplicity of count-
able unidimensional simple theories eliminating hyperimaginaries is to show
the existence of an unbounded type-definable τ f -open set (a set defined in
terms of forking by formulas, see definition 2.1) of bounded finite SUse-rank
(for definition see section 4). In this paper we develop a general framework
for this kind of result. It is the new idea of a model theoretic Baire cate-
gory theorem, namely, one deals with certain ”uniformly-definable” family
of generalized closed sets (in complicated ”logic”), roughly speaking, given a
partition of a complicated open set into countably many sets, each of which is
the intersection of a ”uniformly definable” family of generalized closed sets,
one can find a nice (this is the main advantage) open set that is contained
in some generalized closed set in one of these families. In particular, it is not
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just the usual Baire category theorem for a complicated topological space.
The proof is quite similar to the proof in [S1] and has some important conse-
quences, e.g. in a countable wnfcp theory if for every non-algebraic element
a (even in some fixed non-empty τ̃ flow-set) there is a′ ∈ acl(a)\acl(∅) of fi-
nite SU -rank, then there exists a weakly-minimal formula. We also prove a
trichotomy for countable nfcp theories as indicated in the abstract.

2 Preliminaries

The forking topology is introduced in [S0] and is a variant of Hrushovski’s
and Pillay’s topologies from [H0] and [P] respectively. In this section T is
assumed to be simple and we work in C.

Definition 2.1 Let A ⊆ C and let x be a finite tuple of variables.
1) An invariant set U over A is said to be a basic τ f -open set over A if there
is φ(x, y) ∈ L(A) such that

U = {a|φ(a, y) forks over A}.

2) An invariant set U over A is said to be a basic τ f∞-open set over A if U is
a type-definable τ f -open set over A.

Note that the family of basic τ f -open sets over A is closed under finite in-
tersections, thus form a basis for a unique topology on Sx(A). Likewise, we
define the τ f∞-topologies.

Recall, the following definition from [S0] whose roots are in [H0].

Definition 2.2 We say that the τ f -topologies over A are closed under pro-
jections (T is PCFT over A) if for every τ f -open set U(x, y) over A the set
∃yU(x, y) is a τ f -open set over A. We say that the τ f -topologies are closed
under projections (T is PCFT) if they are over every set A.

Recall that a formula φ(x, y) ∈ L is low in x if there exists k < ω such
that for every ∅-indiscernible sequence (bi|i < ω), the set {φ(x, bi)|i < ω} is
inconsistent iff every subset of it of size k is inconsistent. T is low if every
φ(x, y) is low in x.
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Remark 2.3 Assume φ(x, t) ∈ L is low in t and ψ(y, v) ∈ L is low in v
(x∩ y or t∩ v may not be ∅). Then θ(xy, tv) ≡ φ(x, t)∨ψ(y, v) is low in tv.

Proof: Let k1 < ω be a witness that φ(x, t) is low in t and let k2 < ω be a
witness that ψ(y, v) is low in v. Let k = k1 +k2− 1. By adding dummy vari-
ables we may assume x = y and t = v (as tuples of variables). Let (ai| i < ω)
be indiscernible such that {φ(ai, t) ∨ ψ(ai, t)|i < ω} is inconsistent. Thus,
every subset of {φ(ai, t)|i < ω} of size k1 is inconsistent, and every subset
of {ψ(ai, t)|i < ω} of size k2 is inconsistent. Thus every subset of size k of
{φ(ai, t) ∨ ψ(ai, t)|i < ω} is inconsistent.

In [BPV, Proposition 4.5] the authors proved the following equivalence
which, for convenience, we will use as a definition (their definition involves
extension with respect to pairs of models of T ).

Definition 2.4 The extension property is first-order in T iff for every for-
mulas φ(x, y), ψ(y, z) ∈ L the relation Qφ,ψ defined by:

Qφ,ψ(a) iff φ(x, b) doesn’t fork over a for every b |= ψ(y, a)

is type-definable (here a can be an infinite tuple from C whose sorts are fixed).
We say that T has wnfcp if T is low and the extension property is first-order
in T .

Fact 2.5 [S1] Suppose the extension property is first-order in T . Then T is
PCFT.

We say that an A-invariant set U has finite SU -rank if SU(a/A) < ω for
all a ∈ U , and has bounded finite SU -rank if there exists n < ω such that
SU(a/A) ≤ n for all a ∈ U . The existence of a τ f -open set of bounded finite
SU -rank implies the existence of a weakly-minimal formula:

Fact 2.6 [S0, Proposition 2.13] Let U be an unbounded τ f -open set over
some set A. Assume U has bounded finite SU-rank. Then there exists a set
B ⊇ A and θ(x) ∈ L(B) of SU-rank 1 such that θC ⊆ U ∪ acl(B).

In [S1] the class of τ̃ f -sets is introduced, this class is much wider than the
class of basic τ f -open sets. Here, we look at the class of τ̃ flow-sets, instead of
the class of τ̃ fst-sets from [S1].
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Definition 2.7 A relation V (x, z1, ...zl) is said to be a pre-τ̃ f -set relation if
there are θ(x̃, x, z1, z2, ..., zl) ∈ L and φi(x̃, yi) ∈ L for 0 ≤ i ≤ l such that for
all a, d1, ..., dl ∈ C we have

V (a, d1, ..., dl) iff ∃ã [θ(ã, a, d1, d2, ..., dl) ∧
l∧

i=0

(φi(ã, yi) forks over d1d2...di)]

(for i = 0 the sequence d1d2...di is interpreted as ∅). If each φi(x̃, yi) is
assumed to be low in yi , V (x, z1, ...zl) is said to be a pre-τ̃ flow-set relation.

Definition 2.8 1) A τ̃ f -set (over ∅) is a set of the form

U = {a| ∃d1, d2, ...dl V (a, d1, ..., dl)}

for some pre-τ̃ f -set relation V (x, z1, ...zl).
2) A τ̃ flow-set (over ∅) is a set of the form

U = {a| ∃d1, d2, ...dl V (a, d1, ..., dl)}

for some pre-τ̃ flow-set relation V (x, z1, ...zl).

3 The Theorem

In this section T is assumed to be a simple theory and we work in C (so, T
not necessarily eliminates imaginaries).

Definition 3.1 Let Θ = {θi(xi, x)}i∈I be a set of L-formulas such that
∃<∞xiθi(xi, x) for all i ∈ I. Let s be the sort of x. For A ⊆ Cs, let
aclΘ(A) = {b| θi(b, a) for some θi ∈ Θ and a ∈ A}.

Definition 3.2 An invariant set U(x, y1, ...yr) is said to be a generalized
uniform family of τ̃ flow-sets if there is a formula ρ(x̃, x, y1, ..., yr, z1, z2, ..., zk) ∈
L and there are formulas ψi(x̃, vi), µj(x̃, wj) ∈ L for 0 ≤ i ≤ r and 1 ≤ j ≤ k
that are low in vi and low in wj respectively, such that for all a, d1, ...dr we
have U(a, d1, ...dr) iff ∃ã∃e1...ek

ρ(ã, a, d1, ...dr, e1, ...ek)∧[
r∧
i=0

ψi(ã, vi) forks over d1...di]∧[
k∧
j=1

µj(ã, wj) forks over d1...dre1...ej].
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Definition 3.3 An invariant set F(x, y1, ...yr) is said to be a generalized
uniform family of τ̃ flow-closed sets if F(x, y1, ...yr) =

⋂
i ¬Ui(x, y1, ...yr), where

each Ui(x, y1, ...yr) is a generalized uniform family of τ̃ flow-sets.

Fact 3.4 Assume the extension property is first-order in T . Then
1) Let U be an unbounded τ̃ f -set over ∅. Then there exists an unbounded
τ f -open set U∗ over some finite set A∗ such that U∗ ⊆ U . In fact, if
V (x, z1, ..., zl) is a pre-τ̃ f -set relation such that U = {a|∃d1...dlV (a, d1, ..., dl)},
and (d∗1, ..., d

∗
m) is any maximal sequence (with respect to extension) such that

∃dm+1...dlV (C, d∗1, ..., d∗m, dm+1, ..., dl) is unbounded, then

U∗ = ∃dm+1...dlV (C, d∗1, ..., d∗m, dm+1, ..., dl)

is a τ f -open set over d∗1...d
∗
m.

Theorem 3.5 Let T be a countable simple theory in which the extension
property is first-order. Assume:
1) Θ = {θi(x′i, x)}i<ω is a set of L-formulas such that ∃<∞x′iθi(x′i, x) for all
i < ω.
2) U0(x) is a non-empty τ̃ flow-set over ∅.
3) {Fn(xn)}n<ω is a family of ∅-invariant sets such that Fn(C) ∩ acl(∅) = ∅
for all n < ω.
4) For every n < ω and every variables ȳ = y1, ...yr, let F ȳ

n(xn, ȳ) be a
generalized uniform family of τ̃ flow-closed sets such that Fn(C) ⊆ F ȳ

n(C, d̄) for
all d̄.
Now, assume for all a ∈ U0 there exists b ∈ aclΘ(a) and n < ω such that
b ∈ Fn(C). Then there is an unbounded τ f∞-open set U∗ over a finite tuple d̄∗

and variables ȳ∗ of the sort of d̄∗, and n∗ < ω such that

U∗ ⊆ F ȳ∗

n∗ (C, d̄∗) ∩ aclΘ(U0).

Proof: First, we may assume Θ is closed downwards (i.e. if θ ∈ Θ and
θ′ ` θ then θ′ ∈ Θ). Assume the conclusion of the theorem is false. It will
be sufficient to show that for every non-empty τ̃ flow-set U ⊆ U0, every θ ∈ Θ,
and every n < ω there exists a non-empty τ̃ flow-set U∗ ⊆ U such that either
¬∃x′θ(x′, a) for all a ∈ U∗ or for all a ∈ U∗ there exists b |= θ(x′, a) with
b 6∈ Fn(C). Indeed, by iterating this for every pair (θ, n) ∈ Θ× ω we get by
compactness a∗ such that for all θ ∈ Θ and all n < ω either ¬∃x′θ(x′, a∗)
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or there exists bn,θ |= θ(x′, a∗) such that bn,θ 6∈ Fn(C). Since we assume Θ is
closed downwards, we get contradiction to the assumption that for all a ∈ U0

there exists b ∈ aclΘ(a) and n < ω such that b ∈ Fn(C) (note that Fn(C) is
∅-invariant). To show this, let U , θ and n < ω be given. Let V (x, z1, ...zl) be
a pre-τ̃ flow-set relation such that

U = {a| ∃d1, d2, ...dl V (a, d1, ..., dl)}.

where V is defined by:

V (a, d1, ..., dl) iff ∃ã [σ(ã, a, d1, d2, ..., dl) ∧
l∧

i=0

(φi(ã, ti) forks over d1d2...di)]

for some σ(x̃, x, z1, z2, ..., zl) ∈ L and φi(x̃, ti) ∈ L which are low in ti for
0 ≤ i ≤ l. Let Vθ be defined by: for all b, d1, ..., dl ∈ C,

Vθ(b, d1, ..., dl) iff ∃a(θ(b, a) ∧ V (a, d1, ..., dl)).

and let
Uθ = {b| ∃d1, d2, ...dl Vθ(b, d1, ..., dl)}.

Since by the assumption Fn(C)∩ acl(∅) = ∅, we may assume Uθ ∩ acl(∅) = ∅
and Uθ is non-empty. Now, let d̄∗ = (d∗1, ..., d

∗
m) be a maximal sequence, with

respect to extension (0 ≤ m ≤ l) such that

Ṽθ(x
′) ≡ ∃dm+1, dm+2, ...dlVθ(x

′, d∗1, ...d
∗
m, dm+1, ...dl)

is non-algebraic. We may assume m < l (by choosing V appropriately).
By Fact 3.4, Ṽθ(C) is an unbounded basic τ f∞-open set over d̄∗. Since we
assume the conclusion of the theorem is false, Ṽθ(C) 6⊆ F ȳ∗

n (C, d̄∗) where
ȳ∗ = y∗1, ..., y

∗
m has the same sort as d̄∗. Now, let Us,n(xn, ȳ∗) for s < ω

be each a generalized uniform family of τ̃ flow-sets such that Fn(xn, ȳ∗) =⋂
s ¬Us,n(xn, ȳ∗). Let b∗ ∈ Ṽθ(C)\F ȳ∗

n (C, d̄∗). So, there exists s∗ < ω such that
b∗ ∈ Us∗,n(C, d̄∗). Let ρ(x̃′, xn, y

∗
1, ..., y

∗
m, z

′
1, z

′
2, ..., z

′
k) ∈ L and let ψi(x̃

′, vi), µj(x̃
′, wj) ∈

L for 0 ≤ i ≤ m and 1 ≤ j ≤ k be low in vi and low in wj respectively, such
that for all b, d1, ...dm we have Us∗,n(b, d1, ...dm) iff ∃b̃∃e1...ek

ρ(b̃, b, d1, ...dm, e1, ...ek)∧[
m∧
i=0

ψi(b̃, vi) forks over d1...di]∧[
k∧
j=1

µj(b̃, wj) forks over d1...dme1...ej].
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Now, let d∗m+1, ...d
∗
l and a∗, ã∗ and E∗ = (e∗1, ..., e

∗
k) and b̃∗ be such that

θ(b∗, a∗) ∧ σ(ã∗, a∗, d∗1, d
∗
2, ..., d

∗
l ) ∧

l∧
i=0

(φi(ã
∗, yi) forks over d∗1d

∗
2...d

∗
i ) (∗1)

and
ρ(b̃∗, b∗, d∗1, ..d

∗
m, e

∗
1, ..e

∗
k) (∗2)

and

[
m∧
i=0

ψi(b̃
∗, vi) forks over d∗1...d

∗
i ]∧ [

k∧
j=1

µj(b̃
∗, wj) forks over d∗1...d

∗
me

∗
1...e

∗
j ] (∗3).

By maximality of d̄∗, we know b∗ ∈ acl(d̄∗d∗m+1). Thus, by taking a non-

forking extension of tp(b̃∗E∗/acl(d̄∗d∗m+1)) over acl(d∗1...d
∗
l a

∗ã∗) we may as-
sume E∗ is independent from d∗1...d

∗
l a

∗ã∗ over d̄∗d∗m+1 and (∗1), (∗2) and (∗3)
still hold. We conclude that

l∧
i=m+1

(φi(ã
∗, ti) forks over d∗1d

∗
2...d

∗
iE

∗).

Now, we define the τ̃ flow-set U∗. First, define a relation V ∗ by:

V ∗(a, d1, ...dm, e1, ...ek, dm+1, ..dl) iff ∃ã, b, b̃(θ∗ ∧ V ∗
0 ∧ V ∗

1 ∧ V ∗
2 ),

where θ∗ is defined by: θ∗(ã, b, b̃, a, d1, ..dm, e1, ...ek, dm+1, ..dl) iff

θ(b, a) ∧ σ(ã, a, d1, d2, ..., dl) ∧ ρ(b̃, b, d1, ...dm, e1, ..., ek),

V ∗
0 is defined by: V ∗

0 (ã, b̃, d1, ...dm) iff

m∧
i=0

(φi(ã, ti) ∨ ψi(b̃, vi) forks over d1d2...di),

V ∗
1 is defined by V1(b̃, d1, ..dm, e1, ...ek) iff

k∧
j=1

(µj(b̃, wj) forks over d1...dme1...ej), and
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V ∗
2 is defined by V2(ã, d1, ...dm, e1, ...ek, dm+1, ..dl) iff

l∧
i=m+1

(φi(ã, ti) forks over d1d2...die1...ek).

Note that V ∗ is a pre-τ̃ flow-set. Let

U∗ = {a|∃d1, ..dm, e1, ...ek, dm+1, ..dl V
∗(a, d1, ..dm, e1, ...ek, dm+1, ...dl)}.

By the definition of U∗, U∗ ⊆ U . U∗ is a τ̃ flow-set using Remark 2.3. By the
construction, U∗ 6= ∅. Now, let a ∈ U∗. By the definition of U∗, there are
b̃, b, d1, ...dm, e1, ...ek such that θ(b, a), ρ(b̃, b, d1, ...dm, e1, ..., ek),

m∧
i=0

(ψi(b̃, vi) forks over d1, ...di) and
k∧
j=1

(µj(b̃, wj) forks over d1, ...dme1...ej).

Thus Us∗,n(b, d1...dm) and therefore ¬F ȳ∗
n (b, d1...dm). Hence b 6∈ Fn as re-

quired.

4 Applications

In this section we show some applications of Theorem 3.5. In fact, we will
show several instances of this theorem that apparently new even for stable
theories. In this section T is assumed to be a simple theory and we work in C.

We start by pointing out that theorem 3.5 generalizes [S1, Theorem 9.4]
that is one of the essential steps towards the proof of supersimplicity of
countable simple unidimensional theories with elimination of hyperimaginar-
ies. First recall the following definitions from [S1].

Definition 4.1 For a ∈ C, A ⊆ B ⊆ C, a 6̂ |s B
A

if for some stable

φ(x, y) ∈ L, there is b over B and a′ |= φ(x, b) for some a′ ∈ dcl(Aa)
such that φ(x, b) forks over A.

Definition 4.2 The SUse-rank of tp(a/A) is defined by induction on α: if

α = β+1, SUse(a/A) ≥ α if there exist B1 ⊇ B0 ⊇ A such that
a 6̂ |s B1

B0

and SUse(a/B1) ≥ β. For limit α, SUse(a/A) ≥ α if SUse(a/A) ≥ β for all
β < α.
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Remark 4.3 First, recall that in a simple theory in which Lstp = stp over
sets |̂s is symmetric [Lemma 6.7, S1]. Thus for any finite tuples of sorts
s0 and s1 and n < ω the set F s0,s1

n defined by

F s0,s1
n = {(a,A) ∈ Cs0 × Cs1| SUse(a/A) < n}.

is a generalized uniform family of τ̃ flow-closed sets.

For an A-invariant set V , let acl1(V ) = {a′| a′ ∈ acl(a) for some a ∈ V }.
The following corollary generalizes [S1, Theorem 9.4].

Corollary 4.4 Let T be a countable simple theory in which the extension
property is first-order and assume Lstp = stp over sets. Let U0 be a non-
empty τ̃ flow-set. Assume for every a ∈ U0 there exists a′ ∈ acl(a)\acl(∅) such
that SUse(a

′) < ω. Then there exists an unbounded τ f∞-open set U ⊆ acl1(U0)
over a finite set such that U has bounded finite SUse-rank.

Proof: Let x be the variable of U0, so U0 = U0(x). Let

Θ = {θ(x′, x)| ∃<∞x′θ(x′, x), x′ any variable}.

Let S be the set of sorts. Let I : ω → S × ω be a bijection, I1, I2 the
projections of I to the first and second coordinate respectively. Now, for
each n < ω let Fn = {a ∈ CI1(n)\acl(∅) |SUse(a) < I2(n)}. Now, for every
finite tuple of variables Y and n < ω let s(Y ) be the finite sequence of sorts
of Y and let

FY
n = {(a,A) ∈ CI1(n) × Cs(Y )| SUse(a/A) < I2(n)}.

Now, by the definition of the SUse-rank, Fn(C) ⊆ FY
n (C, A) for every n < ω

and every Y,A. By Remark 4.3, FY
n is a generalized uniform family of τ̃ flow-

closed sets for all Y, n. By our assumptions, we see that the assumptions of
Theorem 3.5 hold for U0(x), Θ ,{Fn}n and {FY

n }Y,n and thus by its corollary
we are done.

Corollary 4.5 Let T be a countable theory with wnfcp. Let U0 be an un-
bounded τ̃ f -set over ∅ of finite SU-rank. Then there exists a finite set A and
a SU-rank 1 formula θ ∈ L(A) such that θC ⊆ U0 ∪ acl(A).
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Proof: First, by modifying U0, we may assume U0 ∩ acl(∅) = ∅. Let Θ =
{x′ = x}, U0(x) = U0. Let s(x) be the sort of x. Now, for each n < ω let

Fn = {a ∈ Cs(x)\acl(∅) |SU(a) < n}.

For every finite tuple of variables Y and n < ω let s(Y ) be the finite sequence
of sorts of Y and let

FY
n = {(a,A) ∈ Cs(x) × Cs(Y )| SU(a/A) < n}.

By symmetry of forking and the assumption that T is low, each FY
n is a

generalized uniform family of τ̃ flow-closed sets. Clearly, Fn(C) ⊆ FY
n (C, A) for

every n < ω and every Y,A. By our assumption, the assumptions of Theorem
3.5 are satisfied for U0, Θ, {Fn}n and {FY

n }Y,n and thus by its corollary there
exists an unbounded τ f∞-open set U∗ ⊆ U0 over a finite set A0 and U∗ has
bounded finite SU -rank. By Fact 2.6, there exists a finite set A ⊇ A0 and
there exists a SU -rank 1 formula θ ∈ L(A) such that θC ⊆ U∗ ∪ acl(A).

Corollary 4.6 Let T be a countable theory with wnfcp. Let U0 be a non-
empty τ̃ f -set over ∅. Assume for every a ∈ U0 there exists a′ ∈ acl(a)\acl(∅)
such that SU(a′) < ω. Then there exists a finite set A and a SU-rank 1
formula θ ∈ L(A) such that θC ⊆ acl1(U0) ∪ acl(A).

Proof: Just like the proof of Corollary 4.5.

5 Dichotomies for countable theories with the

wnfcp

In this section we show the dichotomy [S1, Theorem 5.5] implies a strong
dichotomy between essential 1-basedness and supersimplicity in the case T
is a countable wnfcp theory that eliminates hyperimaginaries. Before we
state the above dichotomy for the special case of the τ f -topologies (simplified
version), let us recall the basic definitions. In this section T is assumed to
be simple.

Definition 5.1 A type p ∈ S(A) is said to be essentially 1-based by means
of the τ f -topologies if for every finite tuple c̄ from p and for every type-
definable τ f -open set U over Ac̄, the set {a ∈ U| Cb(a/Ac̄) 6∈ bdd(aA)} is
nowhere dense in the Stone-topology of U .
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Fact 5.2 Let T be a countable simple theory with PCFT that eliminates
hyperimaginaries. Let p0 be a partial type over ∅ of SU-rank 1. Then, either
there exists an unbounded finite-SU-rank τ f -open set over some countable set,
or every type p ∈ S(A), with A countable, that is internal in p0 is essentially
1-based by means of the τ f -topologies.

Let V,W be invariant sets (over some small set). We say that V almost
contain W if for some A over which W is invariant V ⊇ W\acl(A). We
say that V is generated over W if there exists a small set B such that V ⊆
dcl(W ∪B).

Theorem 5.3 Let T be a countable theory with wnfcp that eliminates hyper-
imaginaries. Let p be a partial type over ∅ of SU-rank 1 . Then, either
1) every type q ∈ S(A), with A countable, that is internal in p is essentially
1-based by means of the τ f -topologies, or
2) there exists n < ω and g(x, y) ∈ L such that g(x, a) is a definable function
for all a, and there exists a small sequence (ai|i < α) such that

⋃
i<α g(p

n, ai)
almost contains a weakly-minimal definable set. In particular, there exists a
weakly-minimal definable set that is generated over p(C).

Proof: Assume 1) is false. By the proof of Fact 5.2, there exists an un-
bounded basic τ f -open set U over some countable set A such that tp(a/A) is
almost p-internal for every a ∈ U .

Subclaim 5.4 There exists an unbounded basic τ f -open set U∗ ⊆ U over A
that is generated over p(C).

Proof: By [WB] or [S2, Corollary 4.9], for every a ∈ U\acl(A) there exists
a′ ∈ dcl(aA)\acl(A) such that tp(a′/A) has fundamental system of solutions
over p(C), (i.e. tp(a′/A) is generated over p(C) by a set of realizations p.)
In particular, there exists a (finite) set A′ of realizations of tp(a′/A) that is
independent from A′ and tuple c̄ of realizations of p such that a′ ∈ dcl(A′c̄).
For every A-definable functions f, g let

Ff,g = {a ∈ U|f(a) = g(b̄, c̄) 6∈ acl(A) for some b̄, c̄ with f(a) |̂ b̄ ,
where c̄ is a tuple of realizations of p, and b̄ is a tuple of realizations of tp(f(a)/A)}.
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Note that each Ff,g is τ f -closed over A. Thus, by Baire category theorem
for the τ f -topology and Fact 2.5 we conclude that there exists an unbounded
τ f -open set U∗ over A and A-definable function g∗ such that for every a ∈ U∗

there exists a tuple b̄ of realizations of tp(a) that is independent from a such
that a = g∗(b̄, c̄) for tuple c̄ of realizations of p. Now, the subclaim follows
directly from fact [S2, Theorem 3.7]:

Fact 5.5 Let p ∈ S(∅) and let R be ∅-invariant. Suppose the internality of
p in R is witnessed by a generic parameter whose type q is R-internal. Then
p is generated over R by a set of realizations of q.

Moreover, we may assume A = acl(A), so it is not hard to see that there
exists a definable family of functions g∗∗(x, y) ∈ L (constructed from g∗) such
that for every a ∈ U∗ there exists a′ such that if n = l(x), then g∗∗(pn, a′)
contains tp(a)C (see the method in [S3, Theorem 5.6]). Now, as U∗ has
bounded finite SU -rank (the bound is determined by g∗), by Fact 2.6, there
exists a SU -rank 1 formula θ(x, b) such that θ(C, b) ⊆ U∗ ∪ acl(Ab). Thus 2)
follows.

5.1 A trichotomy for countable theories with the nfcp

Work in C = Ceq.

Theorem 5.6 Let T be a countable theory with nfcp. Let p ∈ S(∅) be mini-
mal. Then, either
1) every type q ∈ S(A), with A countable, that is internal in p is essentially
1-based by means of the τ f -topologies, or
2) there exists a strongly minimal definable set that is p-internal, or
3) there is an infinite definable 1-based group of finite D-rank that is p-
internal.

Proof: Assume 1) is false. By Theorem 5.3, there exists a weakly-minimal
formula θ(x, b) that is p-internal. First, assume θ(C, b) ⊆ acl(p(C) ∪ b). By
Baire category theorem, there exists a b-definable θ∗(x, b) ` θ(x, b) and b-
definable functions f, g and n < ω such that g[pn(C)] ⊇ f [θ∗] ≡ f [θ∗(C, b)]
and f [θ∗] is non-algebraic. Since p is minimal, f [θ∗] must have Morley
rank and thus contains a strongly minimal formula. Thus, we may assume
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θ(C, b) 6⊆ acl(pC ∪ b). Let a ∈ θ(C, b)\acl(pC ∪ b). Let q = tp(a/acl(b)) and
let Γ = Aut(qC/pC ∪acl(b)). Then there is an infinite type-definable group G
over acl(b) that is isomorphic to Γ. Now, G can be realized as acl(b)-definable
projections of certain type-definable set over acl(b) of finite tuples from q. As
q ` θ(x, b), and G is intersection of definable groups over acl(b), we conclude
that there an infinite acl(b)-definable group G0 that is p-internal and has
finite D-rank. By Buechler’s dichotomy, every minimal type r ` G0 is either
1-based or of Morley rank 1. Thus if 2) fails, then any such r is 1-based. As
G0 has finite SU -rank, every non-algebraic type of G0 is non-orthogonal to
a minimal type in G0 and therefore analyzable in it. By [W], G0 is 1-based.
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