

PROPRIÉTÉS RÉSIDUELLES DANS LES GROUPES SUPERSIMPLES

FRANK WAGNER

RÉSUMÉ. Si \mathcal{C} est une pseudo-variété, alors un groupe supersimple résiduellement \mathcal{C} est nilpotent-par-poly- \mathcal{C} .

ABSTRACT. If \mathcal{C} is a pseudo-variety, then a supersimple residually \mathcal{C} group is nilpotent-by-poly- \mathcal{C} .

1. Introduction

Dans un article récent [1], Abderezak Ould Houcine montre qu'un groupe superstable résiduellement \mathcal{C} pour une pseudo-variété \mathcal{C} admet une série normale définissable $G = G_0 \trianglerighteq G_1 \trianglerighteq \cdots \trianglerighteq G_n$ telle que $G_i/G_{i+1} \in \mathcal{C}$ pour i < n, et G_n est résoluble; si G est ω -stable, on peut choisir G_n nilpotent. Nous étendons son résultat aux groupes supersimples, et montrons en même temps qu'on peut toujours prendre G_n nilpotent.

Rappelons qu'une classe de groupes est une pseudo-variété si elle est close par sous-groupes, quotients et produits finis; un groupe est résiduellement $\mathcal C$ si pour tout $1 \neq g \in G$ il y a un sous-groupe normal $g \notin N \unlhd G$ avec $G/N \in \mathcal C$. Cette notion dépend a priori fortement du modèle choisi est n'est pas préservée par équivalence élémentaire. Par contre, on voit facilement qu'elle est préservée par sous-groupe, mais aussi par quotient par un sous-groupe normal équationellement type-définissable :

Définition 1. Soit G un groupe. Un sous-groupe $H \leq G$ est équationellement type-définissable s'il y a une collection $\{w_i(x): i \in I\}$ de mots avec paramètres dans G telle que

$$H = \{ g \in G : w_i(g) = 1 \text{ pour tout } i \in I \}.$$

Si $a \in G$, alors le centralisateur $C_G(a)$ est équationellement défini par le mot $w_a(x) = [x, a]$. Le centre Z(G) est équationellement type-défini par la collection des mots $\{w_a(x) : a \in G\}$. Bien sur, dans une extension élémentaire G^* , cette collection ne définira plus le centre $Z(G^*)$ mais

Date: 1 juillet 2010.

1991 Mathematics Subject Classification. 20E26; 03C45.

Key words and phrases. simple theory, pseudo-variety, nilpotent, residual.

le centralisateur $C_{G^*}(G)$. Pour des considérations résiduelles, qui de toute façon ne permettent pas de changer de modèle, ceci est sans importance.

Ould Houcine [1, Lemma 2.2(2)] a montré que le quotient d'un groupe résiduellement \mathcal{C} par un sous-groupe normal équationellement définissable reste résiduellement \mathcal{C} . La preuve reste valable pour un quotient par un sous-groupe normal équationellement type-définissable.

Lemme 1. Si G est résiduellement C et $N \unlhd G$ est résiduellement typedéfinissable, alors G/N est résiduellement C.

Démonstration: Soit $\{w_i(\bar{a}, x) : i \in I\}$ une collection de mots qui typedéfinit N. Soit $g \in G \setminus N$. Alors il y a $i \in I$ avec $w_i(\bar{a}, g) \neq 1$. Comme G est résiduellement C il y a un morphisme surjectif $\varphi : G \to L$ avec $L \in C$ et $\varphi(w_i(\bar{a}, g)) \neq 1$

Supposons que $\varphi(g) \in \varphi(N)$. Alors il y a $g' \in N$ avec $\varphi(g) = \varphi(g')$. Or, comme $g' \in N$ on a $w_i(\bar{a}, g') = 1$, d'où

$$1 = \varphi(1) = \varphi(w_i(\bar{a}, g')) = w_i(\varphi(\bar{a}), \varphi(g'))$$

= $w_i(\varphi(\bar{a}), \varphi(g)) = \varphi(w_i(\bar{a}, g)) \neq 1$,

une contradiction. Donc $\varphi(g) \notin \varphi(N)$.

Puisque φ est surjectif, $\varphi(N)$ est normal dans L, et $\bar{\varphi}: G/N \to L/\varphi(N) \in \mathcal{C}$ est un morphisme avec $\bar{\varphi}(g) \neq 1$. Donc G/N est résiduellement \mathcal{C} .

Corollaire 2. Si G est résiduellement C, alors G/Z(G) est résiduellement C.

2. Préliminaires sur les théories simples et une version quantitative du Théorème des Indécomposables

Nous rassemblons ici les notations et faits concernant les groupes (hyper-)définissables dans une théorie simple. Pour les preuves, ainsi que pour une définition de la simplicité, le lecteur pourra consulter [2].

Dans cette section, on travaille dans un grand modèle κ -saturé et fortement κ -homogène de notre théorie, le modèle monstre. Tous les paramètres proviennent de ce modèle, et leur nombre est strictement inférieur à κ . De même, tous les uples sont de longueur strictement inférieur à κ .

Un groupe G est type-définissable si son domaine et sa loi sont donnés par un type partiel; si G vit sur des uples de longueur fini, on voit facilement qu'alors la loi est donné par une seule formule. Un sous-groupe $H \leq G$ est relativement définissable s'il existe une formule $\varphi(x)$ avec $H = \{g \in G : \models \varphi(g)\}$.

Rappelons d'abord quelques propriétés des groupes type-définissables. Soit donc G un groupe type-définissable dans une théorie simple.

Fait 3. [2, Lemma 4.2.6] Soit $H_a \leq G$ un sous-groupe relativement définissable avec des paramètres a. Alors il existe un entier n tel que pour tout a', si $H_{a'}$ est un sous-groupe d'indice fini dans G, alors $[G:H_{a'}] \leq n$.

Fait 4. [2, Proposition 4.2.7] Soit \mathfrak{H} une famille type-définissable de sous-groupes de G relativement définissables. Alors il existe un sous-groupe N, extension finie d'une intersection finie de groupes dans \mathfrak{H} , qui est invariant par tous les automorphismes de G qui stabilisent \mathfrak{H} et d'indice fini dans N pour tout $H \in \mathfrak{H}$.

Il en suit que N est relativement définissable avec les mêmes paramètres que la famille \mathfrak{H} . Enfin, si la théorie ambiante est supersimple, tout groupe type-définissable est intersection de groupes définissables [2, Theorem 5.5.4].

On passe maintenant aux groupes hyperdéfinissables.

Définition 2. Un (élément) hyperimaginaire est la classe d'un uple modulo une relation d'équivalence type-définissable sur \emptyset . Un ensemble est hyperdéfinissable sur des paramètres A s'il est le quotient d'un ensemble type-définissable sur A par une relation d'équivalence type-définissable sur A. Un groupe est hyperdéfinissable si son domaine et le graphe de sa loi le sont.

Remarque 5. Il est facile de voir qu'on peut se restreindre à des relations d'équivalence sur des uples de longueur dénombrable, données par des types partiels dénombrables sur \emptyset .

Jusqu'à la fin de cette section soit G un groupe hyperdéfinissable sur des paramètres A dans une théorie simple.

Définition 3. Soit $B \supset A$.

- (1) Il existe un unique sous-groupe minimal hyperdefinissable sur B d'indice $< \kappa$ (et donc borné) dans G, la composante B-connexe notée G_B^0 ; elle est normale.
- (2) On note $S_G(B)$ l'ensemble des types p(x) sur B qui impliquent $x \in G$.
- (3) Un type $p \in S_G(B)$ est générique si pour tout $a \models p$ et tout $g \in G$ avec $g \downarrow_B a$ on a $ga \downarrow_A B, g$. Si p(x) implique $x \in G_B^0$, alors p est générique principal.
- (4) Soit $p \in S_G(B)$, où B est un modèle (ou bornément clos). On pose $S_p = \{g \in G : gp \cup p \text{ ne devie pas sur } B\}$ et $\operatorname{stab}_G(p) = S_p^2$, le $\operatorname{stabilisateur}$ de p.

Fait 6. [2, Corollary 4.5.3 et Proposition 4.5.4] stab(p) est un groupe hyperdéfinissable sur B, et p est générique dans G si et seulement si stab $(p) = G_B^0$. Dans ce cas, $p \cdot p^{-1}$ contient tous les génériques de G_B^0 .

Définition 4. Deux sous-groupes H_1 et H_2 hyperdéfinissables de G sont *commensurables* si leur intersection $H_1 \cap H_2$ est d'indice $< \kappa$ dans H_1 et dans H_2 .

Remarque 7. H_1 et H_2 sont donc commensurables si leur intersection est d'indice borné dans chaque groupe, indépendamment du modèle chosi. Si H_1 et H_2 sont commensurables et relativement définissables dans un groupe G type-définissable, alors $H_1 \cap H_2$ sera d'indice fini dans H_1 et dans H_2 par compacité.

Définition 5. Un sous-groupe hyperdéfinissable $H \leq G$ est localement connexe si tout conjugué (groupe ou modèle-théorique) H^* de H commensurable avec H est égal à H.

Fait 8. [2, Corollary 4.5.16] Soit H un sous-groupe hyperdéfinissable de G. Alors il y a un unique sous-groupe H^c hyperdéfinissable localement connexe minimal commensurable avec H, sa composante localement connexe.

Les fait suivants nécessitent des calculs de rang afin d'établir l'existence de certains sous-groupes.

Fait 9. [2, Equation 5.1] Soit $H \leq G$ hyperdéfinissable. Alors $SU(H) + SU(G/H) \leq SU(G) \leq SU(H) \oplus SU(G/H)$ (Inégalités de Lascar).

Fait 10. [2, Lemma 5.4.2] Soit $p \in S_G(A)$ pour un modèle A, avec $SU(p) = \sum_{i \leq k} \omega^{\alpha_i} n_i$ avec $\alpha_0 > \alpha_1 > \cdots > \alpha_k$ et $n_0, \ldots, n_k > 0$. Si pour tous $a, b \models p$ indépendants $SU(ab^{-1}/A) < SU(p) + \omega^{\alpha_k}$, alors (une extension non-deviante de) p est un translaté a droite d'un type générique du stabilisateur stab(p). En particulier SU(stab(p)) = SU(p).

Fait 11. [2, Proposition 5.4.3 et Remark 5.4.4] Si $SU(G) = \omega^{\alpha} n + \beta$ avec $\beta < \omega^{\alpha}$, alors il y a un sous-groupe normal $N \underline{\triangleleft} G$ hyperdéfinissable sur A avec $SU(N) = \omega^{\alpha} n$; il est unique a commensurabilité près.

Voici la version supersimple du Théorème des Indécomposables :

Fait 12. [2, Theorem 5.4.5 et Remark 5.4.7] Si $SU(G) < \omega^{\alpha+1}$ et \mathfrak{X} est une famille se sous-ensembles hyperdéfinissables de G, alors il y a $m < \omega$, des ensembles $X_1, \ldots, X_m \in \mathfrak{X}$ et un sous-groupe $H \leq G$ hyperdéfinissable avec $H \subseteq X_1^{\pm 1} \cdots X_m^{\pm 1}$, tel que SU(XH) < SU(H) +

 ω^{α} pour tout $X \subseteq \langle \mathfrak{X} \rangle$ hyperdéfinissable (et en particulier pour tout $X \in \mathfrak{X}$. En plus, H est unique a commensurabilté près, et on peut le choisir invariant par tous les automorphismes qui stabilisent \mathfrak{X} , ou X_1, \ldots, X_M). Si tous les $X \in \mathfrak{X}$ sont G-invariants, ou si \mathfrak{X} est G-invariant, on peut choisir H normal dans G.

Nous allons raffiner ce théorème en donnant une borne pour m.

Proposition 13. Soit G un groupe hyperdéfinissable dans une théorie simple, de rang

$$SU(G) = \omega^{\alpha_1} n_1 + \dots + \omega^{\alpha_k} n_k$$

avec $\alpha_1 > \cdots > \alpha_k$ et $n_1, \ldots, n_k > 0$. Soit $X = X^{-1} \subseteq G$ hyperdéfinissable. Si le sous-groupe engendré par X est d'indice borné dans G, alors $X^{6^{n_1+\cdots+n_k}}$ est générique dans G.

La réciproque est évidente.

Démonstration: Supposons que le sous-groupe engengré par X soit d'indice borné dans G. Soit $m_i = 6^{n_1 + \dots + n_i}$. On montrera par récurrence sur i que $SU(X^{m_i}) \ge \omega^{\alpha_1} n_1 + \dots + \omega^{\alpha_i} n_i$.

Pour i=0 on a $m_0=6^0=1$; alors $SU(X)\geq 0$ comme X est non-vide. Supposons donc que $SU(X^{m_i})\geq \omega^{\alpha_1}n_1+\cdots+\omega^{\alpha_i}n_i$. Puisque le rang ne peut pas augmenter de $\omega^{\alpha_{i+1}}$ plus que n_{i+1} fois, il y a $m\in\{m_i,m_i+1,\ldots m_{i+1}\}$ minimal tel que $SU(X^{6m})< SU(X^m)+\omega^{\alpha_{i+1}}$.

Soit p(x) un type (eventuellement sur des paramètres \mathfrak{M} supplémentaires dont on peut supposer qu'ils forment un modèle) qui implique $x \in X^m$ avec $SU(p) = \omega^{\alpha_1} n_1 + \cdots + \omega^{\alpha_i} n_i + \omega^{\alpha_{i+1}} n$, avec n maximal possible. Alors pour tout $a, b \models p$ avec $a \downarrow_{\mathfrak{M}} b$ on a

$$SU(ab^{-1}/\mathfrak{M}) \leq SU(X^{2m}) \leq SU(X^{6m}) < SU(p) + \omega^{\alpha_{i+1}}.$$

Le fait 10 implique alors $ab^{-1} \downarrow_{\mathfrak{M}} b$ et $\operatorname{tp}(a/\mathfrak{M},b)$ est un translaté à droite d'un générique du stabilisateur $\operatorname{stab}(p)$, avec $SU(\operatorname{stab}(p)) = SU(p)$.

Soit $\operatorname{stab}(p)^g$ un conjugué de $\operatorname{stab}(p)$ par un élément $g \in X$ avec $g \downarrow_{\mathfrak{M}} a, b$. Alors pour $a' \models \operatorname{tp}(a/\mathfrak{M}, b, g)$ avec $a \downarrow_{\mathfrak{M}, b, g} a'$ le type

$$\operatorname{tp}((ab^{-1})(a'b^{-1})^g/\mathfrak{M}, b, g)$$

est générique pour $\operatorname{stab}(p)\operatorname{stab}(p)^g$. Mais par le choix de m on a

$$SU(\operatorname{stab}(p)\operatorname{stab}(p)^g) \le SU(X^{4m+2}) \le SU(X^{6m}) < SU(p) + \omega^{\alpha_{i+1}}.$$

Par les inégalités de Lascar

$$SU(\operatorname{stab}(p)) + SU(\operatorname{stab}(p)/(\operatorname{stab}(p) \cap \operatorname{stab}(p)^g))$$

$$= SU(\operatorname{stab}(p)^g) + SU(\operatorname{stab}(p)\operatorname{stab}(p)^g/\operatorname{stab}(p)^g)$$

$$\leq SU(\operatorname{stab}(p)\operatorname{stab}(p)^g) < SU(\operatorname{stab}(p)) + \omega^{\alpha_{i+1}}$$

et $SU(\operatorname{stab}(p)/(\operatorname{stab}(p) \cap \operatorname{stab}(p)^g)) < \omega^{\alpha_{i+1}}$. Comme

$$SU(\operatorname{stab}(p)) = SU(p) = \omega^{\alpha_1} n_1 + \dots + \omega^{\alpha_i} n_i + \omega^{\alpha_{i+1}} n_i$$

les inégalités de Lascar impliquent que $\operatorname{stab}(p) \cap \operatorname{stab}(p)^g$ est d'indice borné dans $\operatorname{stab}(p)$, et $\operatorname{stab}(p)$ est commensurable avec tous ses X-conjugués. Soit N la composante localement connexe de $\operatorname{stab}(p)$. Alors N est normalisé par X, et donc par le groupe engendré par X. Mais alors $SU(X/N) < \omega^{\alpha_{i+1}}$ implique $SU(X^\ell/N) < \omega^{\alpha_{i+1}}$ pour tout $\ell < \omega$; puisque X^ℓ est générique dans G pour ℓ suffisamment grand, on a $n = n_{i+1}$.

Le théorème suivant suppose que G soit définissable.

Théorème 14. Soit G un groupe supersimple. Alors pour toute formule $\varphi(x,y)$ il y a une formule $\vartheta(y)$ telle que pour tout a le sous-groupe engendré par $\varphi(x,a)$ intersecte G dans un sous-groupe H_a d'indice fini si et seulement si $\models \vartheta(a)$; dans ce cas, H_a est relativement définissable uniformément en a, et d'indice borné dans G.

Démonstration: Soit $X_a^m = (\varphi(G,a)^{\pm 1})^m$, et $H_a = \bigcup_{m<\omega} X_a^m$ le sous-groupe engengré par $\varphi(G,a)$. S'il y a $m<\omega$ tel que X_a^m soit générique dans G, alors $X_a^m \cdot (X_a^m)^{-1} = X_a^{2m}$ contient tous les type génériques principaux de G sur a d'après le fait 6. Donc X_a^{4m} contient la composante connexe G_a^0 sur a. Mais comme X_a^{4m} est définissable, un nombre fini de translatés de X_a^{4m} recouvrent G. En particulier H_a est d'indice fini dans G.

Réciproquement, si aucun X_a^m n'est générique dans G, alors une suite d'éléments génériques indépendants sur a témoigne du fait que l'indice de H_a dans G est infini. En particulier un nombre fini de translatés d'un X_a^m ne peut recouvrir G. La condition $[G:H_a]<\omega$ est donc ouverte en a.

Pour tout $m < \omega$, un produit X_a^m est générique dans G si et seulement s'il a les même rangs locaux stratifiés, ce qui est une condition fermée. Il nous faut donc borner le m, ce qui découle de la proposition 13.

Par compacité, le fait que X_a engendre un groupe d'indice fini est définissable par une formule $\vartheta(x) \in \operatorname{tp}(a)$. Pour $a \models \vartheta$ il en suit que le sous-groupe engendré par $\varphi(G,a)$ est relativement définissable uniformément en a, et son indice dans G est borné.

3. Groupes supersimples résiduellement \mathcal{C}

Nous pouvons maintenant suivre le raisonnement d'Ould Houcine pour démontrer notre théorème principal. Notons que dans cette section G est définissable, et que nous resterons toujours dans le même modèle (sauf indication au contraire). En particulier, il n'y a aucune hypothèse de saturation.

Théorème 15. Soit C une pseudo-variété et G un groupe supersimple résiduellement C. Alors il y a une série normale définissable $G = G_0 \trianglerighteq G_1 \trianglerighteq \cdots \trianglerighteq G_n$ telle que $G_i/G_{i+1} \in C$ pour i < n, avec G_n nilpotent.

Démonstration: Soit $SU(G) = \omega^{\alpha} \cdot n + \beta$ pour des ordinaux α , β et un entier n > 0, avec $\beta < \omega^{\alpha}$. Soit $N \leq G$ un sous-groupe normal type-définissable avec paramètres dans G de rang $SU(N) \geq \omega^{\alpha}$ minimal. Alors $SU(N) = \omega^{\alpha} \cdot k$ avec $0 < k < \omega$ d'après le fait 11. Puisque N est une intersection de groupes définissables, la supersimplicité nous donne un sur-groupe définissable N_1 de même rang (éventuellement sur des paramètres dans une extension élémentaire); d'après le fait 4 appliquée à la famille des conjugués (groupe- et modèle-théoriques) de N_1 il existe un $N_2 \leq G$ commensurable avec N_1 et définissable sur les mêmes paramètres que N. En bref, on peut supposer que N est normal et définissable avec paramètres dans G.

Pour $g \in G \setminus \{1\}$ soit $N_g \leq G$ avec $g \notin N_g$ telle que $G/N_g \in \mathcal{C}$, et pour $\bar{g} \in G \setminus \{1\}$ fini soit $N_{\bar{g}} = \bigcap_{g \in \bar{g}} N_g$. Donc $G/N_{\bar{g}} \in \mathcal{C}$ puisque \mathcal{C} est une pseudo-variété. Nous considérons les sous-groupes normaux $[N, N_{\bar{g}}] \leq N \cap N_{\bar{g}}$ pour $\bar{g} \in G$. D'après le théorème des indécomposables il existe pour tout $\bar{g} \in G$ fini des éléménts $n_1, \ldots, n_m \in N_{\bar{g}}$ telle que $(n_1^{-1}n_1^N)^{\pm 1} \cdots (n_m^{-1}n_m^N)^{\pm 1}$ contienne un sous-groupe normal $K_{\bar{g}} \leq G$ typedéfinissable avec paramètres dans G avec $SU(n^{-1}n^N/K_{\bar{g}}) < \omega^{\alpha}$ pour tout $n \in N_{\bar{g}}$.

Si on trouve $\bar{g} \in G \setminus \{1\}$ tel que $SU(K_{\bar{g}}) < \omega^{\alpha} \cdot k$, alors $SU(K_{\bar{g}}) < \omega^{\alpha}$ par minimalité de k. Donc $SU(n^{-1}n^N) < \omega^{\alpha}$ pour tout $n \in N_{\bar{g}}$, d'où $SU(N/C_N(n)) < \omega^{\alpha}$, et $C_N(n)$ est d'indice fini dans N pour tout $n \in N_{\bar{g}}$ par les inégalités de Lascar. Alors

$$N_{\bar{g}} \le \tilde{C}_G(N) = \{ g \in G : [N : C_N(g)] < \omega \},$$

le centralisateur approximatif de N dans G. Donc $G/\tilde{C}_G(N)$ est un quotient d'un élément dans C, et est ainsi lui-même dans C. Notons que $\tilde{C}_G(N)$ est définissable, puisque l'indice de $C_N(g)$ dans N est borné d'après le fait 3.

Sinon, pour tout $\bar{g} \in G \setminus \{1\}$ il existe $n \in N_{\bar{g}}$ telle que $SU(n^{-1}n^N) \ge \omega^{\alpha}$. Alors le sous-groupe normal H engendré par $n^{-1}n^N$ contient un

sous-groupe normal type-définissable de G de rang au moins ω^{α} d'après le théorème des indécomposables; par minimalité de SU(N) et le fait que $H \leq N$ ce rang doit être $\omega^{\alpha} \cdot k$, et H est uniformément définissable en n et d'indice borné dans N par le théorème 14. Comme $H \leq [N, N_{\bar{g}}] \leq N$, le groupe $[N, N_{\bar{g}}]$ lui aussi est uniformément définissable et d'indice borné dans N. Mais si $[N, N_{\bar{g}}] \neq 1$, considérons un $g \in [N, N_{\bar{g}}] \setminus \{1\}$. Alors $[N, N_{g\bar{g}}]$ est un sous-groupe propre de $[N, N_{\bar{g}}]$; comme l'indice reste borné, cette chaîne doit terminer, une contradiction. Ce deuxième cas est donc impossible, et $G/\tilde{C}_G(N) \in \mathcal{C}$.

Si $SU(\tilde{C}_G(N)) < SU(G)$ on termine par récurrence sur SU(G). Sinon $\tilde{C}_G(N)$ est d'indice fini dans G, et il y a $g \in G$ et $n \in N$ génériques et indépendants avec [g, n] = 1. Mais alors $C_G(n)$ contient g et est d'indice fini dans G, ce qui implique que $\tilde{C}_N(G)$ contient n et est d'indice fini dans N. On remplace alors G par $\tilde{C}_G(N)$ et N par $\tilde{C}_G(N) \cap \tilde{C}_N(G)$, des sous-groupes définissables normaux d'indices finis.

Soient $n \in N$ et $g \in G$; comme $g \in \tilde{C}_G(N)$ on a $[g, n] \in \operatorname{acl}(g)$, et puisque $n \in \tilde{C}_N(G)$ on a $[g, n] \in \operatorname{acl}(n)$. D'où

$$[n, g] \in \operatorname{acl}(n) \cap \operatorname{acl}(g) = \operatorname{acl}(\emptyset),$$

et l'ensemble $X=\{[g,n]:g\in G,\,n\in N\}$ de commutateurs est fini par compacité. Comme $[G:C_G(x)]$ est borné pour tout $x\in X\subseteq \tilde{C}_N(G)$,

$$G_1 = \bigcap_{x \in X} C_G(x) = C_G(X) = C_G([G, N])$$

est d'indice fini dans G, avec $N_1 := N \cap G_1$ d'indice fini dans N et contenu dans $Z_2(G_1)$, les deux étant normaux et définissables avec paramètres dans G.

Or, $G/G_1 \in \mathcal{C}$ d'apres le lemme 1 puisque c'est un groupe fini, et $G_1/Z_2(G_1)$ est résiduellement \mathcal{C} d'après le corollaire 2. Enfin, comme $N_1 \leq Z_2(G_1)$ et $SU(N_1) = SU(N) \geq \omega^{\alpha}$, on a $SU(G_1/Z_2(G_1)) < SU(G_1)$. Puisque l'image réciproque d'un sous-groupe nilpotent de $G_1/Z_2(G_1)$ est toujours nilpotent, on termine par récurrence.

Remarque 16. Notons que si N est normal dans G, alors par le fait 4 il existe un sous-groupe caractéristique N_0 de G qui est une extension finie d'une intersection finie de conjugués de N par des automorphismes. Comme C est une pseudo-variété on peut donc successivement prendre tous les G_i normaux pas seulement dans leur prédecesseur, mais dans G.

Corollaire 17. Un groupe supersimple résiduellement fini est virtuellement nilpotent. Un groupe supersimple résiduellement résoluble est résoluble.

Références

- [1] A. Ould Houcine. On superstable groups with residual properties. Math. Log. Quart. $53(1):19-26,\,2007.$
- [2] F. O. Wagner. Simple Theories. Kluwer Academic Publishers, 2000.

Frank O Wagner, Université de Lyon; CNRS; Université Lyon 1; Institut Camille Jordan UMR5208, 43 blvd du 11 novembre 1918, 69622 Villeurbanne-cedex, France

 $E ext{-}mail\ address: wagner@math.univ-lyon1.fr}$