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In this article we consider representations of SL2 which are interpretable in
�nite Morley rank theories, meaning that inside a universe of �nite Morley rank
we shall study the following de�nable objects: a group G isomorphic to SL2,
an abelian group V , and an action of G on V ; V is thus a de�nable G-module
on which G acts de�nably. Our goal will be to identify V with a standard G-
module, under an assumption on its Morley rank. (A word on this notion will
be said shortly, after we have stated the results.)

It will be convenient to work with a faithful representation, possibly replacing
SL2 by the quotient PSL2, and we shall write G ' (P)SL2 to cover both cases.

Theorem. In a universe of �nite Morley rank, consider the following de�nable
objects: a �eld K, a group G ' (P)SL2(K), an abelian group V , and a faithful
action of G on V for which V is G-minimal. Assume rkV ≤ 3 rkK. Then V
bears a structure of K-vector space such that:

• either V ' K2 is the natural module for G ' SL2(K), or

• V ' K3 is the irreducible 3-dimensional representation of G ' PSL2(K)
with charK 6= 2.

On the way we shall establish the following interesting results.

Lemma 1.6. In a universe of �nite Morley rank, consider the following de�n-
able objects: a �eld K, a simple algebraic group G over K, a torsion-free abelian
group V , and a faithful action of G on V for which V is G-minimal. Then
V oG is algebraic.

Proposition 2.3. In a universe of �nite Morley rank, consider the following
de�nable objects: a �eld K, a group G ' (P)SL2(K), an abelian group V , and
a non-trivial action of G on V . Then for v generic in V , C◦G(v) is semi-simple
or unipotent (possibly trivial).

All statements above involve the Morley rank of a structure; the reader
should bear in mind that this is an abstract analog of the Zariski dimension,
which can be axiomatized by some natural properties [3]. The Morley rank is
however not necessarily related to any geometry or topology, being a purely
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model-theoretic notion. Yet in general if a �eld K has Morley rank k and V is
an algebraic variety of Zariski-dimension d over K, then its Morley rank is dk.
The rank hypothesis in the Theorem would thus amount, if the con�guration
were known to be algebraic, to assuming that dimV ≤ dimG; but of course
the possibility for a �eld to have a �nite Morley rank k > 1 makes algebraic
geometry less general than our context.

We work in a ranked universe as in [3]. Indeed, the semi-direct product
V oG is a ranked group in the sense of Borovik and Poizat [7, Corollaire 2.14
and Théorème 2.15]. We shall not go too deeply into purely model-theoretic
arguments but will merely use the natural, intuitive properties of Morley rank
as a notion of dimension.

Let us now say a word about the proof of the Theorem. As we have men-
tioned, there is no geometry a priori on V oG, and our e�orts will be devoted
to retrieving a suitable vector space structure on V which arises from the ac-
tion of G. Model-theoretically speaking, the main tool is Zilber's so-called Field
Theorem [7, Théorème 3.7], which enables one to �nd an (algebraically closed)
�eld inside a solvable, non-nilpotent, in�nite group of �nite Morley rank. A
major di�culty is that the action of an algebraic torus of G will not induce a
vector space structure on all of V . And even if such a good structure exists,
this does not mean that G itself is linear on V . The 2-dimensional case relies
on a theorem by Timmesfeld (Fact 1.1 below); as for dimension 3, we extend
the �eld action manually and some curious computations will, in the end, prove
linearity of G.

Now that we have said what the present paper is, let us say what it is not:
it does not relate directly to the classi�cation project for simple groups of �nite
Morley rank, although some rudimentary aspects of representation theory have
been used there, via the amalgam method.

1 Preparatory Remarks

We shall use throughout a characterization of the natural module which is due
to Timmesfeld.

Fact 1.1 ([9, Chapter I, Theorem 3.4]). Let K be a �eld and let G ' (P)SL2(K).
Let V be a faithful G-module. Suppose the following:

(i). CV (G) = 0

(ii). [U,U, V ] = 1, where U is a maximal unipotent subgroup of G.

Let 0 6= v ∈ CV (U) and W = 〈vG〉. Then there exists a �eld action of K on W
such that W is the natural G-module. In particular G ' SL2(K).

We shall use the non-standard notation (+) to denote quasi-direct sum, i.e.
the sum of two submodules (of a �xed module) which have a �nite, possibly
non-trivial, intersection.
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1.1 On Malcev's Theorem

Fact 1.2 ([7, Théorème 3.18]). Let G be a connected, solvable group of �nite
Morley rank acting de�nably and faithfully on a de�nable, abelian group A. If
a de�nable subgroup B ≤ A is G- or G′-minimal, then B is centralized by G′.

Lemma 1.3. In a universe of �nite Morley rank, consider the following de�n-
able objects: a reductive algebraic group G, a nilpotent group V , and an action
of G on V . Let U be a unipotent subgroup of G. Then V o U is nilpotent.

Proof . We may assume that U is a maximal unipotent subgroup. In this case,
and by reductivity of G, U is the commutator subgroup of the Borel subgroup
B = NG(U) [1, top of p. 65]. Now considerH = VoB and write F ◦(H) = VoK
with K ≤ B. The quotient H/F ◦(H) ' B/K is abelian by [3, Theorem 9.21],
so U = B′ ≤ K.

Corollary 1.4. In a universe of �nite Morley rank, consider the following de-
�nable objects: a �eld K, a quasi-simple algebraic group G over K, an abelian
group V , and a non-trivial action of G for which V is G-minimal. Then V has
the same characteristic as K.

Proof . Let p denote the characteristic of K. Fix a maximal unipotent subgroup
U of G. By Lemma 1.3, V oU is nilpotent. If p = 0 and V is torsion or if p 6= 0
and pV = V , then Nesin's structure theorem for nilpotent groups [3, Theorem
6.8] yields [V,U ] = 0. As conjugates of U generate G, the action is trivial, a
contradiction.

1.2 Algebraicity in characteristic 0

We specialize [6] to our context.

Fact 1.5 (special case of [6, Theorem 4]). In a universe of �nite Morley rank,
consider the following de�nable objects: an abelian, torsion-free group A, an
in�nite group S, and a faithful action of S on A for which A is S-minimal.
Then there is a subgroup A1 ≤ A and a �eld K such that A1 ' K+ de�nably,
and S embeds into GLn(K) for some n.

Lemma 1.6. In a universe of �nite Morley rank, consider the following de�n-
able objects: a �eld K, a simple algebraic group G over K, a torsion-free abelian
group V , and a faithful action of G on V for which V is G-minimal. Then
V oG is algebraic. Moreover, any de�nable subgroup of V has rank a multiple
of rkK.

Proof . The assumptions imply that G is interpretable in K as a pure �eld.
By Fact 1.5, there is a �eld structure L such that V ' Ln+ and G ↪→ GLn(L)
de�nably. L has of course characteristic 0. By a result of Macpherson and Pillay
(see [8, Theorem 3]), G is Zariski-closed in GLn(L) ; so far G and V o G are
algebraic groups over L. In particular G as a pure group interprets L, so K as a
pure �eld interprets L. It follows that K ' L de�nably by [7, Théorème 4.15].

3



Now consider a de�nable subgroup V1 of V . Then the setwise stabilizer of
V1 in K is a de�nable, non-trivial subgroup of K, whence equal to K by [7,
Corollaire 3.3]. Hence V1 is a vector space over K, which proves that its rank is
a multiple of rkK.

As a consequence, one can drastically simplify certain identi�cation results in
characteristic 0. For example, the following simpli�cation of part of [5] results.

Theorem 1.7 ([5, Theorem A in char. 0]). Let G be a connected, non-solvable
group of �nite Morley rank acting de�nably and faithfully on a torsion-free con-
nected abelian group V of Morley rank 2. Then there is an algebraically closed
�eld K of Morley rank 1 and characteristic 0 such that V ' K2

+, and G is
isomorphic to GL2(K) or SL2(K) in its natural action.

Proof . V is clearly G-minimal. By Fact 1.5, there is an interpretable �eld
structure K such that G ↪→ GLn(K) with V ' Kn. Clearly the dimension must
be 2, making the rank of the �eld 1. So there is a �eld K of rank 1 such that
V ' K2

+ and G ↪→ GL2(K). But de�nable subgroups of GL2(K), especially over
a �eld of rank 1, are known: [8, Theorem 5] together with connectedness and
non-solvability of G this forces either G ' GL(V ) or G ' SL(V ).

1.3 Around tori

Fact 1.8 ([10, Corollary 9]). Let K be a �eld of �nite Morley rank of charac-
teristic p > 0. Then K× has no torsion-free de�nable section.

A good torus is a de�nable, abelian, divisible group with no torsion-free
de�nable section; the latter condition being equivalent to: every de�nable sub-
group is the de�nable hull of its torsion subgroup. If one relaxes the requirement
to: a de�nable, abelian, divisible group with no torsion-free de�nable quotient,
one gets the de�nition of a decent torus; equivalently: the whole group is the
de�nable hull of its torsion subgroup.

Wagner's Theorem 1.8 states that in �nite Morley rank, the multiplicative
group of a �eld of characteristic p is a good torus.

Lemma 1.9. In a universe of �nite Morley rank, consider the following de�n-
able objects: two in�nite, abelian groups K and H, and a faithful action of K
on H for which H is K-minimal. Suppose that H has exponent p and that K
contains a non-trivial q-torus for each q 6= p. Then rkH = rkK.

Proof . By Zilber's Field Theorem, there is a �eld structure L such that K ↪→
L× and H ' L+. In particular, charL = p. Now L×/K is torsion-free, so by
Wagner's Theorem, K cannot be proper in L×. Hence rkK = rkL = rkH.

Lemma 1.10. In a universe of �nite Morley rank, consider the following de-
�nable objects: a �eld K of characteristic p, a de�nable subgroup Θ ≤ K×, an
abelian group V , and an action of Θ on V . Then there is θ ∈ Tor Θ such that
CV (Θ) = CV (θ) and [V,Θ] = [V, θ].
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Proof . By Wagner's Theorem (Fact 1.8), Θ = d(Tor Θ). By the descending
chain condition on centralizers, CV (Θ) = CV (Tor Θ) = CV (θ1, . . . , θn) for tor-
sion elements, and we take a generator θ0 of the �nite cyclic group 〈θ1, . . . , θn〉:
one has CV (Θ) = CV (θ0), and this holds true of any root of θ0.

Now the group [V,Tor Θ] is de�nable, so Σ = {t ∈ Θ : [V, t] ≤ [V,Tor Θ]} is
a de�nable subgroup of Θ containing Tor Θ. Again, as Θ = d(Tor Θ), it follows
that Σ = Θ, that is [V,Θ] = [V,Tor Θ]. We turn to the lattice of connected
groups {[V, t] : t ∈ Tor Θ}: if t1 is a root of t2, then [V, t1] ≥ [V, t2]. So by the
ascending chain condition, there is θ ∈ Tor Θ such that [V, θ] = [V,Tor Θ] =
[V,Θ]. We may assume that θ is a root of θ0, and we are done.

1.4 Cohomological computations

Fact 1.11. Let A be a connected, abelian group of �nite Morley rank of bounded
exponent and α a de�nable automorphism of �nite order coprime to the exponent
of A. Then A = CA(α)⊕ [A,α]. Moreover, if A0 < A is a de�nable, connected,
α-invariant subgroup, then [A,α] ∩A0 = [A0, α].

Proof . Let adα and Trα be the adjoint and trace maps, that is

adα(x) = xα − x and Trα(x) = x+ · · ·+ xα
n−1

where n is the order of α. It is easily seen, as A has no n-torsion, that
ker adα ∩ ker Trα = 0. In particular, rkA ≥ rk (ker adα) + rk (ker Trα). More-
over, im adα ≤ ker Trα and im Trα ≤ ker adα. It follows therefore that rkA ≥
rk (ker adα) + rk (ker Trα) ≥ rk (ker adα) + rk (im adα) = rkA, so im adα =
ker Trα. Hence A = ker adα⊕ ker Trα = ker adα⊕ im adα = CA(α)⊕ [A,α].

Let a0 ∈ A0; then a0 ∈ adα(A0) i� Trα(a0) = 0 i� a0 ∈ adα(A).

Corollary 1.12. In a universe of �nite Morley rank, consider the following
de�nable objects: a �eld K of characteristic p, a connected subgroup T of K×,
an abelian p-group A, and an action of T on A. Then A = CA(T )⊕ [A, T ]. Let
A0 < A be a de�nable, connected, T -invariant subgroup. Then CA(T ) covers
CA/A0

(T ). Moreover, if T is a good torus, CT (A) = CT (A0, A/A0).

Proof . Since T is a decent torus we may apply Lemma 1.10 and �nd a torsion
element t0 ∈ T such that CA(T ) = CA(t0) and [A, T ] = [A, t0]. We use Fact
1.11 and deduce that A = CT (A)⊕ [A, T ].

If x ∈ A maps to an element in CA/A0
(t0), then denoting the canonical

projection by π one has π adt0(x) = adt0 π(x) = 0. Hence adt0(x) ∈ A0 and by
Fact 1.11 there is x0 ∈ A0 such that adt0(x) = adt0(x0), whence x ∈ x0+ker adt0 ,
and ker adt0 = CA(t0).

Now suppose that T is a good torus and let Θ = CT (A0, A/A0); by assump-
tion, Θ is a decent torus. Then CA(Θ) covers CA/A0

(Θ) = A/A0; it follows that
A = CA(Θ) +A0 ≤ CA(Θ).
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1.5 Automorphisms of semi-direct products

Lemma 1.13. In a universe of �nite Morley rank, let A, T be de�nable, abelian,
in�nite groups such that A is T -minimal and the action is faithful. Let K be a
de�nable group normalizing A and T . Then K centralizes T .

Proof . We let K act on EndA by:

sϕ(a) := (s(aϕ
−1

))ϕ

By assumption, K normalizes the image of T in EndA, which additively gen-
erates a de�nable algebraically closed �eld (this is the proof of Zilber's �eld
theorem). In particular, as there are no de�nable groups of automorphisms of
a �eld of �nite Morley rank [3, Theorem 8.3], K acts trivially on T .

1.6 A three �elds con�guration

The following lemma will appear at a crucial moment in the proof of our main
theorem, when dealing with the Cartan subalgebra of the adjoint representation
of (P)SL2 (Proposition 3.13 below).

Lemma 1.14. In a universe of �nite Morley rank, consider the following de-
�nable objects: three in�nite �elds K1,K2,K3, a connected group T acting on
the underlying additive groups, and a map B : K1 ×K2 → K3.

Suppose that for each i = 1, 2, 3, T/CT (Ki) acts on (Ki,+) as an in�-
nite subgroup of K×i . Suppose further that C◦T (K1) is non-trivial in its ac-
tion on (K2,+). If B is bi-additive and globally T -covariant (in the sense that
B(kt1, k

t
2) = B(k1, k2)t), then either B is identically 0 or gives rise to a de�nable

isomorphism K1 ' K3.

Proof . For the sake of clarity we shall write k1 ⊗ k2 for B(k1, k2). Moreover,
we shall drop �eld multiplication operations. Last but not least, the action of t
on ki will be denoted by t · ki; as T/CT (Ki) acts as a subgroup of K×i , one has
t · (kik′i) = (t · ki)k′i, which allows simply writing t · kik′i.

Let T1 = C◦T (K1) and Θ be its image in K×2 ; by assumption, Θ 6= 1. It
follows that Θ addivitely generates K2.

First suppose that there exist (k1, k2) ∈ K1 × K2 both non-zero such that
k1 ⊗ k2 = 0. By T1-covariance and right additivity, it follows that k1 ⊗K2 = 0.
Now by T -covariance and left additivity, K1 ⊗K2 = 0: B is identically zero.

We may therefore suppose that for any (k1, k2) ∈ K1 × K2 both non-zero,
k1 ⊗ k2 6= 0. So any k2 ∈ K2 \ {0} induces a function fk2 : K1 → K3 given by

fk2(k1) = (k1 ⊗ k2)/(1⊗ k2)

We claim that this function actually does not depend on the choice of k2 6= 0.
Let k′2 ∈ K2 be non-zero. As Θ additively generates K2, there are �nitely many
ti ∈ T1 such that k′2 =

∑
i ti · k2. Let k1 ∈ K1. Then by T1-covariance,

k1 ⊗ k′2 =
∑
i [ti · (k1 ⊗ k2)] =

∑
i [ti · (1⊗ k2)fk2(k1)]

= fk2(k1)
∑
i [ti · (1⊗ k2)] = fk2(k1)(1⊗ k′2)
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Since k′2 6= 0, 1⊗ k′2 6= 0, and dividing one �nds fk′2(k1) = fk2(k1), as desired.
So let f : K1 → K3 be this function. Clearly f(k1) = f1(k1) = (k1⊗1)/(1⊗1)

is additive; we now show that it is multiplicative.
As the image of T in K×1 was asssumed to be non-trivial, it additively gener-

ates K1. It therefore su�ces to show that f is multiplicative on (the image of)
T . We shall denote by t̄ the elements induced by t in K×1 and in K×2 ; in context,
there is no risk of confusion. Let s, t ∈ T . Then

f(s̄t̄) = (s̄t̄⊗ 1)/(1⊗ 1) = t · (s̄⊗ t̄−1)/(1⊗ 1)
= t ·

[
(s̄⊗ t̄−1)/(1⊗ t̄−1)

] [
(1⊗ t̄−1)/(1⊗ 1)

]
= t ·

[
ft̄−1(s̄)(1⊗ t̄−1)/(1⊗ 1)

]
= f(s̄)

[
t · (1⊗ t̄−1)/(1⊗ 1)

]
= f(s̄) [(t̄⊗ 1)/(1⊗ 1)]
= f(s̄)f(t̄)

So the function f : K1 → K3 is a non-zero de�nable ring homomorphism between
two in�nite de�nable �elds of �nite Morley rank. It follows that it is a de�nable
isomorphism.

2 Actions of (P)SL2

The present section is devoted to general actions of (P)SL2 in the �nite Morley
rank category, with no assumption on the rank itself. Proposition 2.3 is our
main result. The following notations will be adopted in ��2 and 3.

Notation 2.1. Let G ' (P)SL2. Fix a Borel subgroup B of G and let U = B′

be its unipotent radical. Let T be an algebraic torus such that B = U o T . Let
i be the involution in T , and ζ ∈ N(T ) a 2-element inverting T (the order of ζ
depends on the isomorphism type of G).

Let us start with a classical observation.

Lemma 2.2. A de�nable, connected subgroup of (P)SL2 is semi-simple, unipo-
tent, or contains a maximal unipotent subgroup of (P)SL2.

Proof . Let K be a de�nable, connected subgroup. We may assume that K is
proper; as K is then solvable (see for instance [8, Théorème 4]), up to conjugacy
K ≤ B. Let U1 be the unipotent radical of K; if K is not semi-simple, then
U1 6= 1. If K is not unipotent either, that is if K > U1, then we may split
K = U1 o T1 for some non-trivial, semi-simple subgroup; so �xing u ∈ U#

1 one
has K ≥ 〈uK〉 ≥ 〈uT1〉 = U1, as desired.

2.1 Actions of (P)SL2 and centralizers

Proposition 2.3. In a universe of �nite Morley rank, consider the following
de�nable objects: a �eld K, a group G ' (P)SL2(K), an abelian group V , and
a non-trivial action of G on V . Then for v generic in V , C◦G(v) is semi-simple
or unipotent (possibly trivial).
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Proof . We �rst show that we may assume CV (G) = 0. Assume the result
holds when CV (G) = 0 and let V be as in the statement. Let V0 = CV (G) < V .
Since G is perfect, one has CV/V0

(G) = 0, and the action of G on V/V0 is non-
trivial. By assumption, the result holds for V/V0. Now let v ∈ V be generic.
Then v̄ ∈ V/V0 is generic too, and in particular C◦G(v̄) is either semi-simple or
unipotent. As C◦G(v) ≤ C◦G(v̄), we are done.

So from now on we suppose CV (G) = 0. In Notation 2.1 we have �xed a
maximal unipotent subgroup U ≤ G, B = N(U) its normalizer, T an algebraic
torus such that B = U o T , and a 2-element ζ inverting T .

Let v ∈ V be generic. C◦G(v) is proper in (P)SL2, hence solvable [8, Théorème
4]; up to conjugacy, C◦G(v) ≤ B. Assume that C◦G(v) is neither unipotent nor
semi-simple. Then by Lemma 2.2, C◦G(v) contains U .

So C◦G(v) = U o Tv for some non-trivial Tv ≤ T . The family {Tv : v ∈
V,U ≤ C◦G(v) ≤ B} of subgroups of T is uniformly de�nable; as T ' K× is a
good torus, the family is �nite [4, Rigidity II]. It follows that there is a common
T0 ≤ T such that generically, C◦G(v) is conjugate to U o T0.

Now let V1 = CV (U). Clearly V1 is in�nite, taking a B-minimal subgroup of
V and applying Malcev's Theorem (Fact 1.2). As any two distinct conjugates
of U generate G and CV (G) = 0, V1 must be disjoint from V g1 for g 6∈ B. It
follows that NG(V1) = B and that V1 is disjoint from its distinct conjugates.
One therefore has

rkV G1 = rkV1 + rkG− rkB = rkV1 + rkK.

By assumption, the generic element of V is centralized by a conjugate of
U o T0. Thus V

G
1 is generic in V . But furthermore, for v generic in V1, C

◦
G(v)

is a conjugate of U o T0 containing U ; conjugacy is therefore obtained by an
element of N(U) = B. As B′ = U , UoT0 is normal in B; hence C◦G(v) = UoT0.
This means that T0 centralizes a generic subset X of V1; as X+X = V1 it follows
that V1 = CV (U o T0).

Let W = V1 ⊕ V ζ1 and W̌ = W \ (V1 ∪ V ζ1 ). The generic element of W
is in W̌ . Let v ∈ W̌ . Clearly T0 ≤ C◦G(v). Moreover, if C◦G(v) is not semi-
simple, then it must meet a unipotent subgroup which can only be either U
or Uζ as 1 6= T0 ≤ C◦G(v). In that case, C◦G(v) contains either U or Uζ by
Lemma 2.2, against the de�nition of W̌ . This means that for v ∈ W̌ , one has
T0 ≤ C◦G(v) ≤ T . In particular, W̌G is not generic in V .

It follows that W < V . As V G1 is generic in V , W cannot be G-invariant.
Therefore T ·〈ζ〉 ≤ NG(W ) < G, and equality follows from maximality of T ·〈ζ〉.
As T · 〈ζ〉 also normalizes V1 ∪ V ζ1 , one sees that NG(W̌ ) = T · 〈ζ〉.

Let w ∈ W̌ . Assume that w ∈ W̌ g for some g ∈ G. Then C◦G(v) is a non-
trivial connected subgroup of T , so CG(C◦G(v)) = T = T g, and g ∈ N(T ) =
T · 〈ζ〉 = N(W̌ ). This implies that

rk W̌G = rk W̌ + rkG− rkT = 2 rkV1 + 2 rkK = 2 rkV G1 .

But V G1 is already generic in V which is in�nite: this is a contradiction.
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Corollary 2.4. In a universe of �nite Morley rank, consider the following de-
�nable objects: a �eld K, a group G ' (P)SL2(K), an abelian group V , and a
non-trivial action of G on V . Then rkV ≥ 2 rkK.

2.2 Four-groups of PSL2

We �nish this section with an easy but useful relation on ranks when the char-
acteristic is not 2. Given a de�nable, involutive automorphism j of an abelian
group W of �nite Morley rank with no involutions, one has W = W+j ⊕W−j
with obvious notations [3, Exercise 14 p.73].

Lemma 2.5. In a universe of �nite Morley rank, consider the following de-
�nable objects: a �eld K, a group G ' PSL2(K), an abelian group V of char-
acteristic not 2, and a non-trivial action of G on V . Then ζ is an involution
and

rkV = rk
(
V +i+ζ

)
+

3

2
rk
(
V −i

)
Proof . Write V = V +i⊕V −i , then V +i = V +i+ζ⊕V +i−ζ and V −i = V −i+ζ⊕
V −i−ζ . Let a = rkV +i+ζ and b = rkV +i−ζ . Clearly, b = rkV −i+ζ = rkV −i−ζ .
There follows rkV −i = 2b and rkV = a+ 3b.

3 Proof of the Theorem

We now attack our main result.

Theorem. In a universe of �nite Morley rank, consider the following de�nable
objects: a �eld K, a group G ' (P)SL2(K), an abelian group V , and a faithful
action of G on V for which V is G-minimal. Assume rkV ≤ 3 rkK. Then V
bears a structure of K-vector space such that:

• either V ' K2 is the natural module for G ' SL2(K), or

• V ' K3 is the irreducible 3-dimensional representation of G ' PSL2(K)
with charK 6= 2.

Notation 3.1. In a universe of �nite Morley rank, consider the following de-
�nable objects: a �eld K, a group G ' (P)SL2(K), an abelian group V , and a
non-trivial action of G on V for which V is G-minimal. Assume rkV ≤ 3 rkK.

One should also bear in mind Notation 2.1 which introduces the usual ele-
ments and subgroups of (P)SL2.

Notation 3.2. Let k = rkK and write rkV = 2k + ν.

Notice that 0 ≤ ν ≤ k by Corollary 2.4 and our assumption that rkV ≤
3 rkK. Moreover, if ν = 0, then by [5, Theorem B] (which is a consequence, in
�nite Morley rank, of Timmesfeld's identi�cation result, Fact 1.1), we are done.
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So we suppose ν > 0 throughout. Our goal is to show that the characteristic is
not 2, ν = k, and G ' PSL2 acts on V ' K3 in the usual irreducible way.

If V has characteristic 0, then by Lemma 1.6, V o G or V o G/Z(G) is
algebraic; dimK V is 2 or 3, and as irreducible algebraic representations of (P)SL2

are well-known, the analysis already ends. From now on, we suppose charK to
be a prime number p. The proof will involve studying various submodules of
V , de�ning a �eld action piecewise, and eventually proving its linearity. On our
way we shall prove p 6= 2.

Lemma 3.3. We may suppose that CV (G) = 0.

Proof . Suppose our Theorem holds for modules with a trivial right-kernel.
Notice that by G-minimality, W = CV (G) is �nite. It follows that there is no
right kernel for G on the G-minimal module V̄ = V/W ; so the result holds for
the action of G on V̄ . In particular, as we have assumed rkV > 2k, we �nd
that charK 6= 2 and G ' PSL2(K), so that 〈i, ζ〉 is a four-group. We also know
that ζ inverts a set of rank 2k in V̄ .

It follows that ζ inverts a set of rank ≥ 2k in V . Hence rkV −ζ ≥ 2k, and
Lemma 2.5 implies that V +i+ζ is �nite. As charK 6= 2, the group V +i+ζ is
clearly connected, and we deduce that W ≤ V +i+ζ = 0.

We next need to introduce an ad hoc analog of the Cartan algebra (Proposi-
tion 3.6), and then a weight module decomposition (Proposition 3.16). Charac-
teristic 2 will be eliminated shortly before structural identi�cation (Proposition
3.17).

3.1 T -invariant sections

Our �ner study of subspaces starts here. A word on terminology: if K is a group
acting on a de�nable, connected, abelian group V , we shall call V a K-module.
In particular, K-submodules are by de�nition de�nable and connected. The
connectedness requirement re�ects however less a necessary assumption than a
general methodological line.

In this subsection only, we work with abstract T -modules of �nite Morley
rank which need not relate to our current representation V , but T is still the
multiplicative group of a �eld of �nite Morley rank and characteristic p.

De�nition 3.4. Call a T -module X degenerate if C◦T (X) 6= 1.

We now consider corkCoT (X) = rk(T/CoT (X)).

Lemma 3.5.

(i). Let X be a T -module. Then corkC◦T (X) ≤ rkX.

If X is degenerate, then corkC◦T (X) < rkX.

(ii). Let X be a T · 〈ζ〉-module. Then corkC◦T (X) ≤ rkX
2 .

If X is degenerate, then corkC◦T (X) < rkX
2 .
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Proof . Let Θ = C◦T (X).

(i). Let 0 = X0 < X1 < · · · < Xn = X be a maximal series of T -modules,
and Θi = C◦T (Xi/Xi−1). As Θ = (∩iΘi)

◦ by Corollary 1.12, one has
cork Θ ≤

∑
i cork Θi. So we may assume that X itself is T -minimal.

By Zilber's Field Theorem, there is a �eld structure L such that T/Θ
embeds into L× and X ' L+; the �rst claim follows. If in addition X is
degenerate, that is if Θ 6= 1, then by Wagner's Theorem Θ must contain
non-trivial torsion; as Θ is connected it follows that T/Θ 6' L×, and the
embedding is proper, whence the second claim.

(ii). Considering a maximal series of T · 〈ζ〉-modules, we may now assume that
X is T · 〈ζ〉-minimal.

Let Y ≤ X be a T -minimal T -submodule. If Y < X, then Y ∩ Y ζ is
�nite, and X = Y (+)Y ζ . Moreover C◦T (Y ) = Θ. Applying (i) we �nd
cork Θ ≤ rkY = rkX

2 , the inequality being strict if X is degenerate.

We now suppose that Y = X, that is X is T -minimal. But now Lemma
1.13 forces the action of ζ to be trivial on T/Θ, whence Θ = T , and the
claim is obvious.

3.2 The largest degenerate sumodule

We specialize these ideas to our current setting (Notation 3.1).

Proposition 3.6. The largest degenerate T -submodule X of V exists; it has
rank ν, and its conjugates are generic in V . Moreover submodules of V/X have
rank divisible by k.

Proof .

Step 1. There is a non-trivial degenerate T -submodule of V .

Proof: Suppose not. Let V1 ≤ V2 ≤ V be B-submodules, with V1 and V2/V1

B-minimal. Notice that by Malcev's Theorem (Fact 1.2), both V1 and V2/V1

are even T -minimal. Notice further that V2 < V , as otherwise the action is
quadratic, and Fact 1.1 yields a contradiction.

If rkV1 6= k then by Lemma 1.9 T1 = C◦T (V1) must be in�nite; taking
C◦V (T1) ≥ V1 we are done. So we may assume rkV1 = k.

Suppose rkV2/V1 6= k. As V2/V1 is T -minimal, the group T2 = C◦T (V2/V1)
is non-trivial by Lemma 1.9. Since T2 is a decent torus, CV2

(T2) covers V2/V1

by Corollary 1.12, so C◦V2
(T2) is non-trivial; in particular C◦V (T2) 6= 1: we are

done.
So suppose rkV2/V1 = k, that is rkV2 = 2k, and let W2 = (V2 ∩ V ζ2 )◦.

Clearly rkW2 ≥ 2k− ν > 0. If (V1 ∩W2)◦ 6= 0, then by T -minimality of V1, one
has V1 ≤ W2. By T -minimality of V2/V1, one �nds that W2 is either V1 or V2,
a contradiction as neither is ζ-invariant since they are B-invariant and proper.
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Therefore (V1 ∩ W2)◦ = 0, and in particular V2 = V1(+)W2; whence W2

is T -minimal, and ζ-invariant. As ζ inverts T , Lemma 1.13 then forces T to
centralize W2: we are done. ♦

Step 2. Any degenerate T -submodule of V has rank ≤ ν; equality holds i� its
G-conjugates are generic.

Proof: Let X be degenerate and Θ = C◦T (X) 6= 1. We �rst claim that for x
generic in X, C◦G(x) is semi-simple. Otherwise, as C◦G(x) contains Θ ≤ T , it
contains either U or Uζ ; we may assume that for x generic in X, U centralizes x.
Thus U centralizes X. As the latter is ζ-invariant, it follows that G = 〈U,U ζ〉
centralizes X, a contradiction.

Hence, the centralizer in G of the generic element of X is semi-simple. Let
x ∈ X be generic, and suppose that g ∈ G is such that x ∈ Xg. Then 〈Θ,Θg〉 ≤
C◦G(x) which is semi-simple, so C◦G(〈Θ,Θg〉) is an algebraic torus, which can be
only C◦G(Θ) = T , and only T g for a similar reason. Hence g ∈ NG(T ) = T ·〈ζ〉 =
NG(X). So X is generically disjoint from its distinct conjugates; it follows that

rkXG = 2k + rkX ≤ rkV = 2k + ν

Hence rkX ≤ ν and equality holds i� XG is generic in V . ♦

Step 3. The sum of two degenerate T -submodules is degenerate.

Proof: Let X1, X2 be degenerate T -submodules, and Θi = C◦T (Xi) 6= 1. Con-

sidering X̂i = C◦V (Θi) ≥ Xi, we may assume that the Xi are T · 〈ζ〉-modules.
By Lemma 3.5 (ii) corkT Θi <

rkXi
2 , so using Step 2 rk Θi > k − ν

2 ≥
k
2 .

It follows that Θ12 = (Θ1 ∩ Θ2)◦ is non-trivial. Now X12 = C◦V (Θ12) contains
X1 +X2. ♦

We may then let X be the sum of all degenerate T -submodules; by Step 2,
rkX ≤ ν.
Step 4. rkX = ν; non-trivial proper submodules of V/X have rank k.

Proof: We now consider a series X = X0 < X1 < . . .Xm = V of T -modules
with T -minimal factors Xi/Xi−1 for i ≥ 1 (X itself need not be T -minimal).
Let Θi = C◦T (Xi/Xi−1). If there is i ≥ 1 with Θi 6= 1, then Θi centralizes
Xi/Xi−1 so by Corollary 1.12, Xi = Xi−1 + CXi(Θi) ≤ Xi−1 + X = Xi−1: a
contradiction. So for any i ≥ 1, one has Θi = 1, meaning that T/Θi ' T ' K×.

Lemma 1.9 then implies rk(Xi/Xi−1) = k. In particular, X has rank ν, and
is followed by two T -minimal factors of rank k. ♦

This concludes the proof of Proposition 3.6.

Corollary 3.7. Let u ∈ U#. Then CV (u, uζ) = 0.

Proof . Let v ∈ C#
V (u) and H = C◦G(v) < G. Since u normalizes H, one has

H ≤ B. If in addition v ∈ CV (uζ) then H ≤ B ∩Bζ = T . So T, u, uζ normalize
H, forcing H = 1. But then vG is generic in V , so by Proposition 3.6 H 6= 1, a
contradiction.
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3.3 Notation storm

Notation 3.8. Let X be the largest degenerate T -submodule of V , and let
Θ = C◦T (X). Let θ0 ∈ Tor Θ be given by Lemma 1.10 (for the action of Θ on
V ), so that X = CV (θ0) and [V,Θ] = [V, θ0].

We shall eventually prove that T = Θ centralizes X; the proof is a bit
technical (Proposition 3.13). Let us �rst introduce a useful object.

Notation 3.9. Let M = [V,Θ] = [V, θ0] (see Notation 3.8).

One has V = M ⊕ X by Corollary 1.12. Moreover, by Proposition 3.6,
non-trivial proper T -submodules of M are T -minimal and have rank k.

We also need to study V as a U -module.

Notation 3.10. For i ≥ 0, Zi denotes the connected component of the ith

center of the action of U on V .

The series is strictly increasing up to V by nilpotence of V o U .
We actually wish to study the interplay of our series Zi with degenerate

submodules. Each Zi is B-invariant, so each Zi is acted on by Θ and splits as
Zi = CZi(Θ)⊕ [Zi,Θ] by Corollary 1.12.

Notation 3.11. Let Xi = CZi(Θ) = C◦Zi(Θ) = (Zi ∩X)◦ and Mi = [Zi,Θ] =
(Zi ∩M)◦.

3.4 Finer study of X

We prove in this section that T centralizes X (Proposition 3.13). This will
involve a three-�elds argument relying on Lemma 1.14.

Lemma 3.12. X = X1 + CX(T ).

Proof . By Corollary 1.12 it su�ces to show that T centralizes X/X1; by the
same it actually su�ces to show that T centralizes every quotientXi/Xi−1 (bear
in mind Notation 3.11). So �x i ≥ 2; we may assume that X̄i = Xi/Xi−1 is
non-trivial. Let us prove that [X̄i, T ] = 0.

Supposing the contrary, there exists a T -minimal submodule A ≤ [X̄i, T ]. By
Corollary 1.12, CA(T ) = 0, and by Zilber's Field Theorem there is a de�nable
�eld structure L such that A ' L+ and T induces an in�nite subgroup of L×.

For the sake of notation, we shall write Z̄i−1 for Zi−1/Zi−2. Commutation
yields a map Xi×U → Zi−1 which in turns gives rise to a map X̄i×U → Z̄i−1;
the latter is bi-additive since U acts trivially on Z̄i−1. We restrict it to a
de�nable, bi-additive map B : A× U → Z̄i−1, which is obviously T -covariant.

We wish to apply Lemma 1.14. A and U are the additive groups of �elds on
which T acts as desired, but we need also take care of the image group Z̄i−1.
We shall retrieve a �eld structure by going to a suitable quotient, which will be
a section of M .

Suppose that a ∈ A, u ∈ U are both non-zero, and that B(a, u) ∈ X̄i−1.
As Θ (Notation 3.8) additively generates K+, one has B(a, U) ≤ X̄i−1. Since

13



rk(X̄i−1) < rkX ≤ k = rkU , there is therefore u ∈ U not zero such that
B(a, u) = 0. Using the same argument, we �nd B(a, U) = 0; this means that
[x, U ] ⊆ Zi−2 for any x ∈ X such that a = (x mod Xi−1). But Xi−1 = (X ∩
Zi−1)◦, that is Xi−1 is the connected component of {x ∈ Xi : [x, U ] ⊆ Zi−2};
since Xi > Xi−1, there exists a ∈ A such that B(a, U) /∈ X̄i−1 (and this is even
true for generic a).

Let π be the canonical projection Z̄i−1 → Z̄i−1/X̄i−1 ' M̄i−1, and consider
the map B′ = π ◦B : A×U → M̄i−1. We have just shown that this bi-additive,
T -covariant map is non-zero. Let N be a T -minimal quotient of the submodule
of M̄i−1 generated by the image of B′; composing B′ with the projection πN :

¯Mi−1 → N , we �nd a non-zero de�nable, bi-additive, T -covariant map B′′ with
image a T -minimal module N .

Now N being a section of M satis�es C◦T (N) = 1; as N is T -minimal it has
rank k. It follows that T induces on N a �eld structure of rank k. As Θ acts
trivially on A but non-trivially on U , we may apply Lemma 1.14. We �nd a
de�nable �eld isomorphism, forcing rkA = rkN = k. In particular, rkX = k,
Xi−1 = 0, and A = X is T -minimal. But since ζ normalizes X, Lemma 1.13
implies that T centralizes X, hence also X̄i, a contradiction.

Proposition 3.13. T centralizes X.

Proof . By Lemma 3.12, [X,T ] ≤ X1. But X1 ∩ Xζ
1 ≤ CV (U,Uζ) = 0 and

[X,T ] is ζ-invariant. Hence [X,T ] = 0.

3.5 Decomposing the module

Our study of the �Cartan subalgebra� X is almost done. We now move to what
will turn out to be the positive weight submodule.

Notation 3.14. Let Y = [X,U ].

Lemma 3.15. Y ≤M .

Proof . Suppose Y 6≤ M ; let i > 0 be minimal such that Y ≤ M ⊕ Xi. Let
π denote the projection M ⊕Xi → Xi/Xi−1 = X̄i; our choice of i means that
π(Y ) 6= 0. Let x ∈ X be such that π([x, U ]) 6= 0.

Since U acts trivially on Zi/Zi−1, the non-trivial, de�nable function ϕ =
π ◦ adx : U → X̄i is actually a morphism. Let j be minimal such that X = Xj .
Clearly i ≤ j − 1, so Xi < X. In particular rk X̄i < rkX ≤ k = rkU , and it
follows that kerϕ 6= 0. Now the latter is T -invariant, so kerϕ = U . This means
that [x, U ] ⊆M ⊕Xi−1, against the choice of x.

Proposition 3.16. V = X⊕Y ⊕Y ζ ; U centralizes Y, (X+Y )/Y , and V/(X+
Y ). Moreover, CX(U) = 0 and CV (U) = Y .

Proof . We know that Y ≤M . As U does not centralize X, Y 6= 0. If Y = M ,
then M = Mζ is U -invariant: a contradiction. So 0 < Y < M ; by Proposition
3.6, Y is T -minimal and has rank k. In particular, Y is B-minimal, and by
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Malcev's Theorem (Fact 1.2) U centralizes Y . It is then clear that Y ∩ Y ζ = 0,
and therefore M = Y ⊕ Y ζ . By construction, U centralizes (X + Y )/Y . Now
the B-module V/(X+Y ) is isomorphic as a T -module to Y ζ , so it is T -minimal,
and by Fact 1.2 again it is centralized by U .

It remains to show that CV (U) = Y , equivalently CX(U) = 0. Choose u ∈ U
such that uζ has order 3. Let x ∈ CX(U), y = [xζ , u] ∈ Y and z = [yζ , u] ∈
X + Y . Then:

xuζ = xζ ;
xuζuζ = (xζ + y)ζ = yζ ± x;

x = (yζ + z)ζ ± xζ = ±y + zζ ± xζ

Projecting onto Y we �nd y = 0, that is xζ ∈ CV (u). Then by Corollary 3.7,
one has x = 0, as desired.

3.6 Getting rid of SL2

Proposition 3.17. The characteristic is not 2.

Proof . Suppose it is. For any u ∈ U× consider the map ϕ : V → V given
by commutation with u. Since the characteristic is 2 one �nds imϕ ≤ kerϕ;
in particular rkV ≤ 2 rk kerϕ. But on the other hand one has CV (u, uζ) = 0
by Corollary 3.7; in particular, 2 rk kerϕ ≤ rkV . All together, this shows that
imϕ = [V, u] = ker◦ ϕ = C◦V (u) has rank 1

2 rkV = k + ν
2 .

On the other hand by Proposition 3.16, one has C◦V (u) = [V, u] ≤ X ⊕ Y ;
since Y = C◦V (U) ≤ C◦V (u), one �nds C◦V (u) = Y ⊕C◦X(u). As T centralizes X,
one has C◦X(u) = C◦X(U) = 0 by Proposition 3.16. Hence C◦V (u) = Y has rank
k: a contradiction.

Corollary 3.18. G ' PSL2; ζ has order 2 and inverts X.

Proof . The characteristic is not 2. As T centralizes X (Proposition 3.13), the
involution i ∈ T cannot invert X. It follows that G ' PSL2. In particular ζ has
order 2.

Now since Y is T -minimal, imust either invert or centralize it. If i centralizes
Y , then it centralizes M = Y ⊕ Y ζ and X: so i centralizes V , a contradiction.
Hence i inverts Y , and also Y ζ : it follows that i inverts M . So ζ which is
conjugate to i must also invert a module of rank 2k. Let us write M = M+ζ ⊕
M−ζ under the action of ζ. Then Y is disjoint from both, showing that both
have rank k. It follows that ζ must invert X.

3.7 Identi�cation

Let us serve some refreshments.

• ζ has order 2 (Corollary 3.18)

• Y = C◦V (U) = [X,U ] is B-minimal (Notation 3.14 and Proposition 3.16)
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• V = Y ⊕X ⊕ Y ζ (Notation 3.14 and Proposition 3.16)

• X = C◦V (T ) is inverted by ζ (Proposition 3.13 and Corollary 3.18)

• X and Y have rank k.

We now work towards understanding the scalar action on X.

Corollary 3.19. Let x ∈ X, t ∈ T , u ∈ U#. Then there is a unique x′ ∈ X
such that [x′, u] = [x, u]t = [x, t · u]; x′ depends on x and t, but not on u.

Proof . Fix u1 ∈ U# and consider the de�nable morphism from X to Y which
maps x to [x, u1]. This is injective, as the kernel lies in CX(u1) = CX(T, u1) ≤
CX(U) = 0. By equality of ranks, the map is a bijection. Now suppose another
u2 ∈ U# is given, and we have elements x′1, x

′
2 such that [x′i, ui] = [x, ui]

t. Then
there is τ ∈ T such that u2 = uτ1 , and it follows that:

[x′2, u2] = [x, u2]t = [x, uτ1 ]t = [x, u1]τt

= [x, u1]tτ = [x′1, u1]τ = [x′1, u
τ
1 ] = [x′1, u2]

whence x′1 = x′2, as claimed.

And we can �nally de�ne a K-scalar action. This is done on each component:

Notation 3.20.

• On Y , k · y is given by the action of T .

• On Y ζ , we let k · yζ = (k · y)ζ .

• On X, we let k · x be the unique x′ ∈ X such that [x′, u] = k · [x, u]
(Corollary 3.19; this does not depend on the choice of u).

We shall check that G acts linearly. We do it piecewise; notice that when we
claim that U acts linearly onX, we mean that the operation induced by elements
of U from X to V is linear, without claiming anything about invariance under
the action.

Lemma 3.21. T · 〈ζ〉 acts linearly on V . U acts linearly on Y ⊕X.

Proof . By construction, T is linear on Y and Y ζ . It is linear on X, as it acts
trivially! By construction, ζ is linear on Y ⊕Y ζ . As it inverts X, it is also linear
on X. So T · 〈ζ〉 is linear on V .

As U acts trivially on Y , it is linear on Y . It remains to see that U is linear
on X. Let u ∈ U , x ∈ X, and k ∈ K. By de�nition of the action on X, one has
[k · x, u] = k · [x, u], and therefore:

k · xu − k · x = k · [x, u] = [k · x, u] = (k · x)u − k · x

Linearity follows.
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It remains to prove that U is linear on Y ζ . As T is, and since T acts
transitively on U#, it su�ces to exhibit one non-trivial element of U which is
linear on Y ζ .

Notation 3.22 (Bryant Park element). Let w = ζ (it is an involution, after
all). Let u ∈ U be such that (wu) has order 3.

Such an element exists (this may be viewed as a special case of the Steinberg
relations). We shall prove that this particular u is linear on Y ζ .

Fuga

Lemma 3.23. For any y ∈ Y , there is a unique x ∈ X such that ywu =
y + x+ yw.

Proof . A priori, one has
ywu = y1 + x+ yw2

for elements y1, y2 ∈ Y and x ∈ X. But U centralizes Y , (X + Y )/Y , and
V/(X + Y ) by Proposition 3.16. So y2 = y. We push further, using the fact
that w inverts X (Corollary 3.18).

y(wu)2 = ywu1 + xwu + ywwu

= ywu1 − xu + y

and
y = y(wu)3 = ywuwu1 − xuwu + ywu

whence applying u−1,
y = ywuw1 − xuw + yw

Now Uw centralizes Y w, (X+Y w)/Y w, and V/(X+Y w) (Proposition 3.16),
so [uw, y1] ∈ X + Y w. It follows that y1 is the projection on Y of ywuw1 . On the
other hand, xu ∈ X + Y , so xuw ∈ X + Y w. Taking projections on Y modulo
X + Y w, one has y1 = y.

Lemma 3.24. Let y ∈ Y and x ∈ X be as in Lemma 3.23. Then [x, u] = 2y.

Proof . By de�nition,
ywu = y + x+ yw

Let us iterate:
y(wu)2 = ywu + xwu + ywwu

= (y + x+ yw)− xu + y
= 2y + x− xu + yw

and
y(wu)3 = 2ywu + xwu − xuwu + ywwu

= 2(y + x+ yw)− xu − xuwu + y
= 3y + 2x− xu − xuwu + 2yw
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As wu has order three, one has:

2y + 2x− xu − xuwu + 2yw = 0

Now u centralizes (Y +X)/Y , so there is y1 ∈ Y such that xu = x+ y1. Let
x1 be associated to y1 by Lemma 3.23: one has ywu1 = y1 + x1 + yw1 . Hence

xuwu = xwu + ywu1

= −xu + (y1 + x1 + yw1 )
= −x− y1 + y1 + x1 + yw1
= x1 − x+ yw1

It follows that

2y + 2x− (x+ y1)− (x1 − x+ yw1 ) + 2yw = 0,

and projecting onto Y modulo X + Y w,

y1 = 2y

so that [x, u] = y1 = 2y.

Notation 3.25. For y ∈ Y , let x(y) be the element x given by Lemma 3.23.

Lemma 3.26. The function x(y) is K-linear.

Proof . Let k ∈ K. Then

[x(k · y), u] = 2(k · y) = k · (2y) = k · [x(y), u] = [k · x(y), u]

And we are done.

Corollary 3.27. u is linear on Y w.

Proof . Let y ∈ Y and k ∈ K; let y2 = k · y, and x2 = x(y2). Then

(k · yw)u = ywu2 = y2 + x2 + yw2 = k · y + x2 + k · yw

On the other hand,

k · ywu = k · (y + x+ yw) = k · y + k · x+ k · yw

As x is K-linear, both expressions are equal: u is linear on Y w.

It follows that G = 〈T, ζ, u〉 is linear on V . We may now �nish the proof.
First, any irreducible representation of SL2 is a tensor product of twists of
algbraic irreducible (linear) representations by [2, Théorème 10.3]. As the al-
gebraic dimension is 3 here, there can be only one factor. Either we untwist
it, thus changing the linear structure before we reach a conclusion, or we ob-
serve that T has been proved to act algebraically in our construction, so that
no untwisting is actually needed with our particular linear structure.

18



An alternative would be to argue as follows. As G acts linearly on V , there
is an isomorphic embedding i of G into GL3(K). The image G′ of i is generated
by the conjugates of its maximal torus, which is Zariski-closed: hence G′ itself
is closed in GL3(K), whence algebraic. Now the isomorphism i : G ' G′ is the
composition of an algebraic map and a �eld automorphism. Since i is actually
algebraic on T , the �eld automorphism involved is the identity; i is algebraic.
Now the representation of G′ ≤ GL3(K) on V is algebraic; and so is that of G
on V .

On the other hand, in the course of proving linearity we were forced to
work out the action of T , w, and u explicitly, so we could even complete the
identi�cation by hand with concrete computations.

This concludes the identi�cation together with the proof of our Theorem.

A �nal word. Our reader wonders whether anything similar can be obtained
in higher rank, say for rkV ≤ 4 rkK. First of all, it should be borne in mind
that two families of such objects will exist: the standard representation of SL2

on homogeneous polynomials of degree 3, and the in�nitely many, pairwise non-
isomorphic tensor products of two natural representations twisted by distinct
�eld automorphisms (or equivalently, take one of the twists to be the identity).
Were one able to successfully analyze submodules � which in our case relied on
the smallness assumption: see the proof of Proposition 3.6 � and taking a good
direct sum decomposition for granted, identi�cation issues would remain, as the
iterations of the Fugue would no longer assemble in a linear pattern of weights.
On the other hand, the polynomial case can be dealt with by the methods used
here, and characterized speci�cally by a hypothesis of the form CV (U) = CV (u)
for all u ∈ U#, which amounts in a sense to assuming Corollary 3.7. The second
author announces the following:

Proposition. Let K be a �eld of �nite characteristic p 6= 2, 3 which is quadrat-
ically and cubically closed. Suppose that G ' (P)SL2(K) acts on an abelian
group V faithfully, irreducibly, and with the two following conditions:

• [V,U, U, U, U ] = 0 but [V,U, U, U ] 6= 0;

• for any u ∈ U#, CV (u) = CV (U).

Then V bears a structure of K-vector space which makes it isomorphic (as a
G-module) to the module of homogeneous polynomials of degree 3.

There are however no model-theoretic assumptions.
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