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Abstract. We will describe the torsion-free part of the Ziegler

spectrum, both the points and the topology, over the integral group

ring of the Klein group. For instance we will show that the Cantor–

Bendixson rank of this space is equal to 3.

1. Introduction

The Ziegler spectrum of a ring R, ZgR, is a topological space whose

points are (isomorphism types) of indecomposable pure injective (= al-

gebraically compact) R-modules. The set is endowed with a (compact)

topology whose basic open sets may be defined in a number of equiva-

lent ways. The original definition [21] uses positive primitive formulas

— a notion from model theory but one whose algebraic meaning is eas-

ily understood (such a formula defines the projection, to one or more

specified components, of the solution set of a specified system of linear

equations). Precisely, if ψ and ϕ are positive primitive formulas then

the basic open set (ϕ/ψ) is defined to be the set of those M ∈ ZgR

which contain an element m which satisfies in M ϕ but not ψ. Many

specific examples can be seen in Sections 3 and 5 of this paper. Alter-

native definitions of the basic (= compact) open sets of the topology

can be given in terms of homomorphisms between modules (see [3] or

[14, 5.1.3]) or in terms of finitely presented functors (see [14, 13.1.3]).
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Ziegler’s paper and subsequent work has shown the usefulness, for the

model theory of modules, of describing this space but such description

also has algebraic consequences. Indeed, the problem of describing the

spectrum is an algebraic one, though concepts from model theory often

are applied in solving it, as in this paper. Usually ZgR is not so nice

from the topological point of view: for instance it is rarely Hausdorff

(see [11, 8.2.12] for some exotic examples of Ziegler spectra). However

in many ‘natural’ settings this space is T0, in particular this is the case

when the Cantor–Bendixson rank of ZgR, CB(ZgR), is defined.

For example, if R = Z is the ring of integers, then the CB-rank of

ZgR is equal to 2 with a standard division of points into finite, Prüfer,

adic and generic (= divisible torsion-free): in more detail, Z/pnZ for p

a prime and n a positive integer (these points have CB-rank 0), then,

again for p a prime, Zp∞ (p-Prüfer group) and Ẑp (p-adic integers), both

of CB-rank 1, finally Q (the only point with CB-rank 2). It follows that

ZgZ is T0 but not Hausdorff. To have an example of a basic open set,

take ϕ
.
= (xp = 0) with p a prime, ψ

.
= (x = 0), then (ϕ/ψ) consists

of the modules in the spectrum with (nontrivial) p-torsion, that is, the

Z/pnZ and Zp∞ .

Due to results by Prest and Ringel (see [12], [18]) the picture is very

similar for any tame hereditary finite dimensional algebra A over a

field: the CB-rank of the Ziegler spectrum of A is 2 and the points

of ZgA are divided into finite length points, Prüfer and adic points

(parameterized by the simple regular A-modules) and a unique (if A is

connected) generic point. Note that for a finite dimensional algebra A

the case of CB(ZgA) = 1 is not possible (see Krause [9] and Herzog [6]),

and CB(ZgA) = 0 if and only if A is of finite representation type. Thus

the simplest case of nontrivial behavior of ZgA is when the CB-rank is

equal to 2.

As already said, the general structure of the Ziegler spectrum of a

ring R is often too involved, but it gets clearer when restricted to more

manageable subcategories of R-modules. For instance, when R = D

is a commutative noetherian domain, or an order over a commutative

Dedekind domainD, one could try to describe the closed subset Zg tf(R)

of ZgR consisting of D-torsion-free R-modules. There are just a few
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papers addressing this question. For instance Herzog and Puninskaya

[7] proved that, ifD is a complete local commutative noetherian domain

of Krull dimension 1, then the category of finitely generated torsion-

free D-modules is of finite representation type iff Zg tf(D) is a discrete

(finite) space.

For our purposes more relevant is a paper by Marcja, Prest and

Toffalori [10] that investigates the (D-) torsion-free part of the Ziegler

spectrum over the group ring DG, where D is a commutative Dedekind

domain of characteristic zero and G is a finite group. For instance

they proved that every D-torsion-free indecomposable pure injective R-

module is either divisible or reduced, therefore carries a natural struc-

ture of an (indecomposable pure injective) module over a completion

D̂PG for some maximal ideal P of D. Furthermore they showed that

the topology on Zg tf(DG) is obtained by gluing together ‘P -patches’

topological spaces associated to maximal ideals P of D. Despite [10]

contains a lot of information on Zg tf(DG), the context seems to be too

general to give a detailed description of this space.

In this note we will refine the analysis of [10] when D is the ring

Z of integers and G = C(2)2 is the Klein group, so for R = ZC(2)2,

to give a very explicit description of Zg tf(R). For instance we will

show that the CB-rank of this space is equal to 3, the only points of

maximal rank being the modules QGei where the ei are the indecom-

posable idempotents of QG; moreover those are the only closed points

of Zg tf(ZG).

Using the existence of almost split sequences (for lattices over orders

over complete discrete valuation domains) we will also prove that the

isolated points in Zg tf(ZG) are exactly the indecomposable lattices over

ẐpG, but in contrast to the case of finite dimensional algebras none of

them is closed (or finitely generated) as a ZG-module.

The crucial point of our proofs is to show that a large locally closed

subset of Zg tf(ZG) is homeomorphic to a cofinite (clopen) subset of the

Ziegler spectrum of the 4-subspace quiver kD̃4 (for k a field). This will

be proved via a functor ∆ providing a representation equivalence be-

tween certain categories of torsion-free Ẑ2G-modules and kD̃4-modules

for k = GF (2) the field with 2 elements, first exploited by Butler [2]
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to classify Ẑ2G-lattices. We will show that ∆ behaves well (in par-

ticular remains full) when restricted to a suitable category of pure

injective torsion-free modules over Ẑ2G. This allows us to recover pure

injective modules in this category from corresponding pure injective

kD̃4-modules. Thus Zg tf(ZG) contains a large subspace homeomor-

phic to a clopen subset of Zgk eD4
. Therefore in addition to Ẑ2G-lattices

it contains Prüfer and adic points (parameterized by simple regular

kD̃4-modules) each having CB-rank 1, and a unique point G ′ of CB-

rank 2 (corresponding via ∆ to the generic point over kD̃4). Note

that G ′ itself is not of finite endolength as an R-module. The only

generic (= closed) points of Zg tf(ZG) are the modules QGe (for e an

indecomposable idempotent of QG) and these have CB-rank 3.

Note that reductions (via functors) of categories of lattices over or-

ders into categories of finite dimensional modules over finite dimen-

sional algebras is an important tool in classifying lattices. As we will

show, in our particular case, that is, R = ZC(2)2, the Ziegler spec-

trum is quite rigid with respect to such a functor. Recall that a similar

(even more transparent) effect on the Ziegler spectrum has been ob-

served by Puninski and Toffalori [16] for the so-called Klein rings (a

special class of commutative artinian rings), where as the modeling

example the Kronecker algebra kÃ1 was used. In this paper we will

exploit a very general result of Prest [14, 18.2.5] on definable functors

between definable categories.

It is well known that Butler-like functors exist in the wider context

of Z-orders; so one may expect a similar description of Zg tf(. . .) in this

broader setting. For instance our results may suggest that the least

positive value of the CB-rank of Zg tf(. . .) for various similar orders

over Dedekind domains is 3. However the arguments we apply in this

paper seem to be too ‘ad hoc’ to admit an easy generalization.

In the remainder of the paper, unless otherwise stated, G denotes

the Klein group C(2)2 and R is the integral group ring ZG; moreover

Zg tf abbreviates Zg tf(R). Modules are assumed to be right modules.

Here is the plan of the next sections. After recalling in Section 2

some basic facts about G and modules over R = ZG, we begin in Sec-

tion 3 our analysis of Zg tf; in particular we deal with those points of the
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spectrum that are QG-modules or ẐpG-modules for some odd prime

p. This reduces our investigation to the key case p = 2. In Section 4

we summarize the picture of the Ziegler spectrum of the quiver algebra

kD̃4 where k is any field. In Section 5 Butler’s functor ∆ is introduced

in the wider setting linking certain indecomposable pure injective rep-

resentations of kD̃4 (over k = GF (2)) and certain indecomposable pure

injective Ẑ2G-modules. This will ultimately provide the expected de-

scription of the 2-patch of Zg tf. The topology of Zg tf will be treated

in the final Section 6.

We assume some basic familiarity with the model theory of modules,

just regarding positive primitive (pp for short) formulas and types, pure

injective modules, pure injective hulls and so on. Classical sources for

these matter include [8], [11] or [21], but [13] provides a shorter and

more fitting introduction for algebraists.

We thank the anonymous referee for her/his careful reading of a

previous version of this work and her/his valuable suggestions.

2. The Klein four group

Recall that G = C(2)2 denotes the Klein four group, that is, the

non-cyclic group of order 4 (hence the direct product of two copies of

the group C(2) with 2 elements). If a, b are generators of these copies

of C(2), then a and b generate G subject to relations a2 = b2 = 1 and

ab = ba.

Since G is a finite abelian group, the integral group ring R = ZG
is commutative and noetherian (but, say, (1− a)(1 + a) = 0, hence R

contains zero divisors). Furthermore the set of nonzero divisors of R

contains Z \ {0}, therefore inverting integers we obtain that QG is a

classical quotient ring of R. Since the characteristic of Q is zero this

ring is semisimple artinian with the following list of indecomposable

idempotents: e1 = 1/4 · (1 + a)(1 + b), e2 = 1/4 · (1 + a)(1 − b),

e3 = 1/4 · (1 − a)(1 + b) and e4 = 1/4 · (1 − a)(1 − b). Observe that

4ei ∈ R for every i, but R has no nontrivial idempotents.

For each prime p let Zp be the localization of Z with respect to the

prime ideal pZ and let Ẑp be the completion of Zp in the topology

5



defined by powers of pZ (thus Ẑp is a complete noetherian valuation

domain). Let us put for simplicity Rp = ẐpG.

Recall that an R-module M is said to be (Z-) torsion-free if, when-

ever mk = 0 for some m ∈ M and 0 6= k ∈ Z, then m = 0. Most

R-modules considered in this paper will be torsion-free. A finitely

generated torsion-free R-module M is said to be an R-lattice. A sim-

ilar terminology will be used for modules over Rp = ẐpG (clearly Ẑp-

torsion-free is the same as Z-torsion-free). However Rp-lattices are not

finitely generated as R-modules.

If M is a torsion-free module over R, then M is a submodule of

M ⊗Z Q = MQ, in particular one can form Mei which is again an

R-submodule of MQ. Note that eig = ±ei for any g ∈ G. For instance

e1a = 1/4 · (1 + a+ b+ ab) · a = 1/4 · (a+ 1 + ab+ b) = e1,

e2a = 1/4 · (1− a+ b− ab) · a = 1/4 · (a− 1 + ab− b) = −e2
and similarly e1b = e1, e2b = e2. In other words a, b act identically

on Me1, while on Me2 the action of a is ‘skewed’ in the sense just

explained. A skewed action of b or both a and b characterizes also

Me3, Me4.

Thus the R-module structure on Mei is always obtained from its

abelian group structure by taking into account a trivial or skewed action

of G. For instance the R-module Re2 can be identified with Z on which

a acts as multiplication by −1 and b acts trivially (hence ab acts as

multiplication by −1). Thus, for n and ni integers, n · (n1 +n2a+n3b+

n4ab) = n · n1 − n · n2 + n · n3 − n · n4. Similarly Re1 is isomorphic to

Z where a and b act trivially. Therefore every homomorphism between

the underlying abelian groups of these modules can be regarded in a

natural way as an R-module homomorphism.

Finally observe that, if M is a torsion-free R-module then Mei (i =

1, . . . , 4) is isomorphic (as an R-module) to M · 4ei ⊆ M , and in this

way is pp-interpretable in M .

3. Pure injectivity

Recall that a module M over an arbitrary ring L is said to be pure

injective if every finitely satisfiable (in M) system of linear equations
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over L has a solution in M . For various reformulations of this notion

see [11, Chapter 4]. For instance (see [14, Theorem 4.3.6]) M is pure

injective iff any summation map M (I) → M can be lifted along the

natural inclusion into the direct product module M (I) ⊆ M I . Every

pp-definable submodule of a pure injective module M is pure injective.

For instance, if L = R = ZG and M is a pure injective Z-torsion-free

R-module, then for every i = 1, . . . , 4 Mei (as an R-module isomorphic

to 4Mei) is pure injective.

By [14, Theorem 4.4.8] every module with the descending chain con-

dition on pp-definable subgroups is pure injective (in particular this

is the case for Ẑp considered as a module over Rp or over R with G

acting trivially). It follows that every module of finite endolength is

pure injective. Therefore (being of endolength 1) all the modules QGei
are pure injective and indecomposable.

By [14, Lemma 4.2.8] every module linearly compact over its endo-

morphism ring is pure injective. This can be applied as follows.

Fact 3.1. (see [10, Theorem 2.1]) Every Rp-lattice M is a pure injective

module over Rp and R.

Proof. Since M is finitely generated and torsion-free, it is isomorphic

to Ẑ(k)
p for some k as a module over Z and Ẑp. It is easily seen that

Ẑp is linearly compact over itself, therefore (since linear compactness

is closed with respect to extensions) M is linearly compact over Zp. It

follows that M is linearly compact over the larger ring EndRp M . Thus

(by the above remark) M is pure injective over Rp, hence over R. �

Thus indecomposable Rp-lattices are an important source of inde-

composable pure injective torsion-free R-modules. As we have already

seen, the modules QGei, i = 1, . . . , 4 are also pure injective and inde-

composable. Later we will construct more (infinitely generated) pure

injective R-modules as a part of the Ziegler spectrum of R.

In fact it is time to start our analysis of ZgR, more precisely of

its torsion-free part Zg tf. First note that for every positive integer

n
(
(xn = 0)/(x = 0)

)
defines a basic open set of ZgR consisting of

points with n-torsion. It follows that the torsion-free part Zg tf of ZgR,

as the intersection of complements of these open sets, is closed (but,
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by compactness of ZgR, not open) in ZgR. We will be interested in

the topology of Zg tf induced from ZgR. Indeed in this paper we will

relativize everything to the closed subset Zg tf of the Ziegler spectrum

of R. Being a closed subset of a compact space, Zg tf is itself compact.

Important information on Zg tf can be extracted from [10], where the

more general case of L = DH, with D a commutative Dedekind domain

of characteristic zero and H an arbitrary finite group, is considered.

The authors of that paper call an L-module M reduced if ∩nMP n = 0

for every maximal ideal P of D. The following two facts correspond to

[10, Theorems 2.1 and 2.2] as applied to our situation.

Fact 3.2. Every indecomposable pure injective torsion-free R-module

M is either a simple QG-module (so is isomorphic to QGei for some i =

1, . . . , 4) or is an indecomposable pure injective torsion-free reduced

module over Rp for a unique prime p.

For every prime p let Zg tfp abbreviate Zg tf(Rp), the torsion-free part

of the Ziegler spectrum of Rp.

Fact 3.3. Every indecomposable pure injective torsion-free reduced

Rp-module is pure injective and indecomposable also when viewed as

a module over R, via restriction of scalars. Furthermore the set of

torsion-free reduced points of Zg tfp (as it is embedded in Zg tf, with a

divisible point excluded!) has the same topology whether it is consid-

ered as a subset of Zg tfp or Zg tf.

We describe now the closed points of Zg tf.

Proposition 3.4. The modules QGei, i = 1, . . . , 4 are the only closed

points of Zg tf.

Proof. One implication is easy. In fact, by [14, Theorem 5.1.12], every

finite endolength module is closed in ZgR, therefore in Zg tf. For a lazy

proof of the converse we could use [14, Corollaries 5.3.21, 5.3.23]: since

R is countable, every closed point M in Zg tf is of finite endolength

(relativized to the theory of torsion-free modules). But then for every

prime p the descending chain of pp-subgroups Mpn stabilizes, therefore

(since M is torsion-free) M = pM . Thus M is divisible. It follows that
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M has a natural structure of a QG-module and it remains to apply the

semisimplicity of QG.

However we could avoid in this proof the countability hypothesis

(and extract more information) as follows.

Let M be an indecomposable pure injective torsion-free R-module,

we will prove that one of the points QGei is in the closure of M . As

M 6= 0 and 1 =
∑

i ei, there is at least one i = 1, . . . , 4 for which

Mei 6= 0. Also, by Fact 3.2 we may assume that M is a reduced

Rp-module, whence (by Fact 3.3) it suffices to show the following (for

i = 1, . . . , 4):

(∗) if M is an Rp-module such that Mei 6= 0, then QGei is in the

closure of M (as an Rp-module).

Choose m ∈ M such that 0 6= mei ∈ Mei. Let T be the theory of

M (as an Rp-module) and let p be the type consisting of the following

formulae: x 6= 0, ei | x and n | x, n a positive integer. We prove

that T ′ = T ∪ p is consistent. By the compactness theorem it suffices

to check that every finite subset of T ′ is consistent. Clearly we can

limit this check to finite subsets of the above form but with just one

n. But such a set is realized in M by n′ = mei · 4n = m · 4ein, in

fact 0 6= n′ ∈ Mn ∩Mei. Thus p is realized in some model M ′ of T

by an element 0 6= m′ ∈ M ′ei, m
′ ∈ M ′n for all n. It easily follows

that there is an Rp-module morphism f : QGei → M ′ sending ei to

m′. Since QGei is a simple QGei-module, f is an isomorphism onto

its image. Furthermore, since QGei is an injective Rp-module (see [10,

p.1128, Claim 2]), it follows that M ′ splits off a copy of QGei. �

Thus we have just 4 closed points in Zg tf. In fact (∗) says more:

each point QGei cannot be separated by an open set from any point

M in Zg tf with Mei 6= 0. Note that the last condition on M can be

written as a basic open set Oi =
(
(ei | x)/(x = 0)

)
or rather (to stay

within the language of R-modules) as
(
(x(4ei− 4) = 0)/(x = 0)

)
. It is

easily checked that for j 6= i the module QGej does not belong to Oi.

Thus Zg tf = ∪4
i=1Oi and for every i QGei is the unique closed point in

Oi.
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Having described the closed points of Zg tf we next deal with the

open ones. Clearly the complement of the 4 divisible points QGei is

open. Let us denote it by Zg red (‘red’ for reduced): Fact 3.2 explains

this terminology. Note that [10, Theorem 2.4] claims that every inde-

composable Rp-lattice is isolated in Zg red. By Proposition 3.4 none of

these points is closed in the whole space Zg tf.

The following theorem also refines another aspect of the aforemen-

tioned result of [10].

Theorem 3.5. The only isolated points of Zg tf are (indecomposable)

Rp-lattices.

Proof. Let M be an indecomposable Rp-lattice. By [19] the category of

Rp-lattices admits almost split sequences. Arguing as for modules over

finite dimensional algebras (see [11, Proposition 13.11]) we conclude

that M is isolated in Zg tfp. By Fact 3.3 M is isolated in Zg red. Since

Zg red is open in Zg tf, it follows that M is isolated in Zg tf.

For the converse let M be an isolated point of Zg tf. By Fact 3.2 M

is either a reduced isolated point of Zg tfp or is isomorphic to one of

the modules QGei, i = 1, . . . , 4. In the former case let (ϕ/ψ) be a pair

of pp-formulae that isolates M . Representing M as a direct limit of

Rp-lattices (as in [10, Theorem 2.3]) it is easily seen that (ϕ/ψ) already

opens on one of these lattices N , therefore M is isomorphic to a direct

summand of N .

It remains to notice that by Proposition 3.4 the point QGei cannot be

separated by an open set from, say, Rpei, therefore is not isolated. �

At this point the topology of Zg tfp for p an odd prime is easy to

describe. In fact in this case each ei is in Rp, whence Rp = ⊕4
i=1Rpei,

where Rpei ∼= Ẑ2 and the action of G is trivial or skewed, as described

in Section 2. In particular every torsion-free Rp-module is a direct sum

of copies of the Rpei and QGei, i = 1, . . . , 4. It follows:

Lemma 3.6. If p is an odd prime, then the only points in Zg tfp are

Rpei and QGei, i = 1, 2, 3, 4. The former ones (as Rp-lattices) are

exactly the isolated points of Zg tfp and the latter points have CB rank

1.
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So the only case to be examined is p = 2. We will deal with that in

Section 5. But before that let us recall in the next Section 4 some basic

facts about the 4-subspace quiver D̃4. We only recall here that, as G is

a 2-group, by [4, Corollary 5.25], the ring Ẑ2G is local with Jacobson

radical consisting of elements n1 + n2a + n3b + n4ab with ni ∈ Ẑ2 and∑
i ni ∈ 2Ẑ2.

4. Four subspace quiver

The representation theory of the 4-subspace quiver D̃4 (over an arbi-

trary field k) will play a crucial role in what follows. In this section we

will recall for the reader some facts from this theory. More details on

finite dimensional (f.d.) representations of D̃4 can be found in Simson

and Skowroński [20, 13.3] (when k is algebraically closed) and in Bren-

ner [1] (in the general case). Pure injective representations of D̃4 are

treated in Prest [12] and Ringel [18] in the wider framework of modules

over tame hereditary finite dimensional algebras.

Let A be the following matrix algebra

A =

(
k 0 0 0 0
k k 0 0 0
k 0 k 0 0
k 0 0 k 0
k 0 0 0 k

)
.

Then the representations of A are the ‘same’ as representations of the

quiver D̃4 with the subspace orientation:

1

%%JJJJJJJ 2

��77777 3

������� 4

yyttttttt

0

Therefore every A-module corresponds to a quintet of k-vector spaces

V ∗ = (V, V1, . . . , V4) such that each arrow i → 0 corresponds to a k-

vector space morphism fi : Vi → V .

For instance, A has four simple injective modules I(1), . . . , I(4),

where I(1) is given by the following diagram

k

%%JJJJJJJ 0

��77777 0

������� 0

zzttttttt

0

(with obvious values of morphisms) and the other modules I(2), I(3)

and I(4) are described similarly.
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It follows that every A-module is a direct sum of copies of these

4 simple injectives and a module built from a diagram where all mor-

phisms are injective, that is, from a diagram where each Vi is a subspace

of V . In particular let I(0) denote the (non-simple) injective module

corresponding to the following diagram

k

$$JJJJJJJ k

��77777 k

������� k

zzttttttt

k

where all the maps are identities.

It follows from the general theory (see [20]) that most indecom-

posable f.d. A-modules are uniquely determined by their dimension

vector x = ( x1 x2 x3 x4
x0 ) where x0 = dim V and, for i = 1, . . . , 4,

xi = dim Vi. For example the dimension vector of I(0) is ( 1 1 1 1
1 )

and that of I(1) is ( 1 0 0 0
0 ).

Let us propose as further examples the simple projective module

P (0) corresponding to ( 0 0 0 0
1 ) and the projective modules P (i) (i =

1, . . . , 4) where P (1) corresponds to ( 1 0 0 0
1 ) and P (2), P (3), P (4)

are defined similarly.

Furthermore every indecomposable f.d.A-module is preinjective, pre-

projective or regular. An easy way to determine the type of a f.d.

module M is to calculate its defect (see [20, p. 200]):

δ(M) = −2x0 + x1 + x2 + x3 + x4.

Then

• M is preinjective iff δ(M) > 0 (for instance δ(I(0)) = −2 + 1 +

1 + 1 + 1 = 2).

• Similarly an indecomposable f.d. module M is preprojective iff

δ(M) < 0 (and for those the P (i) (i = 0, . . . , 4) are examples).

• Finally an indecomposable f.d. module M is regular iff δ(M) =

0.

An example of a regular representation R(λ), λ ∈ k \ {0, 1} of A is

given by the following diagram,
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k

f1 %%KKKKKKK k f2

��99999 kf3

������� k

f4yysssssss

k2

(where for all r ∈ k, f1(r) = (r, 0), f2(r) = (0, r), f3(r) = (r, r) and

f4(r) = (λr, r)), therefore of the dimension vector ( 1 1 1 1
2 ).

In a standard way indecomposable f.d. A-modules are organized in

the Auslander–Reiten (AR for short) quiver of A (that is, a locally fi-

nite graph whose vertices are indecomposable f.d. A-modules and mor-

phisms correspond to a basis of irreducible maps). In this global picture

the preinjective modules form a connected component of the following

shape:

τI(1)

��66666666
I(1)

τI(2)

##HHHH
I(2)

. . . τI(0)

::uuuu

BB��������

$$IIII

��88888888
I(0)

<<xxxx

DD









""FFFF

��44444444

τI(3)

;;vvvv

I(3)

τI(4)

CC��������

I(4)

where τ stands for the AR-translate. In a similar way preprojective

A-modules form a connected component in the AR-quiver which starts

with the projective module P (0).
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τ−1P (1)

P (2)
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τ−1P (2)

P (0)
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EE����������
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%%KKKKK

��>>>>>>>>>

. . .

P (3)

;;wwww

τ−1P (3)

P (4)

CC��������

τ−1P (4)

The (indecomposable f.d.) regular A-modules are organized into

infinitely many tubes (parameterized by irreducible polynomials over

k), that is, they can be drawn on cylinders. Most of the tubes are
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homogeneous, that is they have just one simple regular module on the

mouth and look like a line:

◦ )) ◦ ))gg ◦ ))
ii ◦ii . . .

However A has 3 exceptional tubes of period 2. A typical representa-

tive on the mouth of such a tube is the regular A-module R(∞) given

by the following diagram

R(∞) =
0

$$JJJJJJJ k

��77777 0

������� k

zzttttttt

k

where the second module on this mouth is

τR(∞) =
k

$$JJJJJJJ 0

��77777 k

������� 0

zzttttttt

k

In drawing the AR-quiver of A the preprojective modules are usually

put on the left of regular modules, and preinjective modules are put

on the right of regulars. Then all morphisms will go from the left to

the right, for instance there are no nonzero morphisms from regular to

preprojective modules.

To calculate the dimensions of Hom spaces, the bilinear form asso-

ciated to A is very useful. If M and N are f.d. A-modules with the

dimension vectors x and y, then let us define a bilinear form q(x, y) as

dim Hom(M,N) − Ext1(M,N) (where Hom, Ext1 abbreviate here for

simplicity HomA, Ext1
A respectively). An easy calculation shows that

q(x, y) =
∑4

i=0 xiyi − y0 ·
∑4

i=1 xi.

As an example, if N is preinjective, then Ext1(M,N) = 0, therefore

q(x, y) = dim Hom(M,N). For instance, when N = I(0) = ( 1 1 1 1
1 )

and, say, M = R(∞) = ( 0 1 0 1
1 ), then

dim Hom(R(∞), I(0)) = 3− 1 · 2 = 1.

Similarly for N = I(1) = ( 1 0 0 0
0 ) we obtain

dim Hom(R(∞), I(1)) = 0− 0 = 0
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while, for N = I(2), dim Hom(R(∞), I(2)) = 1. The remaining Hom’s

from R(∞) to preinjective modules could be calculated using the τ -

periodicity of R(∞) (see [18, after Proposition 6]).

Thus we know the structure of the category of the f.d. A-modules.

Being of finite endolength every f.d. A-module M is pure-injective,

hence (if indecomposable) it determines a closed point of ZgA. Since

the category of f.d. A-modules admits almost split sequences, by [11,

Corollary 13.4], the f.d. points of ZgA are just the isolated points .

The following fact (which is again true for any f.d. algebra – see [11,

Proposition 13.2 and Corollary 13.3]) will be useful later.

Fact 4.1. Every pure injective A-module is a direct summand of a

direct product of f.d. A-modules, whence f.d. points are dense in ZgA.

The description of the remaining (infinitely generated) points of ZgA

and the topology of this space we borrow from [18] (see also [12]). For

each regular A-module S which is simple as an object in the category

of regular modules there is a ray of irreducible monomorphisms S =

S(1) −→ S(2) −→ S(3) −→ . . . winding around the tube. The direct

limit along this ray is a pure injective indecomposable A-module S(∞)

called the (S-) Prüfer module. This module is countably (infinitely)

generated and has CB-rank 1. Note that S(∞) is in the closure of the

regular modules S(i). Another way to obtain S(∞) is the following.

By [18, Proposition 1] if V ∗j , j ∈ J is an infinite set of (nonisomorphic)

preinjective A-modules with Hom(S, V ∗j ) 6= 0 for all j, then S(∞) is a

direct summand of
∏

j∈J V
∗
j (thus S(∞) is in the closure of the V ?

j ).

For instance, if S is from a homogeneous tube, then Hom(S, V ∗j ) 6= 0

for every preinjective module V ∗j , therefore S(∞) is in the closure of

any infinite set of preinjective points.

Thus for every homogeneous tube we have exactly one Prüfer mod-

ule, and each nonhomogeneous tube produces two Prüfer modules.

Dually every simple regular A-module S is included in a coray of

irreducible epimorphisms S = S(1) ←− S(2) ←− S(3) ←− . . . . The in-

verse limit along this coray, Ŝ, is said to be the S-adic module. This

module is pure injective, indecomposable and has CB-rank 1. Further-

more, Ŝ is in the closure of the S(i), and in the closure of any infinite
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set of preprojective modules V ∗j , j ∈ J with Hom(V ∗j , S) 6= 0 (see [18,

Proposition 2].

Finally there is a unique point of ZgA of CB-rank 2 — the generic

module G with the following diagram

k(x)

f1 ((QQQQQQQQQQ k(x)
f2

!!CCCCC
k(x)

f3

}}{{{{{
k(x)

f4vvmmmmmmmmmm

k(x)2

where k(x) is the field of rational functions in x over k and for every

q = q(x) ∈ k(x), f1(q) = (q, 0), f2(q) = (0, q), f3(q) = (q, q) and

f4(q) = (q, qx). For instance (see [18, Proposition 3]) G is a direct

summand of any infinite power of an arbitrary Prüfer module S(∞).

Being of finite endolength, G is a closed point of ZgA.

The description of the topology on ZgA is given by the following

result.

Fact 4.2. (see [18, Theorem]) A subset X of ZgA is closed iff the

following conditions are satisfied.

1) If S is a simple regular A-module and if there are infinitely many

f.d. A-modules V ∗ ∈ X with Hom(S, V ∗) 6= 0, then S(∞) ∈ X.

2) If S is a simple regular A-module and if there are infinitely many

f.d. A-modules V ∗ ∈ X with Hom(V ∗, S) 6= 0, then Ŝ ∈ X.

3) If there are infinitely many f.d. A-modules in X or if there exists

at least one infinite dimensional module in X, then G ∈ X.

For instance, the basis of open sets for G is given by ZgA \F , F a

finite set of f.d. points in ZgA.

As has been noticed in [18], the functors Hom(S,−) with S simple

regular (from the category of f.d. A-modules to the category of k-vector

spaces) play a crucial role in the classification of indecomposable pure

injective A-modules. These functors can be described by the so-called

patterns (see [18] or rather [17, 3] for a definition and numerous ex-

amples). For instance (see [17, p. 254]) if S = R(∞) (or any simple

regular A-module from a nonhomogeneous tube) then its pattern has

the following shape
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◦
��5555 ◦

��5555 ◦
��3

333

◦ //◦ // . . . . . . ◦ //◦ ◦ //◦

DD				

��5555 ◦ //◦ ◦ //◦
��5555

DD				 ◦

◦

DD				 ◦

DD				 ◦

EE����

(its vertices correspond to nonzero morphisms f from S to indecompos-

able f.d. A-modules V ∗ and the arrows correspond to irreducible maps

g : V ∗ → W ∗ such that gf 6= 0). Notice that in this case all nonzero

spaces Hom(S, V ∗) are 1-dimensional. We will give a model-theoretic

interpretation of the above diagram.

Choose a set of generators x for S and let the pp-formula ϕ generate

the pp-type of x in S. Thus ϕ is equivalent to the annihilator condition

xB = 0 describing the relations on x. Since Hom(S, V ∗) is (at most)

1-dimensional for every indecomposable f.d. module V ∗, it follows from

general theory (see [15, Chapter 11]) that the interval [0, ϕ] is a dis-

tributive lattice which is obtained from the above pattern by making

‘free sums’ of points (but taking into account all order relations on

the original poset). Thus this interval of pp-formulae has the following

shape (where the order relation goes from the left to the right)

◦
��4444 ◦

��4444 ◦
��4444

◦ //◦ //◦ . . . . . . ◦ //◦ ◦ //◦ //•

EE





��4444 ◦ //◦ ◦ //◦ //•

EE





��4444 ◦

◦

EE



 ◦

EE



 ◦

EE





(the new ‘free sums’ formulae are marked by bullets).

Let p be the pp-type of the tuple x ∈ S(∞) (via the natural inclusion

S ⊆ S(∞) along the ray of irreducible monomorphisms). Clearly p

defines a cut between two dots in the above diagram. Furthermore p

is the unique non-finitely generated pp-type containing ϕ.

The pattern of a simple regular A-module S from a homogeneous

tube is more involved. For instance, (see [17, p. 149]) some spaces

Hom(S, V ∗) are 2-dimensional (e.g., dim Hom(R(λ), I(0)) = 2), hence

the interval below ϕ is not a distributive lattice, but the conclusion

stays the same:
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Lemma 4.3. For every simple regular A-module S there is a unique

non-finitely generated indecomposable pp-type p containing ϕ. (Recall

that ϕ is isomorphic to Hom(S,−)).

Proof. If p is the pp-type of the generating set x of S = S(1) in S(∞),

then p is not finitely generated and contains ϕ. Furthermore, if ϕn

generates the pp-type of x in S(n) (via the standard embedding S(1) ⊆
S(n)), then p is generated by the ϕn.

Suppose that q is another indecomposable non-finitely generated pp-

type over A containing ϕ. Since q is not finitely generated, using almost

split sequences (see [16, Proof of Proposition 7.3] for similar arguments)

we conclude that ϕn ∈ q for every n, therefore p ⊆ q. Let (V ∗, y)

be a realization of q in an indecomposable pure injective module V ∗.

From ϕ ∈ q it follows that Hom(S, V ∗) 6= 0. By the classification of

indecomposable pure injective A-modules we obtain that V ∗ ∼= S(∞),

therefore there is a morphism f : S(∞) → S(∞) sending x to y. If

p ⊂ q (strict inclusion) then f ∈ Jac(S(∞)), therefore f annihilates

the simple regular socle S(1) of S(∞), in particular y = f(x) = 0, a

contradiction. �

5. The Butler functor

In this section we will recall Butler’s functor and some of its prop-

erties (see [2]) and extend this functor to a certain category of pure

injective modules over R2 = Ẑ2C(2)2 (indeed Butler’s original theory

applies to the category of R2-lattices, as Ẑ2 is a complete noetherian

commutative valuation domain).

We say that a (Z)-torsion-free R2-module is b-reduced (reduced in

the terminology of [2] in case of lattices) if M ∩Mei = 2Mei for every

i = 1, . . . , 4.

Warning: The reader should take care of not confusing this notion

of b-reduced with the notion of reduced which was defined in Section 3

before Fact 3.2.

Let C denote the category of b-reduced torsion-free R2-modules. Ob-

serve that C is definable (in the sense of [14, 3.4.1]). Indeed the b-

reduction condition defines a closed set of ZgR, that is, the intersection
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(for i = 1, . . . , 4) of
(
(ei | x)/(2ei | x)

)c
–or rather

(
(4ei | 4x ∧ 4 |

x)/(8ei | 4x)
)c

– where ‘c’ stands for the complement. Let us denote by

ZgC this closed subset.

Note also that R2 ∩ R2ei = 4R2ei 6= 2R2ei and R2ei ∩ (R2ei)ei =

R2ei 6= 2R2ei, therefore R2 and R2ei, i = 1, . . . , 4 are not b-reduced.

On the other hand the four modules QGei (i = 1, . . . , 4) are in

C. Thus the set of reduced b-reduced indecomposable pure injective

torsion-free R2-modules is the intersection of ZgC with the open set(
(x = x)/(2 | x)

)
. In particular it is locally closed, but neither open

nor closed in Zg tf. In the following we will be mainly concerned with

this locally closed set, rather than with the whole ZgC.

The following proposition extends [2, Proposition 1.5] from lattices

to torsion-free pure injective modules and has a similar proof.

Proposition 5.1. Let M be a Z-torsion-free R2-module.

1) If 2Mei 6⊆ M for some i = 1, . . . , 4, then M contains a copy of

R2 as a direct summand.

2) If i = 1, . . . , 4 and 2Mei ⊂ M ∩Mei (a strict inclusion) then M

contains a copy of the rank 1 lattice R2ei as a direct summand.

3) Otherwise M is b-reduced.

Proof. 1) Choose m ∈ M such that 2mei /∈ M , therefore (since M is

torsion-free) 4mei /∈ 2M . From 4e1−4ei ∈ 2R2 it follows that n = 4me1

is in M but not in 2M (otherwise 4mei = 4me1 + m(4ei − 4e1) ∈
2M + M · 2R2 ⊆ 2M). We claim that N = nẐ2

∼= Ẑ2 is a direct

summand of M (as a Ẑ2-module). Since Ẑ2 is pure injective (over

itself), it suffices to prove that the pp-type p (over Ẑ2) of n in N is

equal to q = ppM(n). Clearly p ⊆ q. Let ϕ ∈ q be a pp-formula. By

an elimination procedure for commutative valuation domains (see [11,

Theorem 2.Z.1]) and the fact that M is torsion-free we may assume

that ϕ
.
= 2l | x for some l ∈ N. Since n ∈M \ 2M it follows that l = 0,

therefore ϕ becomes trivial. Thus N = nẐ2
∼= Ẑ2 is a direct summand

of M as a Ẑ2-module.

Therefore there exists a Ẑ2-morphism π : M → Ẑ2 such that π(n) =

1. Let us define a map τ : M → R2 by putting, for every s ∈ M ,

τ(s) =
∑

g∈G π(sg−1)g. It is easily checked that τ is an R2-morphism.
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Recall that n = 4me1. Since e1g = e1 for every g ∈ G we conclude

that ng = n, therefore

τ(n) =
∑

g∈G π(ng−1)g =
∑

g∈G π(n)g =
∑

g∈G g = 4e1.

It follows that τ(m) · 4e1 = τ(m · 4e1) = τ(n) = 4e1. Since R2 is a

local ring we conclude that τ(m) is invertible in R2, therefore τ is onto.

Since R2 is projective, τ splits, therefore M contains a direct summand

isomorphic to R2.

2) Suppose that 2Mei ⊂ M ∩Mei (a strict inclusion) and choose

m ∈ (M ∩Mei) \ 2Mei. Since m ∈ Mei \ 2Mei then (as above) we

conclude that N = mẐ2 = mR2
∼= R2ei is a pure submodule of Mei as

a module over Ẑ2 or R2. Because R2ei is pure injective, it follows that

N is a direct summand of Mei, therefore of M∗ = ⊕4
i=1Mei. Because

N ⊆M ⊆M∗ it follows that N ∼= R2ei is a direct summand of M . �

Note that in the above proof we used only the fact that M is a

Z-torsion-free R2-module (although the result obviously applies to Z-

torsion-free pure-injective modules). Another elegant way to formulate

the previous proposition is the following (see [14, 18.2.4]): any torsion-

free R2-module not in C contains one of the lattices R2, R2ei, i =

1, . . . , 4 as a pure submodule (and indeed as a direct summand).

In fact (again using Prest’s remark [14, 18.2.4, p. 691]) we can single

out minimal pairs associated with these modules.

Lemma 5.2. The following are minimal pairs in the theory T tf of

torsion-free modules over R2 (or R):

1)
(
(8e1 | 4x)/(4 | x ∧ 4e1 | x)

)
isolates R2;

2)
(
(4 | x ∧ 4ei | x)/(8ei | 4x)

)
isolates R2ei, i = 1, . . . , 4.

Proof. 1) The set of indecomposable torsion-free Rp-lattices (with p

ranging over primes) is dense in Zg tf. Evaluating this pair (ϕ/ψ) on

these lattices we see that it takes a nontrivial value just on R2, and

this value (ϕ/ψ)(R2) is a one-dimensional vector space over k = GF (2).

The conclusion follows easily (were ϕ > θ > ψ for some pp-formula θ,

then we would obtain (ϕ/θ)(R2) 6= 0 and (θ/ψ)(R2) 6= 0, a contradic-

tion).

Similar arguments prove 2). �

20



Now, following Butler [2], we consider b-reduced R2-modules M in

the definable category C and we extend Butler’s functor ∆ in their

setting. Let us preliminarily recall the notation M∗ = ⊕4
i=1Mei. Note

that M b-reduced implies that 2M∗ ⊂M ⊂M∗ (strict inclusions).

We refer to the field k = GF (2) and we associate to M a module over

kD̃4 (D̃4-module for short) ∆(M) = V ∗ where V = M∗/M and, for

every i = 1, . . . , 4, Vi = (Mei +M)/M ∼= Mei/M ∩Mei = Mei/2Mei.

Note also that, since m =
∑

1≤i≤4mei for every m ∈ M , it easily

follows that for every i, V =
∑

j 6=i Vj. This leads us to consider the de-

finable category D consisting of the D̃4-modules V ∗ with V =
∑

j 6=i Vj

for every i = 1, . . . , 4. Observe that this condition determines a closed

subset ZgD of Zgk eD4
.

The map ∆ clearly extends also to morphisms, therefore gives rise

to a functor from C into the category of D̃4-modules, and indeed into

D. Butler [2] noticed that ∆ is full when restricted to the category of

R2-lattices and gives a representation equivalence from this category

to the category of f.d. representations of D̃4 in D. It is easily seen

that a f.d. D̃4-module is in the image of ∆ iff it contains no modules

I(1), . . . , I(4) and P (0), P (1), . . . , P (4) as direct summands.

It follows from general theory that the image of C with respect to ∆ is

a definable category of D̃4-modules (and defines a clopen cofinite subset

if we think in terms of the Ziegler spectrum). Since ∆ commutes with

direct products and direct limits, it provides an example of a definable

functor between definable categories (see [14, 18.2] or just notice that

∆(M) is clearly definable in M , hence ∆ is an interpretation).

We will prove later that the image of ∆ is just D and we will also

describe in more detail the preimage of any f.d. point in D. But to

illustrate here Butler’s ideas let us construct an R2-lattice whose image

will be a simple regular module R(1) with the following diagram

k

$$JJJJJJJ k

��77777 0

������� 0

zzttttttt

k

(living on a non-homogeneous tube). What we have to do is to con-

struct a module R2e1 ⊕ R2e2 (so Ẑ2 ⊕ Ẑ2 where G acts on the two
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copies of Ẑ2 as suggested by e1, e2 respectively) and to choose the ele-

ments in this direct sum which are identified via embeddings Ẑ2/2Ẑ2
∼=

k −→ k2 ←− k ∼= Ẑ2/2Ẑ2 as D̃4-modules. Hence we are led to define

M = {(n,m) ∈ Ẑ2 ⊕ Ẑ2 | n−m ∈ 2Ẑ2}. In particular, Me1 = Ẑ2 ⊕ 0,

Me2 = 0⊕ Ẑ2, therefore ∆(M) ∼= R(1).

Note also that the kernel of the induced map from Hom(M,N) to

Hom(∆(M),∆(N)) consists of morphisms f such that f(Mei) ⊆ N for

every i, and that it equals
∑

i 2 Hom(Mei, Nei).

Dieterich [5] showed that Butler’s functor ∆ (in its original frame-

work of lattices) induces an isomorphism from the AR-quiver of C to

the AR-quiver of its image. By adjoining the points out of the domain

of ∆ one gets the complete AR-quiver of R2-lattices (see [5, p. 54]).

Similar to D̃4 this quiver contains infinitely many regular tubes (and

3 of them are nonhomogeneous), but the end of the preinjective com-

ponent is sewn with the beginning of the preprojective component as

follows

R2

��

τ−1P (1)′ R2e1

��������������
τI(1)′

��















τ−1P (2)′ R2e2

~~~~~~~
τI(2)′

����������

. . . τ−1P (0)′

[[6666666666666bbFFFF

��������������||xxxx

I(0)′

]]

WW000000000000000

^^<<<<<<<<

�������������������

����������

. . .

τ−1P (3)′ R2e3

``@@@@@

τI(3)′

__????????

τ−1P (4)′ R2e4

WW00000000000000

τI(4)′

WW/////////////////

(where to the right and to the left we denote by N ′ the R2-lattice corre-

sponding to a given D̃4-module N). Thus the category of R2-lattices is

essentially richer than the category of D̃4-modules, in particular there

are some nonzero morphisms from “preinjectives” to “preprojective”

lattices.
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Furthermore to get an irreducible morphism, say from I(0)′ to R2, we

represent I(0)′ as the submodule of R∗2 = ⊕4
i=1R2ei consisting of tuples

(m1, . . . ,m4) such that 2 | mi −mj for all i 6= j, and then multiply it

by 2 to get inside R2.

Now we are going to prove the main result of this section: that ∆

is full when restricted to the category of b-reduced (and reduced) pure

injective torsion-free R2-modules in C. The following remark will be

helpful.

Remark 5.3. Every indecomposable pure injective torsion-free mod-

ule over Ẑ2 is isomorphic to Ẑ2 or Q. Thus every reduced pure injective

torsion-free R2-module M , if viewed as a Ẑ2-module, is the pure injec-

tive envelope of a module K = Ẑ(α)
2 for some α, in particular M is

pp-essential over K (as a Ẑ2-module).

Theorem 5.4. The functor ∆ is full when restricted to the category of

reduced b-reduced pure injective torsion-free R2-modules.

Proof. Let M,N be reduced (and b-reduced) pure injective torsion-free

R2-modules, we wish to prove that the induced map from Hom(M,N)

to Hom(∆(M),∆(N)) is onto. Put ∆(M) = V ∗, ∆(N) = W ∗. From

the construction of ∆ we have that V = M∗/M and Vi = Mei/M ∩
Mei = Mei/2Mei ⊆ V (i = 1, . . . , 4) are k-vector spaces, similarly

W = N∗/N and Wi = Nei/2Nei. Thus a morphism f : ∆(M) →
∆(N) is given by a morphism of vector spaces V → W such that

f(Vi) ⊆ Wi for every i (thus fi : Vi → Wi will denote the induced

map). Let πM denote the projection Mei → Mei/2Mei = Vi and

similarly for πN : Nei → Wi.

By Remark 5.3 each Mei (if viewed as a Ẑ2-module) is isomorphic

to the pure injective hull of a submodule K = Ẑ(α)
2 (as a Ẑ2-module)

for some α. Since Ẑ(α)
2 is a projective Ẑ2-module, fi can be lifted to

a morphism g′i : Ẑ(α)
2 → Nei of Ẑ2-modules such that fiπM(m) =

πNg
′
i(m) for every m ∈ K = Ẑ(α)

2 (see the following diagram).
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Ẑ(α)
2 ⊆

g′i
��

Mei

gi

���
�

�
�

�
�

πM // Vi

fi

��
Nei

πN // Wi

Since K is a pure submodule of Mei, and Nei is pure injective, there

is a Ẑ2- module morphism gi : Mei → Nei extending g′i, that is, gi |K=

g′i. This morphism gi can be regarded in a natural way as an R2-

module morphism with respect to the action of a and b corresponding

to ei. We claim that gi makes the above diagram commutative, that

is, πNgi(m) = fiπM(m) for every m ∈Mei.

Indeed, since K is pp-essential in Mei as a Ẑ2-module, there exist

n ∈ K and a pp-formula r | x+ ys (to be read “r divides x+ ys”) over

Ẑ2 (in particular r, s ∈ Ẑ2) that connects n and m in Mei, meaning

that n+ms ∈Meir but n,mb /∈Meir (use [11, Theorem 4.10.(d)] and

observe that, due to the torsion-free assumption, the only interesting

pp-formulae over Ẑ2 regard divisibility conditions). Choose m′ ∈ Mei

such that m′r = n + ms and apply πM . Clearly 2 | r (otherwise r is

invertible), whence m′r ∈ 2Mei and we can conclude that πM(n) =

πM(ms). Therefore

(∗) fiπM(ms) = fiπM(n) = πNg
′
i(n).

From m′r ∈ 2Mei it also follows that gi(m
′r) = gi(m

′)r ∈ 2Nei.

Thus applying πN to the equality gi(m
′r) = g′i(n) + gi(ms) we obtain

πNg
′
i(n) = πNgi(ms). Taking into account (∗) we conclude fiπM(ms) =

πNgi(ms), therefore (since M is torsion-free) fiπM(m) = πNgi(m), as

desired.

Let g be the R2-module morphism from M∗ to N∗ whose restriction

on Mei, i = 1, . . . , 4 is gi. Then fπM = πNg. Finally for every m ∈M
we have πM(m) = 0, hence πNg(m) = 0 and therefore g(m) ∈ N . Thus

the restriction of g to M defines a morphism from M to N that lifts

f . �

Note that in the proof of the above theorem we only used that M

is reduced (b-reduced pure injective torsion-free), but N could be an
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arbitrary (not necessarily reduced) b-reduced pure injective torsion-free

R2-module.

A small adjustment of the above theorem gives its full strength.

Corollary 5.5. The functor ∆ is full on b-reduced pure injective torsion-

free R2-modules.

Proof. Note that every pure injective torsion-free R2-module M is a

direct sum of copies of the QGei (i = 1, . . . , 4) and a reduced module.

Indeed if M is not reduced, take a nonzero element m in its divisible

part. Then for some i ni = 4mei is a non-zero element in Mei ∩M ,

moreover ni is still divisible. Then standard arguments show that ni

is included into a direct summand of M isomorphic to QGei. Now

let N be a maximal direct sum of copies of the QGei. Since each of

these modules is of finite endolength, N is pure injective, therefore

M = N ⊕M/N and M/N is reduced.

It remains to notice that the divisible part of M is annihilated by ∆,

therefore can be ignored when extending morphisms. �

Since ∆ preserves direct products and direct limits it follows that ∆

preserves pure injectivity, that is, if M is a pure injective R2-module,

then ∆(M) is a pure injective D̃4-module. In fact (as we will show later)

∆ preserves indecomposability, therefore induces a map ZgC → ZgD.

Again we will show later that this map is one-to-one (after removing

the QGei). But one important theorem can be already formulated.

Theorem 5.6. ∆ induces a homeomorphism from ZgC \{QGei}4i=1 onto

its image in ZgD.

Proof. Apply Corollary 5.5 and Prest [14, 18.2.27] �

Indeed we are going to see that the image of ∆ is just the whole

space ZgD. But for this we need one more property of ∆.

Proposition 5.7. Let M be a pure injective b-reduced reduced torsion-

free R2-module. Then the kernel of the induced map from End(M) to

End(∆(M)) is contained in Jac(End(M)).

Proof. Let f ∈ ker(∆M). Extend f to f ∗ : M∗ → M∗ in the obvi-

ous way. Since f ∈ ker(∆M), therefore f ∗(eiM) ⊆ 2eiM , and then
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f ∗k(eiM) ⊆ 2keiM for every positive integer k and every i = 1, . . . , 4.

Clearly M∗ = ⊕4
i=1Mei is pure injective reduced and torsion-free. It

follows (see [10, p. 1128] for similar arguments) that a formal inverse

(1 − f ∗)−1 = 1 + f ∗ + f ∗2 + . . . can be given the unique R2-module

action on M∗ that inverts 1− f ∗. Since f ∗(M) ⊆M it follows that the

above map sends M to M , therefore 1−f is invertible in End(M). �

The following corollary is standard.

Corollary 5.8. Let M be a b-reduced pure injective reduced torsion-

free R2-module. Then there is a natural 1-1 correspondence between

direct sum decompositions of M and ∆(M). In particular ∆ preserves

and reflects indecomposability (within this class of modules).

Proof. Since (see [8, Corollary 7.5]) the endomorphism ring of every

pure injective module is F -semiperfect (in particular, idempotents lift

modulo the Jacobson radical) the statement of the corollary is a con-

sequence of general theory (see [8, p. 212] for this kind of argument).

For instance, if M is indecomposable, then End(M) is a local ring.

Since ker(∆M) ⊆ Jac(End(M)), it follows that End(∆(M)) is local,

therefore ∆(M) is indecomposable. For the converse, if ∆(M) is inde-

composable, then End(M) cannot have non-trivial idempotents, oth-

erwise they will survive when factoring out ker(∆M). �

Theorem 5.9. ∆ is a bijection between ZgC \{QGei}4i=1 and ZgD.

Proof. At the level of lattices this was shown by Butler. Let us briefly

recall his proof. We are given a 5-uple of vector spaces V ∗ = (V, (Vi)i)

in D with V finite dimensional. For every i = 1, . . . , 4 let Vi ∼= GF (2)di

for some non-negative integer di. Lift Vi to Ẑdi
2 viewed as an R2-module

with respect to the action of a and b determined by ei. Let σi denote

the canonical Ẑ2- (indeed R2-) module morphism of Ẑdi
2 onto Vi. Thus

σ =
∑

i σi is an R2-module morphism of ⊕iẐdi
2 to V . Then the kernel

M of σ is a b-reduced R2-lattice and ∆(M) ∼= V ∗ (see [2, (1.3)] for

more details).

In particular for each simple regular D̃4-module S there exists an

indecomposable R2-lattice S ′ such that ∆(S ′) ∼= S. We will also call
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this lattice simple regular, because it is on the mouth of a regular tube

of R2-lattices.

Now let us deal with infinite dimensional indecomposable pure in-

jective D̃4-modules V ∗ in D.

Use Fact 4.1 and represent V ∗ as a direct summand of a direct prod-

uct
∏

j∈J V
∗
j of f.d. indecomposable pure injective D̃4-modules V ∗j (or

of indecomposable pure injective D̃4-modules V ∗j already in the image

of ∆) such that V ∗j is in D for every j ∈ J . Lifting the corresponding

idempotent we obtain an indecomposable pure-injective torsion-free b-

reduced reduced R2-module M as a direct summand of
∏

j∈JMj, where

for every j Mj is an indecomposable pure injective R2-module such that

∆(Mj) ∼= V ∗j . Since ∆ reflects isomorphisms this module is even unique

(up to isomorphism).

This is the general strategy. But let us treat separately the cases

when V ∗ is S-Prüfer or S-adic for some simple regular S, or G, to

obtain more information on the topology ZgC.

First take V ∗ = S(∞), the S-Prüfer module. Choose an infinite

set of preinjective D̃4-modules V ∗j , j ∈ J such that Hom(S, V ∗j ) 6= 0.

Then (see [18, Proposition 1]) S(∞) is a direct summand of the (pure

injective) direct product
∏

j∈J V
∗
j . This provides a preimage M of

S(∞) as illustrated above. Let us denote it S ′(∞) and call it the

S ′-Prüfer module.

Now the generic module G is a direct summand of any infinite prod-

uct of copies of S(∞). Lifting this decomposition we obtain an in-

decomposable pure injective torsion-free reduced module G ′ which we

call pseudo-generic (since G ′ is reduced, the strictly descending chain

G ′ ⊃ 2G ′ ⊃ 4G ′ ⊃ . . . shows that it is not of finite endolength). Note

that G ′ can be written in terms of generators and relations using the

diagram for G (see above).

Finally, in the case of the S-adic D̃4-module Ŝ we simply recall that

it is (as any pure injective D̃4-module) a direct summand of a direct

product of indecomposable f.d. D̃4-modules. Also, we can assume that

these D̃4-modules are in D, in other words exclude P (0), . . . , P (4) and

I(1), . . . , I(4). Lifting this decomposition we obtain its R2 analogue,

the S ′-adic module Ŝ ′.

27



Thus every module in ZgD has gotten its preimage in ZgC, therefore

the induced map ∆ : ZgC \{QGei}4i=1 → ZgD is a homeomorphism. �

Note that on the way we proved the following remark.

Remark 5.10. Every pure injective reduced torsion-free R2-module is

a direct summand of a direct product of R2-lattices.

Although the topology on ZgD and consequently that on ZgC is

known, it may be worth recalling its concise description à la Ringel

[18]. Let S ′ be a simple regular R2-lattice corresponding to a simple

regular D̃4-module S = ∆(S ′). Let us define a functor Hom∗R2
(S ′,−)

(from the category of R2-lattices to the category of k-vector spaces) as

follows. Let x be a set of generators for S ′ and let xB = 0 be the set

of relations defining S ′ (this gives a subfunctor of the forgetful functor

Hom(Rk,−), where k is the length of x̄). Then Hom∗R2
(S ′,−) is a quo-

tient of this functor given by the pp-pair
(
(xB = 0)/(8 | 4x̄ei)

)
, there-

fore ∆ provides a natural isomorphism Hom∗R2
(S ′,−) ∼= Homk eD4

(S,−)

in particular these functors have the same lattice of finitely generated

subfunctors.

Taking into account Fact 4.2 and Theorem 5.6, we obtain (here,

again ZgC is considered within the category of R2-modules, that is, as

a subset of Zgtf2 regarded as embedded in Zg tf).

Theorem 5.11. A subset X of ZgC is closed iff the following holds

true.

1) If S ′ is a simple regular R2-lattice and there are infinitely many

lattices Mj ∈ X, j ∈ J with Hom∗(S ′,Mj) 6= 0, then S ′(∞) ∈ X.

2) If S ′ is a simple regular R2-lattice and there are infinitely many

lattices Mj ∈ X, j ∈ J with Hom∗(Mj, S
′) 6= 0, then Ŝ ′ ∈ X.

3) If there are infinitely many R2-lattices in X or X contains at

least one non-finitely generated reduced module, then the pseudo-generic

module G ′ ∈ X.

4) If Mei 6= 0 for some M ∈ X and i = 1, . . . , 4, then QGei ∈ X.
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6. Topology

In this section we will describe the topology on Zg tf, the torsion-free

part of the Ziegler spectrum of R = ZC(2)2. Let X be a subset of Zg tf;

we have to decide whether X is open or not.

Recall that in Section 3 we defined open sets Oi, i = 1, . . . , 4 such

that Zg tf = ∪4
i=1Oi and QGei is the only closed point within Oi. Thus

X is open iff X ∩ Oi is open for every i, therefore we may assume

that X ⊆ Oi for some i. By the remark after Proposition 3.4, QGei
cannot be separated by an open set from any point of Oi, therefore, if

QGei ∈ X then X is open iff X = Oi.

Otherwise X ⊆ Oi \ {QGei}. Since QGei is a closed point, the last

set is open in Zg tf. Thus we may assume that X consists of reduced

points.

For each prime p let Op denote the open set
(
(x = x)/(p | x)

)
.

Note that Op is the torsion-free non-divisible part of the Ziegler spec-

trum of Rp, Zgtfp regarded as embedded in Zg tf (the divisible part is

{QGei}4i=1).

If p 6= 2, then, since X contains no divisible points, X ∩Op consists

of (at most four) lattices Rpei, therefore is open. Thus X is open iff

X ∩O2 is open, and therefore (by [10, Theorem 2.2]) iff X ∩O2 is open

considered as a subset of Zgtf2. But Theorem 5.11 provides a complete

answer to this question.

For instance, if X contains a pseudo-generic point G ′ then to be

open X must contain all Prüfer and adic points and almost all R2-

lattices (and there are no further restrictions but, by the assumption,

QGei /∈ X).

Now it is not difficult to execute the Cantor–Bendixson analysis for

Zg tf.

Theorem 6.1. Let R = ZC(2)2 and let Zg tf denote the torsion-free

part of the Ziegler spectrum of R.

1) The only isolated points of Zg tf are Rp = ẐpC(2)2-lattices (again,

there are infinitely many of them if p = 2, and just finitely many oth-

erwise).
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2) The only points of CB-rank 1 of Zg tf are the (S ′-) Prüfer and adic

points for every simple regular R2-lattice S ′.

3) The only point of CB-rank 2 is the pseudo-generic point G ′.
4) The only points of CB-rank 3 are the divisible modules QGei,

i = 1, . . . , 4.

Proof. 1) follows from Theorem 3.5. Furthermore by Proposition 3.4

and the discussion afterwards, the QGei are points of maximal CB-

rank and they are the only closed points of Zg tf. In particular 4) will

follow from 2) and 3).

2) By 1) the CB-rank of any Prüfer or adic point of Zg tf is at least

1. Let M ′ = S ′(∞) be an S ′-Prüfer point over R2. We claim that M ′

is isolated in the first derivative (that is, the subspace of non-isolated

points) of Zg tf by the intersection of
(
(x = x)/(2 | x)

)
with the pp-pair

defined by the functor Hom∗(S ′,−). Indeed, if M is an indecomposable

pure injective torsion-free R-module in this intersection, then M has

a natural structure of an R2-module and Hom∗(S ′,M) 6= 0. If S =

∆(S ′) and V ∗ = ∆(M) then from the functorial isomorphism we obtain

Homk eD4
(S, V ∗) 6= 0. Since V ∗ is not finitely generated, it follows from

the description of Zgk eD4
that V ∗ ∼= S(∞), therefore M ∼= S ′(∞) by the

definition of that.

Note that there exists a homeomorphism of Zg eD4
(given by elemen-

tary duality composed with standard duality Hom(−, k)) that inter-

changes Prüfer and adic points, therefore there exists such a homeo-

morphism on ZgC. It follows that each adic point has CB-rank 1.

Now the pseudo-generic point G ′ is a direct summand of any infinite

product of copies of any Prüfer point S ′(∞). It follows that G ′ is in the

closure of any such point, therefore cannot be separated from S ′(∞) at

level one. Thus CB(G ′) ≥ 2, and it is exactly 2 because the open set(
(x = x)/(2 | x)

)
separates G ′ from the remaining points QGei.

At the final step we can use the open sets Oi to separate the points

QGei, i = 1, . . . , 4 from each other. �

Thus we have completed a description of the points and topology

of Zg tf. However, because the construction of points has not been di-

rect, their algebraic structure is still enigmatic. To give an example,
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let us consider a simple regular R2-module S ′. Then there is a se-

quence of irreducible maps S ′ = S ′(1) → S ′(2) → . . . in the category

of R2-lattices that goes (applying ∆) to the sequence of irreducible

monomorphisms S = S(1) → S(2) → . . . in the category of f.d. D̃4-

modules. Let T = lim−→S ′i. Since ∆ commutes with direct limits, it

follows that ∆(T ) ∼= S(∞).

Question 6.2. Is it true that T is an indecomposable pure injective

R2-module?

Recall that there exists an indecomposable pure injective torsion-free

reduced R2-module S ′(∞) such that ∆(S ′(∞)) ∼= S(∞) ∼= ∆(T ). The

problem is that, without knowing that T is pure injective, it is not clear

how to lift this isomorphism. The best we can do is the following.

Lemma 6.3. S ′(∞) is a direct summand of the pure injective envelope

of T .

Proof. As we have already mentioned ∆ provides a natural isomor-

phism of functors Hom∗R2
(S ′,−) and Homk eD4

(S,−). Suppose that the

former functor is given by a pp-pair (ϕ/ψ) over R2. By Lemma 4.3

there is a unique non-finitely generated pp-type over kD̃4 containing

Hom(S,−), therefore there exists a unique non-finitely generated pp-

type p over R2 in the sort (ϕ/ψ). It follows easily that both T and

S ′(∞) realize p, therefore S ′(∞) = PE(p) is a direct summand in

PE(T ). �

Is it true at least that PE(T ) has no divisible part?
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