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Abstract

Let G be a group definable in a theory T . For every model M of T , the
space SG(M) of the complete G-types over M is a GM -flow. We compare
the Ellis semigroups related to the flows SG(M) and SG(N) when M ≺∗ N ,
focusing particularly on the groups into which the minimal left ideals in these
semigroups split. In the case where T is an o-minimal expansion of the theory
of reals and G is definably compact we show that these groups are isomorphic
to the quotient group G/G00.

Introduction

Let T be a complete theory in a countable language L and we work within a monster
model C of T . Assume the language L contains a predicate symbol and function
symbols defining in C a group G and the operations of group multiplication and
group inverse in G. For M ≺ C let GM be G ∩ M , to simplify notation we assume
that GM = M . Given a (partial) type (or a formula) p(x) over C, [p(x)] denotes the
class of all types over C, in variable x, containing p(x).

Stable group theory is the central part of geometric model theory. Unfortunately,
outside the stable context the main notions of stable model theory, like generic types
and forking, do not work well. In [N1, N2] it was pointed out how some notions of
topological dynamics may successfully serve as a counterpart and generalization of
the notion of generic type in the general unstable case.

In topological dynamics, given an abstract group G and a point-transitive G-flow
X, the topological dynamics of X is explained by the properties of the enveloping
Ellis semigroup E(X). Of particular importance are minimal left ideals I of E(X).
Each such ideal splits into a disjoint union of groups. All these groups are isomorphic,
also for distinct minimal ideals in E(X).
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Returning to the model-theoretic set-up, we consider the space S(M) as a GM -
flow, the action of GM on S(M) is induced by left translation. In [N1] we considered
also a larger GM -flow SM(C), consisting of the types in S(C) finitely satisfiable in M .
We proved that SM(C) is isomorphic (as a GM -flow) to its Ellis semigroup, which
induces a semi-group operation on SM(C). As mentioned in the previous paragraph,
we find a family of isomorphic disjoint subgroups HM of SM(C) such that every
minimal left ideal in SM(C) splits into a disjoint union of these groups . We proved
[N1] that the group G/G00

M is a homomorphic image of each of the groups HM . This
provides a new outlook on the group G/G00

M . We conjectured that the groups HM

are closely related to the group G/G00
M , in nice situations (like NIP) even isomorphic

to it.
The model-theoretic set-up of topological dynamics raised also some specific ques-

tions. Namely, assume N is an elementary extension of M . So besides the GM -flow
S(M) and the related objects SM(C) and HM we have also the GN -flow S(N) and
the related objects SN(C) and HN . Model theoretically, N is in many ways similar
to M . In fact, the properties common to all models of T are considered inherent
to T . It is natural to compare the topological dynamics of S(M) and S(N). This
comparison may point to those aspects of the flow S(M) that are inherent to T and
not just to M .

G00
N is a subgroup of G00

M , hence G/G00
M is a homomorphic image of G/G00

N . Be-
cause of our conjecture relating HM and G/G00

M we would expect that the groups
HM and HN are related, too. In fact, in [N1] we proved that SM(C) embeds as
a sub-semigroup into SN(C), however unfortunately the images of the groups HM

under this embedding need not be the groups HN . Instead, we would rather ex-
pect the groups HM to be homomorphic images of the groups HN (since G/G00

M is a
homomorphic image of G/G00

N ).
The main result of this paper states that for M ≺∗ N , HM is a homomorphic

image of a subgroup of HN , assuming additionally that generic points exist in SN(C).
This assumption holds e.g. in the case where T is an o-minimal expansion of the
theory of the field of reals and G is definably compact. Admittedly, in this case we
can prove that the groups HM are downright isomorphic to the groups HN and to
the group G/G00, partially confirming our conjecture from [N1].

In the proof of the main result of this paper we use a Boolean interpretation of
the semigroup SM(C). This enables us to understand better the groups HM and
find a well-behaved subgroup of SN(C), mapping homomorphically onto HM . Then,
under the additional assumption of existence of generic points in SN(C), we present
HM as a homomorphic image of a subgroup of HN .

The paper is organized as follows . Below we recall the basic notions of topo-
logical dynamics relevant to our results. In Section 1 we set up the model-theoretic
context and interpret the Ellis semigroup of the flow SM(C) as the semigroup od
automorphisms of certain algebra of subsets of M . In Sections 2 and 3 we construct
a subgroup of SN(C) with homomorphic image GM . Section 4 contains the main
result of the paper, also we discuss there the case of a definably compact G.

Given an abstract group G, in topological dynamics by a G-flow we mean a
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compact topological space X acted upon by G by homeomorphisms. By a subflow of
X we mean any closed subspace Y of X, closed under the action of G. In particular,
for any p ∈ X the set cl(Gp) is a subflow of X. We say that a G-flow is minimal if
it has no proper subflows. We call a point p ∈ X almost periodic if the flow cl(Gp)
is minimal. We say that X is point-transitive if it contains a dense G-orbit. There
is a largest point-transitive G-flow: the space βG of ultrafilters on G, acted upon by
G by left translation. Namely, for U ∈ βG and g ∈ G we put gU = {gU : U ∈ U}.

The properties of a point-transitive G-flow X are expressed by means of its Ellis
semigroup E(X). Namely, every g ∈ G determines the homeomorphism πg : X → X.
Let E(X) = cl{πg : g ∈ G} be the topological closure of the set {πg : g ∈ G} in
the space XX considered with the Tychonov product topology (i.e. the topology
of pointwise convergence). E(X) is a semigroup with respect to composition of
functions and the semigroup operation is continuous in the first coordinate. It is
also a point-transitive G-flow: for g ∈ G and f ∈ E(X) let g ∗ f = πg ◦ f ; the
functions πg, g ∈ G, form a dense G-orbit. Also, E(E(X)) is isomorphic to E(X),
as a semigroup and a G-flow.

We say that I ⊆ E(X) is a (left) ideal (symbolically: I ⊳ E(X)) if fI ⊆ I for
every f ∈ E(X). Of particular importance are minimal ideals I ⊳ E(X) (denoted by
I ⊳m E(X)), since they are exactly the minimal subflows of E(X). Moreover, they
determine the minimal subflows of X as follows. Let I ⊳m E(X). Then the minimal
subflows of X are of the form Ip, p ∈ X. Also, p ∈ X is almost periodic iff p ∈ Ip.

We may consider a more general situation of a compact topological space S
carrying a semigroup operation that is continuous in the first coordinate (just like
E(X)). In this case we use the analogous notation I ⊳S, I ⊳m S to denote (left) ideals
and minimal (left) ideals I in S. We say that j ∈ S is an idempotent if j2 = j. We
will use the following fundamental observation of Ellis.

Theorem 0.1 ([E]) Assume S is a compact topological space carrying a semigroup
operation that is continuous in the first coordinate.

(1) The set J of idempotents of S is non-empty.
(2) Given I ⊳m S, the set J(I) = J ∩ I is non-empty.
(3) For every I ⊳S and j ∈ J(I), the set jI is a subgroup of I and I is the disjoint

union of the groups jI, j ∈ J(I).
(4) The groups jI, I ⊳M S, j ∈ J(I), are all isomorphic.

In particular, Theorem 0.1 applies to E(X).
βG is the largest point-transitive G-flow, meaning that any point-transitive G-

flow is an image of βG via a G-mapping (that is, a mapping respecting the action
of G). Also, βG is naturally isomorphic to its Ellis semigroup E(βG). Namely, for
U ,V ∈ βG let

U ∗ V = {U ⊆ G : {g ∈ G : g−1U ∈ V} ∈ U}

and let lU : βG → βG be given by lU(V) = U ∗ V . Then ∗ is a semigroup operation
on βG, E(βG) = {lU : U ∈ βG} and the mapping U 7→ lU is an isomorphism of βG
and E(βG), both as G-flows and semigroups. For more background on topological
dynamics and the Ellis semigroup the reader may consult [E, A, G].
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1 The model-theoretic set-up

In the model-theoretic setting in this paper we consider a GM -flow S(M). In [N1]
we considered the GM -flow SM(C) consisting of the types in S(C) finitely satisfiable
in M . This flow turned out to be isomorphic to its Ellis semigroup and served as
a model-theoretic counterpart of βGM . Here we will re-define SM(C) by means of
externally definable subsets of M .

We say that U ⊆ M is externally definable if U = ϕ(C, ā) ∩ M for some formula
ϕ(x, ȳ) of L and some ā ⊆ C. In this case we write U ⊆ext M . Let Defext(M) = {U :
U ⊆ext M}. This is a Boolean algebra of sets. For every U ⊆ext M and g ∈ M we
have that gU is also externally definable in M . Hence Defext(M) is a GM -algebra
of sets (meaning it is closed under the left translation by elements of GM).

Let Sext(M) = S(Defext(M)) be the Stone space of ultrafilters in Defext(M).
The sets [U ] = {p ∈ Sext(M) : U ∈ p}, U ⊆ext M , form a basis of the topology in
Sext(M). Also Sext(M) is a point-transitive GM -flow.

Lemma 1.1 Sext(M) and SM(C) are isomorphic as GM -flows.

Proof. For U ∈ βGM and A ⊆ C containing M let

pA
U = {ϕ(x, ā) : ϕ(x, ȳ) ∈ L, ā ⊆ A and ϕ(C, ā) ∩ M ∈ U}.

So pA
U ∈ S(A). Also, pA

U depends only on U ′ = U ∩ Defext(M) and U ′ ∈ Sext(M), so
we may write pA

U ′ in place of pA
U . Clearly, the mapping U ′ 7→ pC

U ′ is an isomorphism
of GM -flows Sext(M) and SM(C). ¤

In [N1] we defined a semi-group operation ∗ on SM(C) by: pC

U ∗ pC

V = pC

U∗V . Then
E(SM(C)) = {fU : U ∈ βGM}, where fU(pC

V) = pC

U ∗ pC

V . The mapping pC

U 7→ fU is an
isomorphism of GM -flows and semi-groups SM(C) and E(SM(C)) (it is a counterpart
of the isomorphism between βG and E(βG) mentioned above).

The semi-group operation on SM(C) induces a semi-group operation on Sext(M),
via the isomorphism from Lemma 1.1. We will give an explicit definition of it.
We will do it via a Boolean interpretation of Sext(M) as the semi-group of GM -
endomorphisms of Defext(M). In the case of βG this was already done by Ellis [E,
page 74], here we adapt his construction to the model-theoretic set-up. We use this
Boolean interpretation to describe better the ideals and groups in Sext(M).

For p ∈ Sext(M) and U ⊆ext M let

dpU = {g ∈ M : U ∈ gp} = {g ∈ M : g−1U ∈ p}.

Lemma 1.2 For U ⊆ext M we have that dpU ⊆ext M .

Proof. Assume U = ϕ(C, ā) ∩ M for some suitable ϕ and ā. Let p′ ∈ SM(C) be the
type corresponding to p via the isomorphism from Lemma 1.1. Let b realize p′ (in
some elementary extension C

′ of C). For g ∈ M we have:

g ∈ dpU ⇐⇒ U ∈ gp ⇐⇒ ϕ(x, ā) ∈ gp′
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⇐⇒ C
′ |= ϕ(gb, ā) ⇐⇒ g ∈ ϕ′(C′, ā, b) ∩ M,

where ϕ′(x, ȳ, z) = ϕ(xz, ȳ). So dpU = ϕ′(C′, ā, b) ∩ M is externally definable in M .
¤

Lemma 1.3 dp : Defext(M) → Defext(M) is a homomorphism of GM -algebras of
sets.

Proof. It is obvious that dp preserves the Boolean operations. We check that it
preserves the left translation by elements of GM . So let g, h ∈ GM and U ⊆ext M .
we have:

g ∈ dp(hU) ⇐⇒ hU ∈ gp ⇐⇒ U ∈ h−1gp ⇐⇒ h−1g ∈ dpU ⇐⇒ g ∈ hdpU.

¤

Now we define the operation ∗ on Sext(M) by: U ∈ p ∗ q ⇐⇒ dqU ∈ p.
Also, for p, q ∈ Sext(M) we define the functions lp, rq : Sext(M) → Sext(M) by
lp(q) = rq(p) = p ∗ q.

Lemma 1.4 Let p, q, r ∈ Sext(M).
(1) dq∗r = dq ◦ dr.
(2) ∗ is associative, i.e. lp∗q = lp ◦ lq.

Proof. Let g ∈ M and U ⊆ext M . We have:

g ∈ dq∗r(U) ⇐⇒ g−1U ∈ q ∗ r ⇐⇒ dr(g
−1U) ∈ q

⇐⇒ g−1drU ∈ q ⇐⇒ g ∈ dq(drU),

so (1) follows. Also,

U ∈ (p ∗ q) ∗ r ⇐⇒ drU ∈ p ∗ q ⇐⇒ dq(drU) ∈ p

⇐⇒ dq∗r(U) ∈ p ⇐⇒ U ∈ p ∗ (q ∗ r),

so (2) follows. ¤

We see that ∗ is a semigroup operation on Sext(M). We can consider g ∈ GM

as a principal ultrafilter in Sext(M). Then for p ∈ Sext(M) we have gp = g ∗ p, i.e.
lg : Sext(M) → Sext(M) is the homeomorphism given by the usual action of GM on
Sext(M). We know that E(Sext(M)) = cl({lg : g ∈ GM}).

Lemma 1.5 (1) For p ∈ Sext(M) we have that lp = limp lg, the limit of the functions
lg over the ultrafilter p in the pointwise convergence topology in the space of functions
Sext(M) → Sext(M).

(2) E(Sext(M)) = {lp : p ∈ Sext(M)}. Also, the mapping p 7→ lp is an isomor-
phism of the semigroups Sext(M) and E(Sext(M)).

(3) The operation ∗ in Sext(M) is continuous in the first coordinate. In fact, for
q ∈ Sext(M) and U ⊆ext M we have that r−1

q ([U ]) = [dqU ].
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Proof. (1) Let q ∈ Sext(M) and U ⊆ext M . We have:

U ∈ lp(q) ⇐⇒ dqU ∈ p ⇐⇒ {g ∈ GM : U ∈ lg(q)} ∈ p.

So U ∈ lp(q) iff for some V ∈ p we have that U ∈ lg(q) for every g ∈ V . This means
that lp = limp lg.

(2) follows from (1) and Lemma 1.4. Also, the mapping p 7→ lp is 1 − 1, since
p = p ∗ e, where e is the identity element of GM .

(3) follows from the definitions. ¤

The isomorphism between Sext(M) and E(Sext(M)) described in Lemma 1.5
agrees with the isomorphism between SM(C) and E(SM(C)) described in [N1], via
the isomorphism from Lemma 1.1.

The next proposition was known to Ellis in the case of βGM [E, page 74]. Let
EG(M) = EndG(Defext(M)) be the semi-group of endomorphisms of the GM -algebra
of sets Defext(M) (the semi-group operation being the composition of functions).
We define the function d : Sext(M) → EG(M) by d(p) = dp.

Proposition 1.6 d is an isomorphism of semi-groups.

Proof. By Lemma 1.4(1), d is a homomorphism. To see that d is 1 − 1, consider
p 6= q ∈ Sext(M). Choose U ∈ p with U c ∈ q. Then e ∈ dpU and e 6∈ dqU , so
dpU 6= dqU .

To see that d is onto, consider any f ∈ EG(M). Let p = {U ⊆ext (M) : e ∈ f(U)}.
Clearly, p ∈ Sext(M). Also, for every U ⊆ M and g ∈ M we have:

g ∈ dpU ⇐⇒ g−1U ∈ p ⇐⇒ e ∈ f(g−1U) ⇐⇒ e ∈ g−1f(U) ⇐⇒ g ∈ f(U),

hence dpU = f(U) and f = dp. ¤

The identification of Sext(M) and E(Sext(M)) with EG(M) via the function d
enables us to understand better the decomposition of the minimal ideals in Sext(M)
into disjoint unions of isomorphic groups. Given a p ∈ Sext(M) we consider

Ker(dp) = {U ⊆ext (M) : dpU = ∅} and Im(dp) = {dpU : U ⊆ext (M)}.

Ker(dp) is a GM -ideal in Defext(M), meaning that it is an ideal in the Boolean
algebra Defext(M), closed under multiplication by elements of GM : if U ∈ Ker(dp)
and h ∈ GM , then hU ∈ Ker(dp). Im(dp) is a GM -subalgebra of Defext(M). These
objects are crucial to our understanding of the groups in EG(M). The identity
elements of these groups are idempotents. The next lemma explains their nature.

Lemma 1.7 Assume u ∈ EG(M). The following are equivalent.
(1) u is an idempotent.
(2) For every U ⊆ext (M) we have that U△u(U) ∈ Ker(u) and Ker(u)∩ Im(u) =

{∅}.
Moreover, if u is an idempotent then u ↾Im(u)

= idIm(u)
and Im(u) is a section of

the family of cosets of Ker(u) in Defext(M), whence Defext(M)/Ker(u) ∼= Im(u).
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The next lemma explains the nature of groups contained in EG(M).

Lemma 1.8 Assume H ⊆ EG(M) is a group.
(1) There is a GM -ideal K ⊆ Defext(M), a common kernel of all f ∈ H.
(2) There is a GM -subalgebra R ⊆ Defext(M), a common image of all f ∈ H.
(3) K ∩ R = {∅}, R is a section of the family of K-cosets in Defext(M) ,

Defext(M)/K ∼= R and for every f ∈ H we have that f ↾R is a GM -automorphism
of R.

(4) The mapping f 7→ f ↾R is an embedding of H into the group Aut(R) ∼=
Aut(Defext(M)/K).

Proof. The starting point is an easy observation that for f, g ∈ EG(M), Ker(g) ⊆
Ker(fg) and Im(f) ⊆ Im(fg).

Let f, g ∈ H be arbitrary. Choose h0, h1 ∈ H with f = h0g = gh1. So Ker(g) ⊆
Ker(f) and Im(g) ⊆ Im(f). Since f, g are arbitrary, we get that Ker(f) = Ker(g)
and Im(f) = Im(g). This proves (1) and (2).

Let K = Ker(f), R = Im(f). (3) follows from (1),(2) and Lemma 1.7, since
K = Ker(e) and R = Im(e) for the identity element e of H. The rest is easy. ¤

The next lemma shows that (left) ideals in Sext(M) correspond (via d) to some
GM -ideals in Defext(M).

Lemma 1.9 Let p, q ∈ Sext(M).
(1) cl(Gp) ⊆ cl(Gq) ⇐⇒ Ker(dp) ⊇ Ker(dq).
(2) cl(Gp) = cl(Gq) ⇐⇒ Ker(dp) = Ker(dq).
(3) p is almost periodic iff Ker(dp) is maximal among the ideals in Defext(M) of

the form Ker(f), f ∈ EG(M).

Proof. Let U ⊆ext M . The following are equivalent:

(a) U ∈ Ker(dp).

(b) gp 6∈ [U ] for every g ∈ GM .

(c) gp ∈ [U c] for every g ∈ GM .

(d) Gp ⊆ [U c].

So the lemma follows. ¤

Corollary 1.10 Let I ⊳m Sext(M). There is a common kernel K od all dp, p ∈ I.
Also, I = {p ∈ Sext(M) : Ker(dp) = K}.

For I ⊳m Sext(M) let KI be the common kernel of dp, p ∈ I and RI = {Im(dp) :
p ∈ I}. Let J(I) = {p ∈ I : p2 = p}. By Theorem 0.1 we know that I is the disjoint
union of the groups uI, u ∈ J(I). Each such group uI is determined by KI (the
common kernel) and R = Im(du) (the common image of dp, p ∈ uI). u is the identity
element of uI.

7



Remark 1.11 For every R1, R2 ∈ RI , if R1 ⊆ R2, then R1 = R2.

Proof. By Lemma 1.8(3), both R1 and R2 are sections of the cosets of KI in
Defext(M). ¤

The next lemma shows that the family RI od subalgebras of Defext(M) does not
depend on the choice of I ⊳m Sext(M). Henceafter we denote RI by R.

Lemma 1.12 Assume I1, I2 ⊳m Sext(M). Then RI1 = RI2.

Proof. Let p1 ∈ I1, p2 ∈ I2. So I2p1 = I1, whence for every q ∈ I2 we have that
r := qp1 ∈ I1, i.e. Im(dq) ⊇ Im(dr) for some r ∈ I2. It follows that

(∗) for every R2 ∈ RI2 there is an R1 ∈ RI1 with R1 ⊆ R2.

Symmetrically,

(∗∗) for every R1 ∈ RI1 there is an R2 ∈ RI2 with R2 ⊆ R1.

Choose any R2 ∈ RI2 and let R1 be any element of RI1 contained in R2 (as in (∗)).
By (∗∗), choose R′

2 ∈ RI2 contained in R1. So R′
2 ⊆ R1 ⊆ R2 hence R′

2 ⊆ R2. By
Remark 1.11 we get R2 = R′

2 = R1 belongs to RI1 . It follows that RI2 ⊆ RI1 and
(symmetrically) RI1 ⊆ RI2 , hence RI1 = RI2 . ¤

By Theorem 0.1, the groups uI, I ⊳m Sext(M), u ∈ J(I), are isomorphic. The
identification of Sext(M) with EG(M) clarifies this fact. Below we give an alternative
proof of it.

First consider a fixed ideal I ⊳m Sext(M). Let K = KI . By Lemma 1.8, every

dp, p ∈ I, induces an automorphism d̃p of Defext(M)/K. Hence we get a function

d̃ : I 7→ Aut(Defext(M)/K), mapping p to d̃p. Let HI = d̃[I].

Proposition 1.13 (1) d̃ is a ∗-homomorphism, i.e. d̃p∗q = d̃p ◦ d̃q for all p, q ∈ I.

(2) HI is a subgroup of Aut(Defext(M)/K) and for every u ∈ J(I), d̃ is a group
isomorphism of uI and HI . In particular, the groups uI, u ∈ J(I), are all isomorphic.

Proof. (1) follows from Lemma 1.4. In particular, HI is closed under composition.

(2) Let p ∈ I. Since d̃ is a ∗-homomorphism, the function lp : I → I induces

(via d̃) the function HI → HI of left translation by d̃p, so that the following diagram
commutes.

I
lp

//

ed
²²

I

ed
²²

HI

edp·
// HI

When p = u ∈ J(I) is an idempotent, d̃u is the identity, hence d̃ commutes with
lu : I → I.

Let u1, u2 ∈ J(I). We have that the function lu2
: u1I → u2I commutes with d̃.

It follows that d̃[u1I] ⊆ d̃[u2I], and by symmetry we get d̃[u1I] = d̃[u2I].
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Since I is the union of the groups uI, u ∈ J(I), we get that HI = d̃[uI] for every

u ∈ J(I) and it is a group. By Lemma 1.9, d̃, restricted to each uI, u ∈ J(I), is a
monomorphism, hence it is an isomorphism of the groups uI and HI . We see also
that lu2

: u1I → u2I is an isomorphism of groups. ¤

Now fix an R ∈ R. For every I ⊳m Sext(M) choose uI ∈ J(I) with R = Im(duI
).

By Lemma 1.8, every dp, p ∈ uII, induces an isomorphism d∗
p of R. Hence we get a

function d∗ :
⋃
{uII : I ⊳m Sext(M)} → Aut(R), mapping p to d∗

p. Let HR be the
range of d∗.

Proposition 1.14 (1) d∗ is a ∗-homomorphism, i.e. d∗
p∗q = d∗

p ◦ d∗
q.

(2) HR is a subgroup of Aut(R) and for every I ⊳m Sext(M), d∗ is a group isomor-
phism of uII and HR. In particular, the groups uII, I ⊳mSext(M), are all isomorphic.
Actually, given I1, I2 ⊳m Sext(M), the function ruI1

is an isomorphism of the groups
uI2I2 and uI1I1.

Proof. Similar as in Proposition 1.14, only we consider right translation instead of
left translation. ¤

2 Transfer between models: weak heirs

In the next section we will compare the Ellis semigroups Sext(M) for various models
M ≺ C, focusing on the groups uI, I ⊳m Sext(M), u ∈ J(I). Since the definition of
Sext(M) involves externally definable subsets of M , we will be considering pairs of
structures M ≺ N , where the algebras Defext(M) and Defext(N) are related in a
prescribed way. We explain this now.

Consider a model M ≺ C. For every U ⊆ext M let PU be a new relation symbol.
Let Lext,M = L ∪ {PU : U ⊆ext M}. Let Mext be the expansion of M to an Lext-
structure, where PU is interpreted as U . For simplicity we sometimes write U in
place of PM

U and PU . Let N0 be an elementary extension of Mext. So N := N ↾L is
an elementary extension of M and we may assume N ≺ C. For every U ⊆ext M let
UN = PU(N0).

Lemma 2.1 For every U ⊆ext M , the set UN is externally definable in N .

Proof. Say, U = ϕ(C, ā) ∩ M for some L-formula ϕ(x, ȳ) and ā ⊆ C. This means
that for every n, in Mext the following sentence holds:

(∀x1, . . . , xn) (∀x′
1, . . . , x

′
n)

(
∧

1≤i≤n

(PU(xi) ∧ ¬PU(x′
i)) → ∃ȳ

∧

1≤i≤n

(ϕ(xi, ȳ) ∧ ¬ϕ(x′
i, ȳ))

)
.

Since Mext ≺ N0, this sentence is true also in N0. This means that the following set
of formulas:

{ϕ(b, ȳ) : b ∈ UN} ∪ {¬ϕ(b, ȳ) : b ∈ N \ UN}

9



is finitely satisfiable in N . Hence this set has a realization ā′ in C. Clearly, UN =
ϕ(C, ā′) ∩ N . ¤

Let Next be the expansion of N to an Lext,N -structure, where for U ⊆ext M we
identify PUN with PU . We express the relationship between Mext and Next described
above, writing M ≺∗ N . So, for arbitrary M ≺ N ≺ C, M ≺∗ N means the new
relational symbols of Lext,M are identified with some new relational symbols of Lext,N

so that Mext ≺ Next ↾Lext,M
. In this situation, for U ⊆ext M , UN denotes PU(Next).

For the rest of this section we fix two models M ≺∗ N ≺ C. We will compare the
semigroups Sext(M) and Sext(N).

The mapping U 7→ UN for U ⊆ext M defines an embedding Defext(M) →
Defext(N). Henceforth we consider Defext(M) as a subalgebra of Defext(N). We
have that Defext(M) is a GM -algebra of sets and Sext(M) is a GM -flow, while
Defext(N) is a GN -algebra and Sext(N) is a GN -flow.

We can consider any p ∈ Sext(M) as a complete quantifier-free Lext,M -type over
Mext. The same applies also to any q ∈ Sext(N). We have a natural restriction func-
tion r : Sext(N) → Sext(M), mapping a qf-type q ∈ Sext(N) to is Lext,M -restriction to
M . Formally, r maps any ultrafilter q ∈ Sext(N) = S(Defext(N)) to q ∩ Defext(M),
an element of Sext(M).

For p ∈ Sext(M) and q ∈ Sext(N) we write p ⊆ q if r(q) = p. In this situation we
say that q extends p and p is a restriction of q. Sometimes we denote r(q) by q ↾M .

Let p ∈ Sext(M). p is definable, meaning that for every U ⊆ext M , the set
dpU = {g ∈ M : g−1U ∈ p} is still externally definable in M (see Lemma 1.2). Let
Def 0

ext(N) be the GN -subalgebra of Defext(N) generated by Defext(M) (regarded
as a subalgebra of Defext(N)) and let S0

ext(N) be S(Def 0
ext(N)).

Lemma 2.2 Let p ∈ Sext(M). The family of sets

Φ = {g−1UN : g ∈ GN , U ⊆ext M and g ∈ (dpU)N}

generates an ultrafilter in Def 0
ext(N).

Proof. First we prove that Φ has the finite intersection property. So let U1, . . . , Un ⊆ext

M, gi ∈ (dpUi)
N for i = 1, . . . , n and we want to show that

(∗)
n⋂

i=1

g−1
i UN

i 6= ∅.

However, for any g′
i ∈ dpUi (i = 1, . . . , n) we have that

⋃n

i=1(g
′
i)
−1Ui belongs to p,

hence is non-empty. So the following sentence is true in Mext:

(∀x1, . . . , xn)

(
∧

1≤i≤n

xi ∈ dpUi → ∃x
∧

1≤i≤n

x ∈ x−1
i Ui

)
.

Since M ≺∗ N , this sentence holds also in Next, hence we have (∗).
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Notice that for every g ∈ N and U ⊆ext M , either g ∈ (dpU)N or g ∈ (dpU
c)N ,

where U c = M \ U (since M ≺∗ N). Also (U c)N = N \ UN . If g ∈ (dpU)N , then
g−1UN ∈ Φ. If g 6∈ (dpU)N , then g ∈ (dpU

c)N , hence N \ g−1UN = g−1(U c)N ∈ Φ.
We see that for every g ∈ N and U ⊆ext M , either g−1UN ∈ Φ or N \g−1UN ∈ Φ.

Since the sets g−1UN , U ⊆ext M, g ∈ N , generate Def 0
ext(N), we see that Φ generates

an ultrafilter in Def 0
ext(N). ¤

Given p ∈ Sext(M) let pN denote the ultrafilter in Def 0
ext(N) generated by

Φ from Lemma 2.2. Even though Mext, Next are structures in different languages
Lext,M ⊆ Lext,N , the notion of heir extension from Sext(M) to Sext(N) still makes
sense. Namely, assume p ∈ Sext(M), q ∈ Sext(N) and p ⊆ q. We regard p, q as
complete qf-types over M,N in languages Lext,M , Lext,N respectively. We say that q
is an heir of p (or just: an heir over M) if for every quantifier-free Lext,M -formula
ϕ(x, ȳ, z̄) and m̄ ⊆ M, n̄ ⊆ N we have that if ϕ(x, m̄, n̄) ∈ q, then ϕ(x, m̄, n̄′) ∈ p
for some n̄′ ⊆ M . The usual argument shows that every p ∈ Sext(M) has an heir in
Sext(N). Also we say that q is a weak heir of p (or just: a weak heir over M) if for
every U ⊆ext M we have that dqU

N = (dpU)N .

Remark 2.3 (1) q is a weak heir of p iff pN ⊆ q.
(2) If q is an heir of p, then q is a weak heir of p.

Proof. (1) is obvious. (2) Suppose q is an heir and not a weak heir of p. Hence for
some U ⊆ext M and g ∈ N we have that g−1UN ∈ q and g 6∈ (dpU)N . Let V = dpU
and ϕ(x, y) = PU(y−1 ·x)∧¬PV (x). So ϕ(x, y) is a quantifier-free Lext,M -formula and
ϕ(x, g) ∈ q. Since q is an heir of p, for some g′ ∈ M we have ϕ(x, g′) ∈ p, meaning
that (g′)−1U ∈ p and g′ 6∈ dpU , a contradiction. ¤

Heirs were used in [N1, Proposition 2.3] to prove that almost periodic types in
S(M) have almost periodic extensions in S(N). In the proof in [N1] we start from an
heir q0 ∈ S(N) of an almost periodic type p ∈ S(M) and then shift q0 a bit to get an
almost periodic type q ∈ S(N) extending p. We can essentially repeat this argument
for types in Sext(M) and Sext(N), even though Mext, Next are structures in different
languages. In [N1] we asked if the shift from q0 to q is needed, i.e. if p has an heir
q0 ∈ S(N) that is already almost periodic (without a need for a further shift). This
may be false, but may be more plausible if we require that an almost periodic type
q0 ∈ S(N) is just a weak heir of p rather than an heir. Later in this paper we shall
see that for example in the case of the circle group S1 the shift is needed even then,
answering negatively our question from [N1]. Anyway, the next lemma shows that
weak heirs are still strong enough to yield almost periodic extensions.

Lemma 2.4 (1) Assume q ∈ Sext(N) is a weak heir of p ∈ Sext(M). Then
r[cl(GNq)] ⊆ cl(GMp). If moreover p is almost periodic, then r[cl(GNq)] = cl(GMp).

(2) Assume p ∈ Sext(M) is almost periodic. Then p extends to an almost periodic
q ∈ Sext(N).

Proof. (1) Suppose r[cl(GNq)] 6⊆ cl(GMp). Then for some non-empty U ⊆ext M we
have that Sext(M)∩ [U ]∩ cl(GMp) = ∅ and for some h ∈ GN , hq ∈ [U ], i.e. h ∈ dqU .

11



But dqU = (dpU)N . Since (dpU)N 6= ∅ and M ≺∗ N , also dpU 6= ∅, i.e. for some
g ∈ GM we have that gp ∈ [U ]. So [U ] and cl(GMp) are not disjoint, a contradiction.

In the case where p is almost periodic, cl(GMp) is a minimal GM -flow. Since
r[cl(GNq)] is a GM -invariant, closed subset of cl(GMp), we get that r[cl(GNq)] =
cl(GMp).

(2) The proof is similar as in [N1], so we will be brief. Let q0 ∈ Sext(N) be a
weak heir of p. By (1), r[cl(GNq0)] = cl(GMp) and similarly also r[Y ] = cl(GMp) for
any minimal flow Y ⊆ cl(GNq). So for any such Y there is a q ∈ Y extending p. ¤

Let Sext,M(N) be the set of types in Sext(N) that are weak heirs over M . For
p ∈ Sext(M) let

Sext,p(N) = Sext(N) ∩ [pN ] = Sext,M(N) ∩ [p],

this is the set of weak heirs of p in Sext(N). So

Sext,M(N) =
⋃

p∈Sext(M)

Sext,p(N).

Lemma 2.5 (1) Let q ∈ Sext(N) and s ∈ Sext,M(N). Then r(q ∗ s) = r(q) ∗ r(s).
(2) Sext,M(N) is closed under ∗, i.e. it is a sub-semigroup of Sext(N).
(3) r : Sext,M(N) → Sext(M) is a ∗-epimorphism.

Proof. (1) Let U ⊆ext M . Since s is a weak heir over M , we have:

U ∈ r(q ∗ s) ⇐⇒ UN ∈ q ∗ s ⇐⇒ dsU
N ∈ q ⇐⇒

(dr(s)U)N ∈ q ⇐⇒ dr(s)U ∈ r(q) ⇐⇒ U ∈ r(q) ∗ r(s).

(2) Let p, q ∈ Sext,M(N) and let U ⊆ext M . By (1), r(p ∗ q) = r(p) ∗ r(q). Since
both p and q are weak heirs,

dp∗q(U
N) = dp(dq(U

N)) = dp(dr(q)U)N = (dr(p)(dr(q)U))N = (dr(p)∗r(q)U)N = (dr(p∗q)U)N ,

hence p ∗ q is a weak heir over M .
(3) follows from (1),(2). ¤

Unfortunately, Sext,M(N) neet not be a GN -subflow of Sext(N). There is even no
reason why it should be closed. However, for a fixed p ∈ Sext(M), the set Sext,p(N) =
Sext(N) ∩ [pN ] is closed in Sext(N). In Lemma 2.4 we proved that every almost
periodic p ∈ Sext(M) extends to an almost periodic p′ ∈ Sext(N). Every such type
p is an element of the group uI, where I = cl(GMp) and u ∈ I is an idempotent
with Im(du) = Im(dp), the identity element of uI. Assume moreover that p = u is an
idempotent. Does u extend to an almost periodic u′ ∈ Sext(N) that is an idempotent,
too ?
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3 Transfer between models: Ellis semigroups

In this section we assume that M ≺∗ N ≺ C. We have two Ellis semigroups:
Sext(M) and Sext(N) and the restriction function r : Sext(N) → Sext(M), a surjective
mapping. Unfortunately, r need not be a ∗-homomorphism. At least, by Lemma 2.5,
r restricted to Sext,M(N) is a ∗-epimorphism.

We are interested in comparing minimal ideals and their partitions into groups
in Sext(M) and Sext(N). Let I ⊳m Sext(M) and let J(I) be the set of idempotents
in I. So uI, u ∈ J(I), are disjoint groups and I is a union of them. By Lemma 2.4
every type in I extends to an almost periodic type in Sext(N). Moreover, there is an
I ′ ⊳m Sext(N) with I = r[I ′].

One would expect that the groups uI ′, u ∈ J(I ′) are related to the groups uI, u ∈
J(I). Unfortunately we were not able to find any relationship between them in
general. Instead, given the group uI (for some u ∈ J(I)), in this section we shall
find inside Sext,M(N) a group mapped homomorphically by r onto uI. Later in this
paper we will show however that assuming additionally existence of generic types in
Sext(N) we have that every uI, u ∈ J(I), is a homomorphic image of a subgroup of
some u′I ′, u′ ∈ J(I ′).

As in Section 2, we consider Defext(M) as a GM -subalgebra of Defext(N) (via
the identification of U ∈ Defext(M) with UN ∈ Defext(N)). Defext(M) generates
an intermediate GN -subalgebra Def 0

ext(N) ⊆ Defext(N). By Lemma 2.2, every
q ∈ Sext(M) determines an ultrafilter qN ∈ S0

ext(N) such that for U ⊆ext M and
g ∈ GN , g−1UN ∈ qN iff g ∈ (dqU)N .

Lemma 3.1 Let q, s ∈ Sext(M) and q′ ∈ Sext,q(N).
(1) dq′ : Defext(N) → Defext(N) preserves Def 0

ext(N) and dq′ ↾Def0
ext(N) does not

depend on the choice of q′ ∈ Sext,q(N). We denote dq′ ↾Def0
ext(N) by dqN

.

(2) For U ⊆ext M , dqN
UN = (dqU)N . Also, for V ∈ Def 0

ext(N),
dqN

V = {g ∈ N : g−1V ∈ qN}.
(3) dqN

↾Defext(M)= dq.
(4) Ker(dqN

) ∩ Defext(M) = Ker(dq).
(5) Im(dqN

) ∩ Defext(M) = Im(dq).
(6) Im(dqN

) is the GN -subalgebra of Def 0
ext(N) generated by Im(dq).

(7) d(q∗s)N
= dqN

◦ dsN
.

Proof. Let U ⊆ext (M). Then dq′U
N = (dqU)N belongs to Defext(M) (regarded as a

subalgebra of Defext(N)) and

dq′U
N = {g ∈ N : g−1UN ∈ q′} = {g ∈ N : g−1UN ∈ qN}.

Similarly, for h ∈ N ,

dq′(hUN) = h(dqU)N = {g ∈ N : g−1hUN ∈ qN}.

The sets hUN , h ∈ N,U ⊆ext N , generate Def 0
ext(N). So dq′ ↾Def0

ext(N) is determined
by qN , which justifies denoting it by dqN

.
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Let V ∈ Def 0
ext(N) be arbitrary. Then V is a Boolean combination of some

h1U
N
1 , . . . , hkU

N
k , where hi ∈ N,Ui ⊆ext M . Write V as f(h1U

N
1 , . . . , hkU

N
k ), where

f(x1, . . . , xk) is a Boolean term. Since dq′ is a GN -algebra homomorphism, we get
that dq′V =

dq′f(h1U
N
1 , . . . , hkU

N
k ) = f(dq′h1U

N
1 , . . . , dq′hkU

N
k ) = f(h1(dqU1)

N , . . . , hk(dqUk)
N),

hence dqV belongs to Def 0
ext(N) and equals the set {g ∈ N : g−1V ∈ qN}. So we

have proved (1) and (2).
(3) and (4) are obvious.
(5) ⊇ follows from (3).
⊆: Assume V ⊆ext M and V N ∈ Im(dqN

), i.e. V N = dqN
W for some W ∈

Def 0
ext(N). Write W as f(h1U

N
1 , . . . , hkU

N
k ) for some Boolean term f(x1, . . . , xk), hi ∈

N and Ui ⊆ext M . We have dqN
W = f(h1(dqU1)

N , . . . , hk(dqUk)
N). Let Vi =

dqUi, i = 1, . . . , k. So dqN
W = V N means

(∗) V N = f(h1V
N
1 , . . . , hkV

N
k ).

(∗) is expressible by an Lext,M -sentence ϕ(h1, . . . , hk) with parameters h1, . . . , hk. So

Next |= (∃h1, . . . , hk)ϕ(h1, . . . , hk).

Since M ≺∗ N , this sentence holds also in Mext, meaning that for some g1, . . . , gk ∈ M
we have that V = f(g1V1, . . . , gkVk). Let W ′ = f(g1U1, . . . , gkUk). We have that
W ′ ⊆ext M and

dqW
′ = f(g1dqU1, . . . , gkdqUk) = f(g1V1, . . . , gkVk) = V.

Hence V ∈ Im(dq).
(6),(7) Easy. ¤

Now we list some properties of types preserved in the transition from q to qN .
We need the following definition.

Assume q, s ∈ Sext(M). We say that s is an inverse of q if Im(ds) = Im(dq),
Ker(ds) = Ker(dq) and the functions ds, dq restricted to Im(ds) are inverse to each
other. If an inverse of q exists, it is unique. Also, in this case dq : Im(dq) → Im(dq)
is a bijection, hence Im(dq) is a section of the cosets of Ker(dq) in Defext(M).

Lemma 3.2 Assume q ∈ Sext(M).
(1) If dq is 1 − 1 on Im(dq), then dqN

is 1 − 1 on Im(dqN
).

(2) If q is almost periodic, then q has an inverse in Sext(M).
(3) If u ∈ Sext(M) is an idempotent, then duN

◦ duN
= duN

.
(4) If s is the inverse of q, then sN is the inverse of qN . In particular, in this

case dqN
: Im(dqN

) → Im(dqN
) is a bijection and Im(dqN

) is a section of the cosets of
Ker(dqN

) in Def 0
ext(N).
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Proof. (1) It is enough to prove that Ker(dqN
) ∩ Im(dqN

) = {∅}, that is: for V ∈
Def 0

ext(N), dqN
◦ dqN

(V ) = ∅ implies dqN
(V ) = ∅.

Write V as f(h1U
N
1 , . . . , hkU

N
k ) for some Boolean term f(x1, . . . , xk), hi ∈ N and

Ui ⊆ext M . Let Vi = dqUi and Wi = dqVi. Then

dqN
V = f(h1V

N
1 , . . . , hkV

N
k ) and dqN

◦ dqN
(V ) = f(h1W

N
1 , . . . , hkW

N
k ).

Since dq ◦ dq(f(g1U1, . . . , gkUk)) = ∅ implies dq(f(g1U1, . . . , gkUk)) = ∅, we have that
the sentence:

(∀g1, . . . , gk)(f(g1W1, . . . , gkWk) = ∅ → f(g1V1, . . . , gkVk) = ∅)

holds in Mext. Since M ≺∗ N , this sentence holds also in Next, and we are done.
(2) Since q is almost periodic, it belongs to a group H ⊆ Sext(M). Let s ∈ H be

the group-inverse of q. By Lemma 1.8, s is the inverse of q in the sense of Sext(M).
(3) By assumptions, du is identity on Im(du). It is enough to show that duN

is
identity on Im(duN

). This is proved similarly as (1), using the fact that M ≺∗ N .
(4) Assume s is the inverse of q. We have that dq∗s and ds∗q are identity on

Im(ds) = Im(dq). As in (3) it implies that d(q∗s)N
and d(s∗q)N

are identity on Im(dsN
)

and on Im(dqN
). By Lemma 3.1(7), d(q∗s)N

= dqN
◦ dsN

and d(s∗q)N
= dsN

◦ dqN
. This

implies easily that Im(dqN
) = Im(dsN

) and dqN
, dsN

restricted to Im(dqN
) are inverse

to each other. ¤

Now let I ⊳m Sext(M) and fix u ∈ J(I). So uI is a group. By Lemma 1.8 there are
K,R ⊆ Defext(M), a common kernel and image of dq, q ∈ uI. By Lemma 2.5, the set
Sext,u(N) is a closed sub-semigroup of Sext(N). By Theorem 0.1, any minimal ideal
I ′ ⊳m Sext,u(N) is the disjoint union of isomorphic groups u′I ′, u′ ∈ J(I ′) (where J(I ′)
is the set of idempotents in I ′). Any group of the form u′I ′, u′ ∈ J(I ′), is determined
by the common kernel and image of dq′ , q

′ ∈ u′I ′. The next lemma explains what
the minimal ideals I ′ ⊳m Sext,u(N) are.

Lemma 3.3 (1) For any ideal I+ ⊳ Sext(N), the set I+ ∩ Sext,u(N) is an ideal in
Sext,u(N), provided it is non-empty.

(2) Let I ′ ⊳m Sext,u(N), q′ ∈ I ′ and I+ = cl(GNq′). Then I+ ⊳ Sext(N), I+ does
not depend on the choice of q′ ∈ I ′ and I+ ∩ Sext,u(N) = I ′.

Proof. (1) is obvious.
(2) Since the semigroup operation is continuous in the first coordinate, it is easy

to see that I+ = Sext(N) ∗ q′. Hence obviously I ′ ⊆ I+ ∩ Sext,u(N). We will prove
the reverse inclusion.

First consider the case where q′ is an idempotent. Assume s′ ∈ Sext(N) and
s′ ∗ q′ ∈ I+ ∩ Sext,u(N). Thus

s′ ∗ q′ = s′ ∗ (q′ ∗ q′) = (s′ ∗ q′) ∗ q′ ∈ I ′,

so we are done.
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Now let q′′ ∈ I ′ be arbitrary and let I++ = cl(GNq′′) = Sext(N)q′′. It is enough
to prove that I++ = I+. But I++ ⊆ I+ (since q′′ ∈ I+) and I ′ ⊆ I++ ∩ Sext,u(N)
(since I ′ ⊳m Sext,u(N)), hence q′ ∈ I++. It follows that I+ ⊆ I++ and I+ = I++. ¤

Fix I ′ ⊳m Sext,u(N). By Lemma 3.3(2), there is a common kernel K ′ ⊆ Defext(N)
of all dq′ , q

′ ∈ I ′. Also, let R′ = {Im(dq′) : q′ ∈ I ′}. By Theorem 0.1 and a variant
of Lemma 1.8, I ′ splits into a disjoint union of groups corresponding to elements of
R′. Hence every R′ ∈ R′ is a section of the family of cosets of K ′ in Defext(N).

Lemma 3.4 (1) K ′ ∩ Defext(M) = K and K ′ ∩ Def 0
ext(N) = Ker(duN

).
(2) Let R′ ∈ R′. Then R′ ∩ Defext(M) = R and R′ ∩ Def 0

ext(N) = Im(duN
).

Proof. (1) is straightforward.
(2) We know that I ′ is the disjoint union of the groups u′I ′, u′ ∈ J(I ′). Given

u′ ∈ J(I ′), the images Im(dq′), q
′ ∈ u′I ′, are all equal. Hence in our situation there

is an idempotent u′ ∈ J(I ′) with R′ = Im(du′). Since u′ is an idempotent, we have
that R′ = {U ⊆ext N : du′U = U}. Since du = du′ ↾Defext(M) and duN

= du′ ↾Def0
ext(N),

the conclusion follows. ¤

By Lemma 3.3 we choose an ideal I+ ⊳ Defext(N) with I+ ∩ Sext,u(N) = I ′ and
I+ = cl(GNq′) for every q′ ∈ I ′. For every q ∈ I let I ′

q = Sext,q(N) ∩ I+. We shall
use the following variant of Remark 1.10.

Remark 3.5 For every R1, R2 ∈ R′, R1 ⊆ R2 implies R1 = R2.

Lemma 3.6 Let q ∈ I.
(1) I ′

q 6= ∅. If q is an idempotent, then I ′
q ⊳m Sext,q(N).

(2) For every q′ ∈ I ′
q we have that I+ = cl(GNq′), Ker(dq′) = K ′ and K ′ ∩

Im(dq′) = {∅}.
(3) Assume q ∈ uI. Then the set R′

q := {Im(dq′) : q′ ∈ I ′
q} equals R′.

Proof. (1) First consider the case where q is an idempotent. Then q ∗ u = q. Let
q′ ∈ Sext,q(N) and u′ ∈ I ′. Then q′ ∗ u′ ∈ Sext,M(N). Also, by Lemma 3.2(5),
r(q′ ∗u′) = r(q′)∗r(u′) = q ∗u = q, so q′ ∗u′ ∈ Sext,M(N)∩ [q] = Sext,q(N). Moreover,
q′ ∗ u′ ∈ I+, so q′ ∗ u′ ∈ I ′

q, hence I ′
q is non-empty.

Since q is an idempotent, by Lemma 3.3(1), I ′
q is an ideal in Sext,q(N). Suppose for

a contradiction that I ′
q is not minimal. Choose q′′ ∈ I ′

q that generates a minimal ideal
I ′′
q ⊳Sext,q(N), properly contained in I ′

q. Let I++ be the ideal in Sext(N) generated by
I ′′
q . Be Lemma 3.3, I++ ∩ Sext,q(N) = I ′′

q and of course I++ ⊆ I+. Also, by what we
have already proved for q, switching the roles of q and u we get that I++ ∩Sext,u(N)
is a non-empty ideal in Sext,u(N) contained in I ′. Since I ′ is minimal we get that
I++ ∩ Sext,u(N) = I ′. Since I ′ generates I+, we have that I+ = I++ and I ′′

q = I ′
q, a

contradiction.
Now consider the case, where q ∈ I is arbitrary. Choose an idempotent q0 ∈ J(I)

with q ∈ q0I. We have that I ′
q0

⊳m Sext,q0
(N) and I+ is the ideal in Sext(N) generated

by I ′
q0

. Since q ∗ q0 = q, we get that I ′
q 6= ∅ similarly as in the case where q is an

idempotent.
(2) First we prove that
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(∗) for every q′ ∈ I ′
q we have that I+ = cl(GNq′).

By (1) and Lemma 3.4 this is true when q is an idempotent. Now assume q ∈ I is
arbitrary. Let q′ ∈ I ′

q and I++ = cl(GNq′). Clearly I++ ⊆ I+. Choose an idempotent
q0 ∈ J(I) with q = q0I. Choose s ∈ q0I such that s ∗ q = q0 (remember that q0I is a
group with the identity element q0). Let s′ ∈ Sext,s(N). We have that

s′ ∗ q′ ∈ I++ ∩ Sext,q0
(N) ⊆ I+ ∩ Sext,q0

(N) = I ′
q0

.

Since I ′
q0

⊳m Sext,q0
(N) and I ′

q0
generates I+, we have that I++ ∩Sext,q0

(N) = I ′
q0

and
I++ = I+ and (∗) is proved.

(∗) implies immediately that Ker(dq′) = K ′ for every q′ ∈ I ′
q. To prove the last

clause of (2), suppose for a contradiction that for some q′ ∈ I ′
q we have K ′∩Im(dq′) 6=

{∅}. Then K ′ = Ker(dq′) Ã Ker(dq′∗q′). But q ∗ q ∈ I and q′ ∗ q′ ∈ I ′
q∗q, hence

Ker(dq′∗q′) = K ′, a contradiction.
(3) Choose s ∈ uI with q ∗ s = u. Let q′ ∈ Sext,q(N), s′ ∈ Sext,s(N). Then

q′ ∗ s′ ∈ I ′ and Im(dq′∗s′) ∈ R′. Also, Im(dq′∗s′) ⊆ Im(dq′). However, by Lemma
1.8 Im(dq′∗s′) meets every coset of K ′ in Defext(N) just once and by (2), Im(dq′)
meets every such coset at most once. So Im(dq′∗s′) = Im(dq′), hence Im(dq′) ∈ R′

and R′
q ⊆ R′.

For the reverse inclusion consider any u′ ∈ I ′. Since u ∗ q = q, by Lemma 2.5 we
have u′∗q′ ∈ I ′

q and Im(du′∗q′) ⊆ Im(du′). Since R′
q ⊆ R′ we have that Im(du′∗q′) ∈ R′

and also Im(du′) ∈ R′. By Remark 3.5 we have that Im(du′∗q′) = Im(du′), hence
R′ ⊆ R′

q, and we are done. ¤

Fix an idempotent u′ ∈ I ′ and let R′ = Im(du′). Let

H = {q′ ∈
⋃

q∈uI

I ′
q : Im(dq′) = R′}.

The next proposition is the main result of this section.

Proposition 3.7 H is a group and r : H → uI is an epimorphism of groups, with
the kernel u′I ′.

Proof. By Lemmas 2.5 and 3.6, H is closed under ∗ and r : H → uI is a ∗-
epimorphism. We need to check that H is a group.

Clearly u′ ∈ H is the identity element in H. Let q′ ∈ H. We want to find a group
inverse of q′ in H. q′ ∈ I ′

q, where q = r(q′). We have that q ∈ uI and uI is a group,
so there is an s ∈ uI inverse to q. Let s′ ∈ I ′

s. Then s′ ∗ q′ and q′ ∗ s′ belong to u′I ′,
that is a group. So there is an u′′ ∈ u′I ′ such that q′ ∗ s′ ∗ u′′ = u′.

Let s′′ = s′ ∗ u′′. So s′′ ∈ I ′
s and q′ ∗ s′′ = u′. Similarly we find an s′′′ ∈ I ′

s with
s′′′ ∗ q′ = u′. It follows that dq′ , restricted to R′, is an automorphism of R′ and both
ds′′ and ds′′′ are inverse to dq′ on R′. Hence s′′ = s′′′ is a two-sided group inverse to
q′ in H. ¤

One can show that up to isomorphism the group H we arrived at does not depend
on the choice of I ⊳m Sext(M), u ∈ J(I) and u′ ∈ J(I ′). The proof is similar to the
one we gave for isomorphism of the groups uI, I ⊳m Sext(M), u ∈ J(I), in Section 1.
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Besides the group H, whose homomorphic image under r is uI, inside Sext(N)
there is also a subgroup H′ downright isomorphic to uI. Namely, by [N1, Remark
4.6], there is a ∗-monomorphism j : Sext(M) → Sext(N), mapping any p ∈ Sext(M)
to the only q ∈ Sext(N) such that U ∩ M ∈ p for every U ∈ q. Then H′ = j[uI]
is isomorphic to uI. However, we are interested in comparing the group uI to the
groups u′I ′, I ′ ⊳m Sext(N), u′ ∈ J(I ′). We will do it in the next section, under an
additional assumption on Sext(N), using the group H as an intermediate tool. H′

would not serve here well, since, unlike in the case of H, we do not have a good
description of the common kernel and image of dp, p ∈ H′.

4 Groups with external generics

In this section we continue analyzing the situation considered in Section 3. So let
M ≺∗ N . Let HM be any of the groups uI, I ⊳m Sext(M), u ∈ J(I), and HN

any of the groups u′I ′, I ′ ⊳m Sext(N), u′ ∈ J(I ′). We think these groups should be
strongly related algebraically. We were able to prove this only under some additional
assumptions, the weakest one being the existence of generic types in Sext(N). The
main result of this section is the following theorem.

Theorem 4.1 Assume there are generic types in Sext(N). Then HM is a homomor-
phic image of a subgroup of HN .

Before the proof we need some preparatory analysis.

Lemma 4.2 The following conditions are equivalent.
(1) There is a generic type in Sext(N).
(2) There is a single minimal ideal I ⊳m Sext(N).
(3) If I ⊳m Sext(N), U ⊆ext N and [U ] ∩ I = ∅, then [dqU ] ∩ I = ∅ for every

q ∈ Sext(N).
(4) Ker(dp) is closed under dq for every almost periodic p ∈ Sext(N) and every

q ∈ Sext(N).

Proof. (1) ⇔ (2) By [N1], for every point-transitive G-flow X, in X there is a generic
point iff all weak generic points in X are generic iff in X there is a single minimal
subflow. But minimal subflows in Sext(N) are just the minimal ideals I ⊳m Sext(N).

(3) ⇔ (4) As in the proof of Lemma 1.9, for every almost periodic p ∈ Sext(N), the
set cl(GNp) equals

⋂
{[U ]∩Sext(N) : U c ∈ Ker(dp)}, it is a minimal ideal in Sext(N),

and every I ⊳m Sext(N) is of this form. The rest is just revealing of definitions.
(2) ⇒ (4) Let I ⊳m Sext(N). We have that I = cl(GNp) for any p ∈ I. Let

U ∈ Ker(dp), meaning that [U ] ∩ I = ∅ and I ⊆ [U c]. We want to show that
I ⊆ [dqU

c].
We have that I ∗ q is a minimal ideal, so by our assumptions we get I ∗ q = I,

i.e. rq[I] = I, where rq is the right multiplication by q. This implies rq[I] ⊆ [U c], i.e.
I ⊆ r−1

q [U c]. But r−1
q [U c] = [dqU

c] (see Lemma 1.5(3)), so we are done.
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(4) ⇒ (2) Suppose I0, I1 are two distinct minimal ideals in Sext(N). Let q1 ∈ I1.
So I1 = I0 ∗ q1. Choose U ⊆ext N with I1 ⊆ [U ] and [U ] ∩ I0 = ∅.

Let p ∈ I0. So U ∈ Ker(dp). By our assumptions also dqU ∈ Ker(dp), so
U ∈ Ker(dp∗q). But p ∗ q ∈ I1, so [U ] ∩ I1 = ∅, a contradiction. ¤

Next we show that the existence of a generic type in Sext(N) yields some homo-
morphisms between the groups in Sext(N) and HN . From now on, until the end of
the proof of Theorem 4.1, we assume there is a generic type in Sext(N).

Let I0 ⊳m Sext(N) be the only minimal ideal in Sext(N) and let K0 be the com-
mon kernel of dq, q ∈ I0. As explained in Section 1, for every q ∈ I0, dq in-

duces an automorphism d̃q : Defext(N)/K0 → Defext(N)/K0, and the function

d̃ : I0 → Aut(Defext(N)) mapping q to d̃q is a ∗-homomorphism. Let HN be d̃[I0].

By Proposition 1.13, HN is a group and d̃ is an isomorphism between any of the
groups uI0, u ∈ J(I0) and HN .

Since there is a generic type in Sext(N), by Lemma 4.2(4) we have that dq

preserves K0 for every q ∈ Sext(N). In particular, dq induces a function d̃q :

Defext(N)/K0 → Defext(N)/K0 and we can extend the function d̃ defined above

to all of Sext(N). Now d̃ : Sext(N) → End(Defext(N)/K0) mapping q to d̃q is still a
∗-homomorphism. We have the following lemma.

Lemma 4.3 d̃ maps Sext(N) onto HN .

Proof. Assume q ∈ Sext(N) and let K = Ker(dq). Let I∗ = cl(GNq) = Sext(N)∗q. I∗

is the ideal and GN -flow generated by q. By Lemma 4.2, I0 ⊆ I∗, hence by Lemma
1.9, K ⊆ K0. It follows that d̃q is an endomorphism of Defext(N)/K0. We must

show yet that d̃q belongs to HN .

Let s ∈ J(I0). Then q ∗ s ∈ I0 hence d̃q∗s ∈ HN . But d̃q∗s = d̃q ◦ d̃s and d̃s is the

identity, so d̃q = d̃q∗s ∈ HN . ¤

In particular, for every group H contained in Sext(N) we have that d̃ maps H
onto a subgroup of HN . Let us return to the notation from Section 3. That is, we fix
I ⊳mSext(M) and u ∈ J(I) and then an I ′⊳mSext,u(N). Let I+ be the ideal in Sext(N)
generated by I ′ and let K ′ be the common kernel of dq′ , q

′ ∈ I ′. Let K ⊆ Defext(M)
be the common kernel of dq, q ∈ I. Recall that we have Defext(M) ⊆ Defext(N) via
the function U 7→ UN .

Lemma 4.4 K0 ∩ Defext(M) = K.

Proof. Since there is a generic type in Sext(N), we have that K ′ ⊆ K0, so by Lemma
3.4(1), K = K ′ ∩ Defext(M) ⊆ K0 ∩ Defext(M). Since I ⊳m Sext(M), we have that
K is a maximal GM -ideal K in Defext(M) such that

(∗)
⋂

U∈K

[U c] ∩ Sext(M) is nonempty.

Since K = K0 ∩ Defext(M) also satisfies (∗) (as M ≺∗ N), we have that K =
K0 ∩ Defext(M). ¤
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Proof of Theorem 4.1. We have that HM ∼= uI. Let u′, R′,H be as in Proposition
3.6. The restriction function r is a group epimorphism H → uI. By Lemma 4.3 we
have a homomorphism d̃ : H → HN . Let H′ = d̃[H], this is a subgroup of HN . We
will show that there is a group epimorphism f : H′ → uI such that the following
diagram commutes:

H

r
ÃÃA

AA
AA

AA
A

ed
// H′

f
}}||

||
||

||

uI

We have that Ker(r) = H ∩ Sext,u(N), so the existence of f is equivalent to

(∗∗) Ker(d̃) ⊆ Sext,u(N).

Now we prove (∗∗). Let q′ ∈ H. So q′ ∈ Sext,q(N) for some q ∈ uI. Assume

q′ ∈ Ker(d̃), that is d̃q′ is the identity. We want to show that q = u, i.e. dq induces
the identity on Defext(M)/K. By Lemma 3.1(3) we have that dq = dq′ ↾Defext(M).

Let U ⊆ext M . Since d̃q′(U/K0) = U/K0, we have that U = dq′U(mod K0). Since
dq′ ↾Defext(M)= dq, we get dq′U ∈ Defext(M). So we have

U△dq′U ∈ K0 ∩ Defext(M).

By Lemma 4.4, U = dqU(mod K), hence dq induces the identity on Defext(M)/K
and q = u. ¤

Theorem 4.1 has the assumption that there are generic types in Sext(N). Now we
shall analyze this assumption. We want to consider this assumption as a property of
Th(N) rather than N itself. So we say that G has external generic types if for every
M |= T here are generic types in the GM -flow Sext(M). The next lemma clarifies
this notion and shows it has a local character, i.e. in order to verify it we need to
check only boundedly many models of T .

Lemma 4.5 Let κ be an infinite cardinal. The following conditions are equivalent.
(1) G has external generic types.
(2)κ For every model M |= T of power κ there are generic types in the GM -flow

Sext(M).

Proof. (1) ⇒ (2)κ is obvious.
(2)κ ⇒ (1) Suppose for some M |= T there are no generic types in Sext(M). So

choose U ⊆ext M such that both U and M \ U are not generic.
First consider the case where M has power ≥ κ. Choose an elementary submodel

(M ′, UM ′

) ≺ (M,U) of power κ. Clearly, UM ′

= U ∩ M and M ′ \ UM ′

are both
externally definable in M ′ and not generic. So there are no generic types in Sext(M

′).
Next consider the case where M has power < κ. Choose an M ′ of power κ with

M ≺∗ M ′. Then again UM ′

and M ′ \ UM ′

are externally definable in M ′ and not
generic. ¤
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In the last part of the paper we shall see that every definably compact group G
definable in an o-minimal expansion of the field of reals has external generic types.
This will follow rather directly from compact domination of G.

So from now on assume that M is any model of T = Th(R∗), where R∗ is an
o-minimal expansion of the ordered field of reals, and G is a group definable in T ,
that is moreover definably compact [HPP]. Hrushovski and Pillay proved in [HP]
that G is compactly dominated, meaning that for every set U ⊆ G definable in C,
the set of G00-cosets meeting both U and G \ U has Haar measure zero. Also, in
[HPP] it is proved that G has finitely satisfiable generic types (fsg), meaning that
there are global generic types in G and every such type is finitely satisfiable in every
small model M . fsg implies also that the left generic sets coincide in G with the
right generic sets. In fact, fsg follows from compact domination.

Since now the universe of G is not necessarily equal to the universe of the model
of T , we modify our notation. Given M |= T and a group GM 0-definable in M , we
consider the GM -flow SG(M) of all complete G-types in S(M). Then we consider
Defext,G(M), an algebra of externally definable subsets of GM and its Stone space of
ultrafilters Sext,G(M), another GM -flow, corresponding to Sext(M) in the old set-up.

In fact, we will show that compact domination implies also that the groups of
the form uI, I ⊳m Sext,G(M), u ∈ J(I), are isomorphic to G/G00. Still, just for the
record we have the following proposition.

Proposition 4.6 Assume G is a definably compact group, definable in the theory of
an o-minimal expansion of the reals. Then G has external generic types.

Proof. Assume U ⊆ C is a definable generic subset of G. It is enough to show that
U ∩ M is a generic subset of GM . Let

XU = {x/G00 : x/G00 meets U} and XUc = {x/G00 : x/G00 meets U c}.

Both sets XU and XUc are closed in G/G00 (in the logic topology) and by compact
domination, the set XU ∩XUc has Haar measure zero. Also, the set XU is generic in
G/G00. So the set XU \ XUc has non-empty interior in G/G00.

In particular there is an M -definable set U ′ ⊆ U such that XU ′ \ XU ′c has non-
empty interior, too. This implies that U ′ is a generic subset of G, hence also U ∩M
is a generic subset of GM . ¤

In order to prove that in our case the groups uI are isomorphic to G/G00, we
must recall some of the results and set-up from [N1].

Given p ∈ Sext,G(M) and A ⊇ M we define pA ∈ SG(A) as the set of formulas
ϕ(x) over A such that ϕ(C)∩M ∈ p. Let iM,A : Sext,G(M) → SG(A) be the function
mapping p to pA. Clearly, iM,A is continuous and if every n-type over M is realized
in A, then iM,A is 1-1, hence in this case iM,A is a continuous embedding.

Let SM,G(A) be the range of iM,A. It consists of those complete G-types over A
that are finitely satisfiable in M .

Now assume A = M ′ is an ‖M‖+-saturated model containing M . So iM,M ′ :
Sext,G(M) → SM,G(M ′) is a homeomorphism. In SM,G(M ′) we can recover the semi-
group operation ∗ from Sext,G(M) as follows. Let p, q ∈ Sext,G(M). Let b realize qM ′
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and a realize pM ′b. Then a · b realizes (p ∗ q)M ′

. So if we put pM ′

∗ qM ′

= tp(a · b/M ′)
then we get a semigroup operation ∗ in SG,M(M ′) such that iM,M ′ is a ∗-isomorphism.

In the next lemma we collect some facts linking the generic types and G/G00 in
our situation.

Lemma 4.7 Assume M ≺ M ′, M ′ is ‖M‖+-saturated and p ∈ Sext,G(M) is generic.
(1) pM ′

(C) is contained in a single G00-coset.
(2) p is the only generic extension of pM in Sext,G(M).
(3) StabL(p) = StabL(pM) = G00 ∩ M .
(4) StabR(p) = StabR(pM) = G00 ∩ M .

Proof. (1) is implicit in the proof of [N1, Proposition 4.4]. (2) follows from compact
domination. (3) appears in [HP] and also in [N1] (since fsg implies that the number
of generic types is bounded). (4) follows since fsg implies that left generic definable
subsets of G coincide with right generic definable subsets of G [HPP]. ¤

Proposition 4.8 Assume G is a definably compact group definable in the theory of
an o-minimal expansion of the reals. Assume M ′ is an ‖M‖+-saturated elementary
extension of M , I⊳mSext,G(M) and u ∈ J(I). The function π : uI → G/G00 mapping
p to the G00-coset containing pM ′

(C) is a group isomorphism.

Proof. By the proof of [N1, Proposition 4.4], the function π is a group epimorphism.
To see that π is 1-1, consider any p ∈ uI with pM ′

(C) ⊆ G00. It is enough to prove
that p = u.

We have u ∗ p = p (since u is the identity element of the group uI). On the other
hand choose an ‖M ′‖+-saturated model M ′′ ≻ M ′. Let b ∈ M ′′ realize pM ′

and let a
realize uM ′′

. Then a · b realizes (u ∗ p)M ′

.
By compact domination, uM ′′

is generic, so by Lemma 4.7(4), b ∈ G00 ∩ M ′′

implies b ∈ StabR(uM ′′

) and ab |= uM ′′

b = uM ′′

. It follows that (u ∗ p)M ′

= uM ′

,
hence u ∗ p = u and p = u. ¤

Lemma 4.7 and Proposition 4.8 show that in the case of a definably compact
group G definable in an o-minimal expansion of the reals we can naturally interpret
the groups uI, I ⊳m Sext,G(M), u ∈ J(I), inside SG(M). Let Gen(M) be the set of
generic types in SG(M). By Lemma 4.7(2), any p′, q′ ∈ Gen(M) determine unique
generic p, q ∈ Sext,G(M) with p′ = pM , q′ = qM . So we can define p′ ∗ q′ as (p ∗ q)M .
Actually, we can define p ∗ q more explicitly as the type tp(a · b/M), where b realizes
q′ and a realizes pMb.

The function p 7→ pM is a ∗-isomorphism between the semigroup of generic points
in Sext,G(M) and Gen(M). So we have that Gen(M) splits into a disjoint union of
groups isomorphic to G/G00. The neutral elements of these groups are precisely the
generic types from Gen(M) in G00. So the number of these groups equals the number
of generic types in SG(M) inside G00. Unlike in the stable case, there may be more
than one of them. For example, when our group G is the circle S1, Gen(M) is the
union of two such groups and when G is the torus S1 ×S1, there are infinitely many
of them.
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In fact, Propositions 4.6 and 4.8 and Lemma 4.7 remain true for a definable group
G satisfying the following property of topological domination, weaker than compact
domination. We say that a definable group G is topologically dominated if G00 exists
and for every definable set U ⊆ G, the set of G00-cosets meeting both U and U c is
nowhere dense in G/G00.

Now assume M ≺∗ N are models of our o-minimal theory T and G is a definably
compact group definable in T . In Theorem 4.1 we have shown a subgroup H′ of HN

and an epimorphism f : H′ → uI. One can see that in our case H′ = HN and the
function f is an isomorphism commuting with the functions π from Proposition 4.8.

Finally we shall consider in greater detail the case where G is the circle group
S1, written multiplicatively. Assume M is an o-minimal expansion of the field of
reals R. Since R is Dedekind complete, we have that Defext,G(M) = DefG(M) and
consequently Sext,G(M) = SG(M).

Let us fix the anti-clockwise orientation of G = S1. For b 6= c ∈ S1 let (b, c)
denote the open arc in S1, from b to c, according to our orientation. Similarly we
define the arcs [b, c), [b, c] and (b, c].

For a ∈ GM let p+
a be the non-algebraic type in SG(M) generated by the arcs

(a, b), while p−a — the non-algebraic type generated by (b, a), b ∈ GM \ {a}. So the
types p+

a , p−a , a ∈ GM , are the generic types in SG(M), forming the only minimal
ideal in I ⊳m SG(M).

Let a ∈ GM . If b 6= c ∈ GM and U is any arc in GM from b to c, then

dp+
a
(U) = (ac−1, ab−1] and dp−a

(U) = [ac−1, ab−1).

We see that Im(dp+
a
) is the subalgebra of DefG(M) generated by the arcs (b, c], while

Im(dp−a
) is generated by the arcs [b, c), b 6= c ∈ GM . All dp+

a
, dp−a

have a common
kernel consisting of non-generic sets in DefG(M).

The idempotents in I are the types p+
1 , p−1 and I splits into two groups p+

1 I =
{p+

a : a ∈ GM} and p−1 I = {p−a : a ∈ GM}.
Now let us assume that M ≺∗ N for some sufficiently saturated model N . Let

q ∈ Sext,G(N) be a weak heir of p+
a . Let U = (b, c) for some b 6= c ∈ GM . So

dqU
N = (dp+

a
U)N = (ac−1, ab−1]N .

Let d ∈ (ac−1, ab−1]N be infinitesimally close to ac−1 and e = ab−1. So d−1(b, c)N ∩
e−1(b, c)N belongs to q and is not generic.

We see that in our case no weak heir of a generic type p±a ∈ SG(M) in Sext,G(N)
is generic, so the shift in the proof of Lemma 2.4 is needed.

One can see that in the case of a definably compact group G definable in the
theory of an o-minimal expansion of the reals, when M ≺ N and p ∈ Sext,G(M) is
generic, then its co-heir extension pN ∈ SG(N) is generic, too. However, it is not
true for arbitrary definable group, even in an o-minimal theory.

For example, let G be the additive group of reals, considered as a definable group
in the ordered field of reals. Let M be the field of reals. In SG(M) there are just
two almost periodic types: p−∞ and p+∞. Their co-heirs are not almost periodic in
SG(N) for any proper extension N ≻ M .
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