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Abstract. We prove a version of Schanuel’s Conjecture for a field
of Laurent power series in positive characteristic replacing C and a
non-algebraic additive power series replacing the exponential map.

1. Introduction

In [1], James Ax proved the power series version of Schanuel’s Conjec-
ture [1, (SP)], which may be regarded as a transcendence statement
about the exponential map on an algebraic torus. By the “power series
version”, we mean that the field of complex numbers is replaced with
the non-Archimedean field of power series, where the exponential map
is evaluated. In [2], Ax extended [1, (SP)] from a torus to an arbitrary
semi-abelian variety. Bertrand noticed in [3] that a semi-abelian va-
riety may be replaced with any commutative algebraic group without
additive quotients. Ax also proved a transcendence statement about
differential fields of characteristic 0 [1, (SD)], which was used to prove
[1, (SP)]. An elliptic curve version was proved by Brownawell and Kub-
ota in [5] and Kirby [11] generalized both these results to the case of
semi-abelian varieties.

Trying to extend the power series version of Schanuel’s Conjecture to
the positive characteristic case one immediately faces a basic problem
– there are no exponential maps over a field of positive characteristic!
Therefore some other formal maps need to be considered. A Schanuel
type result was obtained [12, 6.12] for a raising to power map on a
characteristic zero algebraic torus replacing the exponential map. A
right class of possible powers needs to be specified, since e.g. the iden-
tity map obviously does not yield any transcendence results. The class
which was isolated in [12] is very natural, it consists of power series
(expansions of) Xα, where the algebraic degree of α over Q is bigger
than the dimension of the torus. The main theorem of this paper is
analogous to [12, 6.12], where a characteristic 0 torus is replaced with
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a positive characteristic vector group.

The ring of endomorphisms of the (algebraic) additive group over Fp

coincides with the ring of additive polynomials (with composition) over
Fp which we denote Fp[Fr]. It is isomorphic to the twisted (by Frobe-
nius) polynomial ring over Fp, but since Frobenius acts trivially on Fp,
it is isomorphic to the polynomial ring Fp[X]. In the torus case this
ring is Z, so both rings are similar to each other, e.g. they are both 1-
dimensional. The ring of formal endomorphisms of the additive group
of Fp coincides with the ring of additive power series denoted FpJFrK
(with composition) and it is isomorphic to the power series ring FpJXK.

Let Fp(Fr) denote the fraction field of Fp[Fr]. If we have in mind
that Z corresponds to Fp[Fr], then the main theorem below is of the
same form as the theorem about torus from [12].

Theorem 1.1. Let F ∈ FpJFrK and assume that the algebraic degree of
F over Fp(Fr) is greater than n (e.g. F is transcendental over F(Fr)).
Let x1, . . . , xn ∈ tFpJtK be linearly independent over Fp[Fr] and

g := (x1, . . . , xn, F (x1), . . . , F (xn)).

Then trdegFp
(g) > n + 1.

Let us note that the assumptions of the above theorem can not be
weakened. Firstly, the linear independence over Fp does not suffice.
For instance X,Xp are Fp-independent but the transcendence degree
of (X,Xp, F (X), F (Xp)) is not greater than 2, for F (Xp) = F p(X).
Secondly, we can neither relax the non-algebraicity assumption on
F . If F is algebraic over Fp(Fr) of degree n, then X,F, . . . , F n−1

(compositional powers) are linearly independent over Fp(Fr) and for
x := (X,F, . . . , F n−1), we have trdegFp

(x, F (x)) 6 n. Using Hensel’s
Lemma, it is easy to see that for any n which is non-divisible by p,
there is an additive power series which is algebraic over Fp(Fr) of de-
gree n. Thus Theorem 1.1 justifies in this case the hypothesis (see
[4]) that the values of transcendence functions should not satisfy any
unpredictable algebraic relations. However, there are many other re-
sults about transcendence in positive characteristic which are related
to Drinfeld modules, see e.g. [14] and [16]. The main difference be-
tween these results and our case is that we do not allow “non-constant
coefficients” – this is discussed in Section 6.2.

A possible line of further research is to replace an additive power series
with a formal map between algebraic groups in positive characteristic.
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The most natural example of such a map is a formal isomorphism be-
tween an ordinary elliptic curve and the multiplicative group. Such
formal maps will be considered in the forthcoming paper.

This paper is organized as follows. In Section 2 we recall Vojta’s notion
of higher differential forms and prove a technical result about linear de-
pendence of differential forms. This result replaces the usage of the Lie
derivative in Ax’s proof. We find in section 3 a non-zero additive power
series which vanishes on g in a certain strong sense. In section 4, we
use this power series to find additive polynomials vanishing on g. In
Section 5 we show how these polynomials affect the degree of F over
Fp(Fr). In Section 6 we discuss generalizations of Theorem 1.1 and its
relationship to some other results.

I would like to thank Boris Zilber for suggesting this topic to me, Daniel
Bertrand for his comments and Amador Martin-Pizarro for many stim-
ulating discussions.

2. Linear dependence of differential forms

In this section we prove a technical result about dependence of (higher)
differential forms under certain assumptions. Throughout this section
C is a perfect field of positive characteristic p and T is a C-algebra.
We will use Vojta’s higher forms from [15]. Its usage here is not ab-
solutely necessary, but it simplifies some arguments. For m ∈ N let
HSm

T/C (we suppress “/C” in the sequel) denote the T -algebra of higher
differential forms which comes with the universal Hasse-Schmidt deriva-
tion over C (HS-derivation for short) of order m

(d0, . . . , dm) : T → HSm
T .

For precise definitions, the reader should consult [15]. The T -algebra
HSm

T is generated by the symbols of the form di(t) for 0 6 i 6 m and
t ∈ T which satisfy the following relations:

• for each t ∈ T , d0(t) = t,
• for each c ∈ C and 1 6 i 6 m, di(c) = 0,
• for each t, t′ ∈ T and 0 6 i 6 m,

di(t + t′) = di(t) + di(t
′), di(tt

′) =
∑

k+l=i

dk(t)dl(t
′).

In particular we have dpn+1(tp) = dpn(t)p and d1(t
p) = 0. Let us also

notice that HS0
T = T and HS1

T = S(ΩT ) (the symmetric algebra).
We will use the following easy observation.
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Lemma 2.1. Let C ⊆ L be a field extension, a ∈ L and m ∈ N. Then
the following are equivalent:

(1) a ∈ Lpm+1
,

(2) d1(a) = d2(a) = . . . = dpm(a) = 0,
(3) dpm(a) = 0.

Proof. Only (3) to (1) requires an argument. Assume a ∈ L \ Lpm+1
.

Therefore, there is n ∈ {0 . . . ,m} and b ∈ L \ Lp such that a = bpn
.

We can extend {b} to B, a p-basis of L over C. Since C perfect,
the extension C ⊆ L is separable. Thus, by [13, Theorem 26.8], B is
algebraically independent over C and L is étale over C(B). There is
an HS-derivation D on C(B) vanishing on C such that Dpm−n(b) 6= 0.
Therefore

Dpm(a) = Dpm−n(b)pn 6= 0.

By [13, Theorem 27.2], D extends (uniquely) to an HS-derivation D′

on L. Since D′
pm(a) 6= 0, we have dpm(a) 6= 0. ¤

Additive power series give rise to infinite sequences having a certain
property which motivates the following definition.

Definition 2.2. A sequence (hm ∈ T )m is compatible if and only

hm+1 − hm ∈ T pm+1
for each m ∈ N.

If T = C[X1, . . . , Xk], then any additive power series in k variables is
a limit of a compatible sequence of additive polynomials from T . Ob-
viously, there are many compatible sequences of additive polynomials
converging to the same power series (there is the most natural choice
though). However, (hm) and (tm) converge to the same power series if

and only if for each m, we have hm − tm ∈ T pm+1
. This observation

motivates the next definition.

Definition 2.3. Let h := (hm) be a compatible sequence on T and
k ∈ N.

• The sequence h vanishes if for each m, we have hm ∈ T pm+1
.

• We write h ∈ T pk+1
if hk ∈ T pk+1

.

Note that h vanishes if and only if for each k ∈ N, h ∈ T pk+1
and that

h ∈ T pk+1
if and only if for each 0 6 i 6 k, hi ∈ T pi+1

.
If we have a homomorphism of C-algebras T1 → T2, then using this
homomorphism we can send any compatible sequence on T1 to a com-
patible sequence on T2, so we sometimes say that a compatible sequence
on T1 vanishes on T2.
For a compatible sequence h = (hm) on T , we define dpk(h) as dpk(hk).
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Note that for each l > k, we have dpk(h) = dpk(hl). By 2.1 we obtain
the following corollary.

Corollary 2.4. Let h be a compatible sequence on L and k ∈ N. Then
we have:

(1) h ∈ Lpk+1
if and only if dpk(h) = 0,

(2) h vanishes if and only if dpk(h) = 0 for all k.

The next lemma replaces the usage of the Lie derivative in Ax’s proof
from [2] (see also [11] and [12]).

Proposition 2.5. Let C ⊆ L ⊆ K be a tower of fields. Assume that
L * Kp, Kp∞ = C and trdegC L 6 n. Let a1, . . . , an be compatible
sequences on L vanishing on K. Then d1(a1), . . . , d1(an) ∈ ΩL are

linearly dependent over C. Moreover, if a1, . . . , an ∈ Lpk
for some

k > 0, then dpk(a1), . . . , dpk(an) ∈ HSpk

L are linearly dependent over C.

Proof. We fix m ∈ N and denote L ∩Kpm
by Lm. Since L * Kp, then

Lpm * Kpm+1
, in particular we have Lm * Kpm+1

. By 2.1, the natural
map

φ : ΩLm → ΩKpm

is non-zero.
Since the extension C ⊆ Lm is separable, by [13, 26.8] we have

dimLm ΩLm 6 trdegC(Lm) 6 n.

For each i, we have ai,m ∈ Lm+1 ⊆ Lm, for ai vanishes on K. Therefore
d1(ai,m) ∈ ΩLm and

d1(a1,m), . . . , d1(an,m) ∈ ker(φ).

Since φ is non-zero, dimLm(ker(φ)) < n, therefore d1(a1,m), . . . , d1(an,m)
are linearly dependent over Lm in ΩLm . However for each i, d1(ai) =
d1(ai,m) in ΩL, hence d1(a1), . . . , d1(an) are linearly dependent over Lm

in ΩL for each m. Since C =
⋂

Lm, we get that da1, . . . , dan are linearly
dependent over C.
For the moreover clause, notice that if b is a compatible sequence on L
which vanishes on K and such that b ∈ Lpk

, then

( pk
√

bk,
pk
√

bk+1, . . .)

is a compatible sequence on L which vanishes on K. Then we can use
the case of k = 0 proved above, since dpk(bk) = d1(

pk√
bk)

pk
. ¤
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3. A vanishing power series

We proceed towards the proof of 1.1. Let us assume that trdegFp
(g) 6 n

and we want to show that x1, . . . , xn are linearly dependent over Fp[Fr].
We will prove this in Section 5. In this section, we find a non-zero power
series of a special form which vanishes on g in the sense of 2.3.

Let us define:

L = Fp(g), K = Fp((t)), X̄ = (X1, . . . , Xn), Ȳ = (Y1, . . . , Yn).

To apply 2.5 to our situation we need to know whether L * Kp. It need
not be the case, but we will show below that without loss of generality
we may assume it is. Assume that for each i we have xi = yp

i . Since
F (yp

i ) = F (yi)
p, we get

trdegFp
(x1, F (x1), . . . , xn, F (xn)) = trdegFp

(y1, F (y1), . . . , yn, F (yn)).

It is also easy to see that the linear dependence of y1, . . . , yn over
Fp[Fr] implies the linear dependence of x1, . . . , xn. Thus we can re-
place x1, . . . , xn with y1, . . . , yn. Then the only problem could be
that x1, . . . , xn ∈ Kp∞ , but since Kp∞ = Fp, we would get the Fp-
dependence then.
We have a Fp-algebra homomorphism

Fp[X, Y ] 3 w 7→ w(g) ∈ L,

so it is meaningful to say that a compatible sequence on Fp[X, Y ] van-
ishes on L.
We have noted that any additive power series h ∈ FpJX, Y K is the
limit of a compatible sequence (hm ∈ Fp[X, Y ]) and it is the limit of
some other compatible sequence (h′m) if and only if (hm − h′m) van-
ishes. Therefore it makes sense to say that h vanishes on L (or K)

and that h ∈ Lpm+1
. Similarly, for any m ∈ N, the differential form

dpm(h(g)) ∈ HSpm

L is well defined as dpm(hm(g)) for any compatible
sequence (hm) converging to h.

Proposition 3.1. There is (h1, . . . , hn) ∈ FpJFrKn \ {0} such that

h := h1 ◦ (Y1 − F (X1)) + . . . + hn ◦ (Yn − F (Xn))

vanishes on L.

Proof. In this proof, by a permutation we mean σ ∈ Sn applied both
to X and Y -coordinates. Let us define fi := Yi − F (Xi) ∈ FpJX, Y K.
From the assumptions in 1.1, each fi vanishes on K.
By 2.5 (for C = Fp), the forms d1(f1(g)), . . . , d1(fn(g)) ∈ ΩL are lin-
early dependent over Fp. After applying a permutation, there is 0 6
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r0 < n such that {d1(f1(g)), . . . , d1(fr0(g))} is a basis of the Fp-linear
span of these forms. For each r0 < l 6 n, there are αl,1, . . . , αl,r0 ∈ Fp

such that

d1(fl(g)) =

r0∑
i=1

αl,id1(fi(g)).

We define now new additive power series. For each 1 6 l 6 r0 we set

f
(1)
l := fp

l and for each r0 < l 6 n we set f
(1)
l := fl −

∑r0

i=1 αl,ifi.

Note that f
(1)
1 (g), . . . , f

(1)
n (g) ∈ Lp by 2.4. Since each f (i) still vanishes

on K, by 2.5 the forms dp(f
(1)
1 (g)), . . . , dp(f

(1)
n (g)) ∈ HSp

L are linearly
dependent over Fp. Since for each 1 6 l 6 r0, we have

dp(f
(1)
l (g)) = d1(fl(g))p

the forms dp(f
(1)
1 (g)), . . . , d1(f

(1)
r0 (g)) are linearly independent over Fp

(since Fp is perfect). Therefore after applying a permutation, there is

r0 6 r1 < n such that {d1(f
(1)
1 (g)), . . . , d1(f

(1)
r1 (g))} is a basis of the

Fp-linear span of {dp(f
(1)
1 (g)), . . . , dp(f

(1)
n (g))}.

We define now new power series f
(2)
i in the same fashion as we have

defined the power series f
(1)
i . Note that f

(2)
1 (g), . . . , f

(2)
n (g) ∈ Lp2

and

each f
(2)
i vanishes on K.

If we continue like this we get a sequence 0 6 r0 6 r1 6 r2 6 . . . < n.
Let m ∈ N be such that for each j > m we have rm = rj. Note that

(1) f
(m)
1 = t1(f<n), . . . , f

(m)
n−1 = tn−1(f<n), f (m)

n = fn − tn(f<n)

for certain additive polynomials t1, . . . , tn.
For any k ∈ N, there are α1,k, . . . , αn−1,k ∈ Fp such that if we set

(2) wk := α1,k(f
(m)
1 )pk

+ . . . + αn−1,k(f
(m)
n−1)

pk

,

(3) h(k+1) := f (m)
n − w0 − . . .− wk,

we get that h(k) is an additive power series such that h(k)(g) ∈ Lpk+m
.

Clearly (h(k))k is a compatible sequence in the ring of power series, in
particular it is a Cauchy sequence. From (1), (2) and (3), h := lim(h(k))
is our required power series. ¤

4. An algebraic subgroup

In this section we replace the additive power series h from 3.1 with an
algebraic group.
Let Ga denote the (algebraic) additive group over Falg

p (the algebraic

closure of Fp) and A denote G2n
a . Assume that W ⊆ A is an affine

subvariety such that 0 is a smooth point of W . Let OA and OW denote
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the coordinate rings over Falg
p and IW the kernel of the restriction map

πW : OA → OW . Let ÔW denote the completion of OW with respect

to the ideal mW,0. We identify ÔW with the inverse limit of the inverse

system (OW /mpm+1

W,0 )m∈N. We would like to emphasize that mpm

W,0 de-
notes here the pm-th power of the ideal mW,0 and not the image of mW,0

by the pm-th power of the Frobenius map (which is contained in mpm

W,0).

Although, for any C-algebra T , T pm
still denotes the image of T by the

m-th power of the Frobenius map. Let C(W ) denote the fraction field
of OW (the field of rational functions on W ). In the lemma below we
note the relation between compatible sequences on C(W ) and elements

of ÔW . This relation also justifies the choice of indices in the inverse

system representing ÔW .

Lemma 4.1. Let f = (fm) be a compatible sequence on C(W ) such
that each fm belongs to mW,0. Then

f̂ := (fm + mpm+1

W,0 ) ∈ ÔW .

Moreover, if f vanishes on C(W ), then f̂ = 0.

Proof. Since mW,0 is maximal, we can replace OW with its localization
at mW,0, i.e. with the local ring of W at 0. Since 0 is a smooth point,
OW is regular, in particular normal. Therefore for each m ∈ N we have

C(W )pm ∩mW,0 ⊆ Frm(mW,0) ⊆ mpm

W,0

and the result follows. ¤
Clearly the converse to neither clause in the lemma above holds.

We consider OW as a subring of ÔW . We identify ÔA with FpJX, Y K,
in particular h ∈ ÔA, where h comes from 3.1. Since πW (mA,0) = mW,0,

we get the induced epimorphism π̂W : ÔA → ÔW .
We note a classical result which will be needed in the next section.

Lemma 4.2. For W,A as above we have ker(π̂W ) = IW ÔA.

Proof. This is well-known and directly follows from [9, Theorem 7.2(a)]
and [9, Lemma 7.15]. ¤
We say that h vanishes on W if h vanishes on the function field of W
(as a compatible sequence, note the discussion in the beginning of the
previous section).

Lemma 4.3. If h vanishes on W , then h ∈ ker(π̂W ).

Proof. It follows directly from 4.1. ¤
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For any OA-module N , N̂ is the completion of N with respect to mA,0.

Then N 7→ N̂ is an exact functor [9, Lemma 7.15], ÔW = ÔW and
π̂W = π̂W .

For W1,W2 ⊆ A subvarieties, let W1 + W2 denotes the Zariski closure
of the set {w1 + w2|w1 ∈ W1, w2 ∈ W2}.
Proposition 4.4. Let W1,W2 ⊆ A be subvarieties having 0 as a smooth
point and assume h ∈ ker(π̂W1) ∩ ker(π̂W2). Then h ∈ ker(π̂W1+W2).

Proof. From the definition of W1 +W2, ker(πW1+W2) coincides with the
kernel of the following composition:

OA

µ // OA ⊗OA
πV ⊗πW // OV ⊗OW ,

where µ is the coaddition map. Therefore, ker(π̂W1+W2) coincides with
the kernel of the following composition:

ÔA

µ̂ // ÔA⊗̂ÔA

π̂V ⊗π̂W // ÔV ⊗̂ÔW .

Since h is additive, µ̂(h) = h⊗̂1 + 1⊗̂h, hence h belongs to the kernel
of the above composition. ¤

Let as assume that V ⊆ A is an irreducible subvariety. By a theorem
of Chevalley (see Chapter II Section 7 in [6]), V generates in finitely
many steps H, a coset of an algebraic subgroup of A. Clearly, if V is
defined over Fq, then H is defined over Fq.

Proposition 4.5. Let V be the locus of g over Falg
p and H be the coset

generated by V . Then H is an algebraic subgroup defined over Fp,
g ∈ H(Fp((t))) and h ∈ ker(π̂H) (this h comes from 3.1).

Proof. Since Fp((t)) is linearly disjoint from Falg
p over Fp (in Falg

p ((t))),
we have

Falg
p [g] = Falg

p Fp[g] ∼= Falg
p ⊗Fp Fp[g].

Therefore, V is defined over Fp and H is defined over Fp as well.
By 3.1, h vanishes on Fp(g). Let c ∈ V (Falg

p ) be a smooth point and
Vc := V − c. Then Vc generates a group G whose coset is H. Since
Fp(g) is a subfield of the function field of Vc and 0 is a smooth point
of Vc, h vanishes on Vc. By 4.3, h ∈ ker(π̂Vc). Since G is generated in
finitely many steps by Vc, we get by 4.4 that h ∈ ker(π̂G).
We will show that c ∈ G(Falg

p ), which clearly implies that g ∈ G(Fp((t)))

and H = G. Assume that c /∈ G(Falg
p ) and we will reach a contradic-

tion. There is an additive polynomial w which vanishes on g − c and
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w(c) 6= 0. Hence there are α1, . . . , α2n ∈ Falg
p [Fr] such that

n∑
i=1

αi(xi) +
2n∑

j=n+1

αj(F (xi)) ∈ tFalg
p JtK ∩ {w(c)} = ∅,

a contradiction. ¤
The main fact behind 4.5 can be stated much more generally. Assume
G is an algebraic group, V a subvariety containing the identity element

of G and H a formal subgroup of Ĝ, the formalization of G. Proceeding

as in the proof of 4.4, one can show that if V̂ ⊆ H, then Ĥ ⊆ H, where
H is the algebraic subgroup of G generated by V .

5. The conclusion of the proof

In this section we finish the proof of 1.1 in a similar way as in the proof
of [12, 6.12]. We need to show that x belongs to a proper algebraic
subgroup of Gn

a defined over Fp.
Let us take h from 3.1. For 1 6 i 6 2n, let πi : G2n

a → Gi
a denote the

projection on the first i coordinates. If πn(H) 6= Gn
a , then we are done

by 4.5. Assume not. We will show that πn(H) = Gn
a implies that the

algebraic degree of F over Fp(Fr) is at most n.
Let us recall the form of h from 3.1:

(1) h = h1 ◦ (Y1 − F (X1)) + . . . + hn ◦ (Yn − F (Xn)),

where h1, . . . , hn is a non-zero n-tuple of elements from FpJFrK.
Since H 6= G2n

a , then after applying a permutation of the X̄-coordinates
and the corresponding permutation of the Ȳ -coordinates, we can as-
sume that there is n 6 i < 2n such that

dim(πi(H)) = dim(H) = i.

Then for each i < j 6 2n there are additive polynomials

fj ∈ Fp[Fr], gj ∈ Fp[X̄, Y1, . . . , Yi]

such that

IH = (gi+1 − fi+1(Yi+1), . . . , g2n − f2n(Yn)).

By 4.2, there are αi+1, . . . , α2n ∈ FpJX̄, Ȳ K such that:

(2) h = (gi+1 − fi+1(Yi+1−n))αi+1 + . . . + (g2n − f2n(Yn))α2n.

For each j, let f−1
j denote the compositional inverse of fj in Fp(Fr) and

let tj := f−1
j ◦ gj. Then we have

(3) tj =
n∑

k=1

(tj,k(Xk) + sj,k(Yk)),
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for some tj,k, sj,k ∈ Fp[Fr].
From (2) we get:

(4) h(X1, . . . , Xn, Y1, . . . , Yi, ti+1, . . . , t2n) = 0.

Then by (1) and (4) we have

(5)
i∑

k=1

hk ◦ (Yk − F (Xk)) +
n∑

k=i+1

hk ◦ (tn+k − F (Xk)) = 0.

We focus now on the variables Xk+1, . . . , Xn in (5). Using (3), for each
k ∈ {i + 1, . . . , n} we have the following equation in the field Fp((Fr)):

(∗k) hi+1−n ◦ ti+1,k + . . . + hn ◦ t2n,k = hk ◦ F.

The equations ∗i+1, . . . , ∗n mean that F is a characteristic value of the
linear map given by the matrix (tj,k) ∈ M2n−i(Fp(Fr)). By the Cayley-
Hamilton theorem, F is algebraic over Fp(Fr) of degree not greater
than 2n− i 6 n, which finishes the proof of Theorem 1.1.

6. Other formal maps

In this section we discuss transcendence results related to power series
of a more general form than the one considered in Theorem 1.1.

6.1. Power series over a perfect field. Let us replace Fp with C, an
arbitrary perfect field of characteristic p. If we proceed with the proof
of 1.1 for F with coefficients from C, then the proof goes smoothly
till the very last sentence – the usage of the Cayley-Hamilton theorem.
Since the ring C[Fr] is not commutative if C � Fp, the Cayley-Hamilton
theorem can not be applied. The problem is that determinants do not
help to solve linear equations over a non-commutative ring. Proceeding
“by hand” one can still obtain that F is “algebraic of degree at most
n” over C[Fr], i.e. there are αi,j ∈ C[Fr] such that

(†) α±1
0,n ◦ F ◦ α±1

1,n ◦ F ◦ . . . ◦ F ◦ α±1
n,n + . . . + α±1

0,1 ◦ F ◦ α±1
1,1 + α±1

0,0 = 0.

However it is not clear how restrictive the condition of not being alge-
braic in such a sense is, so we will neither precisely state nor prove a
result of such a form. One could try to work with quasideterminants
from [10] to obtain more detailed information, but we will not pursue
this direction here.

For m ∈ N>0, we obtain a result over Fpm generalizing Theorem 1.1.
Let us take an additive power series F with coefficients from Fpm and
let Fr denote the Frobenius map.
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Theorem 6.1. Assume that for each (α0, . . . , αn) ∈ Fpm [Fr]n+1 \ {0}
we have

αn Frm−1(F )n + . . . + α1 Frm−1(F ) + α0 6= 0

in the ring (FpmJFrK, +, ◦). Let x1, . . . , xn ∈ tFpmJtK be linearly inde-
pendent over Fpm [Fr] and

g := (x1, . . . , xn, F (x1), . . . , F (xn)).

Then trdegFp
(g) > n + 1.

Proof. Let us notice first that for G,H ∈ XFpmJXK we have

(1) Fr(G ◦H) = GFr ◦ Fr(H) = Fr(G) ◦H,

where for any σ ∈ Aut(Fpm), (
∑

aiX
i)σ denotes

∑
σ(ai)X

i.
It is also clear that for F1, F2 ∈ Frm−1(XFpmJXK), we have

(2) F1 ◦ F2 = F2 ◦ F1.

Proceeding as in the proof of 1.1 we obtain 0 < l 6 n and tij, hk such
that for each 0 6 k 6 l we have

(∗k) h1 ◦ t1,k + . . . + hl ◦ tl,k = hk ◦ F.

Applying Fr2m−2 and using 2m− 2 times (1) we get

(∗∗k) σ(hσ
1 ) ◦ σ(t1,k) + . . . + σ(hσ

l ) ◦ σ(tl,k) = σ(hσ
k) ◦ σ(F ),

where σ = Frm−1.
Using (2), we see that all the elements involved in (∗∗1), . . . , (∗∗l) com-
mute with each other, so we can finish as in Section 5. ¤
6.2. Drinfeld modules. There is a rich theory of algebraic indepen-
dence in positive characteristic related to Drinfeld modules. For a very
nice survey of this theory the reader is referred to [4]. In this subsec-
tion we briefly describe how our results are related to this theory. In
[8], Drinfeld introduced elliptic modules, which are now called Drinfeld
modules. In our setting, Drinfeld modules are certain homomorphisms
between Fq[X] and K[Fr], where q is a power of p and K is the non-
Archimedean field of Laurent series over Fq. An additive power series
over K is associated to each Drinfeld module and this series is entire
on K. A number of very interesting transcendence results for such
additive power series is obtained, see e.g. [16]. A special case of such
a series was introduced by Carlitz (before the invention of Drinfeld’s
modules) and it is called the Carlitz exponential. Several Schanuel type
results for the Carlitz exponential were obtained in [7] and a Carlitz
exponential version of the (still open) conjecture on algebraic indepen-
dence of logarithms of algebraic numbers was proved in [14, 1.2.6].
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The power series we consider in this paper do not fit in the above frame-
work for several reasons. Firstly, we consider power series with constant
coefficients only, i.e. there is no transcendental element present in the
coefficients of our series. For series with non-constant coefficients we
still could have obtained a “non-commutative” result discussed in the
previous subsection. Secondly, the Carlitz exponential expC is “alge-
braic” in our terminology (see the equation (†) in Section 6.1) since it
satisfies the following functional equation (see [14]):

expC ◦θX = θX ◦ expC +Xq ◦ expC ,

where θ is the transcendental coefficient, so our methods can not be
applied.

6.3. Non-additive power series. The transcendence statement 1.1
was obtained for certain additive power series, i.e. for sufficiently non-
algebraic formal maps between vector groups. It is natural to try to
extend Theorem 1.1 to the context of an arbitrary “sufficiently non-
algebraic” formal map between (the formalizations of) algebraic groups,
e.g. a formal isomorphism between an abelian variety and an algebraic
torus. Such a general statement was obtained [12, 5.5] in the case of
characteristic 0. We aim to state and prove a positive characteristic
version of [12, 5.5] in the forthcoming paper.
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