
WEAKLY ONE-BASED GEOMETRIC THEORIESALEXANDER BERENSTEIN AND EVGUENI VASSILIEVAbstra
t. We study the 
lass of weakly lo
ally modular geometri
 theoriesintrodu
ed in [5℄, a 
ommon generalization of the 
lasses of linear SU-rank1 and linear o-minimal theories. We �nd new 
onditions equivalent to weaklo
al modularity: weak one-basedness and the absen
e of type de�nable almostquasidesigns. Among other things, we show that weak one-basedness is 
losedunder redu
ts and generi
 predi
ate expansions. We also show that a lovelypair expansion of a non-trivial weakly one-based ω-
ategori
al superrosy thornrank 1 theory interprets an in�nite ve
tor spa
e over a �nite �eld.1. Introdu
tionIt is a well known fa
t [21℄ that for a strongly minimal theory T , the following
onditions are equivalent: i) T is linear, ii) T is 1-based, iii) T is lo
ally modular.Furthermore, these 
onditions are preserved under redu
ts. For a simple SU -rankone theory T the pi
ture 
hanges slightly, it is proved in [23, 5℄ that for su
h atheory T , it is equivalent that: i) T is 1-based, ii) T is linear and iii) T is weaklylo
ally modular (see De�nition 2.1). It is also known (e.g. see [23℄) that in the
SU -rank one setting lo
al modularity is a stri
tly stronger 
ondition than being 1-based. A more general framework where we 
an still study the geometry asso
iatedto the algebrai
 
losure is the 
lass of geometri
 theories. Re
all that a geometri
theory is a 
omplete theory T su
h that for any model M |= T , the algebrai

losure satis�es the Ex
hange Property and in addition T eliminates the quanti�er
∃∞. Examples in
lude strongly minimal theories, simple SU rank 1 theories, denseo-minimal theories and the theory of the p-adi
s. Inside a model of a geometri
theory, algebrai
 independen
e gives a good notion of independen
e for real tuples.A key example of the behavior of linearity in o-minimal theories is the followingtheory �rst introdu
ed in [15℄.Example 1.1. Let R = (R,+, <, f |(−1,1)) where f is de�ned by f(x) = πx.Clearly, f |(−1,1) 
an be extended to all of R by f(x) = nf

(x

n

) for x ∈ (−n, n),however this extension is not uniformly de�nable, and thus in a su�
iently satu-rated model R∗ of T = Th(R), we 
annot de�ne f(x) for �in�nite" elements. Asthe theory of a redu
t of a ve
tor spa
e over Q(π), T is a linear (CF) theory, butit is not lo
ally modular. It is also shown in [21℄ that T does not have almostDate: January 2010.2000 Mathemati
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anoni
al bases, i.e. a smallest algebrai
ally 
losed subset over whi
h a type is free.The theory T also fails to be 1-based, i.e. there is M |= T saturated and there aresets A,B ⊂M su
h that A 6 |⌣acleq(A)∩acleq(B)
B.The example above shows that inside a geometri
 theory T , lo
al modularityand 1-basedness do not need to be preserved under redu
ts. The main reason forthe failure of the se
ond 
ondition is the absen
e of almost 
anoni
al bases in theredu
t.The origin of the expression 1-basedness 
omes from the 
on
ept that in a 1-basedsimple theory one element in a Morley sequen
e 
ontains all the information aboutthe original type (in general we require a 
ountable Morley sequen
e to re
over allthe information). Following this idea we introdu
e the notion of weak 1-basedness(see De�nition 2.3), prove that this notion 
oin
ides, in the setting of geometri
stru
tures, with the notion weak lo
al modularity introdu
ed in [5℄ (see De�nition2.1) and �nally show that it is preserved under redu
ts.The main goal of this paper is to study the 
lass of weakly 1-based geometri
stru
tures. All linear o-minimal theories, in
luding the one presented in Example1.1, as well as linear SU rank 1 theories are examples of weakly 1-based theories.Our work is divided as follows:In the se
ond se
tion of this paper we de�ne weak lo
al modularity, weak 1-basedness and show that the notions 
oin
ide. We also introdu
e the notion of typede�nable almost quasidesigns, prove that it 
oin
ides with weak lo
al modularityand use it to show that a redu
t of a weakly lo
ally modular theory is again weaklylo
ally modular.In se
tion three we study the geometry asso
iated to a weakly 1-based geometri
theory. We follow the approa
h from [23℄ and show that a lovely pair asso
iated toa non-trivial weakly 1-based ω-
ategori
al superrosy thorn rank 1 theory interpretsan in�nite ve
tor spa
e over a �nite �eld.In se
tion four we generalize the notion of weak 1-basedness to the setting ofrosy theories. We show that, under some mild assumptions, if T is a thorn rankone rosy weakly 1-based theory, then the asso
iated theory TP of lovely pairs of Tis again weakly 1-based.In se
tion �ve we 
on
entrate on examples: we show that the expansion of aweakly 1-based theory with a generi
 predi
ate is again weakly 1-based and provethat divisible groups with the Mann property inside a real 
losed �eld with theindu
ed stru
ture from the �eld are also weakly 1-based. Finally, in the last se
tion,we show that the dense embeddings studied by Ma
intyre in [16℄ are a spe
ial 
aseof lovely pairs of geometri
 stru
tures.We assume that the reader is familiar with the results on lovely pairs of geomet-ri
 stru
tures presented in [5℄ (although no familiarity with lovely pairs is neededfor most of se
tion 2 and se
tion 5). We will now re
all the de�nition and basi
properties of lovely pairs.De�nition 1.2. We say that an elementary pair of models P (M) � M of a geo-metri
 theory T is a lovely pair of models of T if(1) (density/
oheir property) if A ⊂M is algebrai
ally 
losed and �nite dimen-sional and q ∈ S1(A) is non-algebrai
, then there is a ∈ P (M) su
h that

a |= q; 2



(2) (extension property) if A ⊂M is algebrai
ally 
losed and �nite dimensionaland q ∈ S1(A) is non-algebrai
, then there is a ∈ M , a |= q and a 6∈
acl(A ∪ P (M)).Any elementary pair of models extends to a lovely one. Any two lovely pairsof models of a geometri
 theory are elementarily equivalent, thus giving rise to a
omplete theory TP in the expanded language LP = L(T )∪{P}. The 
lass of lovelypairs of models of T is almost an elementary 
lass: su�
iently saturated models of

TP are again lovely pairs.Lovely pairs of geometri
 stru
tures are a 
ommon generalization of lovely pairsof supersimple SU-rank 1 stru
tures [23℄ and (su�
iently saturated) dense pairs ofo-minimal expansions of ordered abelian groups [10℄.Given a pair (M,P ) and a set A ⊂ M , we say that A is P -independent, if
A |⌣P (A)

P (M) where P (A) = A ∩ P (M). Any two P -independent tuples ~a and ~bin a lovely pair, satisfying the same quanti�er free LP -type, have the same LP -type.When working in lovely pairs, we will refer to the operator
scl(−) = acl(− ∪ P (M))as the small 
losure. Note that a small 
losure of any set is algebrai
ally 
losed inthe sense of TP . We write tpP and aclP for types and algebrai
 
losure in the senseof TP .The following is a result of Boxall [6℄ (generalizing a fa
t from [23℄ to the settingof superrosy theories of þ-rank 1):Fa
t 1.3. Suppose T is a þ-rank 1 theory that eliminates ∃∞. Then TP is superrosyof þ-rank ≤ ω. Moreover:(1) Any de�nable �large" set in a lovely pair (M,P ) (i.e. a set de�nable over Asu
h that it has a realization in M\ acl(P (M) ∪A)) does not þ-divide over

∅.(2) Any in�nite de�nable subset of P (M) does not þ-divide over ∅. In parti
-ular, P (M) has þ-rank 1 in (M,P ).Thus, when T is rosy of thorn rank 1, TP is again super-rosy; we write |⌣
P forthorn independen
e in models of TP .2. Weak lo
al modularity, weak 1-basedness and linearityOur goal in this se
tion is to study, in the setting of geometri
 theories, ana-logues to the notions of lo
al modularity, 1-basedness and linearity that are wellunderstood in the setting of minimal stable theories [20℄ and SU -rank one simpletheories [23℄.In [5℄ we studied a notion 
alled weak lo
al modularity using lovely pairs ofstru
tures and provided several 
hara
terizations of it. We re
all the de�nition:De�nition 2.1. (See [5, Theorem 1℄) Let T be a geometri
 theory. We say that

T is weakly lo
ally modular if for M |= T saturated and A,B ⊂ M there exist
C |⌣AB su
h that A |⌣acl(AC)∩acl(BC)

BIn [5℄ we showed this notion 
oin
ided with 1-basedness for SU -rank one simpletheories and with linearity for o-minimal theories. We have also shown that weaklo
al modularity is equivalent to aclP = acl and to modularity of scl in models of
TP . We also proved: 3



Fa
t 2.2. ([5, Proposition 4.8℄) If T is a weakly lo
ally modular superrosy geometri
theory of þ-rank 1, then TP has þ-rank ≤ 2.Note that in the SU-rank 1 
ase [23℄, weak lo
al modularity of T is a
tuallyequivalent to SU-rank of T being ≤ 2.We now introdu
e a notion that is an analogue of 1-basedness in the setting ofgeometri
 theories.De�nition 2.3. Let T be a geometri
 theory. We say that T is weakly 1-basedif whenever M |= T is saturated, ~a ∈ M and B ⊂ M , there is ~a′ |= tp(~a/B)independent from ~a over B, su
h that ~a |⌣~a′
B.In the stable or simple setting, a rank one theory is lo
ally modular if and onlyif it is 1-based. The proof uses the notion of 
anoni
al bases. An analogue of hisnotion 
an be de�ned in the setting of geometri
 stru
tures, see for example [21℄:De�nition 2.4. Let T be a geometri
 theory and let M |= T be saturated.We say T has almost 
anoni
al bases if whenever A ⊂ M is algebrai
ally 
losedand a1, . . . , an ∈ M , there is a smallest B ⊂ A algebrai
ally 
losed su
h that

tp(a1, . . . , an/A) is free over B.The main problem with this notion is that almost 
anoni
al bases need not existin geometri
 stru
tures (see [21℄ and Example 1.1). When they exists, the proofsin [23℄ that show the equivalen
e of lo
al modularity and 1-basedness for SU -rankone simple theories 
an be used almost word-by-word to prove the equivalen
e ofweak lo
al modularity and weak 1-basedness in the setting of geometri
 theories.Instead, we will show that weak lo
al modularity agrees with weak 1-basednessusing stronger formulations of weak 1-basedness.We start with a te
hni
al lemma.Lemma 2.5. Let T be a geometri
 theory and let M |= T be saturated. Let ~a ∈M ,
B ⊂M and ~a′ ∈M be su
h that tp(~a/B) = tp(~a′/B), ~a |⌣B

~a′ and ~a |⌣~a′
B. Then

~a′ |⌣~a
B.Proof. We 
an write ~a = ~a1~a2, where ~a1 is an independent tuple over B and ~a2 ∈

acl(~a1, B). In the same way write ~a′ = ~a′1~a
′
2 with tp(~a1,~a2/B) = tp(~a′1,~a

′
2/B). Notethat dim(~a1~a2~a

′
1~a

′
2) = dim(~a1~a2)+dim(~a′1~a

′
2/~a1~a2) = dim(~a′1~a

′
2)+dim(~a1~a2/~a

′
1~a

′
2),so dim(~a′/~a) = dim(~a/~a′) = dim(~a/B~a′) = dim(~a/B) = |~a1| = |~a′1|. Thus

dim(~a′/~a) = |~a′1| = dim(~a′/B~a) and ~a′ |⌣~a
B. �Proposition 2.6. Let T be a geometri
 theory and let M |= T be saturated. Thenthe following 
onditions are equivalent:(1) T is weakly 1-based.(2) Whenever ~a ∈ M , B ⊂ M , there is C |⌣B

~a su
h that for all ~a′ |=

tp(~a/ acl(BC)) independent from ~a over BC, we have ~a |⌣~a′
B.(3) Whenever ~a ∈ M , B ⊂ M , there is C |⌣B

~a su
h that for all ~a′ |=

tp(~a/ acl(BC)) independent from ~a over BC, we have ~a |⌣~a′
BC.Proof. (1) =⇒ (2). Let ~a ∈ M and B ⊂ M . Sin
e T is weakly 1-based, thereexists ~a′ |= tp(~a/B) su
h that ~a′ |⌣B

~a and ~a′ |⌣~a
B. Let C = ~a′1.Claim Whenever ~c |= tp(~a/ acl(BC)) is independent from ~a over BC, we have

~a is independent from B over ~c. 4



Let ~c |= tp(~a/ acl(BC)) be su
h that ~c |⌣BC
~a. Sin
e ~a |⌣~a′

B, we have ~cB |⌣~a′
~aand thus

B |⌣
~a′~c

~a (∗)Sin
e ~a |⌣~a′
B and ~c |= tp(~a/BC) we get ~c |⌣~a′

B. Using Lemma 2.5 this implies
~a′ |⌣~c

B and together with (∗) we get B |⌣~c
~a.

(2) =⇒ (3). This dire
tion is mostly forking 
al
ulus. With the assumptionsfrom (3), we 
an show using 
ondition (2) that ~a |⌣~a′
B. On the other hand, wehave ~a |⌣BC

~a′ and ~a |⌣B
C, so by transitivity ~a |⌣B

C~a′ and thus ~a |⌣B~a′
BC.This fa
t together with ~a |⌣~a′

B gives us ~a |⌣~a′
BC as desired.

(3) =⇒ (1) is 
lear. �Theorem 2.7. Let T be a geometri
 theory. Then the following 
onditions areequivalent:(1) T is weakly 1-based.(2) T is weakly lo
ally modular.Proof. (2) =⇒ (1). Let M |= T be saturated. Let ~a1,~a1 ∈ M and B ⊂ M besu
h that ~a1 is an independent tuple over B and ~a2 ∈ acl(B,~a1). Sin
e T is weaklylo
ally modular, there exists C |⌣~a1~a2B su
h that ~a1~a2 |⌣acl(~a1~a2C)∩acl(BC)
BCLet ~a′1~a′2 |= tp(~a1~a2/ acl(BC)) be independent from ~a1~a2 over acl(BC). Then

acl(~a1~a2C) ∩ acl(BC) = acl(~a′1~a
′
2C) ∩ acl(BC), so ~a1~a2 |⌣acl(~a′

1
~a′

2
C)∩acl(BC)

BC. Itis also 
lear that ~a1~a2 |⌣BC
~a′1~a

′
2BC. Thus

tp(~a1~a2/ acl(~a′1~a
′
2C) ∩ acl(BC)) ⊂ tp(~a1~a2/ acl(BC)) ⊂ tp(~a1~a2/ acl(~a′1~a

′
2BC))is a 
hain of free extensions, so ~a1~a2 |⌣acl(~a′

1
~a′

2
C)∩acl(BC)

~a′1~a
′
2BC and thus ~a1~a2 |⌣~a′

1
~a′

2
C
B.On the other hand, sin
e C |⌣~a′1~a

′
2B, we have ~a′1~a′2C |⌣~a′

1
~a′

2

~a′1~a
′
2B, and by sym-metry and transitivity of independen
e ~a1~a2 |⌣~a′

1
~a′

2

B as we wanted.
(1) =⇒ (2). Let M |= T be saturated. Let ~a,~b ∈M and B ⊂M be su
h that ~ais an independent tuple over B and ~b ∈ acl(B,~a). Sin
e T is weakly 1-based thereexists ~a′~b′ |= tp(~a~b/B) su
h that ~a~b |⌣B

~a′~b′ and ~a~b |⌣~a′~b′
B. Let C = ~a′, noti
ethat C |⌣B~a~b and ~a~b |⌣~a′~b′

BC.Claim ~a~b |⌣acl(~a~bC)∩acl(BC)
B.First note that~b′ ∈ acl(B~a′). Sin
e ~a~b |⌣~a′~b′

B by Lemma 2.5 we have ~a′~b′ |⌣~a~b
Band thus~b′ ∈ acl(~a′~a~b). Thus ~a′~b′ ∈ acl(~a~bC)∩acl(BC) and we get ~a~b |⌣acl(~a~bC)∩acl(BC)

Bas desired. �Remark 2.8. By Theorem 4.3, [5℄, in the de�nition of weak lo
al modularity we
an assume that one of the two sets is in fa
t a 2-tuple, i.e. we require that forany ab and a set B su
h that a ∈ acl(Bb), there exists a C |⌣∅
Bab su
h that

a ∈ acl(Cbd) for some d ∈ acl(BC). Therefore in the proof of ((1) =⇒ (2)) abovewe 
an assume that ~a and ~b are 1-tuples. Thus in the de�nition of weak 1-basednessand in the 
onditions (2) and (3) in 2.6 we may assume that ~a is a 2-tuple.5



Now we will 
onne
t weak 1-basedness with the notion of quasidesign. It iswell-known that a stable theory is 1-based if and only if T has no 
omplete-type-de�nable quasidesign (see [20℄). In our setting, we need to introdu
e the followingmodi�
ation.De�nition 2.9. We say that a partial type r(~x, ~y) over a set A de�nes a partialalmost quasidesign, if(1) there are ~b, ~c su
h that |= r(~b,~c), ~b 6∈ acl(~c,A) and ~c 6∈ acl(~b,A);(2) whenever ~c 6∈ acl(~c′, A) and ~c′ 6∈ acl(~c,A), r(~x,~c) ∧ r(~x, ~c′) is �nite.If r is 
omplete, we refer to su
h partial quasidesign as 
omplete. In the 
omplete
ase, we 
an repla
e �there are� by �for any� in (1). Clearly, any partial quasidesigngives rise to a 
omplete one, if we take tp(~b~c/A) where ~b and ~c 
ome from (1).Proposition 2.10. The following are equivalent for any geometri
 theory T .(1) T is weakly 1-based(2) T does not have a partial almost quasidesign(3) T does not have a 
omplete almost quasidesignProof. (1 → 2) Suppose T is weakly 1-based, and r(~x, ~y) de�nes a partial almostquasidesign. Adding the parameters of r to the language, we may assume that r isde�ned over ∅. Take ~b and ~c su
h that |= r(~b,~c), ~b 6∈ acl(~c) and ~c 6∈ acl(~b). By weak1-basedness we 
an �nd ~c′ |= tp(~c/~b) su
h that ~c′ |⌣~b
~c and ~c |⌣~c′

~b. Then |= r(~b, ~c′),
~c 6∈ acl(~c′) and ~c′ 6∈ acl(~c), and therefore r(~x,~c) ∧ r(~x, ~c′) is �nite. But this meansthat ~b ∈ acl(~c, ~c′), a 
ontradi
tion with ~b 6∈ acl(~c′) and ~c |⌣~c′

~b.(2 → 3) Trivial.(3 → 1) Suppose T is not weakly 1-based. Adding 
onstants to the language ifne
essary, by remark 2.8 we may assume that this is witnessed by tp(ab/cd) where
dim(cd) = 2. So for any a′b′ ≡cd ab su
h that a′b′ |⌣cd

ab we have dim(aba′b′) = 4.Let r(xy, zt) = tp(ab, cd).We 
laim that if a′b′ realizes tp(ab) and acl(a′b′) 6= acl(ab) then r(ab, zt)∧r(a′b′, zt)has �nitely many realizations. In other words, if a′b′ ≡cd ab and acl(ab) 6= acl(a′b′),then c, d ∈ acl(aba′b′).Case 1: a |⌣cd
a′. Then a′b′ |⌣cd

ab, so dim(aba′b′) = 4. Now
dim(aba′b′cd) = dim(aba′b′/cd) + dim(cd) = 2 + 2 = 4 = dim(aba′b′),hen
e c, d ∈ acl(aba′b′).Case 2: acl(acd) = acl(a′cd). Sin
e acl(ab) 6= acl(a′b′), a′ or b′ is not in acl(ab).Thus either dim(aba′) = 3 or dim(abb′) = 3. Either way, sin
e dim(aba′b′cd) = 3,we get c, d ∈ acl(aba′b′).Now, r(xy, zt) is a 
omplete almost quasidesign, as needed. �We 
an now summarize our results on equivalent de�nitions of weak lo
al mod-ularity / weak 1-basedness by putting them together with the results form [5℄.6



Theorem 2.11. The following are equivalent for any geometri
 theory T(1) T is weakly lo
ally modular;(2) T is weakly one-based;(3) T does not have a partial (
omplete) almost quasidesign;(4) in any lovely pair (M,P ) of models of T , aclP = acl;(5) in any lovely pair (M,P ) of models of T , the small 
losure operator scl =
acl(− ∪ P ) indu
es a modular pregeometryFrom now on we will use the terms weakly 1-based and weakly lo
ally modularinter
hangeably.It is known (see e.g.[18℄) that redu
ts of geometri
 theories are geometri
. It isalso known (see [20℄) that 1-basedness is preserved by redu
ts in the 
ases of super-stable theories of �nite U-rank and stable groups (given that the group operation isinta
t). In the 
ase of SU-rank 1 stru
tures, the fa
t that 1-basedness is preservedby redu
ts follows from its 
hara
terization in [23℄: redu
t of a lovely pair is againlovely, and TP having SU-rank ≤ 2 is also preserved. In the o-minimal group 
ase,it is known (see [15℄) that linear stru
tures are exa
tly the redu
ts of ordered ve
-tor spa
es over division rings, and thus linearity is preserved under redu
ts as well.Here we generalize these fa
ts to the 
ase of geometri
 theories.Proposition 2.12. Weak 1-basedness is preserved by redu
ts.Proof. Suppose T− ⊂ T is a redu
t. We are working in a su�
iently saturatedmodel of T . Its redu
t is a su�
iently saturated model of T−. If T− is not weakly1-based, it has a 
omplete almost quasidesign r(~x, ~y). Adding parameters to thelanguage we may assume that r is over ∅. We 
laim that r is a partial almostquasidesign in the sense of T . Part (2) of the de�nition is 
lear sin
e acl−(A) is asubset of acl(A) for any set A. Suppose part (1) fails in T . Thus in T r(~x, ~y) impliesthat ~x ∈ acl(~y) or ~y ∈ acl(~x). By 
ompa
tness, r(~x, ~y) implies (in T ) a formula

φ(~x, ~y) ∨ ψ(~x, ~y), where φ and ψ witness ~x ∈ acl(~y) and ~y ∈ acl(~x) respe
tively.Now, for any ~b and ~c su
h that |= r(~b,~c), ~b 6∈ acl−(~c) and ~c 6∈ acl−(~b) (sin
e r is
omplete in T−). Then for any ~b~c |= r(~x, ~y) we have either |= φ(~b,~c) (i.e. ~b ∈ acl(~c))or |= ψ(~b,~c) (i.e. ~c ∈ acl(~b)), or both.On the other hand, whenever |= r(~b,~c), there are in�nitely many ~c′ and ~b′ su
hthat |= r(~b, ~c′) and |= r(~b′,~c). Now, for all but �nitely many ~c′ we have |= φ(~b, ~c′)witnessing ~b ∈ acl(~c′) (sin
e ψ(~b, ~y) has �nitely many solutions). Similarly, for allbut �nitely many ~b′ we have |= ψ(~b′,~c) witnessing ~c ∈ acl(~b′) (sin
e ψ(~x,~c) has�nitely many solutions).Thus for any n we 
an build a sequen
e ~b0~c0~b1~c1~b2~c2 . . .~bn~cn su
h that
|= r(~bi,~ci),

|= r(~bi+1,~ci),

~bi ∈ acl(~ci),

~ci ∈ acl(~bi+1),

~bi+1 6∈ acl(~ci),

~ci 6∈ acl(bi).Thus we have stri
t embeddings
acl(~b0) ⊂ acl(~c0) ⊂ acl(~b1) ⊂ acl(~c1) ⊂ . . . ⊂ acl(~bn) ⊂ acl(~cn).7



Contradi
tion with �niteness of dim(~c). �Our next goal is to 
ompare weak lo
al modularity with linearity. We start byre
alling the de�nition from [18℄:De�nition 2.13. Let T be a geometri
 theory and let M |= T be saturated. Bya 
urve we mean a one dimensional subset of M2. A family F of plane 
urves issaid to be de�nable if it 
an be written as a family of �bers of a de�nable subset of
M2×Mk, where the parameter set is the subset ofMk. A family F of plane 
urvesis said to be interpretable if it 
an be written as a family of �bers of a de�nablesubset of M2 × (Mk/E), where E is a de�nable equivalen
e relation. We say F isnormal if any two 
urves from F whi
h are given by di�erent parameters interse
tat most �nitely many times. We say that T is linear if every interpretable normalfamily of plane 
urves has dimension ≤ 1.On has to be 
areful with the previous de�nition. In order for the dimension ofan interpretable family of plane 
urves to be de�ned, we need to extend the notionof dimension from real tuples to imaginary tuples. In [13℄ Gagelman showed thatthe geometri
 theories T where the notion of independen
e extends to the set ofimaginary elements are those that are surgi
al. Re
all that a geometri
 theory Tis surgi
al if whenever X ⊂ Mn is de�nable and dim(X) = m then there is node�nable equivalen
e relation E on X that has in�nitely many 
lasses of dimension
m. The results from [13℄ together with the fa
t that thorn forking is the weakestnotion of independen
e [12℄, show that T is surgi
al if and only if T is rosy of thornrank one.We will divide our dis
ussion on normal families of plane 
urves into two 
ases.We will �rst deal with de�nable families in the setting of geometri
 theories. Thenwe will deal with the 
ase of interpretable families when the underlying theory isrosy of thorn rank one.For the following results we will use the tools of lovely pairs developed in [5℄. Inparti
ular, we will use the fa
t that a theory T is weakly lo
ally modular if andonly if the small 
losure in a saturated model of TP is modular.Lemma 2.14. Let T be a geometri
 theory and let M be a saturated model of T .If M has a de�nable normal family of plane 
urves of dimension ≥ 2 then T is notweakly lo
ally modular.Proof. We may assume that there is N � M su
h that (M,N) is a lovely pair ofmodels of T and we write P instead of N . For A ⊂M we write scl(A) for acl(A,P ).Assume that T is weakly lo
ally modular so scl is modular. By hypothesis there is a
2-dimensional normal family of plane 
urves, say given by {C(x, y,~a,~b) : ~a ∈ θ(~z,~b)}where θ(~z,~b) de�nes a subset of Mk and dim(θ(~z,~b)) = 2. We may assume that θis de�ned over ∅.We may assume that θ(~a) = θ(a1, a2,~a3) and that whenever θ(a1, a2,~a3) holdsthen ~a3 ∈ acl(a1, a2). Let ~a = (a1, a2,~a3) ∈ θ be generi
 over P , let c, d ∈ Mbe su
h that C(c, d, a1, a2,~a3) and 
hoose c independent from a1a2P . Let X =
scl(c, d), Y = scl(a1, a2). Sin
e scl is modular and dim(X ∪ Y/P ) = 3 we musthave dim(X ∩ Y/P ) = 1. Let t be real su
h that scl(t) = X ∩ Y . Note that
d ∈ scl(c, t) and that dim(a1a2/tP ) = 1. Let ~p ∈ P be su
h that d ∈ acl(c, t, ~p),
dim(a1a2/t~p) = 1. Note that by generi
ity of (a1, a2) we have t ∈ acl(a1, a2, ~p).8



Let (a′1, a
′
2,~a

′
3) |= tp(a1, a2,~a3/t, c, d, ~p) be independent from c, t, a1, a2, ~p over

c, t, ~p. Then whenever c′ |= tp(c/a1, a2,~a3, a
′
1, a

′
2,~a

′
3, ~p) we have that

∃y(C(c′, y, a1, a2,~a3) ∧C(c′, y, a′1, a
′
2,~a

′
3)).Sin
e the type tp(c/a1, a2,~a3, a

′
1, a

′
2,~a

′
3, ~p) is not algebrai
, the family of plane 
urvesis not normal, a 
ontradi
tion. �Lemma 2.15. Let T be a thorn rank one rosy theory and let M be a saturatedmodel of T . If M has a interpretable normal family of plane 
urves of dimension

≥ 2 then scl is not modular.Proof. As before we may assume that (M,P ) is a lovely pair of models of T . Byhypothesis there is a 2-dimensional normal family of plane 
urves, say given by
{C(x, y, â) : â ∈ θ} where θ(ẑ) de�nes a subset ofM eq and dim(θ(ẑ)) = 2. We mayassume that θ is de�ned over ∅. Let a be a base for â, so â = aE for some de�nableequivalen
e relation E. We may write a = (a1, . . . , ak, . . . , an), where a1, . . . , akare independent and ak+1, . . . , an ∈ acl(a1, . . . , ak). By the extension property, wemay 
hoose a su
h that dim(a/P ) = k. Let c, d ∈ M be su
h that C(c, d, â) and
hoose c independent from a, P . Let X = scl(c, d), Y = scl(a). Sin
e scl is modularand dim(X ∪Y/P ) = 1+dim(Y/P ) we must have dim(X ∩Y/P ) = 1. Let t be realsu
h that scl(t) = X ∩ Y . Note that d ∈ scl(c, t) and that dim(a/tP ) < dim(a/P ).Without loss of generality we may assume that ak ∈ acl(a1, . . . , ak−1, t, P ). Let
~p ∈ P be su
h that d ∈ acl(c, t, ~p), ak ∈ acl(a<k, t, ~p), by the ex
hange property wehave t ∈ acl(a1, . . . , ak, ~p).Let b |= tp(a/ acl(t, c, d, ~p)) be independent from c, t, a, ~p over c, t, ~p. Let b̂ =

bE, so we get â |⌣ct~p
b̂ and c 6∈ acl(a, b, t, ~p). Sin
e dim(â/ct~p) = dim(â/cd~p) =

dim(â/cd) = 1, we must have â 6= b̂. Then whenever c′ |= tp(c/a, b, ~p) we havethat there is y satisfying C(c′, y, â) and C(c′, y, b̂). Sin
e the type tp(c/a, b, ~p) isnot algebrai
, the family of plane 
urves is not normal, a 
ontradi
tion. �We will prove below a partial 
onverse to the previous results using the proof ofProposition 2.10.De�nition 2.16. Let T be a geometri
 theory and let M be a saturated model of
T . Let F = {ψ(z, t,~a,~b) : ~a |= ϕ(~x,~b)} be a family of plane 
urves. We say that Fis generi
ally normal if whenever ~a,~a′ |= ϕ(~x,~b) are su
h that dim(~a/~a′~b) ≥ 1, wehave that ψ(z, t,~a,~b) ∧ ψ(z, t,~a′,~b) is �nite. We say that T is generi
ally linear ifevery generi
ally normal family of plane 
urves has dimension ≤ 1.Proposition 2.17. Let T be a geometri
 theory. If T not weakly 1-based, then Tis not generi
ally linear.Proof. Let M be a saturated model of T . Assume T is not weakly 1-based, sothis fa
t is witnessed by tp(a1a2/cd~b) where dim(cd/~b) = 2. So for any a′1a′2 ≡

cd~b

a1a2 su
h that a′1a′2 |⌣cd~b
a1a2 we have dim(a1a2a

′
1a

′
2) = 4. Let r(zt, x1x2) =

tp(cd, a1a2/~b). As in the proof of Proposition 2.10, we have that if a′1a′2 realizes
tp(a1a2/~b) and acl(a′1a

′
2
~b) 6= acl(a1a2

~b) then r(zt, a1a2) ∧ r(zt, a′1a
′
2) has �nitelymany realizations. By 
ompa
tness there is a uniform bound m for these realiza-tions. Choose a formula ψ(z, t, x1, x2,~b) ∈ r(z, t, x1, x2) su
h that ψ(z, t, a1, a2,~b) isone dimensional and su
h that whenever a′1a′2 realizes tp(a1a2/~b) and acl(a′1a

′
2
~b) 6=9



acl(a1a2
~b) then ψ(z, t, a1a2,~b) ∧ ψ(z, t, a′1a

′
2,
~b) has at most m realizations. By
ompa
tness, there is a formula ϕ(x1, x2,~b) ∈ tp(a1, a2/~b), su
h that if a′1a′2 re-alizes ϕ(x1, x2,~b) then ψ(z, t, a′1, a

′
2,
~b) is one dimensional (in the variables z, t).Making ϕ(x1, x2,~b) and ψ(z, t, x1, x2,~b) smaller if ne
essary, whenever a1a2, a′1a′2are realizations of ϕ(x1, x2,~b) su
h that acl(a1a2

~b) 6= acl(a′1a
′
2
~b) we have that

ψ(z, t, a1, a2,~b) ∧ ψ(z, t, a′1, a
′
2,
~b) has at most m realizations. Thus, generi
ally

{ψ(z, t, a1, a2,~b) : (a1, a2) |= ϕ(x1, x2,~b)} is a 2-dimensional family of plane 
urvesand T is not generi
ally linear. �3. ω-
ategori
al 
aseOne of the main 
onsequen
es of one-basedness in (non-trivial) stable, and tosome extent, simple geometri
 theories was de�nability or type-de�nability of in-�nite groups in T eq. In the o-minimal 
ase, groups appear naturally in the linear
ase, as a 
onsequen
e of the Tri
hotomy theorem. It is well-known that the ge-ometry of a non-trivial lo
ally modular (one-based) strongly minimal stru
ture isproje
tive or a�ne over a division ring, and the 
orresponding ve
tor spa
e is a
-tually de�nable. This is no longer the 
ase for a non-trivial 1-based SU-rank 1theory, but De Piro and Kim [9℄ show, using 
anoni
al bases, that an ω-
ategori
alnon-trivial 1-based SU-rank 1 theory interprets an in�nite ve
tor spa
e over a �-nite �eld. Thus our best hope at this point is to obtain a group in the 
ase of an
ω-
ategori
al non-trivial weakly 1-based geometri
 theory. In the 
ase of geometri
theories, sin
e 
anoni
al bases are not readily available, we use the lovely pairsapproa
h developed in [23℄.First we note that the weak 1-basedness assumption implies the preservation of
ω-
ategori
ity when passing to the theory of lovely pairs.The following is a generalization of Proposition 5.15 from [23℄, and its proof alsoimproves the estimate on the size of a P -independent extension from Lemma 5.14.of [23℄.Proposition 3.1. Let T be an ω-
ategori
al weakly 1-based geometri
 theory. Then
TP is ω-
ategori
al.Proof. Let ~a~b be a tuple of length n in a lovely pair, su
h that ~a ∈ acl(~bP ) and ~bis independent over P . Let ~p ∈ P be su
h that ~a ∈ acl(~b~p). By weak 1-basedness,there is ~a′~b′ |= tp(~a~b/p̄) su
h that ~a~b |⌣~p

~a′~b′ and ~a~b |⌣~a′~b′
~p. Then ~b′ is independentover p̄~a~b, so we may assume that ~b′ ∈ P . It follows that ~a′ ∈ P ~a~b |⌣~a′~b′

P . Thusany n-tuple 
an be extended to a P -independent set of size 2n (in fa
t, by itsown L-
onjugate). Then by uniform lo
al �niteness of acl in T , there is a fun
tion
f : ω → ω su
h that any n tuple embeds in a P -independent algebrai
ally 
losed setof size f(n). Sin
e for su
h sets LP -type is determined by quanti�er free LP -type,we have �nitely many n-types in TP for any n. Thus TP is ω-
ategori
al. �As in [23℄, if T is a non-trivial weakly lo
ally modular geometri
 theory, then thegeometry of the small 
losure (the quotient geometry, or the asso
iated geometry of
(M, acl(−∪P (M)))) is split into a disjoint union of in�nite-dimensional proje
tivegeometries over division rings (and possibly a trivial geometry) by the equivalen
erelation "x = y or |cl(x, y)| ≥ 3".If T is weakly 1-based and ω-
ategori
al, then by the above proposition, TPis also ω-
ategori
al and the relations y ∈ acl(y1, . . . , yn, P ) and the equivalen
e10



relation acl(x, P ) = acl(y, P ) are LP -de�nable. Thus the geometry of the small
losure is interpretable in TP and the relations x ∈ cl(y1, . . . , yn) on its elements arede�nable in (TP )eq. Clearly, the equivalen
e relation "x = y or |cl(x, y)| ≥ 3" is alsode�nable, and thus ea
h of the proje
tive geometries over division rings mentionedabove, viewed as a stru
ture where the only relations are given by x ∈ cl(y1, . . . , yn),
n ≥ 1, is de�nable in (TP )eq (as a quotient of the home sort). Note that ea
h ofthese geometries is an ω-
ategori
al stru
ture, and in the superrosy thorn-rank 1
ase, by Fa
t 2.2 it is superrosy of thorn-rank at most 2.Let (V,+, λ·)λ∈F be an in�nite dimensional ve
tor spa
e over a division ring F .By Geom(V ) we denote the asso
iated geometry of (V, Span) viewed as a stru
ture
(G, x ∈ cl(y1, . . . , yn))n≥1. Note that a ∈ cl(b̄) does not imply a ∈ acl(b̄) in thislanguage unless F is �nite.Our goal is to show that the division rings above are a
tually �nite �elds. Then
Geom(V ) is a non-trivial ω-
ategori
al strongly minimal stru
ture, and it is well-known that su
h a theory interprets an in�nite group (namely, a ve
tor spa
e overa �nite �eld).The following proposition shows that for an in�nite F , Th(Geom(V )) has athorn-forking 
hains of any �nite length. It follows that if T is a weakly 1-basedsuperrosy theory of thorn-rank 1, then all the division rings above are �nite (sin
e,as noted above, hen
e Geom(V ), will have thorn-rank at most 2 ), and thus TPinterprets an in�nite group (a ve
tor spa
e over a �nite �eld).When working in Geom(V ), for any v ∈ V , by v∗ we denote Span(v) as anelement of Geom(V ).Proposition 3.2. Suppose V is a ve
tor spa
e over an in�nite division ring. Let
v1, . . . , vn ∈ V be linearly independent. Let uk = v1+v2+. . .+vk. Then for any 1 <
k ≤ n, tp((u∗n/v∗1 , . . . , v∗n, u∗2, . . . , u∗k) thorn-divides over {v∗1 , . . . , v

∗
n, u

∗
2, . . . , u

∗
k−1}.Proof. Note that u∗n satis�es the formula

φ(x, u∗k, v
∗
k+1, . . . , v

∗
n) = x ∈ cl(u∗k, v

∗
k+1, . . . , v

∗
n) ∧ x 6∈ cl(v∗k+1, . . . , v

∗
n).We will show that φ(x) strongly divides over {v∗1 , . . . , v

∗
n, u

∗
2, . . . , u

∗
k−1}. We arenow working in a saturated elementary extension G of Geom(V ).CLAIM: {φ(x, a, b1, . . . , bn−k)|a~b |= tp(u∗k, v

∗
k+1, . . . , v

∗
n/v

∗
1 , . . . , v

∗
n, u

∗
2, . . . , u

∗
k−1)}is 2-in
onsistent.Proof of the Claim: Note that for any a~b as above, b1 = v∗k+1, . . . , bn−k = v∗nand a satis�es ψ(y, u∗k−1, v

∗
k) = y ∈ cl(u∗k−1, v

∗
k) (sin
e this holds for u∗k). Now, if

a, a′ ∈ G are two distin
t realizations of ψ(y, u∗k−1, v
∗
k), then

φ(x, a, v∗k+1, . . . , v
∗
n) ∧ φ(x, a′, v∗k+1, . . . , v

∗
n)is in
onsistent. Indeed, we may assume that a, a′ ∈ Geom(V ), so a = w∗

1 and
a′ = w∗

2 for some linearly independent w1, w2 ∈ V . Now, if φ(x,w∗
1 , v

∗
k+1, . . . , v

∗
n)∧

φ(x,w∗
2 , v

∗
k+1, . . . , v

∗
n) is realized by some p∗ (where p ∈ V ), then from the de�nitionof φ,

p = γ1w1 + µ1vk+1 + . . .+ µn−kvn = γ2w2 + ξ1vk+1 + . . .+ ξn−1vn,where γ1, γ2 6= 0. Thus, γ1w1 − γ2w2 ∈ Span(vk+1, . . . , vn). On the other hand,
γ1w1 − γ2w2 6= 0 (by linear independen
e of w1 and w2) and γ1w1 − γ2w2 ∈
Span(v1, . . . , vk−1, vk) sin
e w∗

1 , w
∗
2 ∈ cl(u∗k−1, v

∗
k). Thus Span(v1, . . . , vk−1, vk)and Span(vk+1, . . . , vn) have a non-zero ve
tor in their interse
tion, a 
ontradi
tion11



with the linear independen
e of v1, . . . , vn. This proves the Claim, and hen
e φ(x)strongly divides over {v∗1 , . . . , v∗n, u∗2, . . . , u∗k−1}, as needed. �Corollary 3.3. If T is a ω-
ategori
al weakly 1-based thorn rank one theory, then
TP interprets an in�nite group.The assumption of T being superrosy of thorn rank one seems quite arti�-
ial, and we therefore 
onje
ture that the above result holds for any ω-
ategori
alweakly one-based geometri
 theory. A key issue here is to understand the theory
Th(Geom(V )) when V is in�nite-dimensional over an in�nite division ring. So farwe know that Th(Geom(V )) has in�nite thorn-forking (even thorn-dividing) 
hains,and any model of Th(Geom(V )) is an in�nite-dimensional proje
tive geometry overan in�nite (and possibly di�erent) division ring. However the following questionsremain open.Question 3.4. Let V be an in�nite-dimensional ve
tor spa
e over an in�nite divi-sion ring, and let T = Th(Geom(V )).(1) Is T ω-
ategori
al?(2) Is T stable?(3) Does T have trivial algebrai
 
losure?(4) Does T have quanti�er elimination?(5) What happens when we vary the (in�nite) division ring?4. Independen
e in TP for T weakly 1-basedWe know from Fa
t 1.3, that for T a rosy theory of thorn rank one, the asso
iatedtheory TP of lovely pairs of models of T is again rosy of thorn rank ≤ ω. It is aninteresting question whi
h other properties of T are preserved in T . We start bygeneralizing the notion of weak 1-based theories to the setting of rosy theories.De�nition 4.1. Let T be a rosy theory. We say that T is weakly 1-based if whenever
M |= T is saturated, B ⊂ M and ~a ∈ M there is a superset C of B independentfrom ~a over B su
h that whenever ~a′ |= tp(~a/C) is independent from ~a over C, wehave ~a |⌣~a′

B.Note that for a simple T , a 
anoni
al base argument shows that weak 1-basedness
oin
ides with 1-basedness. The goal of this se
tion is to show that whenever Tis weakly 1-based rosy rank one theory then TP is again weakly 1-based. We onlysu

eeded in doing this under some extra assumptions.Lemma 4.2. Let T be a weakly 1-based rosy theory. Let M |= T be su�
ientlysaturated, let ~a ∈ M , B ⊂ M and let C ⊃ B be su
h that ~a |⌣B
C and whenever

~a′ |= tp(~a/C) is independent from ~a over C, we have ~a |⌣~a′
B. Let D |= tp(C/B~a),then whenever ~a′ |= tp(~a/D) is independent from ~a over D, we have ~a |⌣~a′

B.Proof. Clear. �Remark 4.3. Let M |= T be su�
iently saturated, let ~a ∈ M , B ⊂ M andassume that there is a set C ⊃ B with ~a |⌣B
C su
h that whenever ~a′ |= tp(~a/C)is independent from ~a over C, we have ~a |⌣~a′
B. Also assume that ~b ∈ M andthat there is a set D ⊃ B with ~a~b |⌣B

D su
h that whenever ~a′~b′ |= tp(~a~b/D) isindependent from ~a~b over D, we have ~a~b |⌣~a′~b′
B. Let C′ ≡B~a C be su
h that12



C′ |⌣B~a
D~b and let E = D ∪ C′. Then whenever ~a′~b′ |= tp(~a~b/E) is independentfrom ~a~b over E, we have ~a~b |⌣~a′~b′

B and ~a |⌣~a′
B.Proof. Let C′ ≡B~a C be su
h that C′ |⌣B~a

D~b and let E = D ∪ C′. Note that
C′ |⌣B

~a. By transitivity we get C′ |⌣B
D~a~b and C′ |⌣BD

~a~b. Applying symmetryand transitivity we get ~a~b |⌣B
E. Let ~a′~b′ |= tp(~a~b/E) be su
h that ~a′~b′ |⌣E

~a~b.In parti
ular, sin
e ~a~b |⌣D
E, we have ~a′~b′ |= tp(~a~b/D) and ~a′~b′ |⌣D

~a~b. Thus
~a~b |⌣~a′~b′

B. We also have ~a′ |⌣E
~a and ~a |⌣C′

E, so ~a′ |⌣C′
~a. By Lemma 4.2

~a |⌣~a′
B. �Notation 4.4. Let (M,P ) |= TP be a saturated model. We use the word indepen-den
e for acl-independen
e and we write |⌣ for the acl-independen
e relation. Weuse the word TP -independent for þ-independen
e in models of TP and we write the
orresponding independen
e relation as |⌣

P .We will need the following result from the proof of [5, Proposition 4.8℄Fa
t 4.5. Let T be a weakly lo
ally modular thorn rank one theory and let (M,P ) |=
TP . Let a ∈ M , A ⊂ B ⊂ M and assume that a ∈ acl(AP ) \ acl(A) and that
a ∈ acl(BP ) \ acl(B). Then tpP (a/B) does not þ-fork over A.Notation 4.6. Let a1, . . . , an ∈M . We write a<1 for ∅ and for 1 < i ≤ n+ 1, wewrite a<i for (a1, . . . , ai−1).We will also assume the following 
ondition:Assumption 4.7. Let T be a weakly 1-based geometri
 thorn rank one theory andlet (M,P ) |= TP . Let A ⊂ B ⊂M and let ~a = (a1, . . . , an, an+1, . . . , am, am+1, . . . , al) ∈
M , where (a1, . . . , an) is a P ∪ A-independent tuple, for i = n + 1, . . . ,m ai ∈
acl(a<iPA) \ acl(a<iA) and for i = m+ 1, . . . , l ai ∈ acl(a<iA).Then tpP (~a/B) does not thorn fork over A if and only if (a1, . . . , an) is a P ∪B-independent tuple and for i = n+ 1, . . . ,m ai ∈ acl(a<i, P,B) \ acl(a<i, B).In the above assumption, we know that the right property always implies theleft property, we assume left to right.Proposition 4.8. Assume that T is a weakly 1-based geometri
 thorn rank onetheory satisfying assumption 4.7. Then TP is also weakly 1-based.Proof. Let (M,P ) |= TP be saturated, let ~a ∈M be a �nite tuple and let A ⊂M bea set. We will write ~a = (a1, . . . , an, an+1, . . . , am, am+1, . . . , al) where (a1, . . . , an)is a P ∪A-independent tuple, for i = n+ 1, . . . ,m ai ∈ acl(a<iPA) \ acl(a<iA) andfor i = m + 1, . . . , l ai ∈ acl(a<iA). We need to �nd a superset E ⊃ A su
h that
~a |⌣

P

A
E and whenever ~a′ |= tpP (~a/E) is su
h that ~a |⌣

P

E
~a′ then ~a |⌣

P

~a′
A.Let ~p = (p1, . . . , pt) ∈ P be an independent tuple overA su
h that an+1, . . . , am ∈

acl(a1, . . . , an, p1, . . . , pt, A). By hypothesis, there is a setD ⊃ A su
h that ~a~p |⌣A
Dand whenever ~a′~p′ |= tp(~a~p/D) is su
h that ~a~p |⌣D

~a′~p′, then ~a~p |⌣~a′~p′
A. Again byhypothesis, there is a set C ⊃ A su
h that ~a |⌣A

C and whenever ~a′ |= tp(~a/C) issu
h that ~a |⌣C
~a′, then ~a |⌣~a′

A. By the previous remark, we 
an �nd E su
h that
E |⌣A

~a~p and whenever ~a′~p′ |= tp(~a~p/E) is independent from ~a~p over E, we have
~a~p |⌣~a′~p′

A and ~a |⌣~a′
A. (0) 13



By Lemma 4.2 we may 
hoose E su
h that E |⌣A~a~p
P .Claim ~a |⌣

P

A
EFrom the previous 
onditions, we have ~a~p |⌣A

E and E |⌣A
~a~pP . Thus a1, . . . , anis a P ∪ E-independent tuple, ai ∈ acl(a<i, p1, . . . , pt, E) \ acl(a<i, E) for i = n +

1, . . . ,m. Sin
e T is weakly lo
ally modular, the 
laim follows from Fa
t 4.5.Now let ~a′ |= tpP (~a/E) be su
h that ~a′ |⌣
P

E
~a.Claim ~a |⌣

P

~a′
ABy Assumption 4.7 a1, . . . , an is an E~a′ ∪ P -independent n-tuple, so it is also a

~a′∪P -independent n-tuple. Sin
e ~a′ |⌣
P

E
~a we have ~a′ |⌣E

~a and thus by (0) ~a |⌣~a′
A.In parti
ular, this shows that am+1, . . . , al ∈ acl(a1, . . . , am,~a

′). It remains to showthat an+1, . . . , am ∈ acl(a1, . . . , an,~a
′, P ).Let ~q = (q1, . . . , qt) |= tpP (p1, . . . , pt/E~a) be su
h that ~q |⌣

P

~aE
~a′. By transitivity,we get ~a~q |⌣

P

E
~a′. Now let ~q′ ∈ P be su
h that tpP (~a~q/E) = tpP (~a′~q′/E), we may
hoose ~q′ su
h that ~q′ |⌣

P

E~a′
~a~q and by symmetry and transitivity we get ~a~q |⌣

P

E
~a′~q′.From this we 
on
lude ~a~q |⌣E

~a′~q′ and by (0) ~a~q |⌣~a′~q′
A. Sin
e an+1, . . . , am ∈

acl(a1, . . . , an, ~q, A), we get am+1, . . . , al ∈ acl(a1, . . . , an,~a
′, ~q, ~q′) as desired.

�Corollary 4.9. Let T be the theory of an o-minimal ordered ve
tor spa
e and let
TP be the 
orresponding theory of lovely pairs. Then TP is weakly 1-based.Proof. Sin
e the algebrai
 
losure 
oin
ides with the linear span, assumption 4.7holds and thus by Proposition 4.8 the result follows. �Corollary 4.10. Let T be an SU -rank one theory and let TP be the 
orrespondingtheory of lovely pairs. Then TP is weakly 1-based.Proof. Sin
e T is simple of SU -rank one, T is 1-based, TP is supersimple and forkingand thorn forking 
oin
ide in models of TP . By [23, Corollary 3.9℄ assumption 4.7holds and thus by Proposition 4.8 the result follows. �Note that the previous result is known in a more general 
ontext. It is proved in[3℄ that if T is simple 1-based and the theory TP of lovely pairs is �rst order, then
TP is again 1-based.We know from se
tion 2 that in the geometri
 
ase, weak 1-basedness is preservedby redu
ts. As we mentioned earlier, it is known that redu
ts of 1-based superstabletheories of �nite U-rank are 1-based.Question 4.11. Is a redu
t of a weakly 1-based superrosy theory of �nite thornrank again weakly 1-based?By Fa
t 2.2, for a weakly 1-based superrosy þ-rank 1 geometri
 theory T , TP issuperrosy of þ-rank ≤ 2. We also know from [15℄, that linear o-minimal stru
tureswith global addition are pre
isely the redu
ts of ordered ve
tor spa
es. Sin
e theredu
ts of lovely pairs are again lovely, a positive answer to the above question, to-gether with Corollary 4.9, would imply preservation of weak 1-basedness (linearity)when passing to TP in the additive o-minimal 
ase.14



5. Examples5.1. Adding a generi
 predi
ate. In this se
tion we assume the reader is familiarwith the work of Chatzidakis and Pillay in random predi
ates [8℄. We will showthat if a theory is geometri
 and weakly 1-based then any of its 
ompletions witha random predi
ate is again weakly 1-based.Fix T a 
omplete theory in a language L. We will assume that L 
ontains aunary predi
ate symbol S (whi
h 
ould be equality) and we let LR be the language
L augmented with a new unary predi
ate symbol R (we use the letter R insteadof the usual notation P , sin
e we use P in earlier parts of the paper to denote apredi
ate in a lovely pair). It is proved in [8℄ that the theory T∪{∀xR(x) =⇒ S(x)}has a model 
ompanion TR,S. The theory TR,S may not be 
omplete.Our results rely heavily on the following fa
ts:Fa
t 5.1. [8, Corollary 2.6,(3)℄ The algebrai
 
losure in models of TR,S 
oin
ideswith the algebrai
 
losure in the sense of T .For models of TR,S we will write acl for the algebrai
 
losure.Fa
t 5.2. [8, Remark 2.12,(4)℄ If T eliminates ∃∞ then TR,S also eliminates ∃∞.First observe that sin
e T is geometri
, acl has the ex
hange property in modelsof TR,S and thus TR,S is pregeometri
. Also, by the previous fa
t, TR,S eliminates
∃∞, so in fa
t TR,S is a geometri
 theory.Lemma 5.3. Assume that T is a geometri
 theory whi
h is weakly 1-based. Thenany 
ompletion of TR,S is weakly 1-based.Proof. Let M |= TR,S be saturated, let ~a ∈ M and let B ⊂ M be a set. Byhypothesis there is a superset C of B with ~a |⌣B

C su
h that whenever~a′ |= tp(~a/C)is acl-independent from ~a over C, we have ~a |⌣~a′
B. Sin
e algebrai
 independen
ein the sense of T and TR,S 
oin
ide, C is a witness for the desired property in

TR,S. �5.2. The stru
ture indu
ed on the predi
ate of a lovely pair. In this se
tionwe study the stru
ture indu
ed on the predi
ate of the lovely pair by the large model.Our presentation follows 
losely the one from Pillay and Vassiliev [22℄. Let T bea geometri
 theory in a language L with quanti�er elimination and let (M,P ) bea lovely pair of models of T . For ea
h L-formula ϕ(x) with parameters in M , weintrodu
e a new predi
ate symbol Rϕ(x). Let L∗ be the resulting language. Wedenote byM∗ the stru
tureM with the natural interpretation for the new relationsand P ∗ the substru
ture with universe P . Finally T ∗ stands for the theory of P ∗.Note that the language L∗ and the theory T ∗ depend on the 
hoi
e of M . Wedenote the algebrai
 
losure in models if T by acl and in models of T ∗ by acl∗.We will 
hara
terize acl∗ in terms of acl andM , prove that T ∗ is also a geometri
theory and that if T is weakly 1-based then T ∗ is again weakly 1-based.Following [2, 22℄, we say that (M,P ) eliminates the quanti�er ∃y ∈ P if for everyformula ϕ(~x, ~y, ~z) and ~a ∈ M there exists a formula ψ(~x, ~w) and ~b ∈ M su
h thatfor all ~c ∈ P ,
M |= ψ(~c,~b) if and only if (M,P ) |= ∃d ∈ Pϕ(~c, d,~a)It is 
lear that (M,P ) eliminates the quanti�er ∃y ∈ P if and only if T ∗ hasquanti�er elimination. 15



Lemma 5.4. The theory T ∗ eliminates quanti�ers.Proof. Note that T ∗ is a redu
t of ThM (M,P ), the theory of the pair with all the el-ements ofM added as 
onstants. Take a saturated extension (N,P ) of ThM (M,P ).Then the redu
t of P (N) to the language of T ∗ is a saturated model of T ∗.Now, (N,P ) is still a lovely pair, andM is P -independent in (N,P ). So any twotuples in P (N) realizing the same quanti�er free types in T ∗, and hen
e the same
L-type overM , a
tually realize the same LP -type overM , and hen
e the same T ∗-type. By saturation of P (N) as a model of T ∗, T ∗ has quanti�er elimination. �Lemma 5.5. Assume that T is a geometri
 theory. Then T ∗ is also geometri
.Furthermore acl∗ 
oin
ides with aclM restri
ted to P .Proof. Let (N,P ) be a saturated model of ThM(M,P ). Let B ⊂ P (N), a ∈ P (N).Sin
e T ∗ eliminates quanti�ers, a ∈ acl∗(B) if and only if there is an L-formula
ϕ(x, ~y, ~z) and tuples ~m ∈ M , ~b ∈ B su
h that M |= ϕ(a,~b, ~m) and the formula
ϕ(x,~b, ~m) has �nitely many realizations in P (N). The last 
ondition is equivalentto ϕ(x,~b, ~m) being algebrai
 in T . It follows that for any B ⊂ P (N), acl∗(B) =
aclM (B)∩P (N), and sin
e aclM satis�es the ex
hange property in N , same is truefor acl∗.To show that T ∗ eliminates ∃∞, 
onsider any L∗-formula ψ(x, ~y). By quanti�erelimination in T ∗, it is equivalent to an L-formula ϕ(x, ~y, ~m) with parameters ~m ∈

M . For any ~b ∈ P (N), ψ(x,~b) is algebrai
 if and only if ϕ(x,~b, ~m) has �nitelymany solutions in P (N), whi
h is equivalent to algebrai
ity of ϕ(x,~b, ~m) in N .Sin
e T eliminates ∃∞, ϕ(x,~b, ~m) is algebrai
 if and only if N |= θ(~b, ~m) for some
L-formula θ(~y, ~z). Let Rθ(~y) 
orrespond to θ(~y, ~m). Thus for any ~b ∈ P (N), ψ(x,~b)is algebrai
 if and only if Rθ(~b) holds in P (N) viewed as a model of T ∗, as needed.

�Sin
e T ∗ is again geometri
, T ∗ has a notion of independen
e indu
ed by acl∗. Asbefore, we let (N,P ) be a saturated model of ThM(M,P ). ForA,B,C ⊂ P (N) sets,we write A |⌣
∗

B
C to mean that A is acl∗-independent from C over B. Note thatby [22, Theorem 2.3℄ when T is simple of SU -rank one, our notion of independen
e
oin
ides with non-forking in T ∗.Lemma 5.6. Assume that T is a geometri
 theory whi
h is weakly 1-based. Then

T ∗ is weakly 1-based.Proof. Let (N,P ) be a saturated model of ThM (M,P ). Let ~a ∈ P (N) and let
B ⊂ P (N) be a set. By hypothesis there is a superset C of BM su
h that ~a |⌣BM

Cand whenever ~a′ |= tp(~a/C) is independent from ~a over C, we have ~a |⌣~a′
BM .Sin
e acl∗ = aclM , C is a witness for the desired property in T ∗. �5.3. Fields expanded with a group having the Mann property. In thisse
tion we deal with the theory of a dense divisible multipli
ative subgroup withthe Mann property of a real 
losed �eld K as presented by van den Dries andGünaydin in [11℄. These stru
tures are analyzed by adding a predi
ate G to thereal 
losed �eld, where G is interpreted as the multipli
ative group and 
onsideringthe new stru
ture (K,G). A des
ription of de�nable sets of K and of G in su
h astru
ture 
an be found in [11℄. It was proved by Berenstein, Ealy and Günaydin [4℄that su
h a pair (K,G) is super-rosy of þ-rank ω and that þ-rank(G) = 1 (seen as a16



de�nable subset of the pair). In parti
ular, G as a subset of the stru
ture (K,G) isa pregeometry. Our goal is to show that the theory of G with the indu
ed stru
tureis weakly 1-based.We pro
eed as in the previous subse
tion. For ea
h L-formula ϕ(x) with pa-rameters in K, we introdu
e a new predi
ate symbol Rϕ. Let L∗ be the resultinglanguage. We denote by K∗ the stru
ture K with the natural interpretation forthe new relations and G∗ the substru
ture with universe G. Finally let T ∗ be thetheory of G∗, it is important to note that the theory T ∗ depends on the underlying�eld K. We denote the algebrai
 
losure in models if T by acl and in models of T ∗by acl∗.As in the previous se
tion it 
an be proved that T ∗ has quanti�er eliminationand that acl(− ∪K) = acl∗(−). In parti
ular T ∗ is a geometri
 theory.Our work depends on the following fa
ts:Fa
t 5.7 (Theorem 7.2 [11℄). Let K be a real 
losed �eld and let G be a densedivisible multipli
ative subgroup of K>0 having the Mann property. Then if X ⊂
Gn is de�nable, there is Y ⊂ Kn de�nable in K (seen as an ordered �eld) su
h
X = Y ∩Gn.This fa
t remains true in a saturated model of ThK(K,G), sin
e we only addednew 
onstants to the language.From the previous fa
t it easily follows that if ~a ∈ G∗, B ⊂ K ∪ G∗ and
dim(~a/B) < dim(~a), then there is a polynomial f(~y) ∈ Q(B)[y] su
h that f(~a) = 0.In parti
ular, we need to understand the solutions of algebrai
 varieties in G∗. Thisis 
hara
terized in [11℄De�nition 5.8. For any n-tuple k = (k1, . . . , kn) ∈ Zn 
onsider the 
hara
ter χk :

(K×)n → K× given by χk(x1, . . . , xn) = xk1

1 · · ·xkn

n . We let D(n, d) be the �nite
olle
tion of subgroups of (K×)n that are the interse
tion of kernels of 
hara
ters
χk with |k| = |k1| + · · · + |kn| ≤ d.Proposition 5.9. Let f1, . . . , fm ∈ K[X1, . . . , Xn] have degree ≤ d, and let V =
{x ∈ Kn : f1(x) = · · · = fm(x) = 0}. Suppose G has the Mann property. Then
V ∩Gn is a �nite union of 
osets of subgroups D ∩Gn of Gn with D ∈ D(n, d).Proof. This proposition is proved in [11, Proposition 5.8℄ whenK is an algebrai
ally
losed �eld. The same proof, that only depends on the Mann property, holds when
K is a real 
losed �eld. �The 
on
lusion of the proposition is also true for a saturated model of ThK(K,G)sin
e the statement is an elementary property.Proposition 5.10. Let K be a real 
losed �eld and let G be a dense divisiblemultipli
ative subgroup of K>0 having the Mann property. Then the theory of G∗is weakly 1-based.Proof. We work in a saturated model (K∗, G∗) of ThK(K,G) in the language L∗.Assume as above that ~a ∈ G∗, B ⊂ K ∪ G∗ and dim(~a/B) < dim(~a). Let Vbe a variety of dimension dim(~a/B) de�nable over B su
h that ~a ∈ V . Then
V ∩ (G∗)n is equivalent to a disjun
tion ∨i≤t~ci(Di ∩ (G∗)n), where ea
h Di is theinterse
tion of kernels of 
hara
ters and thus Di ∩ (G∗)n is a ∅-de�nable subgroupof (G∗)n. Assume Di is the kernel of the 
hara
ters χij(x1, . . . , xn), j ≤ mi andthat ~ci = (ci1, . . . , cin). Then χij(a1, . . . , an) = χij(ci1, . . . , cin) so we may assume17



that ~ci ∈ (G∗)n. After taking a non thorn-forking extension of tp∗(~c1, . . . ,~ct/B) wemay further assume that ~c1, . . . ,~ct are free from a1, . . . , an over B.Let C = B ∪ {~c1, . . . ,~ct} and let (a′1, . . . , a
′
n) |= tp(a1, . . . , an/C) be su
h that

(a′1, . . . , a
′
n) |⌣

þ
C
(a1, . . . , an). Then we have χji(a1, . . . , an) = χji(ci1, . . . , cin) =

χji(a
′
1, . . . , a

′
n) for some i ≤ t and all j ≤ mi, so ~ci(Di ∩ (G∗)n) is de�nable over

{a′1, . . . , a
′
n} and dim(a1, . . . , an/a

′
1, . . . , a

′
n) ≤ dim(a1, . . . , an/C) = dim(a1, . . . , an/B).In parti
ular, (a1, . . . , an) |⌣

þ
(a′

1
,...,a′

n
)
B. �6. Lovely pairs and dense embeddingsIn this se
tion we relate the notion of lovely pairs of geometri
 stru
tures to thatof dense embeddings developed by Ma
intyre in [16℄. We will review some of thenotions introdu
ed in [16℄ and prove that for the geometri
 theories T 
onsideredin [16℄, Ma
intyre's theory T d of dense embeddings of models of T 
oin
ides withthe theory TP of lovely pairs of models of T .We start with reviewing some de�nitions. Let T be a pregeometri
 theory.De�nition 6.1. Let N,M |= T with N � M , N 6= M . We say that (M,N) is aVaughtian pair if for some formula ϕ(x,~a) with parameters ~a ∈ N with in�nitelymany solutions in N we have ϕ(N) = ϕ(M). We say that T has a Vaughtian pairif there are N,M |= T su
h that (M,N) is a Vaughtian pair.Lemma 6.2. Let (M,P ) |= TP . Then (M,P (M) is not a Vaughtian pair.Proof. Let ϕ(x,~a) be an -formula with parameters in P (M) with in�nitely manysolutions, so P (M) |= ∃∞xϕ(x,~a). Let (M ′, P ) � (M,P ) be saturated, so (M ′, P )is a lovely pair of models of T . Let p(x) be a 
omplete non-algebrai
 type over ~a
ontaining ϕ(x,~a). Sin
e (M ′, P ) is a lovely pair, there is a realization b of p(x) in

M ′ whi
h is free from P (M ′). In parti
ular, b ∈ ϕ(M ′) \ ϕ(P (M ′)), so (M ′, P ) |=
∃xϕ(x,~a) ∧ ¬P (x). Thus (M,P ) |= ∃xϕ(x,~a) ∧ ¬P (x) and ϕ(M,~a) 6= ϕ(P (M),~a)as we wanted. �Thus, the 
lass of models that we 
onsider when dealing with lovely pairs arenot Vaughtian pairs, but the underlying theory T under 
onsideration may haveVaughtian pairs as shown by the following example:Example 6.3. Consider the theory DLO of dense linear orders without endpoints.Let M = R and let N = (R ∩ (−∞, 0]) ∪ Q+. Then (M,N) is a Vaughtian pairFa
t 6.4. Assume that T does not have Vaughtian pairs. Then T eliminates thequanti�ers ∃∞.Proof. See Lemma 5 in [16℄. �The pregeometri
 theories T 
onsidered in [16℄ do not have Vaughtian pairs. Firstof all this implies that under this extra assumption T is geometri
, so the tools fromlovely pairs developed in [5℄ apply. On the other hand the example above showsthat the family of theories under 
onsideration in [16℄ is stri
kly smaller than the
lass of geometri
 theories.The notion of dense pairs in [16℄ is word by word the notion that we 
all inDe�nition 1.2 the density/
oheir property. In order to 
on
lude that the denseembeddings are lovely pairs, we need to show that the extension property holds insaturated models of dense embeddings. 18



Fa
t 6.5. Suppose T satis�es the assumptions 1−6 listed in [16℄ and let (M,N) |=
T d. Suppose that card(M) = dim(M/N) = dim(N) ≥ |L|. Then there is a basis Xof M over N and a basis Y of N su
h that for every in�nite de�nable set D over
M , X ∩D 6= ∅ and Y ∩D 6= ∅.Proof. See Lemma 8 in [16℄. �Lemma 6.6. Suppose T satis�es the assumptions 1 − 6 listed in [16℄. Let (M,N)be a saturated model of T d. Let ~m be a tuple of elements in M and let ϕ(x, ~m)be an L-formula with in�nitely many realizations. Then there is a realization of
ϕ(x, ~m) in M whi
h is free from ~m ∪N .Proof. Let X be as in the previous fa
t. Let X0 ⊂ X �nite and Y0 ⊂ Y �nite su
hthat ~m ⊂ acl(X0 ∪ Y0). Let ψ(x, ~m,X0, Y0) = ϕ(x, ~m) ∧y∈X0∪Y0

(x 6= y). By thefa
t there is an a ∈ X satisfying ψ. Sin
e X is a basis of M over N , a 6∈ acl(X0, N)and M |= ϕ(a, ~m) as we wanted. �Proposition 6.7. Suppose T satis�es the assumptions 1 − 6 listed in [16℄. Let
(M,N) be a saturated model of T d. Then (M,N) is a lovely pair of models of T .Proof. As pointed out earlier, su
h theories T are geometri
. The assumption that
P (M) is dense in M translates to the 
oheir property. Finally the previous lemmaimplies the extension property. �Referen
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