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1. Introduction

A super real field (cf. [Da-Wo]) is the quotient field of a ring C(X) of continuous, real
valued functions on a topological space X at a prime ideal p of C(X). p is called a prime
z-ideal if f ∈ p whenever f vanishes on a zero set of some g ∈ p. Take a prime z-ideal p of
C(X) and let K := qf(C(X)/p) be the corresponding super real field.

The initial motivation for this paper was to prove that for every o-minimal expansion R
of the real field (cf. [vdD]) in a first order language L extending the language for ordered
unital rings, there is a natural expansion M of the field K to an L -structure such that M
is an elementary extension of R.

This is true and it turns out that a commutative algebra lies behind this fact, namely the
algebra of super real closed rings: A super real closed ring is a commutative unital ring A
together with maps FA : An −→ A for each continuous function F : IRn −→ IR (n ∈ IN) such
that the composition rules for the functions FA are the same as for the original functions
F , i.e.

(∗) FA ◦ (G1,A, ..., Gn,A) = (F ◦ (G1, ..., Gn))A.

Moreover, addition, multiplication and the identity of IR has to be interpreted as addition
multiplication and the identity of A.
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Obviously, super real closed rings are precisely the models of a first order theory TΥ

in a language LΥ extending the language of rings, which has function symbols for each
continuous F : IRn −→ IR. Examples are:

(i) Every ring of real-valued continuous functions has a natural expansion to a super real
closed ring.

(ii) Every super real field at a z-prime ideal as described above has a natural expansion to
a super real closed field (cf. (8.5) (i)).

The answer to the motivating question is given in Theorem (8.5) (ii), which says that every
super real closed ring which is a field, carries all o-minimal expansions of IR (in the sense
described above). Hence TΥ+“fields” is a theory of real closed fields, which act as resplendent
structures inside the class of all o-minimal expansions of fields, stemming from IR.

A real closed ring is a commutative unital ring A together with maps FA : An −→ A
for each semi-algebraic continuous function F : IRn −→ IR (n ∈ IN), defined over Q,
such that (∗) holds for these functions and addition, multiplication and the identity of IR is
interpreted as addition multiplication and the identity of A, respectively. This notion has
been introduced by N. Schwartz in [Schw1]. The original definition is purely ring theoretic,
i.e. there is no mentioning of the FA. The formulation above is in parts implicitly contained
in [Schw-Ma], section 12. We introduce real closed rings in this way and we show that the
functions FA are definable in the pure real closed ring (by an existential Horn formula, cf.
Theorem (2.12)).

Real closed rings provide a very flexible category of rings in which the algebra of the rings
C(X) can be studied. One purpose of this article is to show that most of this flexibility
is also present in the category of super real closed rings. The axioms of super real closed
rings, which imply that the class of models of TΥ together with LΥ-morphisms is a variety
in the sense of universal algebra, promise this: we get many basic constructions like direct
and inverse limits, fibre sums and fibre products, free objects, inside this variety for free (cf.
end of section 5).

In sections 6,7 and 9 – 13, classical manipulations of commutative rings, or better, of
lattice ordered rings, are established inside the category of super real closed rings. The
motor which makes the theory working is a Nullstellensatz for rings of continuous functions,
which expresses an algebraic relation between continuous functions that have the same zero
set (cf. section 3, which reviews parts of [Tr]).

With classical manipulations we initially mean ”develop a theory of ideals and localiza-
tions” for super real closed rings (done in section 6 and 7). The adequate notion of ideals in
a super real closed rings is of course “kernel of a ringhomomorphism into a super real closed
ring, which respects all the FA”. These ideals are called Υ-ideals, the name is explained in
section 6.

The set Υ−Spec A of all Υ-ideals of a super real closed ring, which are prime, form a
spectral space (cf. [Hoc]), more precisely, a spectral subspace of Spec A. As in the case of
real closed rings, the analysis of the ring is intimately related with this topological space, as
well as with the full spectrum of A. In section 14, a principal geometric difference between the
spectrum of super real closed rings and that of real closed rings of semi-algebraic functions
is proved. We explain this intuitively for the moment, the details can be found in section
14: If A is a super real closed ring and V ⊆ Spec A is the set of prime ideals containing
a given element a ∈ A, then the only way to enter this variety from outside is by walking
through generic points of V . But in the semi-algebraic context, say V corresponds to the
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closed unit disc in IRn, V can only be entered by passing through the boundary of V and
this boundary is not generic in V .

It is not clear if the difference above can be described in a purely ring theoretic manner and
the question arises if “real closed rings” is the first order theory of super real closed rings,
when viewed as pure rings. In section 4 we show that the ring of continuous semi-algebraic
functions IR −→ IR satisfies a sentence in the language of rings, which is not satisfied by
any ring of continuous functions C(X). The sentence “almost” says that the pure field IR is
o-minimal. I do not know whether a super real closed ring is a model of that sentence. The
result in section 4 says that either “real closed rings” is not the intersection of the theory
of super real closed rings with the sentences in the language of rings - or, super real closed
rings are not the first order description of the class of rings of continuous functions in the
language LΥ.

2. Real closed rings - a model theoretic tour

Let R be a real closed field and let Λ ⊆ R be a subring. Recall that a Λ-semi-algebraic
subset of Rn is a boolean combination of sets of the form {P ≥ 0} := {x ∈ Rn | P (x) ≥ 0},
where P is a polynomial over Λ in n variables. A map f : Rn −→ Rm is called Λ-semi-
algebraic, if the graph of f is a semi-algebraic subset of Rn × Rm. If Λ = R, then we say
semi-algebraic instead of Λ-semi-algebraic.

(2.1) Definition. Let R be a real closed field. For n, r ∈ IN0, let

Cr
Rn := {f : Rn −→ R | f is semi-algebraic and r-times continuously differentiable}.

Moreover we set
C−1

Rn := {f : Rn −→ R | f is semi-algebraic}.
Given r ∈ IN0 ∪{−1}, an R-real closed ring of class Cr is a commutative unitary ring A
together with a collection of functions (fA)n∈IN,f∈Cr

Rn
, where fA : An −→ A if f ∈ Cr

Rn with
the following properties:

1. If f is constant 0 or constant 1, then fA is constant 0 or constant 1; if f : R −→ R is the
identity, then fA : A −→ A is the identity; if f : R2 −→ R is addition or multiplication
in R, respectively, then fA : A2 −→ A is addition or multiplication in A, respectively.

2. If f ∈ Cr
Rn , k ∈ IN and fi ∈ Cr

Rk (1 ≤ i ≤ n), then

[f ◦ (f1, ..., fn)]A = fA ◦ (f1,A, ..., fn,A).

If r = 0, then we say R-real closed instead of R-real closed of class Cr. If R is the field
IRalg of real algebraic numbers, then we say real closed of class Cr instead of R-real closed
of class Cr. If r = 0 and R = IRalg, then we simply say real closed.

Note. We do not require that 1 6= 0. Hence the null ring is also considered as R-real closed
of class Cr.

(2.2) Observation. Every real closed ring is reduced.

Proof. Let a ∈ A be such that a3 = 0. Let f : IRalg −→ IRalg be defined by f(x) = 3
√

x.
Then f is continuous and semi-algebraic and f ◦ g = idA, where g(x) = x3. By definition
we have fA ◦ gA(b) = b and g(b) = b3 for all b ∈ A Hence a = fA ◦ gA(a3) = fA(0) = 0. ¤
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If r > 0, then a real closed ring of class Cr is not necessarily reduced (cf. (2.14)). Many
properties of real closed rings below come for free also for the case r > 0 provided the ring
is reduced.

In this paper we are mainly interested in the case r = 0, which is covered by the reduced
case as we have just observed. The general (nonreduced) case r > 0 will be the subject of
another paper ([Tr2]). In order not to repeat arguments we therefore include the case r > 0
in this article, if it is not substantially different from the case r = 0.

The pure rings underlying real closed rings in our sense are precisely the real closed rings in
the sense of Schwartz [Schw1]. This is contained in [Schw-Ma], Section 12 and at first sight
our definition seems to be only of theoretical use. The opposite is the case. We shall prove
that
(a) If A is a reduced, real closed ring of class Cr, then there is exactly one collection (fA)

of functions as in definition (2.1) and each function fA is definable in A in the language
of rings by an existential Horn-formula (cf. [Ho], 9.4). This is proved in (2.12)

Warning: in general there is no quantifier free formula in the language of rings which
defines the graph of fA: in particular, a formula which defines the graph of f will not
define the graph of fA in general.

(b) Every ring homomorphism between reduced R-real closed rings of class Cr respects the
unique (by (a)) additional structures. This is proved in (2.16).

Items (a) and (b) say that the category of reduced real closed rings of class Cr (and ring
homomorphisms respecting the new symbols) is a full subcategory of the category of rings
(and ring homomorphisms). Our definition easily allows generalizations of well known func-
torial constructions from commutative algebra to the category of real closed rings of class Cr

which are reduced, e.g. direct limits and fibre sums. The reason is that the category of real
closed rings of class Cr (reduced or not) together with ring homomorphisms respecting the
new symbols is - by definition - a variety in the sense of universal algebra; item (b) above
implies that many functorial constructions inside the category of rings can be performed
inside the category of real closed rings of class Cr.

We occasionally work with the natural first order language of real closed rings of class Cr.
Throughout we shall work with the language L := {+,−, · , 0, 1} of unital rings.

(2.3) Definition. Let L (RCRr) be the language L together with an n-ary functions
symbol f for every semi-algebraic, function f : IRn

alg −→ IRalg of class Cr. Let RCRr be the
L (RCRr)-theory which has the following axioms:
1. The axioms of a commutative unital ring in the language {+,−, ·, 0, 1}.
2. ∀xy +(x, y) = x + y ∧ ·(x, y) = x ·y ∧ id(x) = x ∧ −(x) = −x ∧ 1(x) = 1. Hence the

symbols from the language of rings have the same meaning as the corresponding symbols
when reintroduced in L (RCRr) as symbols, naming functions.

3. All the sentences
∀x̄ f(f

1
(x̄), ...., f

n
(x̄)) = f ◦ (f1, ..., fn)(x̄),

with f ∈ Cr
IRn

alg
and f1, ..., fn ∈ Cr

IRx̄
alg

.

Clearly the models of RCRr are exactly the real closed rings of class Cr, where the symbols
f are interpreted as fA. Observe again that the Null ring is a model of RCRr.

(2.4) Remark. The partial order on a real closed ring A of class Cr is given by x ≤
y ⇔ y−x = n(y−x), where n ∈ Cr

IRalg
is defined by n(t) := |t|r+1. Hence x ≤ y is definable

by a positive atomic L (RCRr)-formula and we may view it as abbreviation for this formula.
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(2.5) Lemma. Let R be a real closed field and let X ⊆ Rn be Λ-semi-algebraic for a subring Λ
of R. Then X is defined by a formula ∃ū P (x̄, ū) = 0 for some polynomial P (x̄, ū) ∈ Λ[x̄, ū].

Applying this to the complement of X shows that X is defined by a formula ∀ū P (x̄, ū) 6= 0
for some polynomial P (x̄, ū) ∈ Λ[x̄, ū], too.

Proof. By quantifier elimination, X is defined by
∨

i(Pi(x̄) = 0 ∧∧
j Qij(x̄) > 0) for some

polynomials Pi, Qij ∈ Λ[x̄]. Then X is defined by ∃ū P (x̄, ū) = 0 with

P (x̄, ū) :=
∏

i(Pi(x̄)2 +
∑

j(Qij(x̄)·u2
ij − 1)2).

¤

(2.6) Proposition. Let r ∈ IN0 and let R be a real closed field (or more general an o-
minimal structure, cf. [vdD]). If ε ∈ R, ε > 0 and f : (−ε, ε) −→ R is continuous, definable
in R with f(0) = 0, which is of class Cr on (−ε, ε) \ {0}, then f(x) ·xr is of class Cr on
(−ε, ε).

Proof. This is folklore, here a sketch of the proof. Firstly, o-minimality implies that for
every R-definable g : R −→ R there is some r such that g : (r,+∞) −→ R is differentiable
and that limx→∞ x·g′(x) = 0 if limx→∞ g(x) = 0.

Using this property one shows the assertion by induction on r. ¤

(2.7) Lemma and Definition. Let r ∈ IN0. Let X ⊆ Rn be Λ-semi-algebraic for a subring
Λ of R. Then X is closed if and only if X is defined by a formula ∃ū P (x̄, ū) = 0 for some
polynomial P (x̄, ū) ∈ Λ[x̄, ū], such that there is a Λ-semi-algebraic map s : Rx̄ −→ Rū of
class Cr with

R |= ∀x̄ ∈ X P (x̄, s(x̄)) = 0.

Here and below we write Rv̄ instead of Rlength(v̄) if v̄ is a tuple of variables.

We call such a polynomial a Cr-representation of X and the map s a Cr-section of P .

Proof. If X is defined by a formula as indicated, then X = f−1(0) for the map f : Rx̄ −→
R, f(x̄) := P (x̄, s(x̄)). Since f is continuous, X is closed.

Conversely suppose X is closed. By the finiteness theorem (cf. [BCR], Thm. 2.7.2.), X is
defined by a formula ∨

i

∧

j

Pij(x̄) ≥ 0

for some polynomials Pij(x̄) ∈ Λ[x̄]. Take

P (x̄, ū) :=
∏

i

∑

j

(Pij(x̄)2r+1 − u2
ij)

2.

Clearly X is defined by ∃ū P (x̄, ū) = 0. Let sij : Rx̄ −→ R be defined by

sij(x̄) :=
√
|Pij(x̄)|

2r+1

.

Let s := (sij). Then s is a Λ-semi-algebraic map Rx̄ −→ Rū with

R |= ∀x̄ ∈ X P (x̄, s(x̄)) = 0.

s is of class Cr, since the function
√
|x|2r+1

= (sign(xr)·
√
|x|)·xr is of class Cr by (2.6). ¤

We extend the notation for r = −1 and arbitrary, definable X ⊆ Rn. Every polynomial
P (x̄, ū) ∈ Λ[x̄, ū] with the property that X is defined by ∃ū P (x̄, ū) = 0 is called a C−1-
representation of X. Observe that in this case there is a C−1-map s : Rx̄ −→ Rū with
R |= ∀x̄ ∈ X P (x̄, s(x̄)) = 0, since RCF has definable Skolem functions.
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(2.8) Definition. Let X be a set, let R be a real closed field and let Λ be a subring of R.
If S is a set of functions X −→ R and r ∈ IN0 ∪ {−1} we define

csar
Λ(S) := {f ◦ (a1, ..., an) | n ∈ IN, a1, ..., an ∈ S and f ∈ Cr

Rn , Λ-semi-algebraic}.

The notation is correct, since by quantifier elimination for real closed fields, the ring csar
Λ(S)

does not depend on R, only on the ordered ring Λ.

If r = −1 then we also write saΛ(S) instead of csa−1
Λ (S). If Λ = Z then we suppress the

subscript Λ.

Observe that Λ, viewed as a subring of constant functions of RX , is contained in csar
Λ(S).

Moreover it is obvious that csar
Λ(S) is a ring of functions X −→ R and csar

Λ(csar
Λ(S)) =

csar
Λ(S).

(2.9) Lemma. Let A be a ring of functions X −→ R, let Λ be a subring of R and assume
A = csar

Λ(A). Let Z ⊆ Rz̄ be closed and Λ-semi-algebraic with Cr-representation P (z̄, ū) ∈
Λ[z̄, ū]. Then

ZA := {ā ∈ Az̄ | for all x ∈ X, ā(x) ∈ Z}
is definable in A with parameters from Λ by ∃ū P (z̄, ū) = 0.

Proof. If A |= ∃ū P (ā, ū) = 0, then clearly ā ∈ ZA, since Z is defined by ∃ū P (z̄, ū) = 0.
Conversely if ā ∈ ZA, then take a Λ-semi-algebraic map of class Cr, s : Rz̄ −→ Rū with

R |= ∀z̄ ∈ Z P (z̄, s(z̄)) = 0

and let c̄ := s(ā) ∈ Aū. Then A |= P (ā, c̄) = 0, since for each x ∈ X we have ā(x) ∈ Z,
hence R |= P (ā(x), s(ā(x))) = 0. ¤

(2.10) Lemma. Let A be a ring of functions X −→ R from a set X to a real closed field R and
let Λ be a subring of R and A. Let f : Rn −→ R be semi-algebraic, let P (v̄, y, ū) ∈ Λ[v̄, y, ū]
be such that the graph of f is defined by the formula ϕ(v̄, y) = ∃ū P (v̄, y, ū) = 0 and let
s : Rv̄ −→ Rū be a semi-algebraic map with

R |= ∀v̄ P (v̄, f(v̄), s(v̄)) = 0.

(i) If ā ∈ An and b ∈ A with A |= ϕ(ā, b), then b = f ◦ ā.
(ii) If A |= ∀v̄ ∃y ϕ(v̄, y) then for every ā ∈ An we have f ◦ ā ∈ A and ϕ(v̄, y) defines the

graph of the map fA : An −→ A, fA(ā) := f ◦ ā.
(iii) If for all ā ∈ An, f ◦ ā, s ◦ ā ∈ Aū, then A |= ∀v̄ ∃y ϕ(v̄, y).

Proof. (i). Take (ā, b) ∈ An × A with A |= ϕ(ā, b). We have to show that b = f ◦ ā.
Pick x ∈ X. Since A |= ϕ(ā, b), there is some c̄ ∈ Aū with P (ā, b, c̄) = 0 in A. Thus
P (ā(x), b(x), c̄(x)) = 0 and R |= ∃ū P (ā(x), b(x), ū) = 0. This means b(x) = f(ā(x)).

(ii) is an immediate consequence of (i).

(iii). Let ā ∈ An and take b := f ◦ ā. Then b ∈ A and A |= ∃ū P (ā, b, ū) = 0 as
c̄ := s ◦ ā ∈ Aū. ¤

(2.11) Proposition. Let r ∈ IN0 ∪ {−1} and let A be a ring of functions X −→ R from a
set X to a real closed field R. Let Λ be a subring of R and A. Then A = csar

Λ(A) if and
only if for every n ∈ IN0 and every Λ-semi-algebraic map f : Rn −→ R of class Cr, there is
a Cr-representation P (v̄, y, ū) ∈ K[v̄, y, ū] of the graph of f with

A |= ∀v̄∃yū P (v̄, y, ū) = 0.
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If this is the case, then for every Λ-semi-algebraic map f : Rn −→ R of class Cr, and
every Cr-representation P (v̄, y, ū) ∈ Λ[v̄, y, ū] of the graph of f , the formula ∃ū P (v̄, y, ū) = 0
defines the graph of the map

fA : An −→ A, fA(ā) := f ◦ ā.

Proof. By (2.10) and (2.7). ¤

(2.12) Theorem. Let r ∈ IN0 ∪ {−1}, let R be a real closed field and let Λ be a subring
of R such that R is the real closure of the ordered ring Λ. Let A be a commutative unital
Λ-algebra.

(i) Suppose A can be expanded to an R-real closed ring A of class Cr. Then

(a) For each Λ-semi-algebraic map f : Rn −→ R of class Cr, every Cr-representation
P (v̄, y, ū) ∈ Λ[v̄, y, ū] of the graph of f and all Cr-sections s of P we have
A |= ∀v̄ P (v̄, fA(v̄), sA(v̄, fA(v̄)) = 0. In particular A |= ∀v̄∃yū P (v̄, y, ū) = 0.

(b) A/Nil(A) is real reduced (i.e. a2
1 + ... + a2

n ∈ Nil(A) implies a1, ..., an ∈ Nil(A) for
all i).

(c) If A is reduced, then for each Λ-semi-algebraic map f : Rn −→ R of class Cr

and all Cr-representations P (v̄, y, ū) ∈ Λ[v̄, y, ū] of the graph of f , the function
fA : An −→ A is defined by ∃ū P (v̄, y, ū) = 0. In particular A is the unique
expansion of A to an R-real closed ring A of class Cr.

(ii) Suppose A is reduced and for all n ∈ IN, each Λ-semi-algebraic map f : Rn −→ R of
class Cr and every Cr-representation P (v̄, y, ū) ∈ Λ[v̄, y, ū] of the graph of f we have

A |= ∀v̄∃yū P (v̄, y, ū) = 0.

Then A can be expanded to an R-real closed ring A of class Cr.

Proof. (i)(a). If f : Rn −→ R is Λ-semi-algebraic of class Cr and P (v̄, y, ū) ∈ Λ[v̄, y, ū]
is a Cr-representation of the graph of f with Cr-section s : Rv̄ × R −→ Rū, then R |=
∀v̄ P (v̄, f(v̄), s(v̄, f(v̄)) = 0. Hence the axioms of “R-real closed ring of class Cr” imply
A |= ∀v̄ P (v̄, fA(v̄), sA(v̄, fA(v̄)) = 0.

(i)(b). Take a1, ..., an ∈ A such that a2
1 + ... + a2

n is nilpotent. We must show that each ai

is nilpotent. By the division property for semi-algebraic Cr-functions there is some p ∈ IN
and a Z-semi-algebraic Cr-function d : Rn −→ R such that xp

i = (x2
1 + ... + x2

n)·d(x1, ..., xn)
on IRn

alg (alternatively one can directly show by induction on r that xp
i with p = 2r+1 + 1

is divisible by x2
1 + ... + x2

n in Cr
R). Again the axioms of “R-real closed ring of class Cr”

imply ap
i = (a2

1 + ...+a2
n)·dA(a1, ..., an) which is nilpotent. This shows that A/Nil(A) is real

reduced.

(i)(c). If A is reduced, then by (i)(b), A is real reduced hence isomorphic to a ring of
functions X −→ R′ from a set X to a real closed field R′ ⊇ R. We may assume that A is
this ring of functions X −→ R′. But then (i)(c) holds by (2.11) and (i)(a).

(ii). It is enough to show that A is real reduced, then (ii) follows from (2.11) as in the proof of
(i)(c). Let a1, ..., an ∈ A with a2

1+...+a2
n = 0. We must show that ai = 0 for all i. Take p ∈ IN

and a Z-semi-algebraic Cr-function d : Rn −→ R such that xp
i = (x2

1 + ... + x2
n)·d(x1, ..., xn)

on IRn
alg. Then the polynomial P (v̄, y) := (v2

1+...+vn)2·y−vp
i ∈ Λ[v̄, y] is a Cr-representation

of the graph of d. By assumption (ii) we have

A |= ∀v̄∃y P (v̄, y) = 0.
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Hence by specializing vi to ai, there is some b ∈ A such that ap
i = (a2

1 + ... + an)2 ·b = 0.
Since A is assumed to be reduced, we get ai = 0 as desired. ¤

(2.13) Corollary. Let r ∈ IN0 ∪{−1}, let R be a real closed field and let Λ be a subring of
R such that R is the real closure of the ordered ring Λ. Then for every reduced, commutative
unital Λ-algebra A the following are equivalent:

(i) A can be expanded to an R-real closed ring of class Cr.
(ii) For all n ∈ IN, each Λ-semi-algebraic map f : Rn −→ R of class Cr and every Cr-

representation P (v̄, y, ū) ∈ Λ[v̄, y, ū] of the graph of f we have

A |= ∀v̄∃yū P (v̄, y, ū) = 0.

If this is the case, then there is a unique expansion A of A to an R-real closed ring of class
Cr and the functions fA : An −→ A are defined by ∃ū P (v̄, y, ū) = 0, whenever f ∈ Cr

Rn

and P (v̄, y, ū) ∈ Λ[v̄, y, ū] is a Cr-representation of the graph of f .

Proof. Directly from (2.12). ¤

By (2.2) every real closed ring is reduced (hence real reduced by (2.12)(i)(b)). For r > 0
this is not true anymore:

(2.14) Example. Here is an example of an R-real closed ring of class C1 which is not
reduced.

Let R be a real closed field. Recall that by o-minimality, every semi-algebraic function
R −→ R which is differentiable at a point, is of class C1 in a neighborhood of this point.
Let B be the ring of all f ∈ C0

R which are differentiable in R \ {0}. For q ∈ Q, q > 0 let Iq

be the principal ideal of B generated by x·(x2)q, hence

Iq := x·(x2)q ·B.

Claim 1. For q1, q2 ∈ Q, 0 < q2 < q1 we have Iq1 ⊆ Iq2 ⊆ C1
R, in particular

I :=
⋃
q>0

Iq

is an ideal of C1
R.

Proof. By (2.6) we have Iq ⊆ C1
R for all q > 0.

If 0 < q2 < q1, then x · (x2)q1 = x · (x2)q2 · (x2)q1−q2 . As xq1−q2 ∈ B this shows that
x·(x2)q1 ∈ Iq2 ·B = Iq2 , thus Iq1 ⊆ Iq2 and claim 1 is proved.

Our example now is A := C1
R/I which is not a reduced ring since x3 ∈ I and x 6∈ I. We

have to define the operation of definable functions Rn −→ R of class C1 on A:

Take F ∈ C1
Rn and f1, ..., fn ∈ C1

R. We define

FA(f1 mod I, ..., fn mod I) := F (f1, ..., fn) mod I

and we only need to show that FA is well defined. Take g1, ...., gn ∈ C1
R with hi := fi−gi ∈ I

(1 ≤ i ≤ n). We must show that F (f̄)−F (ḡ) is divisible by some x·(x2)q in B. By replacing
F with F (x1 + f1(0), ..., xn + fn(0)) and fi with fi − fi(0) we may assume that fi(0) = 0
for all i.

Since F is differentiable at 0 we have

(∗) F (x̄) = F (0) +
n∑

i=1

∂iF

∂xi
(0)·xi + |x̄|·ψ(x̄),
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where ψ : Rn −→ R is a function with limx̄→0 ψ(x̄) = 0. Since F is semi-algebraic and
differentiable on Rn, ψ is semi-algebraic, differentiable on Rn \ {0} and continuous on Rn.

Claim 2. For every semi-algebraic curve s : R −→ Rn of class C1 with s(0) = 0 the function
|s(x)|·ψ(s(x)) is in I.

Proof. Since ψ(s(x)) is semi-algebraic, continuous on R with ψ(s(0)) = 0, there are q ∈ Q,
q > 0 such that a := limx→0

ψ(s(x))
(x2)q exists in R. Since s is differentiable in 0 with s(0) = 0

also b := limx→0
|s(x)|

x exists in R. Hence

t(x) :=
|s(x)|·ψ(s(x))

x·(x2)q
(x 6= 0), t(0) = a·b

defines a continuous semi-algebraic function. By (∗) and since s is differentiable, |s(x)| ·
ψ(s(x)) is differentiable on R. Hence t is differentiable in all points x 6= 0, in other words
t ∈ B. Thus |s(x)|·ψ(s(x)) = x·(x2)q ·t(x) ∈ I, which shows claim 2.

Now we can show that F (f̄(x))− F (ḡ(x)) ∈ I. We have

F (f̄(x))− F (ḡ(x)) =
n∑

i=1

∂iF

∂xi
(0)·hi + |f̄(x)|ψ(f̄(x))− |ḡ(x)|·ψ(ḡ(x)).

By claim 2, |f̄(x)|ψ(f̄(x))− |ḡ(x)|·ψ(ḡ(x)) ∈ I and as hi ∈ I, also
∑n

i=1
∂iF
∂xi

(0)·hi ∈ I. This
finishes the example. ¤

In the example above we have:
(i) C1

R/I ∼= R + x·R and after identification

FA(a1 + xb1, ..., an + xbn) = F (ā) +
n∑

i=1

∂iF

∂xi
(ā)·bi.

This follows from claim 2 in the example above.

(ii) The assertion in (i)(c) of (2.12) does not hold for the real closed ring A = C/I of class
C1, i.e. there is a representation P (v̄, y, ū) of a definable C1-function such that the
function fA : An −→ A is not defined by ∃ū P (v̄, y, ū) = 0. Take f(x) = x · 3

√
x and

P (v, y, ū) = y3 − v4. In A, the formula y3 − v4 = 0 does not define the graph of a
function since the equation y3 = 0 = x4 mod I has infinitely many solution in A: all
elements r·xmod I, r ∈ R.

We state other consequences of (2.12):

(2.15) Corollary. Let r ∈ IN, let R be a real closed field. Let A be an R-real closed ring
of class Cr and let I ⊆ A be a radical ideal. Then there is a unique expansion of A/I to an
R-real closed ring of class Cr and the residue map A −→ A/I is an L r

R-homomorphism.
This applies in particular to I = Nil(A).

Proof. By (2.12) (i)(a), the pure ring A satisfies all sentences ∀v̄∃yū P (v̄, y, ū) = 0,
where P runs through the Cr-representations of Λ-semi-algebraic Cr-functions. Since these
sentences are positive, and the residue map A −→ A/I is surjective, also A/I satisfies all
these sentences (without any assumption on the ideal I). Since A/I is reduced, there is a
unique expansion of A/I to an R-real closed ring of class Cr (cf.(2.12)(ii)) and it remains to
show that the residue map respects the fA. But this follows from (2.12)(i)(a) and (i)(c). ¤
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(2.16) Corollary. Let ϕ : A −→ B be a ring homomorphism between real closed rings of
class Cr. If B is reduced, then ϕ is an L (RCRr)-homomorphism

Proof. We must show that ϕ(fA(a1, ..., an)) = fB(ϕ(a1), ..., ϕ(an)) for all a1, ..., an ∈ A
and each semi-algebraic map f : IRn

alg −→ IRalg of class Cr. Let P (v̄, y, ū) ∈ Z[v̄, y, ū]
be a Cr-representation of the graph of f . Let a0 := fA(a1, ..., an). By (2.12)(i)(a), A |=
∃ū P (a1, ..., an, a0, ū) = 0. Since P is a polynomial with coefficients in Z it follows B |=
∃ū P (ϕ(a1), ..., ϕ(an), ϕ(a0), ū) = 0. SinceB is reduced we have fB(ϕ(a1), ..., ϕ(an)) = ϕ(a0)
by (2.12)(i)(c). ¤

(2.17) Theorem and Definition. Every commutative ring A has a (reduced) real Cr-
closure (B, f), i.e. B is a (reduced) real closed ring of class Cr, f is a ring homomorphism
f : A −→ B and for every ring homomorphism g : A −→ B′ with values in a (reduced) real
closed ring of class Cr there is a unique L (RCRr)-homomorphism h : B −→ B′ such that
g = h ◦ f .

We write ρr(A) for the real Cr-closure of A,

Proof. The theory RCRr as well as the theory red-RCRr of reduced real closed rings of
class Cr in the language L (RCRr) is strict universal Horn, i.e. axiomatized by sentences
of the form

∀x̄ ϕ1 ∧ ... ∧ ϕd → ψ,

where ϕi and ψ are positive atomic (cf. [Ho] 9.1). This follows from the shape of the axioms
of RCRr and since reducedness is expressed by the strict universal formula ∀x x2 = 0 →
x = 0. Let T be RCRr or red-RCRr. By the general theory of Presentations (cf. [Ho] 9.2),
we know that for every set of positive atomic L (RCRr)(C)-sentences, where C is a set of
new constants, the term algebra (cf. [Ho], 1.2) of T ∪ Φ is again a model of T .

We take C = A and Φ to be the set of positive atomic L (A)-sentences, valid in A (recall
that L is the language of rings). Then the term algebra of red-RCRr∪Φ can be viewed as a
ring homomorphism f : A −→ B, where B is a model of red-RCRr. By the correspondence
between models of diagrams and morphisms (cf. [Ho]1.4.), this gives the assertion. ¤

(2.18) Corollary. Let A be a ring and let B := ρr(A)/Nil(ρr(A)).
(i) The composition f̄ of the natural map f : A −→ ρr(A) with the residue map ρr(A) −→

B is the reduced real Cr-closure of A.
(ii) If A is real reduced, then f̄ is injective.

(iii) The reduced real Cr closure can be entirely defined inside the category of rings: B is the
commutative ring which can be expanded to a reduced, real closed ring of class Cr, f̄ is
a ring homomorphism A −→ B and for every ring homomorphism g : A −→ B′ into a
ring B′, which also can be expanded to a reduced real closed ring of class Cr, there is a
unique ring homomorphism h : B −→ B′ with g = h ◦ f̄ .

(iv) If A = ρr(A) and I is a radical ideal of A, then also A/I is a real closed ring of class
Cr.

Proof. (i). By (2.16), the residue map ρr(A) −→ ρr(A)/Nil(ρr(A)) is an L (RCRr)-
homomorphism. Hence (i) follows from the functorial definition of both closures in (2.17).

(ii). If A is real reduced, then A can be embedded into a product of real closed fields. This
product is a real closed ring and since the embedding factors through f̄ , f̄ must be injective.

Item (iii) is straightforward from (i) and (2.16),(2.12) and item (iv) is straightforward from
(ii) and (2.16), (2.12). ¤
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3. Computation of the z-radical in C(X)

First we recall standard notions for rings of continuous functions (cf. [Gil-Jer]). Let X
be a Tychonoff space, i.e. a completely regular Hausdorff space. Let C(X) be the ring of
continuous functions X −→ IR. Then C(X) is a subring and a sublattice of the distributive
lattice IRX . Recall that for every topological space Y there is a Tychonoff space X such that
C(X) is isomorphic to C(Y ) (cf. [Gil-Jer], 3.9). Moreover Tychonoff spaces are precisely
the subspaces of compact spaces.

A zero set of X is a set of the form {f = 0} := {x ∈ X | f(x) = 0}, with f ∈ C(X). A
cozero set of X is a set of the form {f 6= 0} := {x ∈ X | f(x) 6= 0} with f ∈ C(X). Observe
that any set of the form {f ≥ 0} with f ∈ C(X) is a zero set, since {f ≥ 0} = {f ∧ 0 = 0}.
An ideal a of C(X) is a z-ideal if f ∈ a whenever f vanishes on a zero set of a function
from a. The z-radical z

√
a of an arbitrary ideal a of C(X) is the smallest z-ideal of C(X)

containing a.

Let Υ := {s : IR −→ IR | s is continuous and s−1(0) = {0}} (the Greek letter “Upsilon”).

(3.1) Definition. An ideal a of C(X) is called Υ-radical if s ◦ f ∈ a for all f ∈ a and all
s ∈ Υ. Since the intersection of Υ-radical ideals is obviously again Υ-radical, we may define
the Υ-radical of an ideal a of C(X) as the smallest Υ-radical ideal of C(X) containing a.
We write Υ

√
a for the Υ-radical of a.

Clearly Υ-radical ideals are radical and every z-radical ideal of C(X) is Υ-radical.

(3.2) Definition. A subset Υ0 of Υ is called a set of generalized root functions if for
all s ∈ Υ, there is some s0 ∈ Υ0 and some ε ∈ IR, ε > 0 with |s| ≤ |s0| on (0, ε).

A subset Υ0 of Υ is called a set of generalized power functions if for all s ∈ Υ, there
is some s0 ∈ Υ0 and some ε ∈ IR, ε > 0 with |s0| ≤ |s| on (0, ε).

(3.3) Proposition. ([Tr], (5.12))
Let a be an ideal of C(X). Then

(i) For every set Υ0 ⊆ Υ of generalized root functions we have
Υ
√

a = {g ·(s ◦ f) | g ∈ C(X), f ∈ a, f ≥ 0, s ∈ Υ0}.
(ii) For every set Υ0 ⊆ Υ of generalized power functions we have

Υ
√

a = {f ∈ C(X) | s ◦ |f | ∈ a for some s ∈ Υ0}.

(3.4) Proposition. ([Tr],(5.7))
If a is an ideal of C(X), then there is a largest Υ-radical aΥ contained in a and for every
set of generalized root functions Υ0 ⊆ Υ we have

aΥ = {F ∈ a | s0 ◦ F, s0 ◦ (−F ) ∈ a for all s0 ∈ Υ0}.

The foregoing Propositions imply functoriality of the Υ-radical:

(3.5) Proposition. ([Tr],(5.13))
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If τ : X −→ Y is a continuous map between Tychonoff spaces X, Y and ϕ : C(Y ) −→ C(X)
is the corresponding ring homomorphism - so ϕ(g) = g ◦ τ - then for every ideal a of C(X)
we have

Υ
√

ϕ−1(a) = ϕ−1( Υ
√

a) and ϕ−1(a)Υ = ϕ−1(aΥ).

(3.6) Definition. A Tychonoff space X has computable z-radicals if Υ
√

a = z
√

a for all
ideals a of C(X).

(3.7) Theorem. ([Tr],(8.9) and (8.15))
A cozero set X of a compact space has computable z-radicals. A subset X of IRn has
computable z-radicals if and only if X is locally closed.

4. A sentence in the language of rings separating continuous
semi-algebraic from arbitrary continuous functions

The first order theory of the pure ring C(X) is undecidable if X is a non discrete metric
space. This has been shown by Cherlin in [Che]. This section contributes (in a negative
way) to the problem what the theory T of the class of all C(X) in the language of rings
is. It was conjectured that this theory is “almost equal” to the theory of real closed rings
(more precisely, that T is RCR0 plus the set of sentences which asserts that a semi-local
ring which is a model of T is a product of fields). We disprove this conjecture by showing
that rings of semi-algebraic functions are not a model of T . Explicitly:

Let M be an o-minimal structure expanding a real closed field (cf. [vdD]). Let CM be the
ring of M -definable, continuous maps M −→ M . Then CM is not a model of the theory of
all C(X), more precisely we construct a first order sentence in the language of rings, which
holds in each CM and in no C(X).

This will also disprove the conjecture that the theory of the class of all rings C(X) together
with all the quotients C(X)/p (p ∈ Spec C(X)) is the theory of real closed rings (cf. [PS]);
otherwise CM can be elementarily embedded into an ultraproduct of rings of the form C(X)
or C(X)/p - since CM is not a domain, we may assume that it is actually an ultraproduct
of rings of the form C(X); but then the above mentioned formula must hold in at least one
C(X).
We now construct this sentence. First we construct several auxiliary sentences and formulas
in the language of rings. The notation CM below always means the ring of M -definable,
continuous maps M −→ M for an o-minimal expansion of a real closed field.

1. Let x ≺ y be an abbreviation for the formula

x ≺ y := ∀u∃vw 1 = w·y + v ·(1 + u·x).

Then for every ring A and all a, b ∈ A we have a ≺ b ⇔ a in the Jacobson-radical
max
√

b·A :=
⋂

m∈(Spec A)max m (this is well known by basic commutative algebra).
If a, b ∈ A then we write aÂ≺ b if a Â b and a ≺ b.

2. Let A be ring of functions from a set S to a field K. We say that S is weakly repre-
sented in A if for all f, g ∈ A we have f ≺ g ⇔ {g = 0} ⊆ {f = 0}. In this case f ∈ A
is a unit in A if and only if f has no zeroes in S

Proof. If f is a unit in A, then clearly f does not have zeroes in S. Conversely if f is
a nonunit in A, then 1 6≺ f , hence {f = 0} 6⊆ {1 = 0} = ∅.
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For example M is weakly represented in CM and X is weakly represented in C(X).
3. Let A be ring of functions from a set S to a field K. We say that S is represented in

A if S is weakly represented in A and if for all s, t ∈ S there is some f ∈ A with f(s) = 0
and f(t) 6= 0.

For example M is weakly represented in CM and X is weakly represented in C(X).

4. Let pt(x) be the formula

pt(x) := ∀u ux 6= 1 ∧ [∀y (∀u uy 6= 1) ∧ x ≺ y → y ≺ x].

Then for every ring A and each a ∈ A we have A |= pt(a) ⇔ a is a maximal element in
the set of nonunits of A, w.r.t. the relation ≺. We write pt(A) for the realizations of
pt(x) in A and call these realizations point functions.

For each f ∈ A we have A |= pt(f) if and only if the Jacobson radical of f is a maximal
ideal, i.e. there is a unique maximal ideal of A containing f .

We define

Maxpt(A) := {m ∈ Max A | ∃f ∈ A : m = max
√

f ·A}
and we call the elements of Maxpt(A) the points of A. Hence there is a 1-1 corre-
spondence between Maxpt(A) and the realizations of pt(x) in A modulo the relation Â≺
(which is equal to ≺ on pt(A)). For short: Maxpt(A) = pt(A)/Â≺.

5. If A is a ring of function S −→ K and K is formally real such that S is represented by
A, then for each f ∈ A we have

A |= pt(f) ⇔ f has exactly one zero in S.

Proof. Clearly A |= pt(f) if f has exactly one zero in S. Conversely suppose A |=
pt(f). Then f has zeroes in S. Suppose there are two zeroes s, t ∈ S of f . Since S
is represented by A there is g ∈ A with g(s) = 0 6= g(t). But then f ≺ g2 + f2 and
g2 + f2 6≺ f , a contradiction to A |= pt(f).

6. Let DENSE and DENSEcon be the following sentence in the language of rings:

DENSE := ∀x x 6= 0 → ∃z pt(z) ∧ x 6≺ z

DENSEcon := ∀x, y ¬x ≺ y → ∃z pt(z) ∧ y ≺ z ∧ ¬x ≺ z
Then A |= DENSE ⇔ Maxpt(A) is dense in Spec A and A |= DENSEcon ⇔ Maxpt(A)
is dense in (Spec A)con, i.e. in Spec A equipped with the constructible topology.

7. Let A be a ring of functions S −→ K, K formally real and let

P := {s ∈ S | {s} is a zero set of A}.
If S is represented in A, then

A |= DENSE ⇔ P is dense in S w.r.t. the cozero-topology induced by A,

i.e. with respect to the topology on S which has the sets {f 6= 0} (f ∈ A) as a basis of
open sets. In particular, if A = C(X), then A |= DENSE ⇔ P is dense in X.
Moreover

A |= DENSEcon ⇔ P is dense in S w.r.t. the constructible-topology induced by A,

i.e. with respect to the topology on S which has the sets {f 6= 0} ∩ {g = 0} (f, g ∈ A)
as a basis of open sets.
Hence CM |= DENSEcon, in particular CM |= DENSE.
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8. Let
pt∗(x) := pt(x) ∧ ∀y : x 6= y2 ∧ x 6= −y2.

Hence if A is a real closed ring, then a point function f of A is in pt∗(A) if and only if
f is neither positive nor negative. We call the elements of pt∗(A), the sign changing
point functions. Let LINE be the sentence

LINE := ∀x pt(x) → ∃y : xÂ≺ y ∧ pt∗(y).

Hence by definition, a real closed ring A satisfies LINE if and only if each point of A is
the Jacobson radical of a point function which changes sign. This for example holds in
the ring CM and resembles the shape of M as a line. Note that in the ring of continuous
semi-algebraic maps M2 −→ M no point function changes sign.

9. Let A be a real closed ring. For f, g ∈ A we define f ‖ g if and only if f, g ∈ pt∗(A) and
both f+ +g+, f−+g− are zero divisors. Since pt∗(A) is defined by the same formula for
all real closed rings, there is a first order formula ϕ(x, y) in the language of rings such
that for every real closed ring A and all f, g ∈ A we have

f ‖ g ⇔ A |= ϕ(f, g).

Let f.g ∈ CM be point functions which change sign. Then a straightforward calculation
shows that f ‖ g if and only if f is strictly increasing in a neighborhoods of its zero
and g is strictly increasing in a neighborhoods of its zero, or f is strictly decreasing in a
neighborhoods of its zero and g is strictly decreasing in a neighborhoods of its zero.

10. Let f ∈ pt∗(CM ). Then for every g ∈ pt∗(CM ) we have f ‖ g ⇔ f 6 ‖ − g, hence there is
a unique ε(f, g) ∈ {±1} ⊆ A such that f ‖ ε(f, g)·g and there is a first order formula in
the language of rings, which defines the graph of ε in C3

M . We define a preorder vf on
pt∗(CM ) as follows. We say g vf h if and only if (ε(f, h)·h)+ + (−ε(f, g)·g)+ is a non
zero-divisor.

It turns out that gÂ≺h if and only if g vf h and h vf g. Moreover pt∗(CM )/Â≺
(which is “equal” to Maxpt(CM )) equipped with the induced order of vf is order iso-
morphic to M or to Mopp (depending if f is strictly increasing or strictly decreasing in
a neighborhood of its zero).

Moreover there is a first order formula ϕ(x, y, z) in the language of rings such that for
all f, g, h ∈ CM we have

g vf h ⇔ CM |= ϕ(f, g, h).

We write y vx z for this formula.

11. The sentence

∀x pt∗(x) →
[
[∀u, v, w pt∗(u) ∧ pt∗(v) ∧ pt∗(w) →

(u vx v ∧ v vx w → u vx w) ∧ (u vx v ∨ v vx u)]∧
∧ [∀u, v pt∗(u) ∧ pt∗(v) →
uÂ≺ v ↔ (u vx v ∧ v vx u)]

]

holds in CM : the sentence says that for each sign changing point function f , the relation
g vf h defines a total semi-order on the set of sign changing point function, and the
induced total order is in 1-1 correspondence with those points that are generated by a
sign changing point function.
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Clearly there is a also a sentence DLO in the language of rings which says that all these
total orderings are dense without endpoints.

12. Let X be a space with C(X) |= DENSE ∧ LINE ∧ DLO. Let f ∈ pt∗(X). Let
S := {x ∈ X | {x} is a zero set}. Then S is dense in X and the formula y vf z defines
a total semi-order on the set of sign changing point function of C(X). Moreover, the
underlying set of the induced total order is in 1-1 correspondence with S.

Hence if we identify an element s of S with the set of point functions that vanish in s,
then S is totally ordered by y vf z and this order is dense without endpoints.

13. Let BUMPS be the sentence in the language of rings, which says the following:
“For all sign changing point functions f, g, h1, h2 with h1 vf g vf h2 there is F such

that
(i) 0 ≤ F ≤ 1 and
(ii) F 6≺ g and
(iii) for all sign changing point functions h′ with F 6≺ h′ we have h1 vf h′ vf h2 and

¬(h1Â≺h′) and ¬(h′Â≺h2)”.
Then CM |= BUMP .

14. Let DEFCOMPLETE1(F, f, h) be the formula in the language of rings, which says the
following:

“f is a sign changing point function and h is the smallest sign changing point function
with respect to y vf z such that
(i) f vf h and
(ii) either for all sign changing point functions h′ with h vf h′ we have F ≺ h′ or for

all sign changing point functions h′ with h vf h′ we have F 6≺ h′.”
Explanation. DEFCOMPLETE1(F, f, h) intuitively says that w.r.t. y vf z, the zero
of h is the supremum of all points greater or equal to the zero of f for which F changes
sign from 0 to 6= 0 or from 6= 0 to 0. In CM , DEFCOMPLETE1(F, f, h) in fact says
precisely this.

Let

DEFCOMPLETE := ∀F, f pt∗(f) → ∃!h : DEFCOMPLETE1(F, f, h).

Then CM |= DEFCOMPLETE, by o-minimality of M .

15. We now encode in CM the fact that in an o-minimal structure M , unary functions do
not change signs close to the left or right hand side of any given point.

Let NOSIGNCHANGE1(F, f, h0, h) be the formula in the language of rings, which
says the following:

“f, h, h0 are sign changing point functions with h0 vf h, h 6vf h0 and either for all sign
changing point function h′ with h0 vf h′ vf h and h 6vf h′ we have F ≺ h′ or for all
sign changing point function h′ with h0 vf h′ vf h and h 6vf h′ we have F 6≺ h′.”

Hence NOSIGNCHANGE1(F, f, h0, h) says that the function F either is constant
zero on the half open interval [h0, h) w.r.t. y vf z, or does not have any zeroes in that
interval.

Let NOSIGNCHANGE be the sentence

∀F, f, h [pt∗(f) ∧ pt∗(h) → ∃h0 NOSIGNCHANGE1(F, f, h0, h)].

Again, by o-minimality of M , CM |= NOSIGNCHANGE.
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16. The sentence

DENSE ∧ LINE ∧DLO ∧BUMPS ∧DEFCOMPLETE ∧NOSIGNCHANGE

holds in every ring CM but in no ring C(X).

Proof. We have already seen during the definitions of the subsentences, that CM

satisfies this conjunction. Let X be a Tychonoff space and suppose the sentence

DENSE ∧ LINE ∧DLO ∧BUMPS ∧DEFCOMPLETE

holds in C(X). We shall construct function F, f, h in C(X) which violate the property
stated in the definition of NOSIGNCHANGE.

Since C(X) |= DENSE ∧LINE there is a sign changing point function f ∈ C(X). Let
gi ∈ C(X) (i ∈ IN) be sign changing point functions with f vf g1 vf g2 vf ... such that
¬(f Â≺ g1), ¬(g1Â≺ g2),... and such that the sequence (gi) is bounded in the preorder
vf defined on pt∗(C(X)): such gi exists since C(X) |= DLO. Since C(X) |= BUMPS
there are Fi ∈ C(X), 0 ≤ Fi ≤ 1 such that Fi 6≺ g2i and such that for all h ∈ pt∗(C(X))
with Fi 6≺ h we have g2i−1 vf h vf g2i+1 and ¬(hÂ≺ g2i−1) ∧ ¬(hÂ≺ g2i+1).

Intuitively, (gi) is a strictly increasing sequence of (representatives of) points (w.r.t.
vf ) and the Fi are functions from C(X) which are nonzero in g2i so that every nonzero
of Fi is contained in the open interval (g2i−1, g2i+1) (in particular, each Fi vanishes on
each g2k+1).

Since each Fi satisfies 0 ≤ Fi ≤ 1, the function F :=
∑

i∈IN
1
2i Fi is continuous on X.

Moreover by the choice of the Fi for every h ∈ pt∗(C(X)) with gj vf h (j ∈ IN) we have
Fi ≺ h. Thus Fi(x) = 0, where x is the zero of h (cf. Item 12). Thus, also F (x) = 0,
which in turn means F ≺ h.

Since C(X) |= DEFCOMPLETE and (gi) is a bounded sequence w.r.t. vf , there is
a minimal h ∈ pt∗(C(X)) such that F ≺ h′ for all h vf h′ ∈ pt∗(C(X)). By construction
of F , h is the supremum of the sequence (gi) w.r.t. vf .

Therefore, if pt∗(C(X)) 3 h0 vf h and ¬(h0Â≺h), then there is some i ∈ IN with
h0 vf g2i vf h, hence also h0 vf g2i+1 vf h.

But F 6≺ g2i and F ≺ g2i+1 and this shows that F, f, h violate NOSIGNCHANGE.
¤

Hence the sentence stated in 16 has the property described at the beginning of this section.
Actually one can show that there is a sentence ϕ in the language of rings, which holds in
every ring A of continuous definable functions X −→ M for every o-minimal expansion of a
real closed field M and every definable subset X of dimension > 0, so that ϕ does not hold
in any C(X) (the reason is that each such set contains a definable curve germ and then it is
possible to interpret CM in A and with this interpretation we can code the formula in 16).

5. Super real closed rings: Definition and basic properties

(5.1) Definition.
(a) Let LΥ be the first order language extending the language {+,−, · , 0, 1} of rings, which

has in addition an n-ary function symbol F for every continuous function F : IRn −→ IR
and every n ∈ IN0.

(b) Let TΥ be the LΥ-theory with the following axioms:
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1. The axioms of a commutative unital ring (with 1) in the language {+,−, ·, 0, 1}.
2. The axiom ∀xy (+(x, y) = x + y ∧ ·(x, y) = x·y ∧ id(x) = x ∧ −(x) = −x ∧ 1(x) =

1∧0(x) = 1). Hence the symbols from the language of rings have the same meaning as
the corresponding symbols when reintroduced in LΥ as symbols, naming continuous
functions.

3. All the sentences

∀x̄ F (f
1
(x̄), ...., f

n
(x̄)) = F ◦ (f1, ..., fn)(x̄) (F ∈ C(IRn), f1, ..., fn ∈ C(R̄x̄)).

The models of TΥ are called super real closed rings. We shall denote the functions
FA of a super real closed ring by FA (F ∈ C(IRn)); one might think of FA as the scalar
extension of F to A. If it is clear how the FA are defined we even drop the subscript A
and write F again for FA.

If A is a super real closed ring and a local ring, a domain, a field,... - then A is called
a super real closed local ring, a super real closed domain, a super real closed
field,.... .

Observe that the Null ring is also considered as a super real closed ring.

Note that if F ∈ C(IRn) is considered as the function G ∈ C(IRn×IRk) defined by G(x̄, ȳ) :=
F (x̄), then TΥ ` ∀x1, ..., xn, y1, ..., yk F (x̄) = G(x̄, ȳ), since G = F ◦ p for the projection
IRn × IRk −→ IRn.

The natural examples of super real closed rings are rings of continuous functions:

(5.2) Definition. If X is a Tychonoff space, then we expand C(X) to a super real closed
ring - denoted by C(X)Υ - via

FC(X)Υ(f1, ..., fn) := F ◦ (f1, ..., fn).

In particular IRΥ is the super real closed field expanding the ring IR, where F IRΥ = F .

(5.3) Definition. A homomorphism between LΥ-structures is called a super homomor-
phism. An LΥ-substructure of an LΥ-structure is called a super substructure.

(5.4) Definition. Since TΥ is axiomatized by sentences of the form ∀x̄ t1(x̄) = t2(x̄) for
LΥ-terms t1, t2, TΥ has term models over any set of constants C (cf. [Ho], section 9,
where term models are called “term algebras”). We write tmΥ(C) for the term model of
super real closed rings over a set C of constants.

Recall that tmΥ(C) is the following structure: Let L ∗ be the language LΥ together with a
new constant for every element in C. Then the universe of tmΥ(C) is the set of all constant
terms in the language L ∗ modulo the equivalence relation t ∼ t′ ⇔ TΥ ` t = t′. The
function symbols F from LΥ are interpreted as F tmΥ(C)(t1/ ∼, ..., tn/ ∼) := F (t1, ..., tn)/ ∼.

Also recall that tmΥ(C) is characterized by the following property: for every super real closed
ring A and every map f : C −→ A, there is a unique super homomorphism tmΥ(C) −→ A
extending f . In other words HomΥ(tmΥ(C), A) = AC . In particular tmΥ(C) is uniquely
determined up to an LΥ-isomorphism by the cardinality of C.

(5.5) Theorem.

(i) TΥ is axiomatized by sentences of the form ∀x̄ t1(x̄) = t2(x̄), where t1, t2 are LΥ-terms.
Moreover, for every LΥ-term t(x̄), there is some F ∈ C(IRx̄) with TΥ ` ∀x̄ t(x̄) = F (x̄).
In particular the category of all models of TΥ together with super homomorphisms is a
variety in the sense of universal algebra.
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(ii) IRΥ is the term model of TΥ, in particular for every super real closed ring A, there is a
unique super homomorphism IRΥ −→ A.

(iii) TΥ is an expansion of RCR, hence every model of TΥ is a real closed ring (cf. (2.1)) .

(iv) TΥ ` ∀x̄ F (x̄) = 0 → G(x̄) = 0 for all F,G ∈ C(IRn) with {F = 0} ⊆ {G = 0}.
(v) TΥ ∪ “domains” is the universal theory Th(IRΥ)∀ of IRΥ.

Proof. (i) and (ii) hold by definition of TΥ.

(iii) holds by (our) definition of real closed rings.

(iv). By (3.7), IRn has computable z-radicals. Hence {F = 0} ⊆ {G = 0} implies G =
g·s◦(F·f) for some f, g ∈ C(IRn) and some s ∈ Υ. Therefore TΥ ` ∀x̄ G(x̄) = g·s(F (x̄)·f(x̄)).
Since TΥ ` s(0) = 0 we get the claim.

(v). Since IRΥ is a domain and a model of TΥ we have TΥ ∪ “domains” ⊆ Th(IRΥ)∀.
Conversely let ϕ(x̄) be a quantifier free LΥ-formula such that IRΥ |= ∀x̄ ϕ(x̄). We have to
show that in every super real closed ring A, which is a domain we have A |= ∀x̄ ϕ(x̄). Let
ā ∈ Ax̄. We have to show A |= ϕ(ā). ϕ is a finite conjunction of finite disjunctions of formulas
of the form t1(x̄) = t2(x̄) or t1(x̄) 6= t2(x̄), where t1, t2 are LΥ-terms. By (i) we may assume
that these atomic parts are of the form F (x̄) = 0 or F (x̄) 6= 0 for some F ∈ C(IRx̄). So in
order to prove A |= ϕ(ā) we may assume that ϕ is of the form

∨
i Fi(x̄) = 0∨∨

j Gj(x̄) 6= 0.
Since A is a domain it is enough to show A |= ∏

i Fi(ā) = 0 ∨ ∑
j Gj

2(ā) 6= 0. Since
IRΥ |= ∀x̄ ϕ(x̄) we know IRΥ |= ∀x̄ ∑

j Gj
2(x̄) = 0 → ∏

i Fi(x̄) = 0. So by (iv) we have
TΥ ` ∀x̄

∑
j Gj

2(x̄) = 0 → ∏
i Fi(x̄) = 0 as desired. ¤

(5.6) Corollary. If A is a super real closed domain, then the super real closed ring IRΥ is
existentially closed in A.

Proof. This is a reformulation of (5.5)(v). ¤

By (5.5)(i), a super substructure A of a super real closed ring B is again a super real closed
ring. We call A a super real closed subring, too.

(5.7) Lemma. Let f : A −→ B be an injective super homomorphism between super real
closed rings. Then f is an LΥ-embedding, i.e. for every quantifier free LΥ-formula ϕ(x̄)
and all ā ∈ Ax̄ we have A |= ϕ(ā) ⇔ B |= ϕ(f(ā)).

In particular f is an LΥ-isomorphism if f is bijective.

Proof. We may assume that ϕ(x̄) is of the form F (x̄) = 0 for some F ∈ C(IRx̄). If
A |= F (ā) = 0, then B |= F (f(ā)) = 0, since f is a super homomorphism. Conversely, if
A |= F (ā) 6= 0, then as f is injective we have f(F (ā)) 6= 0. Since f(F (ā)) = F (f(ā)) we get
the lemma. ¤

(5.8) Proposition. If C is a finite set of cardinality n, then the term model tmΥ(C) is
C(IRn). If C is infinite, then tmΥ(C) is the following subring of C(IRC): for each finite
subset E ⊆ C let CE be the subring of C(IRC) induced by the projection IRC −→ IRE ; then
tmΥ(C) =

⋃
E⊆C, finite CE .

Proof. Straightforward. ¤
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By the shape of the axioms of TΥ we get many constructions known from commutative
algebra for free also in the category of super real closed rings and super homomorphisms.
In order not to inflate the text we’ll use them ad-hoc whenever needed and refer to basic
model theory for the justification. For example, in (5.8) above, the free super real closed
ring of cardinality card C is introduced. Similarly, there is a free super real closed ring of
cardinality C over every given super real closed ring. Four other constructions obtained from
the axiomatization should be mentioned right now:

The category of super real closed rings and super homomorphisms has direct limits and
fibre sums as well as inverse limits and fibre products. Moreover the underlying rings of
a direct limit, an inverse limit and a fibre product of super real closed rings is also the
direct limit, the inverse limit and the fibre product in the category of commutative rings,
respectively. All this follows via routine checking from the definitions of the constructions
in both categories.

On the other hand the relation between the fibre sum of super real closed rings and the
tensor product of these rings is a subtle matter. For example, given super real closed ring
extensions A ⊆ B,C, it is an open problem whether the natural ring homomorphism f from
the real closure (cf. (2.17)) of the tensor product B⊗A C in the category of rings to the fibre
sum D of B,C over A in the category of super real closed rings, is injective (specializing
A,B and C to super real closed fields, this question asks whether super real closed fields do
have the amalgamation property). It is also unclear whether the image of f generates the
super real closed ring D.

6. Υ-ideals

Recall from (3.1) that an ideal a of C(X) is called Υ-radical if s ◦ f ∈ a for all f ∈ a and
all s ∈ Υ.

(6.1) Definition. An ideal a of a super real closed ring A is called an Υ-ideal or an
Υ-radical ideal, if sA(a) ⊆ a for all s ∈ Υ.

We’ll show that Υ-radical ideals are precisely the kernels of super homomorphisms in (6.3)
below. As a preparation we need:

(6.2) Lemma. If F : IRn −→ IR is continuous, then there is some s ∈ Υ with

s(F (x1, ..., xn)− F (y1, ..., yn)) ∈ (x1 − y1, ..., xn − yn),

where (x1−y1, ..., xn−yn) denotes the ideal generated by x1−y1, ..., xn−yn in C(IRn×IRn).

Proof. Let G ∈ C(IRn×IRn) be defined by G(x̄, ȳ) := |F (x̄)−F (ȳ)|. Let H ∈ C(IRn×IRn)
be defined by H(x̄, ȳ) :=

∑n
i=1(xi − yi)2. Then {H = 0} ⊆ {G = 0} and since IRn × IRn

has computable z-radicals, there is some s ∈ Υ such that H divides s ◦ G. Hence s ◦ G ∈
H ·C(IRn × IRn) ⊆ (x1 − y1, ..., xn − yn). ¤

(6.3) Theorem. Let a be an ideal of a super real closed ring A. Then a is Υ-radical if and
only if a is the kernel of a super homomorphism A −→ B for some super real closed ring
B. In this case, there is a unique expansion of the ring A/a to a super real closed ring such
that the residue map A −→ A/a is a super homomorphism.

Proof. If there is a super homomorphism ϕ : A −→ B with a = Ker ϕ, then for f ∈ a and
s ∈ Υ we have ϕ(sA(f)) = sB(ϕ(f)) = sB(0) = 0, so sA(f) ∈ a. Thus a is Υ-radical.
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Conversely suppose sA(a) ⊆ a for all s ∈ Υ.

Claim. If F ∈ C(IRn) and f1, g1, ..., fn, gn ∈ A with fi − gi ∈ a (1 ≤ i ≤ n) then
FA(f1, ..., fn)− FA(g1, ..., gn) ∈ a.

Proof. Let ϕ be the super homomorphism C(IRn× IRn) −→ A which maps the projections
xi to fi and yi to gi (1 ≤ i ≤ n). Let b := ϕ−1(a). Then, as sA(a) ⊆ a for all s ∈ Υ,
we also have s(b) ⊆ b for all s ∈ Υ. By (6.2) there is some s ∈ Υ with s(F (x1, ..., xn) −
F (y1, ..., yn)) ∈ (x1−y1, ..., xn−yn). By assumption (x1−y1, ..., xn−yn) ⊆ b. Since b is Υ-
radical we get F (x1, ..., xn)− F (y1, ..., yn) ∈ b = ϕ−1(a), so FA(f1, ..., fn)− FA(g1, ..., gn) =
ϕ(F (x1, ..., xn)− F (y1, ..., yn)) ∈ a.

This proves the claim and we may define for all F ∈ C(IRn) and all f1, ..., fn ∈ a:

FA/a(f1 mod a, ..., fn mod a) := FA(f1, ..., fn)mod a.

With this interpretation of the function symbols from LΥ, A/a becomes an LΥ-structure
and the residue map A −→ A/a is a super homomorphism. Clearly A/a is a super real
closed ring and it is the unique expansion of A/a to a super real closed ring such that the
residue map A −→ A/a is a super homomorphism. ¤

(6.4) Definition. If a is an ideal of a super real closed ring, then the smallest Υ-ideal
containing a is called the Υ-radical of a. We denote the Υ-radical of a by Υ

√
a.

(6.5) Remark. We shall now generalize results from [Tr], section 5 to super real closed
rings, in particular we compute the Υ-radical of an ideal of a super real closed ring. In
proving these generalizations we use mostly the following strategy.

Given a super real closed ring A, A is the union of the finitely generated super real closed
subrings of A. These are subrings B of A which are the LΥ-substructure of A generated by
a finite subset of A. Each of these super real closed rings is of the form C(IRn)/I for some
Υ-radical ideal I of C(IRn) (since IRn has computable z-radicals, I is even a z-ideal).

Therefore we proceed by proving our statements first for quotients of rings C(X) at Υ-
radical ideals, and then we prove our statements for unions of finitely generated super real
closed rings.

In doing this we’ll constantly use the observation that the preimage of an Υ-radical ideal
under a super homomorphism is again Υ-radical (which follows immediately from the defi-
nition of “Υ-radical ideal”, (6.1)).

Here an example:

If a is an ideal of a super real closed ring A, then there is a largest Υ-radical ideal contained
in a.

Proof.
Claim. The assertion holds if A = C(X)/I for some Υ-radical ideal I of C(X).

By (6.3), the residue map C(X) −→ A induces a bijection between the Υ-radical ideals of
A and the Υ-radical ideals of C(X) containing I. Since for every ideal b of C(X) there is a
largest Υ-radical ideal of C(X) contained in b (cf. [Tr],(3.4)) the same property also holds
for all ideals of A. This shows the claim.

Now we get the assertion as follows. A is the union of the finitely generated super real closed
subrings of A. By the claim, for every ideal b of such a ring B there is a largest Υ-radical
ideal bΥ of B, contained in b. Now we see that

⋃

B⊆A,fin. gen.

(a ∩B)Υ
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is the largest Υ-radical ideal of A contained in a. ¤
So we may define

(6.6) Definition. Let a be an ideal of a super real closed ring A. Then there is a largest
Υ-radical ideal contained in a, which we denote by aΥ.

(6.7) Proposition. If a is an ideal of the super real closed ring A, then

aΥ = {f ∈ A | sA(f) ∈ a for all s ∈ Υ}.
If Υ0 ⊆ Υ is a set of generalized root functions (cf. (3.2) ), then

aΥ = {f ∈ a | s0,A(f), s0,A(−f) ∈ a for all s0 ∈ Υ0}.

Proof. With the strategy explained in (6.5) from (3.4). ¤
(6.8) Proposition. For all ideals a, b of a super real closed ring A we have Υ

√
a + b =

Υ
√

a + Υ
√

b.

Proof. With the strategy explained in (6.5) from [Tr], (5.8). ¤
Recall that for any ring extension A ⊆ B, the induced map SpecB −→ Spec A is dominant,
i.e. the image is dense, in other words every minimal prime ideal of A is in the image of this
map.

(6.9) Proposition. If A is a super real closed ring and p is a prime ideal of A, then pΥ is
a prime ideal of A. In particular the minimal prime ideals of A are Υ-radical.

Proof. First let A be a term model of super real closed rings (cf. (5.4)). Then A is a
super real closed subring of C(IRT ) for some set T . Since the minimal primes of C(IRT ) are
Υ-radical (they are even z-radical) and Spec C(IRT ) −→ Spec A is dominant, each minimal
prime ideal of A is Υ-radical. Therefore, if p is a prime ideal of the term model A, then p
contains an Υ-ideal q which is prime. Since q ⊆ pΥ and pΥ is a radical ideal of A, we get
that pΥ is prime as well.

Now let A be an arbitrary super real closed ring. Then A = B/I for some term model B
of super real closed rings and some Υ-radical ideal I of B. Since the residue map B −→ A
induces a bijection between the Υ-radical ideals of A and the Υ-radical ideals of B containing
I we get the proposition. ¤
(6.10) Proposition. Let a be an ideal of a super real closed ring A. Then
(i) If Υ0 ⊆ Υ is a set of generalized root functions, then

Υ
√

a = {g ·sA(f) | g ∈ A, f ∈ a, f ≥ 0, s ∈ Υ0}.
(ii) If Υ0 ⊆ Υ is a set of generalized power functions, then

Υ
√

a = {f ∈ A | sA(|f |) ∈ a for some s ∈ Υ0}.

Proof. With the strategy explained in (6.5) from (3.3). ¤
(6.11) Proposition. Let ϕ : A −→ B be a super homomorphism between super real closed
rings and let b be an ideal of B. Then

Υ
√

ϕ−1(b) = ϕ−1( Υ
√

b) and ϕ−1(b)Υ = ϕ−1(bΥ).

Proof. From (3.5) with the strategy explained in (6.5). ¤
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(6.12) Theorem. Let A be a super real closed ring. Then

Υ−Spec A := {p ∈ Spec A | p is Υ-radical}
is a proconstructible subset of Spec A containing the minimal and the maximal points of
Spec A. If ϕ : A −→ B is a super homomorphism, then the restriction Υ−Spec ϕ of the map
Spec ϕ to Υ−Spec B induces a convex map

Υ−Spec ϕ : Υ−Spec B −→ Υ−Spec A.

Moreover Spec ϕ has going up if and only if Υ−Spec ϕ has going up and Spec ϕ has going
down if and only if Υ−Spec ϕ has going down. See [Tr], section 6 for the notions “convex
map”, “going up” and “going down”.

Proof. From (6.7),(6.10),(6.11) as in the proof of [Tr], (6.5). ¤

7. Localization of super real closed rings

In this section we want to extend the operation of continuous functions on a given super real
closed ring A to certain localizations S−1A of A. That is, we want to equip S−1A with an
LΥ-structure, such that the localization map A −→ S−1A is a super homomorphism. This
is not possible for arbitrary multiplicatively closed subsets S of A. We need the additional
assumption, that t(f) ∈ S whenever f ∈ S and t ∈ Υ (for example, if f ∈ A, then
S = {t(f) | t ∈ Υ} has this property; also complements of Υ-radical prime ideals have this
property).

In order to reach our goal we first look at the “generic situation” of n + 1 indeterminate
elements X1, ..., Xn, Y and we must apply a continuous function F ∈ C(IRn) to the n-tuple
(X1

Y , ..., Xn

Y ). In (7.2) below, we show that there is some t ∈ Υ and some G(x̄, y) ∈ C(IRn×IR)
with

F (
x1

y
, ...,

xn

y
) =

G(x1, ..., xn, y)
t(y)

((x̄, y) ∈ IRn × (IR \ {0})).

This equation allows the localization of super real closed rings at multiplicatively closed
subsets S of A with t(f) ∈ S (t ∈ Υ).

(7.1) Proposition. Let ϕ : [0,∞) −→ (0,∞) be continuous and non decreasing. Let s ∈ Υ
with s(x) > 0 for x > 0. Let t : (0,∞) −→ (0,∞) be defined by

t(x) :=
s(x)

ϕ( 1
x·s(x) )

and let q : (0,∞)× [0,∞) −→ (0,∞) be defined by

q(x, y) := ϕ(
y

x
)·t(x).

Then t has an extension to a function from Υ and q has a continuous extension q on
[0,∞)× [0,∞) with q(0, y) = 0 for all y ≥ 0.

Proof. Since ϕ is non decreasing we have for every x ∈ (0, 1): 1
ϕ(1) ≤ 1

x·ϕ(x) and 1
ϕ( 1

x·ϕ(x) )
≤

1
ϕ( 1

ϕ(1) )
(0 < x < 1). Hence limx→0 t(x) = 0 which implies that t has an extension to a
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function from Υ. In order to show that q has a continuous extension on [0,∞)× [0,∞) we
first prove that the function

q0(x, y) :=
ϕ( y

x )
ϕ( 1

x·s(x) )
,

defined on Q := (0,∞)× [0,∞) is locally bounded in [0,∞)2, i.e. for all x0, y0 ≥ 0 there is
an open subset U of IR2 containing (x0, y0) such that q0|Q∩U is bounded. If x0 6= 0, then this
holds true, since q0 is continuous. So let x0 = 0. We take U := s−1(−∞, 1

y0+1 )× (0, y0 + 1).
Since s ∈ Υ and s(x) > 0 for x > 0 we have (x0, y0) = (0, y0) ∈ U . Pick (x, y) ∈ [0,∞)2∩U ,
hence 0 < x and 0 < y < y0 + 1 < 1

s(x) . Since ϕ is non decreasing and positive we get

0 < ϕ( y
x ) ≤ ϕ(

1
s(x)

x ) = ϕ( 1
x·s(x) ). Thus 0 < q0(x, y) ≤ 1 for all (x, y) ∈ (0,∞)2∩U as desired.

Since q0 is locally bounded in [0,∞)2 and s(0) = 0, the function q(x, y) = q0(x, y) ·s(x)
has a continuous extension q on [0,∞)2 with q(0, y) = 0 for all y ≥ 0. ¤
The next theorem is the key tool for most of the algebra developed in the rest of the paper:

(7.2) Theorem. Let F ∈ C(IRn). Then there are some t ∈ Υ and a continuous function
G ∈ C(IRn × IR) with

F (x1, ..., xn)·t(y) = G(x1 ·y, ..., xn ·y, y) ((x̄, y) ∈ IRn × IR).

More precisely we can choose t as follows:
(i) If ϕ : [0,∞) −→ (0,∞) is continuous, non decreasing with |F (x̄)| ≤ ϕ(|x̄|), and s ∈ Υ

with s(x) > 0 for x > 0, then we can take

t(x) :=

{
s(|x|)

ϕ( 1
|x|·s(|x|) )

if x 6= 0

0 if x = 0

If in addition s is non decreasing on (0,∞) with limx→+∞ s(x) = +∞, then also t is
non decreasing on (0,∞) with limx→+∞ t(x) = +∞.

(ii) If there is a polynomial P (T ) ∈ IR[T ], T = (T1, ..., Tn) of total degree d with |F | ≤ |P |,
then for every s ∈ Υ we can choose t(y) = yd ·s(y). In particular, if F is bounded we
can choose t(y) = y.

Proof. (i). The function F0(x̄) := F (x̄)
ϕ(|x̄|) is bounded. By (7.1), t ∈ Υ and t(v) ·ϕ(|u|) =

q(v ·u, v) for some continuous function q ∈ C(IR2) with q(u, 0) = 0 (u ∈ IR). Then F (x̄) ·
t(y) = F0(x̄) · q(|x̄| · y, y). Since F0 is bounded and q(u, 0) = 0 (u ∈ IR), the function
F0(x1

y , ..., xn

y ) · q(|x̄|, y) can be extended to a continuous function G ∈ C(IRn × IR). So
G(x1 ·y, ..., xn ·y, y) = F0(x̄)·q(|x̄|·y, y) = F (x̄)·t(y) everywhere.

This shows that t and G have the required property. If s is non decreasing on (0, +∞)
and limx→+∞ s(x) = +∞, then it is straightforward to see that also t is non decreasing on
(0,∞) and limx→+∞ t(x) = +∞.
(ii). Let G0 ∈ C(IRn × (IR \ {0})) be defined by

G0(x1, ..., xn, y) := F (
x1

y
, ...,

xn

y
).

Then |G0(x1, ..., xn, y)·yd| = |F (x1
y , ..., xn

y )·yd| ≤ |P (x1
y , ..., xn

y )·yd|. Since the total degree of
P is d, P (x1

y , ..., xn

y )·yd is a polynomial, Hence G0(x1, ..., xn, y)·yd is a continuous function
on IRn× (IR\{0}), which has absolute value, bounded by a continuous function on IRn× IR.
Therefore, and since s(0) = 0, G0 ·yd ·s(y) has a continuous extension G on IRn × IR by
defining G(x̄, y) = 0 if y = 0.
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Clearly G satisfies F (x1, ..., xn)·yd+1 = G(x1 ·y, ..., xn ·y, y) ((x̄, y) ∈ IRn × IR). ¤

(7.3) Definition. Let A be a super real closed ring and let 1 ∈ S ⊆ A. We say that S is
Υ-multiplicatively closed if S ·S ⊆ S and tA(S) ⊆ S for all t ∈ Υ.

(7.4) Theorem.(Localization of super real closed rings.)
Let A be a super real closed ring and let 1 ∈ S ⊆ A be Υ-multiplicatively closed. Then
there is a unique expansion of the localization S−1A to a super real closed ring such that the
localization map A −→ S−1A is a super homomorphism.

The operation of F ∈ C(IRn) on (S−1A)n is given as follows: Pick t ∈ Υ and a continuous
function G ∈ C(IRn × IR) with

F (x1, ..., xn)·t(y) = G(x1 ·y, ..., xn ·y, y) ((x̄, y) ∈ IRn × IR).

Such functions exist by (7.2). Then for f1, ..., fn ∈ A and g ∈ S

FS−1A(
f1

g
, ...,

fn

g
) :=

GA(f1, ..., fn, g)
tA(g)

.

Proof. First we show that the definition of FS−1A does not depend on the choice of G and
t. Let t∗ ∈ Υ and G∗ ∈ C(IRn × IR) with

F (x1, ..., xn)·t∗(y) = G∗(x1 ·y, ..., xn ·y, y) ((x̄, y) ∈ IRn × IR).

Then t∗(y)·G(x1·y, ..., xn·y, y) = t(y)·G∗(x1·y, ..., xn·y, y) for all (x̄, y) ∈ IRn×IR. Hence for all
y, z1, ..., zn ∈ IR with y 6= 0 and xi := zi

y we have t∗(y)·G(z1, ..., zn, y) = t∗(y)·G(x1·y, ..., xn·
y, y) = t(y)·G∗(x1 ·y, ..., xn ·y, y) = t(y)·G∗(z1, ..., zn, y). If y = 0, then t∗(y) = t(y) = 0 and
this shows that t∗(y)·G(z1, ..., zn, y) = t∗(y)·G(z1, ..., zn, y) for all (z̄, y) ∈ IRn×IR. Therefore
t(g)·G∗(f1, ..., fn, g)− t∗(g)·G(f1, ..., fn, g) = 0, in particular G(f1,...,fn,g)

t(g) = G∗(f1,...,fn,g)
t∗(g) in

S−1A.

Hence we know that FS−1A is well defined and we may consider S−1A as an LΥ-structure
with these definitions of the F ’s.

In order to see that S−1A is a super real closed ring, let F ∈ C(IRn) and let F1, ..., Fn ∈
C(IRk). Let F ∗ := F ◦(F1, ..., Fn) ∈ C(IRk). Take t1, ..., tn ∈ Υ and G1, ..., Gn ∈ C(IRk×IR)
as in the definition of F1,S−1A, ..., Fn,S−1A. For x1, ..., xk, y ∈ IR with y 6= 0 we have

F ∗(
x1

y
, ....,

xk

y
) = F (F1(

x1

y
, ....,

xk

y
), ..., Fn(

x1

y
, ....,

xk

y
)) =

= F (
G1(x1, ..., xk, y)

t1(y)
, ...,

Gn(x1, ..., xk, y)
tn(y)

) =

= F (
G̃1(x1, ..., xk, y)

t̃(y)
, ...,

G̃n(x1, ..., xk, y)
t̃(y)

),

where t̃ := t1·...·tn ∈ Υ and G̃i(x1, ..., xk, y) = Gi(x1, ..., xk, y)·∏n
j=1,j 6=i tj(y) ∈ C(IRn× IR).

Take t ∈ Υ and G ∈ C(IRn × IR) as in the definition of FS−1A. Then

F ∗(
x1

y
, ....,

xk

y
) =

G(G̃1(x1, ..., xk, y), ..., G̃n(x1, ..., xk, y), t̃(y))
t(t̃(y))

.

Hence G∗(x1, ..., xk, y) := G(G̃1(x1, ..., xk, y), ..., G̃n(x1, ..., xk, y), t̃(y)) ∈ C(IRk × IR) and
t∗ := t ◦ t̃ ∈ Υ satisfy F ∗(x1, ..., xn) ·t∗(y) = G∗(x1 ·y, ..., xn ·y, y) ((x̄, y) ∈ IRk × IR). This
shows that F ∗S−1A = FS−1A(F1,S−1A, ..., Fn,S−1A), so S−1A is a super real closed ring.
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Clearly the localization map A −→ S−1A is a super homomorphism with respect to the
LΥ-structure provided by the FS−1A. It remains to show that this structure is uniquely
determined by the requirement that the localization map A −→ S−1A is a super homo-
morphism. Let B be an another expansion of S−1A to a super real closed ring such that
the localization map A −→ S−1A is a super homomorphism. If F ∈ C(IRn), then clearly
FB(f1, ..., fn) = FS−1A(f1, ..., fn) for all f1, ..., fn ∈ A. If g ∈ S, then take t ∈ Υ and a
continuous function G ∈ C(IRn × IR) with

F (x1, ..., xn)·t(y) = G(x1 ·y, ..., xn ·y, y) ((x̄, y) ∈ IRn × IR).

Since g is a unit in B and B is a super real closed ring we have FB( f1
g , ..., fn

g ) · tB(g) =
GB( f1

g ·g, ..., fn

g ·g, g) = GS−1A(f1, ..., fn, g). Since also tB(g) = tS−1A(g) it follows

FB(
f1

g
, ...,

fn

g
) =

GS−1A(f1, ..., fn, g)
tS−1A(g)

= FS−1A(
f1

g
, ...,

fn

g
)

as desired. ¤

(7.5) Corollary. Let A be a super real closed ring and let P ⊆ A be arbitrary. Let S be
the smallest Υ-multiplicatively closed subset of A containing P .

If ϕ : A −→ B is a super homomorphism with ϕ(P ) ⊆ B∗, then also ϕ(S) ⊆ B∗ and there
is a unique super homomorphism ψ : S−1A −→ B such that the diagram

S−1A
ψ

""EEEEEEEE

A

OO

ϕ
// B

commutes (where A −→ S−1A is the localization map).

Proof. The set S is the closure of P under multiplication and the application of elements
from Υ. By (6.12) every maximal ideal of A is Υ-radical, hence for every t ∈ Υ and each
element b ∈ B, b is a unit in B if and only if t(b) is a unit in B. Since ϕ is a super
homomorphism, ϕ(S) ⊆ B∗ and the corollary follows from (7.4). ¤

(7.6) Proposition. Let A be a super real closed domain and let p ∈ Υ−Spec A be a proper,
direct specialization of (0) in Υ−Spec A, i.e. there is no q ∈ Υ−Spec A with (0) $ q $ p.
Then p is convex in the quotient field of A.

Proof. Let f, g, p ∈ A, f, g, p > 0 with f
g < p ∈ p. We must show that f

g ∈ A. If g ≥ 1,
then g is a unit in A and we are done. So we assume that g < 1. Since p is a proper, direct
specialization of (0), there is some strictly increasing s ∈ Υ with 0 < s(p) ≤ g. Since p < 1
we may replace s by a strictly increasing and bounded function from Υ. Since 0 < s(p) ≤ g
and f

g < p we have s( f
g ) ≤ g, too. By (7.4) and since s is bounded, there is some F ∈ C(IR2)

with s( f
g ) = F (f,g)

g . It follows F (f, g) ≤ g2 and the convexity condition for real closed rings

implies that g divides F (f, g) in A. Thus s( f
g ) = F (f,g)

g ∈ A. Since s ∈ Υ is strictly
increasing, there is some ε ∈ IR, ε > 0 such that s0 := s|(−ε,ε) : (−ε, ε) −→ s((−ε, ε)) is an
homeomorphism. Take t ∈ Υ with t|s((−ε,ε)) = s−1

0 .
Since 0 < f

g < p ∈ p, f
g is positive infinitesimal (w.r.t. IR) in qf(A). Then also s( f

g ) is
positive infinitesimal, hence 0 < f

g , s( f
g ) < ε and f

g = t(s0( f
g )) = t(s( f

g )) ∈ A. ¤
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8. Application: o-minimal structures on super real closed fields

Throughout this section, T is an o-minimal extension of real closed fields in the language L
extending the language of ordered rings. We do not assume that T is complete here. The
reference on o-minimality is [vdD].

(8.1) Theorem. Let T be an o-minimal (not necessarily complete) theory extending the
theory of fields, in the language L extending the language of ordered rings and suppose L
has function symbols for all bounded, continuous, T -definable functions. Then
(i) T has quantifier elimination.
(ii) Let M |= T and let A be an L -substructure of M . Then A is a domain and the quotient

field of A in M is an elementary substructure of M .

This is a folklore-theorem in the case when T is complete. I’m not aware of a reference and
I’ll state the proof for arbitrary T :

First the explanation of the term “T -definable function”.

(8.2) Definition. Let T be an L -theory. A T -definable function is an L -formula
ϕ(x1, ..., xn, y) for some n ∈ IN0 such that

T ` ∀x̄∃!y ϕ(x̄, y).

In other words, ϕ(x̄, y) is a T -definable function if and only if for every model M of T ,
ϕ(x̄, y) defines the graph of a function Mn −→ M .

If M is a model of T and f : Mn −→ M is a map, then f is called T -definable if the
graph of f is defined by a T -definable function.
Now let T be an expansion of an ordered abelian group. A T -definable function ϕ(x̄, y)
is continuous if

T ` ∀x̄, y ∀ε > 0 ∃δ > 0 ∀ū, v ϕ(x̄, y) ∧ ϕ(ū, v) ∧max
i
{|xi − ui|} < δ → |y − v| < ε.

Again, a formula ϕ(x̄, y) is a continuous T -definable function if ϕ defines a continuous
function M x̄ −→ M in every model M of T .

(8.3) Definition. Let T be o-minimal (not necessarily complete) in the language L ex-
panding the language of ordered rings. We say that L has function symbols for all
(bounded) continuous, T -definable functions, if for every T -definable, continuous func-
tion ϕ(x̄, y) (such that there is some n ∈ IN with T ` ∀x̄, y ϕ(x̄, y) → |y| ≤ n) there is a
function symbol f(x̄) in L with T ` ∀x̄, y ϕ(x̄, y) ↔ y = f(x̄).

For each L -formula ϕ(x̄), x̄ = (x1, ..., xn) let Dϕ(z̄, y) be the L -formula

y = inf{‖ x̄− z̄ ‖ | ϕ(x̄) holds }.
So if M is a model of T , then Dϕ(z̄, y) is the graph of the distance function dϕ(z̄) of the set
of all realizations of ϕ(x̄).

Proof of Theorem (8.1)(i).
If ϕ(x̄) is an L -formula, defining a closed set in every model of T , then there is a T -definable
bounded continuous function which defines the graph of dϕ(x̄)

1+dϕ(x̄)2 in every model of T . Since
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the zero set of this function is the set of realizations of ϕ in every model of T , it remains
to show that every L -formula is up to T -equivalence equal to a boolean combination of
formulas, each one defining a closed set in every model of T .

In order to prove this we use the following facts from o-minimality. Let M be a model of
T and let X ⊆ Mn be definable. Then

1. The frontier ∂X := X \X of X is of dimension strictly less than dim X (cf. [vdD], IV,
(1.8)). We define ∂n+1(X) := ∂(∂n(X)).

2. Let L(X) := {x ∈ X | there is ε ∈ M, ε > 0 such that Bε(x) ∩ X is closed in Bε(x)},
where Bε(x) is the open ball of radius ε around x. Then L(X) is a locally closed subset of
Mn, which is dense and open in X. Moreover X \ L(X) = ∂2(X); this is straightforward
from the observation that Bε(x) ∩X is closed in Bε(x) if and only if Bε(x) ∩ ∂X = ∅.

It follows that

(∗) X = L(X) ∪ L(∂2(X)) ∪ L(∂4(X)) ∪ ... ∪ L(∂2k(X)),

where k ∈ IN is such that 2k ≥ n: by 1, ∂2k(X) is a finite set, hence the process stops at
this index. We shall formulate (∗) now in terms of formulas.

For each L -formula ϕ(x̄), x̄ = (x1, ..., xn), let ψϕ(x̄) be the formula which defines the
closure ϕ[Mn] in models M of T . Let Oϕ(z̄) be the L -formula

∃x̄, ε ‖ x̄− z̄ ‖< ε ∧ ϕ(x̄) ∧ ”Bε(x̄) ∩ ϕ(x̄) is closed in Bε(x̄)”.

Hence in every model M of T , Oϕ(z̄) defines an open subset of Mn such that L(ϕ[Mn]) =
Oϕ[Mn] ∩ ϕ[Mn]. But then also L(ϕ[Mn]) = Oϕ[Mn] ∩ ψϕ[Mn].

Pick k ∈ IN with 2k ≥ n. We define formulas ϕ0(x̄), ψ0(x̄), χ0(x̄), ..., ϕk(x̄), ψk(x̄), χk(x̄) as
follows: ϕ0 := ϕ, ψ0 := ψϕ, χ0 := ¬Oϕ and inductively,

ϕi+1 = ϕi ∧ ¬((ψ0 ∧ ¬χ0) ∨ ... ∨ (ψi ∧ ¬χi))

ψi+1 = ψϕi+1 , χi+1 = ¬Oϕi+1 .

Inductively we see that (ψi ∧¬χi)[Mn] defines L(∂2i(ϕ[Mn])) and ϕi defines ∂2i(ϕ[Mn]) in
models M of T . Since all the ψi and χi define closed sets in models of T , the representation
(∗) shows:

(8.4) Proposition. T ` ∀x̄ [ϕ(x̄) ↔
k∨

i=0

ψi(x̄) ∧ ¬χi(x̄)]

and for every model M of T the sets ψi[Mn] and χi[Mn] are closed subsets of Mn. ¤

In particular T has quantifier elimination.

Proof of Theorem (8.1)(ii).

Of course, A is a domain. In order to prove that the quotient field of A is a an elementary
substructure of M it is enough to show that qf(A) is the definable closure of A in M (by
o-minimality). Take a function F : Mn −→ M , 0-definable in M , and let a1, ..., an ∈ M .
We must show that F (a1, ..., an) ∈ qf(A). Clearly, we may assume |F (a1, ..., an)| ≤ 1 and
that dim{a1, ..., an} = n, where dim denotes the dimension in the sense of Th(M). We also
assume that F is even T -definable and less than or equal to 1 everywhere: suppose the graph
of F is defined by γ0(x̄, y) in M ; then the graph of F is also defined by

γ(x̄, y) := [γ0(x̄, y) ∧ ∃!z |z| ≤ 1 ∧ γ0(x̄, z)] ∨ [y = 0 ∧ ¬∃!z |z| ≤ 1 ∧ γ0(x̄, z)]

and this formula defines a function of absolute value ≤ 1 in every L -structure.
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We have to find T -definable, bounded, continuous functions ϕ(x̄, y), ψ(x̄, y) such that for
every model M of T we have M |= F (ā)·H(ā) = G(ā)∧H(ā) 6= 0, where G, H : Mn −→ M
denote the functions defined by ϕ, ψ in M respectively. Let δ(x̄) be the formula, which says
that F is continuous at x̄ and of absolute value strictly less than 2:

δ(x̄) := |F (x̄)| < 2 ∧ ∀ε > 0 ∃δ > 0 ∀ȳ ‖ x̄− ȳ ‖< δ → |F (x̄)− F (ȳ)| < ε.

Let ψ(x̄, y) be the formula which defines the distance function to the complement of δ(x̄),
composed with the function y2

0/1 + y2
0 (if this complement is nonempty). Hence

ψ(x̄, y) = [∀ūδ(ū)∧y = 1]∨[∃ū, y0 ¬δ(ū)∧y =
y2
0

y2
0 + 1

∧y0 = inf{z | ∃ū ¬δ(ū)∧ ‖ x̄−ū ‖= z}]

Clearly ψ(x̄, y) is a bounded, continuous, T -definable function. Finally let

ϕ(x̄, y) := ∃y1, y2 y = y1 ·y2 ∧ γ(x̄, y1) ∧ ψ(x̄, y2).

We claim that ϕ(x̄, y) is a bounded, continuous, T -definable function. To see this, let N be
a model of T and let f, h be the functions defined by γ(x̄, y), ψ(x̄, y) in N respectively. By
definition, ϕ(x̄, y) defines the graph of the product g := f ·h in N and we must show that g
is continuous at every c̄ ∈ N x̄. The formula δ(x̄) defines the set

S := {n̄ ∈ N x̄ | f is continuous at n̄ and |f(n̄)| < 2}.
If S = N x̄, then by definition h = 1 and g = f is continuous of absolute value less than 1.
So we assume that S 6= N x̄. Then h is the distance function to N x̄ \ S composed with the
function y2

0/1 + y2
0 and by definition of S we have |g| ≤ 2 on N x̄.

If c̄ ∈ S, then f is continuous at c̄, so g = f ·h is continuous at c̄, too.
If c̄ 6∈ S, then h(c̄) = 0 and |g(x̄)| ≤ 2 ·h(x̄) −→ 0 as x̄ −→ c̄. This shows that g is

continuous at c̄, too.

So we have defined bounded (by 2 ∈ IN), continuous, T -definable function ϕ, ψ and we
return to our initial data, M , A and ā ∈ Ax̄. G,H : Mn −→ M denote the functions defined
by ϕ, ψ in M respectively. We have assumed that |F (ā)| ≤ 1 and that dim{a1, ..., an} = n.
Let P be the definable closure of ∅ in M . By o-minimality, there is an open, 0-definable
subset U of Pn such that F is continuous and of absolute value < 2 in U , such that
ā ∈ UM . Therefore, the function H defined by ψ(x̄, y) in M is non zero in ā. It follows that
M |= F (ā)·H(ā) = G(ā) ∧H(ā) 6= 0, as desired. ¤

(8.5) Theorem. Let A be a super real closed ring and let p be an Υ-radical prime ideal of
A.

(i) There is a unique expansion K of the quotient field of A at p such that the residue map
A −→ K is a super homomorphism.

(ii) For every o-minimal expansion M of the field IR in the language L (consisting of func-
tion symbols of continuous definable function IRn −→ IR), the restriction of K to L is
an elementary extension of M .

Proof. (i) holds by (6.3) and (7.4).

(ii) Let N be the restriction of K to L . Since the super real closed field IR is existentially
closed in K by (5.6), M is existentially closed in N , too. Hence there is an L -embedding of
N into an elementary extension M ′ of M . By (8.1)(ii) applied to the theory of M , N is a
model of that theory. From (8.1)(i) it follows that M is an elementary substructure of N .¤
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9. Convexity in super real closed rings

If F : IRn −→ IR is continuous with F (0) = 0, then there is some s ∈ Υ with

|F (x1, ..., xn)| ≤ s(x1) + ... + s(xn) (xi ∈ IR).

For example the map s(t) := |t| ∨max{|F (x̄)| | maxi |xi| ≤ |t|} has this property.
This observation generates the following super real closed rings:

(9.1) Proposition. Let B be an super real closed ring and let M be a subgroup of (B, +)
such that

1. M is absolutely convex in B, i.e. for all b,m ∈ B we have

|b| ≤ |m|,m ∈ M ⇒ b ∈ M.

2. M is closed under Υ, i.e. sB(M) ⊆ M (s ∈ Υ).

Then

(i) If A ⊆ B is a super real closed subring of B and M is an A-submodule of B, then
A + M is a super real closed subring of B.

(ii) The set C := {c ∈ B | c·M ⊆ M} is an absolutely convex super real closed subring of
B and M is an ideal of C.

Proof. (i). Let F ∈ C(IRn), let ā ∈ An and let µ̄ ∈ Mn. By assumption we know that
FB(ā) ∈ A and it is enough to show that FB(ā + µ̄)− FB(ā) ∈ M .

Let G(x̄, ȳ) := F (x̄ + ȳ)− F (x̄). Hence G : IRn × IRn −→ IR is continuous. Let H : IRn ×
IRn −→ IR be defined by H(x̄, ȳ) = y2

1 + ... + y2
n. Then every zero of H is a zero of G. Since

IRn has computable z-radicals, there is an homeomorphism s ∈ Υ and some Q ∈ C(IRn×IRn)
such that s ◦ |G| = Q·H. Take s̃ ∈ Υ such that |Q(t1, ..., t2n)| ≤ |Q(0)|+ s̃(t1) + ... + s̃(t2n).
on IR2n. Then

|sB ◦ |GB(ā, µ̄)|| ≤ (µ2
1 + ...µ2

n)·(|Q(0)|+ s̃B(a1) + ... + s̃B(an) + s̃B(µ1) + ... + s̃B(µn)).

By assumption 2 and since M is an A-module and A is closed under Υ, the right hand
side of this inequality is in M . By assumption 1, we get sB ◦ |GB(ā, µ̄)| ∈ M . Since s is
an homeomorphism, assumption 2 implies |GB(ā, µ̄)| ∈ M , hence by assumption 1 again,
GB(ā, µ̄) ∈ M , as desired.

(ii). Clearly C is a subring of B and M is a C-module. By assumption 1 and 2, M ⊆ C,
hence M is an ideal of C. If c ∈ C and b ∈ B with |b| ≤ |c|, then b·M ⊆ M , since for m ∈ M
we have |b·m| ≤ |c·m| and c·m ∈ M ; so by 1, b·m ∈ M .

Hence C is an absolutely convex subring of B and it remains to show that C is a super
real closed subring of B. Since C is an absolutely convex subring and every F ∈ C(IRn) can
be bounded above by a natural number plus the sum of s(xi) (1 ≤ i ≤ n) for some s ∈ Υ,
it is enough to show that C is closed under Υ.

Let s ∈ Υ. Since C is absolutely convex and there is an increasing homeomorphism h ∈ Υ
such that |s| ≤ |h| we may assume that s is an increasing homeomorphism IR −→ IR. By
(7.2) (i), there is some t ∈ Υ with limx→+∞ t(x) = +∞ and some continuous G : IR2 −→ IR
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such that s(x) ·t(y) = G(x ·y, y). As limx→+∞ t(x) = +∞, there is some t̃ ∈ Υ such that
x ≤ t ◦ t̃(x) for all x ≥ 0. Take c ∈ C and m ∈ M . Then

|sB(c)·m| ≤ |sB(c)·tB(t̃B(|m|))| = GB(c· t̃B(|m|), t̃B(|m|)).
Since t̃B(|m|) ∈ M by assumption 2 and c ∈ C we know that c · t̃B(|m|) ∈ M , too. Since
|G(x, y)| ≤ s1(x) + s2(y) for some s1, s2 ∈ Υ (observe that G(0, 0) = 0) we get that |sB(c)·
m| ≤ s1,B(c· t̃B(|m|)) + s2,B(t̃B(|m|)) ∈ M . By assumption 1 we get sB(c)·m ∈ M .

This shows that sB(c) ∈ C ¤

(9.2) Corollary. Let B be an super real closed ring and let A be a subring of B, closed
under Υ. Then
(i) The convex hull of A in B (defined as {b ∈ B | |b| ≤ |a| for some a ∈ A}) is a super

real closed subring of B.
(ii) If A is a super real closed subring of B and I is an Υ-radical ideal of B, then A + I is

a super real closed subring of B, too.
(iii) If A is an Υ-subring of B and I is an Υ-radical ideal of A, then C := {b ∈ B | b·J ⊆ J}

with J := {b ∈ B | |b| ≤ |a| for some a ∈ I} is a convex super real closed subring of B
and J is an Υ-radical ideal of C, lying over I.

Proof. (i) holds, since the convex hull M of A in B satisfies conditions 1 and 2 of (9.1).
Now apply (9.1) for M and the super real closed subring IR of B.

(ii) Let M := I. Since M is a radical ideal of B, it satisfies condition 1 of (9.1). Since M is
Υ-radical, it satisfies condition 2 of (9.1) too. Hence A + I = A + M is a super real closed
subring of B.

(iii). By (9.1)(ii) it is enough to show that J satisfies condition 1 and 2 of (9.1). By
definition, J satisfies condition 1 of (9.1) and it remains to show that J is closed under Υ.
Let s ∈ Υ. Take some strictly increasing homeomorphism t ∈ Υ with |s| ≤ |t|. Then, for
b ∈ J , a ∈ I with |b| ≤ |a| we have |sB(b)| ≤ |tB(b)| ≤ |tB(a)|. Since tB(a) ∈ I we get
sB(b) ∈ J as desired. ¤

10. The extended Gelfand-Kolmogorov Theorem

Let A be a ring with normal spectrum, i.e. every prime ideal of A is contained in a unique
maximal ideal of A. Let r : Spec A −→ (SpecA)max be the map which sends a prime
ideal to the maximal ideal containing it. Then r is continuous and any ring homomorphism
ϕ : A −→ B induces a continuous map ι : (Spec B)max −→ (Spec A)max by mapping m to
r(ϕ−1(m)) (in the proof of (10.1) below, this is explained with references to proofs).

The Gelfand-Kolmogorov Theorem says that this map is an homeomorphism if A =
C∗(X), B = C(X) and ϕ is the inclusion.

We generalize this in (10.1) to arbitrary rings with normal spectrum by calculating the
fibres of ι. In (10.5) we apply (10.1) for convex subrings of real closed rings (which then
gives back the original statement). At the end of this section we’ll apply our results to rings
of continuous functions. In the next section we’ll apply our results to super real closed rings.

First some notations. For a subset S of an arbitrary ring A, V (S) denotes the set of prime
ideals of A containing S. Recall from [Tr], section 4 the ideal-construction O(a) for an ideal
a of a ring A. O(a) is the radical ideal which defines the Zariski-closure of

⋂
V (a)⊆O, O open O
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in Spec A. By [Tr]:(4.9),

O(a) = {f ∈ A | there are a ∈ a and k ∈ IN such that fk ·(1− a) = 0}
is the radical ideal generated by the kernel of the localization map A −→ (1 + a)−1A.

(10.1) Theorem. (Gelfand-Kolmogorov for rings with normal spectrum)
Let A be a ring with normal spectrum and let ϕ : A −→ B be a ring homomorphism. Then
the map

ι : (Spec B)max −→ (Spec A)max

n 7−→ max
√

ϕ−1(n)
is continuous, closed with image V (Ker ϕ)max and for each m ∈ (Spec A)max the fibre of ι
at m is

ι−1(m) = V (O(m)·B)max.

Moreover the following are equivalent:
(i) ι is injective.
(ii) for every maximal ideal m of A the localization Bm of the A-Algebra B at m is a local

ring.
(iii) for all f ∈ B the ideals ϕ−1(fB) and ϕ−1((1− f)B) of A are coprime.

Proof. ι is continuous, since ι is the composition of the continuous map Specϕ with the
retract r : Spec A −→ (SpecA)max. That r is continuous (and closed) can be found in
[Kn-Sch] under the additional assumption that SpecA is completely normal - but this proof
only needs the assumption that every prime ideal of A is contained in a unique maximal
ideal.

So we have a continuous map ι : (Spec B)max −→ (SpecA)max. Since (Spec B)max is
compact and (Spec A)max is Hausdorff (this follows again from the assumption that every
prime ideal of A is contained in a unique maximal ideal - together with the separation lemma
for spectral spaces, cf. [Tr]:(2.6)), we get that ι is closed.

We prove ι−1(m) = V (O(m)·B)max : Let m ∈ (SpecA)max and n ∈ (Spec B)max.
⊆: If ι(n) = m, then O(m) ⊆ ϕ−1(n), by definition of O(m). So n ∈ V (O(m)·B)max.
⊇: If O(m)·B ⊆ n, then O(m) ⊆ ϕ−1(n) and since Spec A is normal we get ι(n) = m.

Clearly, the image of ι is contained in V (Ker ϕ)max. Conversely, if m ∈ (Spec A)max is
not in the image of ι, then we already know that 1 ∈ O(m)·B: take a1, ..., an ∈ O(m) and
b1, ..., bn ∈ B with

(∗) 1 = ϕ(a1)b1 + ... + ϕ(an)bn.

Since ai ∈ O(m) there are µ1, ..., µn ∈ m and some k ∈ IN with ak
i ·(1 + µi) = 0. By taking

the k ·n−th power of (∗) we may assume that k = 1. Take a := (1 + µ1)·...·(1 + µn). Then
a 6∈ m and from (∗) we get ϕ(a) = 0. This shows that the image of ι is V (Ker ϕ)max.

It remains to prove the characterizations of the injectivity of ι.

(i) is equivalent to (ii), since for every m ∈ (SpecA)max the natural map Spec Bm −→ Spec B
is an homeomorphism onto the set of all prime ideals q of B with ϕ−1(q) ⊆ m.

(i)⇒(iii). Suppose ι is injective and let f ∈ B. Suppose there is some maximal ideal m of
A containing ϕ−1(fB) + ϕ−1((1 − f)B). Let b := f ·B. We apply what we have already
proved, for the (A/ϕ−1(b))−algebra B/b. This shows that there is some n1 ∈ (SpecB)max

containing f with ι(n1) = m. The same argument applied to (1 − f) shows that there is
some n2 ∈ (Spec B)max containing 1 − f with ι(n2) = m. Since ι is injective we must have
n1 = n2, which is impossible, as f ∈ n1 and 1− f ∈ n2.
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(iii)⇒(i). Suppose for all f ∈ B we have 1 ∈ ϕ−1(fB) + ϕ−1((1 − f)B). Let n1, n2 ∈
(Spec B)max with n1 6= n2. Then there are f ∈ n1, g ∈ n2 with f + g = 1. By assumption,
there are af ∈ ϕ−1(n1), ag ∈ ϕ−1(n1) with 1 = af + ag. So ι(n1) 6= ι(n2). This shows that ι
is injective. ¤
(10.2) Corollary. Let A be a ring with normal spectrum and let ϕ : A −→ B be an
A-algebra. Let

ι : (Spec B)max −→ (Spec A)max

n 7−→ max
√

ϕ−1(n)
and let b be an ideal of B. Then the restriction r of ι to V (b)max is a surjective, continuous
and closed map

r : V (b)max −→ V (ϕ−1(b))max.
If ι is injective, then r is an homeomorphism.

Proof. Let r denote the restriction of ι to V (b)max. Clearly r has values in V (ϕ−1(b))max.
Since A/ϕ−1(b) is again normal we may apply (10.1) to the injective ring homomorphism
A/ϕ−1(b) −→ B/b and we see that r is onto V (ϕ−1(b))max. If ι is injective, then r
is a continuous bijection from a quasi-compact space onto an Hausdorff space, hence an
homeomorphism. ¤
Our main application of (10.1) will concern the case where B is a real closed ring and A
is squeezed between B and the holomorphy ring of B. Recall that the holomorphy ring
Hol(B) of a real closed ring B is the subring of all elements f ∈ B such that |f | ≤ N for
some N ∈ IN. As a preparation we need

(10.3) Lemma. Let A be a real closed ring. Then for all f ∈ A, f2 + (1 − f)2 is a unit in
A with f2 + (1− f)2 ≥ 1

4 .

Proof. We may consider A as a ring of functions X −→ R for some real closed field R and
some set X.

Let ϕ : IRalg −→ IRalg be the continuous semi-algebraic function defined by ϕ(x) =
1

x2+(1−x)2 . As A is real closed, also ϕ ◦ f ∈ A. But (ϕ ◦ f)·(f2 + (1− f)2) = 1 as we see by
evaluating at each x ∈ X. Since x2 + (1− x)2 ≥ 1

4 on R we have f2 + (1− f)2 ≥ 1
4 . ¤

(10.4) Observation. Let a be an ideal of a real closed ring A and let f ∈ A be such that
0 ≤ f ≤ 1 mod p for all p ∈ V (a). Then g := (f ∧ 1) ∨ 0 satisfies f − g ∈ √

a and
0 ≤ g ≤ 1 mod p for all p ∈ Spec A.

Proof. We omit the easy proof. ¤
For a subset S of an arbitrary ring A, D(S) denotes the set of all prime ideals p of A with
p ∩ S = ∅ (hence D(s) is in general not the complement of V (S)). The set D(S) is an
inverse closed subset of Spec A, i.e. D(S) is closed in the inverse topology of Spec A,
which has the quasi-compact open subsets of SpecA as a basis of closed sets. Moreover, if
S is multiplicatively closed, then a straightforward calculation shows that the map Spec ϕ :
Spec S−1A −→ Spec A induced from the localization ϕ : A −→ S−1A, is an homeomorphism
onto D(S) with inverse p 7→ p·(S−1·A). Hence if A −→ S−1A is injective, then D(S) contains
all minimal prime ideals of A (as Spec ϕ is dominant).

(10.5) Theorem. Let A ⊆ B ⊆ R be rings such that R is real closed and A contains the
holomorphy ring of R. Then A and B are real closed, convex subrings of R, B = S−1 ·A
with S := B∗ ∩A and for every ideal b of B the map

ι : V (b)max −→ V (b ∩A)max

n 7−→ max
√

n ∩A
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is an homeomorphism.

Proof. A is convex in R, since for all f ∈ R and a ∈ A with 0 ≤ f ≤ a we have 1+a2 ∈ R∗

and f
1+a2 ∈ Hol(R), so f = (1 + a2)· f

1+a2 ∈ A·Hol(R) ⊆ A. As a convex subring of a real
closed ring, A is real closed. Hence, also B is real closed and convex in R.

Let S := B∗ ∩ A. Clearly S is a multiplicatively closed set of non zero-divisors of A
containing 1. If b ∈ B, then s := 1

1+b2 ∈ Hol(R) ⊆ A ⊆ B, hence s ∈ B∗ ∩ A. Since
b = s−1 · b

1+b2 and b
1+b2 ∈ Hol(R) ⊆ A it follows B = S−1 ·A.

Since 1
1+f2 ∈ Hol(R) for all f ∈ B and | f

1+f2 |, 1
1+f2 ≤ 1 we have f

1+f2 , 1
1+f2 ∈ A for all

f ∈ B. Consequently, every ideal b of B is generated by b ∩A.
Since SpecA is completely normal we can apply (10.2) and by (10.1) it is enough to show

that fB ∩A and (1− f)B ∩A are coprime for all f ∈ B.
Since B is real closed and Hol(B) ⊆ A we know from (10.3) that 1

f2+(1−f)2 ∈ A for all

f ∈ B. Consequently for every f ∈ A we have f2

f2+(1−f)2 ∈ fB∩A, (1−f)2

f2+(1−f)2 ∈ (1−f)B∩A

and

1 =
f2

f2 + (1− f)2
+

(1− f)2

f2 + (1− f)2
.

Thus fB ∩ A and (1 − f)B ∩ A are coprime for all f ∈ B and by (10.1), assertion (ii)
follows. ¤
Observe that for a proper convex subring A of a real closed ring B, there is some m ∈
(Spec A)max with m ·B = B. To see this take some b ∈ B \A. Then f := 1 + b2 6∈ A, since
−f ≤ b ≤ f . Since f ∈ B∗ and f−1 ∈ A, any maximal ideal of A containing f−1 satisfies
m ·B = B.

Not every inverse closed subset of Spec A containing (Spec A)min is of the form D(S), where
S = B∗ ∩ A and B is a real closed overring of A as in (10.5). To see an example, let
X := IRn. Then X is cozero complemented (cf. [He-Wo]), i.e. Z := (SpecC(X))min is an
inverse closed subset of Spec C(X). On the other hand, if B is a real closed ring containing
A := C(X) as a convex subring, then by (10.5), (Spec B)max is homeomorphic to βX. Since
X = IRn, βX is not boolean, so (Spec B)max is not boolean and Z can not be the image of
Spec B −→ Spec C(X). The same argument also works for C∗(X) instead of C(X).

11. The Convex Closure of a super real closed ring

(11.1) Lemma. Let ϕ : A −→ B be a surjective ringhomomorphism between real closed rings
A and B (actually, lattice ordered rings are enough). Let F ⊆ C ⊆ B be such that F is
finite and C is countable. Suppose we have a section ι : F −→ A such that ι : F −→ ιF is
an order isomorphism. Then ι can be extended to a section ι′ : C −→ A which is an order
isomorphism onto ι′(C).

Proof. Straightforward by induction on the cardinality of F . ¤
(11.2) Proposition and Definition. Let A be a real closed ring. Let

S := {f ∈ A | f ≥ 0, f a non zero-divisor and ∀a ∈ A : 0 ≤ a ≤ f ⇒ f |a}.
Then
(i) For all a, b ∈ A and f ∈ S with 0 ≤ a ≤ b and f |b we have f |a.
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(ii) 1 ∈ S and S ·S ⊆ S.

(iii) The ring B := S−1A is the largest real closed ring so that A is convex in B, more
precisely: if C is a real closed overring of A such that A is convex in C, then there is
a unique A-embedding of C into B.

B is called the convex closure of A.

(iv) For f ∈ A we have f ∈ B∗ if and only if |f | ∈ S if and only if f2 ∈ S.

(v) For f ∈ S and f ≤ g ∈ A we have g ∈ S, in particular g|f .

Proof. (i). Let 0 ≤ a ≤ b and let b′ ∈ A with b = fb′. By replacing b′ with |b′| if necessary,
we may assume that b′ ≥ 0. Let c := b′ ∨ 1 ∈ A. Then fb′ ≤ fc and since c ≥ 1, c is a unit
in A. Hence with a′ := a

c2 ∈ A we have 0 ≤ a′ ≤ f . Since f ∈ S there is some a′′ ∈ A with
a′ = fa′′. So a = a′c2 = fa′′c2 and f |a.

(ii). Clearly 1 ∈ S. If f, g ∈ S and 0 ≤ a ≤ fg, a, b ∈ A Since f ∈ S, (i) says that there is
a1 ∈ A with a = a1f . Hence 0 ≤ a1f ≤ fg and since f is a non zero-divisor, f ≥ 0 implies
0 ≤ a1 ≤ g. Since g ∈ S, there is some a2 ∈ A with a1 = a2g. Thus a = a1f = a2gf , i.e.
fg|a. This shows that fg ∈ S, so S ·S ⊆ S.

Before we prove (iii), (iv) and (v) we need a

Claim. Let C be a real closed overring of A such that A is convex in C. If f ∈ C∗ ∩ A,
then |f | ∈ S.

Proof of the claim. Since A ⊆ C, f is a non zero-divisor of A, hence |f | is a non
zero-divisor of A, too. Take a ∈ A with 0 ≤ a ≤ |f |. Then 0 ≤ a

|f | ≤ 1 in C, as f ∈ C∗.
Since A is convex in C we get |f ||a in A. This shows the claim.

(iii). A is convex in B = S−1A, since for 0 ≤ a
f ≤ a′, a, a′ ∈ A, f ∈ S we have 0 ≤ a ≤ a′f ,

hence by (i), f |a in A and a
f ∈ A.

Now let C be a real closed overring of A such that A is convex in C. We already know
from (10.5) that C = T−1A with T = C∗ ∩A. By the claim we have T ′ := {t2 | t ∈ T} ⊆ S.
Since a

t = at
t2 for all a ∈ A, t ∈ T we have C = T−1A = T ′−1A ⊆ S−1A = B.

(iv). If f ∈ B∗ ∩ A, then |f | ∈ S by the claim. If |f | ∈ S, then f2 = |f |2 ∈ S. If f2 ∈ S,
then f2 ∈ B∗ and f ·(f ·(f2)−1) = 1, that is f ∈ B∗.

(v). Let S 3 f ≤ g ∈ A. Then 0 ≤ f ∈ B∗ and therefore f ≤ g implies g ∈ B∗. By (iv),
g = |g| ∈ S. ¤

Note that by [KnZ2], Theorem 9.15, the convex closure of a real closed ring is the Prüfer
hull (cf. [KnZ1]) of that ring.

Our next goal is to prove that the convex closure of a super real closed ring is again a super
real closed ring in a natural way. In order to carry out this task we’ll prove that the set S
from (11.2) is stable under the application of s ∈ Υ.

First a characterization of the elements from S in the case of the super real closed rings
C(X)/a for a z-radical ideal a of C(X).

(11.3) Proposition. For f ∈ C(X), f ≥ 0 and every z-ideal a of C(X) the following are
equivalent:

(i) ∀g ∈ C(X) : 0 ≤ g mod a ≤ f mod a ⇒ f mod a | g mod a.

(ii) ∀g ∈ C(X) : 0 ≤ g ≤ f ⇒ f mod a | g mod a.

(iii) D := {f 6= 0} is C∗-embedded into X at f := {{a = 0} | a ∈ a}, i.e. for every
H ∈ C∗(D) there are Z ∈ f and an extension h ∈ C(X) of H|Z∩D.
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Proof. (iii)⇒(i). Let g ∈ C(X) with 0 ≤ g ≤ f modulo a. By (11.1) there are g′, f ′ ∈ C(X)
with g − g′, f − f ′ ∈ a and 0 ≤ g′ ≤ f ′. By replacing f by f ′ and g by g′ we may assume
that 0 ≤ g ≤ f . Let H := g|D

f |D ∈ C∗(D). So by assumption there is Z ∈ f such that H|Z∩D

can be extended to X. Take h ∈ C(X) extending H|Z∩D. Then {h·f − g = 0} ⊇ Z ∩D. On
Z \D we have 0 ≤ g ≤ f ≡ 0, hence {h·f−g = 0} ⊇ Z and this shows that f mod a | g mod a.
(i)⇒(ii) is a weakening.
(ii)⇒(iii). Suppose ∀g ∈ C(X) : 0 ≤ g ≤ f ⇒ f mod a | g mod a. Let H ∈ C∗(D). We
have to find some Z ∈ f such that H|Z∩D can be extended to a continuous function on X.
Since H = H+ −H− we may assume that H ≥ 0 and of course we also may assume that
H ≤ 1. Since D is the cozero set of f , f |D ·H has an extension g ∈ C(X) with g(x) = 0 for
all x ∈ {f = 0}. Since 0 ≤ H ≤ 1 and f ≥ 0 we have 0 ≤ g ≤ f . By (ii), f mod a | g mod a
and there is some h ∈ C(X) with f ·h − g ∈ a. So with Z := {f ·h − g = 0} we have a set
from f such that h extends H|Z∩D. ¤
(11.4) Corollary. If f ∈ C(X), f 6= 0, D := {f 6= 0}, then the following are equivalent:
(i) ∀g ∈ C(X) : 0 ≤ g ≤ f ⇒ f |g.
(ii) {f 6= 0} is C∗-embedded into X.

Proof. By (11.3) applied to the z-ideal a = {0}. ¤
(11.5) Corollary. Let A be the super real closed ring C(X)/a for some z-radical ideal a
of C(X). Let a ∈ A, a ≥ 0 and let s ∈ Υ with s(t) ≥ 0 (t ≥ 0). Then

∀b ∈ A : 0 ≤ b ≤ a ⇒ a|b ⇔ ∀b ∈ A : 0 ≤ b ≤ s(a) ⇒ s(a)|b.

Proof. Pick f ∈ C(X), f ≥ 0 with a = f mod a. By (11.3), ∀b ∈ A : 0 ≤ b ≤ a ⇒ a|b
if and only if D := {f 6= 0} is C∗-embedded into X at f := {{h = 0} | h ∈ a}. This latter
property only depends on the cozero set of f , hence it holds for f if and only if it holds for
s ◦ f and this shows the corollary. ¤

(11.6) Proposition. Let A be a real closed ring and let f ∈ A with f ≥ 0. Then the
following are equivalent.
(i) ∀a ∈ A : 0 ≤ a ≤ f ⇒ f |a.
(ii) The natural map between the holomorphy rings Hol(A) −→ Hol(Af ) is surjective.

Proof. First note that Hol(A) −→ A −→ Af has indeed values in Hol(Af ). To see this let
a ∈ Hol(A). There is some N ∈ IN with |a| ≤β N (β ∈ Sper A). But then also |a1 | ≤α N for
all α ∈ Sper Af , hence a

1 ∈ Hol(Af ).

(ii)⇒(i). Let 0 ≤ a ≤ f . Then 0 ≤ a
f ≤ 1 in Af , so by (ii) there is some g ∈ A such that

g
1 = a

f in Af . We claim that g ·f = a in A. To see this take a prime ideal p of A. If f ∈ p,
then also a ∈ p, as 0 ≤ a ≤ f . If f 6∈ p, then gf−a ∈ p, since g

1 = a
f in Af . Hence gf−a ∈ p

for all prime ideals p of A and this shows gf = a in A.
(i)⇒(ii). Let a ∈ A and N ∈ IN be such that | a

fn | ≤α N for all α ∈ Sper Af . Then

0 ≤ a+

Nfn ≤α 1 and 0 ≤ a−
Nfn ≤α 1 for all α ∈ Sper Af . So in order to show that Hol(A) −→

Hol(Af ) is surjective we may assume that a ≥ 0 and 0 ≤ a
fn ≤α 1 for all α ∈ Sper Af . This

assumption implies 0 ≤ f·a ≤ fn+1 in A. By (i) there is some g ∈ A with fn+1·g = f·a. But
this means that g is a preimage of a

fn in A. g need not be in Hol(A), but we can modify g in
order to get this property as well: Let g′ := (g ∧ 1) ∨ −1. Then |g′| ≤ 1 and for p ∈ Spec A
with f 6∈ p, 0 ≤ f·a ≤ fn+1 and the equation fn+1·g = f·a shows that fn+1·g′ = f·amod p.¤



36 Marcus Tressl

(11.7) Corollary. Let B be the convex closure of C(X). Then the image of (SpecB)max

under Spec B −→ Spec C(X) is contained in z−Spec C(X).

Proof. B is the localization of C(X) at

S := {f ∈ C(X) | f ≥ 0, f a non zero-divisor and ∀g ∈ C(X) : 0 ≤ g ≤ f ⇒ f |g}
by (11.2). If p ∈ Spec C(X) with p ∩ S = ∅, then also z

√
p ∩ S = ∅, since membership in

S only depends on the cozero set of a function by (11.4). Since the image of (SpecB)max

under Spec B −→ Spec C(X) is the set D(S)max this proves the corollary. ¤

(11.8) Lemma. If A ⊆ B are real closed rings, then

Hol(A) = A ∩Hol(B).

Proof. B is isomorphic to a ring of functions X −→ R for some set X and some real closed
field R. For such a ring, the assertion is obvious. ¤
(11.9) Lemma. Let A be a super real closed ring and let f, a ∈ A, r, s ∈ Υ be such that
| a
s(f) | ≤ 1 in As(f). Then there is some g ∈ A with |g| ≤ |r(f)| such that g = r(f)· a

s(f) in
As(f).

Proof. First we reduce to the case where A is generated by f and a as a super real closed
ring. Let B be the Υ-subring of A generated by f and a. Since | a

s(f) | ≤ 1 in As(f) we also
have | a

s(f) | ≤ 1 in Bs(f) (cf. (11.8)). If we find an element g ∈ B with |g| ≤ |r(f)| such that
g = r(f)· a

s(f) in Bs(f), then also g = r(f)· a
s(f) in As(f). This argument shows that we may

replace A by B, hence we may assume that A is generated by f and a as a super real closed
ring.

Let ϕ : C(IR2) −→ A be the unique super homomorphism which sends x to f and y to a.
Since s(f)

1 = ϕ(s(x))
1 is a unit in As(f) we get a natural map ψ : C(IR2)s(x) −→ As(f) which

is surjective, as ϕ is surjective. Since | a
s(f) | ≤ 1 in As(f) there is some F (x, y) ∈ C(IR2)

such that ψ(F (x,y)
s(x) ) = a

s(f) and such that |F (x,y)
s(x) | ≤ 1 in C(IR2)s(x) (cf. (11.1)). Let

D := {(u, v) ∈ IR2 | s(u) 6= 0}. Then F |D
s|D ∈ C(D) is of absolute value less than 1. Therefore

the function

G(u, v) :=
{

r(u)· F |Ds|D (u, v) if u 6= 0
0 if u = 0

is continuous on IR2, |G(u, v)| ≤ |r(u)| for all u, v ∈ IR and G ·s = r ·F on IR2. Thus
G
1 = r(x)· Fs in C(IR2)s(x).
We take g := ϕ(G) ∈ A. Then |g| ≤ |r(f)| and g = r(f)· a

s(f) in As(f). ¤

(11.10) Proposition. Let A be a super real closed ring, let f ∈ A and let r, s ∈ Υ. Then
the natural map As(f) −→ Ar(f)·s(f), induces an isomorphism of the holomorphy rings

Hol(As(f)) −→ Hol(Ar(f)·s(f)).

Hence the holomorphy ring Hol(As(f)) is independent of s and equal to Hol(Af ).

Proof. First we show that the natural map As(f) −→ Ar(f)·s(f) is injective. Let a ∈ A be
such that a

s(f)n = 0 in Ar(f)·s(f). Then (r(f) ·s(f))k ·a = 0 for some k and we show that
s(f)·a = 0. This will prove a

s(f)n = 0 in As(f) as desired. Let p be a minimal prime ideal of
A. If a ∈ p, then s(f)·a ∈ p. If a 6∈ p, then (r(f)·s(f))k ·a = 0 implies r(f) ∈ p or s(f) ∈ p.
Since p is minimal, it is Υ-radical, hence f ∈ p in any case and so s(f) ∈ p if a 6∈ p.
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This shows that s(f)·a ∈ p for all p ∈ Spec A, hence s(f)·a = 0.

It remains to show that Hol(As(f)) −→ Hol(Ar(f)·s(f)) is surjective. Pick a ∈ A such that
a

(r(f)·s(f))n ∈ Hol(Ar(f)·s(f)). Clearly we may assume that | a
(r(f)·s(f))n | ≤ 1 in Ar(f)·s(f). Now

we apply (11.9) to s and (r ·s)n (instead of r, s). We get some g ∈ A with |g| ≤ |s(f)|
such that g = s(f)· a

(r(f)·s(f))n in Ar(f)·s(f). It follows that g
s(f) is a preimage of a

(r(f)·s(f))n in
Hol(As(f)) under Hol(As(f)) −→ Hol(Ar(f)·s(f)). ¤

Remark. By (11.6), proposition (11.10) says that As(f) is a convex subring of Ar(f)s(f)

(note that at the beginning of the proof of proposition (11.10) it is shown that r(f)
1 is a non

zero-divisor of As(f)).

(11.11) Corollary. Let A be a super real closed ring, let f ∈ A, f ≥ 0 and let s ∈ Υ with
s(u) ≥ 0 (u ≥ 0). Then with S := {f ∈ A | f ≥ 0 and ∀a ∈ A : 0 ≤ a ≤ f ⇒ f |a} we have
f ∈ S ⇔ s(f) ∈ S. In particular D(S)max ⊆ Υ−Spec A.

Proof. By (11.6), f ∈ S if and only if Hol(A) −→ Hol(Af ) is an isomorphism. Since
Hol(Af ) −→ Hol(Af·s(f)) and Hol(As(f)) −→ Hol(Af·s(f)) are isomorphisms by (11.10), we
get f ∈ S ⇔ s(f) ∈ S. ¤

(11.12) Theorem. Let A be a super real closed ring and let B be the convex closure of A.
Then there is a unique expansion of B to a super real closed ring having A as a super real
closed subring.

Proof. By (11.2), B = S−1A with S := {f ∈ A | f ≥ 0, f a non zero-divisor and ∀a ∈
A : 0 ≤ a ≤ f ⇒ f |a}. By (11.11), S is Υ-multiplicatively closed and by (7.4) the theorem
follows from B = S−1A. ¤

12. Real closures over proconstructible subsets of Υ−Spec

(12.1) Proposition. Let I be an index set and let Mi be a super real closed field (i ∈ I).
Let A be a super real closed subring of R :=

∏
i∈I Mi. For every semi-algebraic function

f : IRk
alg −→ IRalg and every a ∈ Rk let fR(a) := (fMi(ai))i∈I ∈ R. Then

D := {fR(a) | k ∈ IN, f : IRk
alg −→ IRalg semi-algebraic, a ∈ Ak}

is again a super real closed subring of R and this LΥ-structure is the only one which expands
the pure ring D to a super real closed ring having A as a super real closed subring.

Proof. Let F ∈ C(IRn) and let f1, ..., fn : IRk
alg −→ IRalg be semi-algebraic. Let a ∈ Rk.

We have to show that FR(fR
1 (a), ..., fR

n (a)) ∈ D. By (7.2), there are t ∈ Υ and a some
G ∈ C(IRn × IR) with

F (x1, ..., xn)·t(y) = G(x1 ·y, ..., xn ·y, y) ((x̄, y) ∈ IRn × IR).

Recall that every semi-algebraic function IRk
alg −→ IRalg is of the form

l∑

i=1

gj

hj
·χj ,
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where χj are semi-algebraic, characteristic functions with IRk
alg =

⋃· j {χj = 1}, gj , hj are
continuous, semi-algebraic functions IRk

alg −→ IRalg and hj has no zeroes on {χj 6= 0} (by
convention gj

hj
·χj(x) = 0 if hj(x) = 0).

Pick such functions χµj , gµj , hµj for each fµ. By selecting a common refinement of the
supports of the χµj , we may assume that the χµj do not depend on µ ∈ {1, ..., n}. We write
χj instead of χµj Moreover, by suitably changing the gµj ’s we may also assume that the hµj

do not depend on µ ∈ {1, ..., n}. We write hj instead of hµj .
Let f : IR2l+k

alg −→ IRalg be semi-algebraic, defined by

f(x1, y1, ..., xl, yl, z̄) :=
{ xj

yj
·χj(z̄) if yj ·χj(z̄) 6= 0 for some j ∈ {1, ..., l}

0 if yj ·χj(z̄) = 0 for all j ∈ {1, ..., l}.
Observe that f is well defined, since IRk

alg =
⋃· j {χj = 1}. It is enough to show that

(∗) FR(fR
1 (a), ..., fR

n (a)) = fR(c1, d1, ..., cl, dl, a) ∈ D

with cj := GR(gR
1j(a), ..., gR

nj(a), hR
j (a)) ∈ A, dj = tR(hj(a)) ∈ A (1 ≤ j ≤ l).

We prove (∗) coordinate wise. Let i ∈ I. There is a unique j with χMi
j (ai) = 1. Then for

each µ ∈ {1, ..., n} we have fR
µ (a)i = fMi

µ (ai) =
g

Mi
µj

(ai)

h
Mi
j

(ai)
, hence

(†) FR(fR
1 (a), ..., fR

n (a))i = FMi(f
Mi
1 (ai), ..., fMi

n (ai)) = FMi(
gMi
1j (ai)

hMi
j (ai)

, ...,
gMi

nj (ai)

hMi
j (ai)

).

By (7.4) we know that

FMi(
gMi
1j (ai)

hMi
j (ai)

, ...,
gMi

nj (ai)

hMi
j (ai)

)·tMi(hMi
j (ai)) = GMi(g

Mi
1j (ai), ..., gMi

nj (ai)), hMi
j (ai)),

in other words
FR(fR

1 (a), ..., fR
n (a))i ·dji = cji,

where dji, cji denote the i-th component of dj , cj respectively. By the choice of the hj and
since χMi

j (ai) = 1, we know that dji 6= 0. Thus

FR(fR
1 (a), ..., fR

n (a))i =
cji

dji
,

which is the i-th component of fR(c1, d1, ..., cl, dl, a), since the pure field Mi is an elementary
extension of IRalg .

Hence we know that D is a super real closed subring of R. Now let E be another super
real closed ring expanding D such that A is a super real closed subring of E. We must show
that FD = FE for every F ∈ C(IRn), n ∈ IN. Pick i ∈ I. Let π : D −→ Mi be the projection
and let M be the image of π. Then M is the quotient field of the image of A −→ D −→ Mi,
hence the kernel of π is a maximal ideal, thus an Υ-radical ideal with respect to every super
real closed ring structure on D. Let N be the LΥ-structure of the pure field M imposed by
E according to (6.3). Then π : D −→ N is a super homomorphism. Composing π with the
inclusion A −→ D (which is a super homomorphism by assumption) shows that the natural
map A −→ N is a super homomorphism as well. By (6.3) and (7.4) we must have N = M .
Thus π : E −→ Mi is a super homomorphism, in other words we have

FE(fR
1 (a), ..., fR

n (a))i = FMi(f
Mi
1 (ai), ..., fMi

n (ai))
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for all F, f1, ..., fn, a as in (†) above. Knowing this, the computation following (†) and using
that A is a super real closed subring of D forces FD = FE . ¤

We have two consequence of (12.1).

(12.2) Corollary. Let A be a super real closed ring and let E(A) be the epimorphic hull
of A (cf. [St], Definition 8.3) in the category of commutative, unital rings. Then there is a
unique expansion of E(A) to super real closed ring such that the canonical homomorphism
A −→ E(A) is a super homomorphism.

Proof. Let Z be the closure of (Spec A)min in the constructible topology. Then E(A) is
the ring B of constructible section of A above Z (the definition of this ring can be found in
[Schw1], chapter I, section 2). This follows easily from the characterization of epimorphism
[Schw-Ma], Theorem 5.2 and basic results from [St]. By the characterization of the elements
of B in [Schw1], B is the ring D defined for A ⊆ ∏

p∈Z qf(A/p) in (12.1). Hence the Corollary
is an instance of (12.1). ¤

The second consequence of (12.1) concerns rings of abstract semi-algebraic functions over
proconstructible subsets of Υ−Spec A as defined in [Schw1], chapter I, section 2. We first
recall some tools from [Schw1].

(12.3) Reminder. Let A be a ring. Let α, β ∈ Sper A (the real spectrum of A) and assume
that β is a specialization of α. Then supp β/ supp α is a convex prime ideal in A/ supp α and
there is a largest convex valuation ring C of k(α) (the ordered residue field of the support
of α) such that m ∩ A/ supp α = supp β/ supp α, where m is the maximal ideal of C. The
set m can be defined as

m = {y ∈ k(α) | yn ∈ the convex hull of supp β/ supp α} and then

C = {c ∈ k(α) | c·m ⊆ m}.
We write Cαβ for this valuation ring, mαβ for its maximal ideal and καβ for the residue

field of Cαβ . Observe that the map A/ supp β −→ καβ factors through an embedding
k(β) −→ καβ ; we write λαβ for this map.

We’ll apply this construction to real closed rings exclusively. In this case orderings of A
are identified with their support, hence we write Cpq,mpq, ... instead of Cαβ , mαβ , ... where
p = supp α and q = suppβ. Also observe that in this case k(p) is real closed and

mpq = the convex hull of q/p.

(12.4) Lemma. If A is a super real closed ring and p, q ∈ Υ−Spec A with p ⊆ q, then Cpq is
a super real closed subring of k(p) with Υ-radical maximal ideal and the map λpq is a super
homomorphism.

Proof. This follows from (9.2) applied to the super real closed rings A/p ⊆ k(p) and the
Υ-radical ideal q/p of A/p. ¤

Recall that for a real closed ring A and a proconstructible subset P of Spec A the real
closure of A above P is the following ring: Let Φ : A −→ ∏

p∈P k(p) be the evaluation
map and let A0 be the image of Φ. Let D be the ring defined for A0 according to (12.1).
Then the real closure of A above P is the subring of all elements (sp)p∈P ∈ D which are
compatible, i.e. for all p, q ∈ P with p ⊆ q we have

sp mod(q/p) = λpq(sq).
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(12.5) Theorem. Let A be a super real closed ring and let P ⊆ Υ−Spec A be proconstructible.
Let B be the real closure of A above P . Then there is a unique expansion of B to a super
real closed ring such that the natural map A −→ B is a super homomorphism.

Proof. Let Φ : A −→ ∏
p∈P k(p) be the evaluation map and let A0 be the image of Φ.

Since P ⊆ Υ−Spec A we know that Φ is a super homomorphism and A0 is a super real closed
subring of

∏
p∈P k(p). Let D be the ring defined for A0 according to (12.1). We claim that

B is a super real closed subring of D. Hence we must show that, for every F ∈ C(IRn), all
s1 := (s1p)p∈P , ..., sn := (snp)p∈P ∈ B and each specialization p ⊆ q inside P we have

(∗) Fk(p)(s1p, ..., snp)mod(q/p) = λpq(Fk(q)(s1q, ..., snq)).

Since q/p is an Υ-radical ideal of A/p we have

Fk(p)(s1p, ..., snp)mod(q/p) = FA/q(s1p mod(q/p), ..., snp mod(q/p)).

Since λpq is a super homomorphism we know that

λpq(Fk(q)(s1q, ..., snq)) = Fκpq(λpq(s1q), ..., λpq(snq)).

Finally, since A/q is a super real closed subring of κpq and sip mod(q/p) = λpq(siq) we see
that (∗) indeed holds.

Hence we know that B can be expanded to a super real closed ring and that the natural
homomorphism A −→ B (which is Φ) is a super homomorphism. The uniqueness statement
follows from the uniqueness statement in (12.1), since D is also the ring obtained from B
according to (12.1). ¤

13. The complete ring of quotients

Recall that a subset of a ring A is called dense if it is not annihilated by nonzero elements of
A. For a ring extension A ⊆ B and any element b ∈ B we define b−1·A := {a ∈ A | a·b ∈ A}.
Clearly b−1 ·A is an ideal of A. Recall from [FGL], section 1.4, that B is called a rational
extension (also the notion fractional extension is used in the literature) of A if b−1 ·A is a
dense subset of B for all b ∈ B.

By [FGL], 1.9 every commutative ring has a largest rational extension Q(A), called the
complete ring of quotients, which is uniquely determined up to A-isomorphism. In this
section we prove that for every super real closed ring A there is a unique expansion of Q(A)
to a super real closed ring having A as a super real closed subring (cf. (13.5))

(13.1) Lemma. Let A be a super real closed ring and let B be an over ring of A. Let
b, b1, ..., bn ∈ B be such that b does not annihilate (b−1

1 ·A) ∩ ... ∩ (b−1
n ·A).

Then for every F ∈ C(IRn) there are a, a∗ ∈ A with a ·b 6= 0 such that whenever B is
expanded to a super real closed ring, having A as a super real closed subring, we have

(∗) a·FB(b1, ..., bn) = a∗.

Proof. By assumption there is some a′ ∈ A with a′ ·b 6= 0 such that a′ ·bi ∈ A for each i.
By (7.2) there are G ∈ C(IRn× IR) and t ∈ Υ with F (x1, ..., xn)·t(y) = G(x1·y, ..., xn·y, y)

for all (x1, ..., xn, y) ∈ IRn×IR. Now we take a := tA(a′) and a∗ := GA(a′·b1, ..., a
′·bn, a′) ∈ A.

First we show a·b = tA(a′)·b 6= 0. Since a′ ·b 6= 0 there is a minimal prime ideal p of B
with a′ ·b 6∈ p. Since p is minimal, p is Υ-radical. Since a′ 6∈ p it follows tA(a′) 6∈ p, too. As
b 6∈ p we get tA(a′)·b 6∈ p as desired.
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Finally we prove (∗) for every expansion of B to a super real closed ring, having A as a super
real closed subring: We have a·FB(b1, ..., bn) = tA(a′)·FB(b1, ..., bn) = tB(a′)·FB(b1, ..., bn) =
GB(b1 ·a′, ..., bn ·a′, a′) = GA(b1 ·a′, ..., bn ·a′, a′) = a∗. ¤
(13.2) Proposition. Let A be a super real closed subring of the super real closed ring B.
Let D be the set of all d ∈ B for which d−1 ·A is a dense subset of B. Then D is a super
real closed subring of B and the induced LΥ-structure on D is the unique one for which D
is a super real closed ring having A as a super real closed subring.

Proof. First we show that D is a super real closed subring of B. Let F ∈ C(IRn) and let
b1, ..., bn ∈ D. We must show that the ideal FB(b1, ..., bn)−1 ·A of A is a dense subset of B.
Pick b ∈ B, b 6= 0. Since each b−1

i ·A is a dense subset of B, also (b−1
1 ·A) ∩ ... ∩ (b−1

n ·A) is a
dense subset of B. As b 6= 0, b is not in the annihilator of (b−1

1 ·A)∩ ...∩ (b−1
n ·A). Pick a, a∗

according to b, b1, ..., bn and F as in (13.1). Then (∗) of (13.1) shows a ∈ FB(b1, ..., bn)−1·A.
Since a·b 6= 0, b does not annihilate FB(b1, ..., bn)−1 ·A, as desired.

Hence D is a super real closed subring of B. Let E be another expansion of the pure ring
D to a super real closed ring having A as a super real closed subring. Let b1, ..., bn ∈ D. We
must show FD(b1, ..., bn) = FE(b1, ..., bn). Otherwise b := FD(b1, ..., bn)− FE(b1, ..., bn) 6= 0.
Since all bi are in D, b is not in the annihilator of (b−1

1 ·A) ∩ ... ∩ (b−1
n ·A). Pick a, a∗

according to D, b, b1, ..., bn ∈ D and F as in (13.1). By (13.1) we have a · b 6= 0 and
a·FD(b1, ..., bn) = a∗ = a·FE(b1, ..., bn), which contradicts the definition of b. ¤
(13.3) Reminder. Let A be a ring and let OSpec A be the sheaf of the scheme Spec A. Hence
the stalk of OSpec A at p is the localization Ap of A at p and for every U ⊆ Spec A open,

OSpec A(U) = {f = (fp)p∈U ∈
∏

p∈U

Ap | for all p ∈ U there are a, s ∈ A

with p ∈ D(s) ⊆ U and fq =
a

s
in Aq (q ∈ D(s))}.

Fix an open subset U ⊆ Spec A and let B := OSpec A(U). We shall consider B as an A-module
via the natural homomorphism ε : A −→ B. If p ∈ U , then the natural map Ap −→ Bp

between the localizations of the A-modules A and B is easily seen to be injective. If A
is reduced, then this map is an isomorphism, since the map Bp −→ Ap induced from the
projection B −→ Ap is injective.

(13.4) Proposition. Let A be a super real closed ring. If U ⊆ Spec A is open such that
U ⊆ Υ−Spec A then there is a unique super structure on B := OSpec A(U) such that B is
super real closed and the canonical map A −→ B is a super homomorphism. Moreover B is
a super real closed subring of the super real closed ring C :=

∏
p∈U Ap.

Proof. Pick f1, ..., fn ∈ B and F ∈ C(IRn). We have to show that FC(f1, ..., fn) ∈ B.
Pick p ∈ U . Then there are ai, s ∈ A with p ∈ D(s) ⊆ U such that (fi)q = ai

s in Aq for
all q ∈ D(s). By (7.2) there are G ∈ C(IRn × IR) and t ∈ Υ with F (x1, ..., xn) · t(y) =
G(x1 ·y, ..., xn ·y, y) for all (x1, ..., xn, y) ∈ IRn × IR. Since U ⊆ Υ−Spec A, every q ∈ D(s) is
super real and tA(s) 6∈ q for all q ∈ D(s). Thus we may apply (7.4) and get

FAq(
a1

s
, ...,

an

s
) =

GA(a1, ..., an, s)
tA(s)

(q ∈ D(s)).

This proves FC(f1, ..., fn) ∈ B. We equip B with this LΥ-structure and denote the resulting
super real closed ring by B.

It remains to show the uniqueness statement. Fix a super structure on B which turns
B into a super real closed ring D , such that the natural map ε : A −→ D is a super
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homomorphism. Then ε(A \ p) is a Υ-multiplicatively closed subset of D , hence D −→
Dp = ε(A\p)−1·D is a super homomorphism. Hence the composed map A −→ Dp is a super
homomorphism, too. By (13.3) the induced map Ap −→ Bp is an isomorphism. Since there
is only one superstructure on Ap such that A −→ Ap is a super homomorphism we get that
Dp = Bp = Ap. Since D and B are super real closed subrings of C, also D = B as super
real closed rings. ¤
(13.5) Theorem. Let A be a super real closed ring and let Q be the complete ring of quotients
as defined in [FGL], section 1. Then there is a unique LΥ-structure on Q, such that Q is a
super real closed ring having A as a super real closed subring.

Proof. Uniqueness follows from (13.2).
By [St], Satz 11.3., Q contains the epimorphic hull E of A. As explained in [FGL], section

1.4, Q is the complete ring of quotients of E, too. Hence by (12.2), we may replace A with
E. In particular, we may assume that A is a super real closed ring which is von Neumann
regular.

It follows that Spec A = Υ−Spec A and by (13.4), we have a unique way to expand the rings
OSpec A(U) (U ⊆ Spec A open) to super real closed rings; moreover for all V ⊆ U ⊆ Spec A
open, the restriction map OSpec A(U) −→ OSpec A(V ) preserves the LΥ-structure. Hence
the filtered family of all the OSpec A(U) with U ⊆ Spec A open and dense, together with the
restriction maps is a filtered family in the category of super real closed rings with super real
homomorphisms. Since this category has direct limits, we may define the super real closed
ring

H(A) := lim
→
{OSpec A(U) | U ⊆ Spec A open and dense}.

Easily we see that the underlying ring of H(A) is also the direct limit of the OSpec A(U)
(U ⊆ Spec A open and dense) in the category of commutative rings. But, as A is reduced,
this ring is A-isomorphic to Q. This last fact is folklore, we sketch a proof:

For each b ∈ Q let Ub := Spec A \ V (b−1A). Since b−1A is dense in A, Ub is dense in
Spec A and we may define an element ϑ(b) ∈ H(A) as the image of the section

p 7→ bs

s
∈ Ap, for some s ∈ b−1A \ p

of OSpec A(Ub) under the natural map OSpec A(Ub) −→ H(A). It is a routine matter to check
that ϑ : Q −→ H(A) defines an A-algebra homomorphism. Since A is reduced and each
b−1A is dense in B (b ∈ Q), it turns out that ϑ is injective. Hence we may identify Q with
a subring of H(A).

On the other hand, H(A) is a rational extension of A. This is so, since each OSpec A(U)
with U ⊆ Spec A open and dense, is a rational extension of A (as follows with the help of
the isomorphisms Ap −→ Bp, p ∈ U from (13.3)). ¤

14. Entering Varieties of Υ−Spec A

We prove a theorem here (cf. (14.5)) about the location of V (a) w.r.t. V (aΥ), if a is a
finitely generated ideal of a super real closed ring A. By the general theory of real closed
rings, every point q of Spec A, outside V (a) that specializes to some point in V (a) has to
enter V (a) in a first point - namely in q +

√
a. Theorem (14.5) says that this entrance point

is minimal in V (a). This is in strong contrast to the semi-algebraic case (we assume some
basic knowledge from real geometry for this argument, cf. [BCR]): Let A be the ring of
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continuous semi-algebraic functions IRn −→ IR and let f ∈ A be the distance function to
the closed unit ball in IRn. Then for all prime ideals q of A outside V (f) that specializes to
a point in V (f), the point q +

√
(f) lies in S̃n−1 = V (g), where g is the distance function

to the sphere Sn−1. This point is not minimal in V (f) !

(14.1) Lemma. Let A be a super real closed ring and let p be a prime ideal of A. If f ∈ A
and

√
p + f ·A is a proper Υ-radical ideal, then f ∈ p.

Proof. First we show

(∗)
√

p + f ·A = {g ∈ A | |g|n mod p ≤ |f |mod p for some n ∈ IN}.
The inclusion ⊇ follows from the convexity condition for the real closed ring A/p. Conversely,
since 1 6∈ p + f ·A we have |f ·h| < 1 mod p for all h ∈ A. Therefore f2h2 < |f |mod p for all
h ∈ A and it is straightforward to prove that the set on the right hand side of (∗) is an ideal
of A. This ideal is radical and contains p and f . This shows (∗).

Now take a barrier function L : IR −→ IR (cf. [Tr]:(7.1)). Since
√

p + f ·A is Υ-radical
we have LA(f) ∈ √p + f ·A. Let A0 be a finitely generated super real closed subring of A
containing f such that LA(f) ∈ √p ∩A0 + f ·A0. By (∗) applied to A0 and p ∩ A0, there
is some n ∈ IN such that |LA(f)n| ≤ |f |mod p ∩ A0. Let k ∈ IN be such that A0 is of the
form C(IRk)/I for some Υ-radical ideal I of C(IRk) and let q ∈ Spec C(IRk) be such that
q/I = p ∩ A0. Take a preimage F of f in C(IRk). Then |LA(f)n| ≤ |f |mod p ∩ A0 means
|(L ◦ F )n| ≤ |f |mod q. By [Tr]:(7.2) we get F ∈ q. This in turn implies f ∈ p. ¤

(14.2) Corollary. Let A be a super real closed ring, let a ⊆ A be an ideal and let
f1, ..., fn ∈ A. If there is an Υ-radical prime ideal with a ⊆ p $ p + (f1, ..., fn) $ A,
then

√
a + (f1, ..., fn) is not Υ-radical.

Observe that in the case A = C(X), a might not be the largest z-radical ideal contained in
a +

√
(f1, ..., fn) - even if a = p is z-radical: take z-radical prime ideals p $ p1 $ p2, a := p

and f ∈ p2 \ p1.

Proof. Suppose
√

a + (f1, ..., fn) is Υ-radical. Then

Υ
√

p +
√

(f1, ..., fn) = Υ
√

p + a +
√

(f1, ..., fn) = Υ
√

p + Υ
√

a +
√

(f1, ..., fn) =

= p+ Υ
√√

a + (f1, ..., fn) = p+
√

a + (f1, ..., fn) = p+
√

a+
√

(f1, ..., fn) = p+
√

(f1, ..., fn),
hence p+

√
(f1, ..., fn) =

√
p + (f2

1 + ... + f2
n) is Υ-radical and by (14.1) we get f2

1 +...+f2
n ∈

p, thus f1, ..., fn ∈ p. ¤

(14.3) Lemma. If a is an ideal of a super real closed ring A and q is an Υ-radical prime
ideal of A, then q +

√
a ∈ V (a)min or q +

√
a is Υ-radical.

Proof. We may assume that q +
√

a is a proper ideal, hence q +
√

a ∈ V (a). Take
p ∈ V (a)min with a ⊆ p ⊆ q +

√
a. Then pΥ ⊆ p, (q +

√
a)Υ, so p and (q +

√
a)Υ are

comparable. If (q +
√

a)Υ ⊆ p, then, as q is Υ-radical, q ⊆ (q +
√

a)Υ ⊆ p, so q +
√

a ⊆ p
which shows that q +

√
a = p ∈ V (a)min.

Now assume that p $ (q +
√

a)Υ. Then
√

a ⊆ p ⊆ (q +
√

a)Υ. Since q is Υ-radical, also
q ⊆ (q +

√
a)Υ, hence q +

√
a = (q +

√
a)Υ is Υ-radical. ¤
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(14.4) Remark. If A = C(X), and q is a z-radical prime ideal of C(X), then the proof of
(14.3), where ”Υ-radical“ is replaced by ”z-radical” and the ideal construction IΥ is replaced
by the diamond construction I¦ (cf. [Tr], (3.4)), shows that q +

√
a ∈ V (a)min or q +

√
a is

z-radical.

(14.5) Theorem. Let a be an ideal of a super real closed ring A and let q be an Υ-radical
prime ideal of A, not containing a such that 1 6∈ a + q.

If q +
√

a = q +
√

(f1, ..., fn) for some f1, ..., fn, then q +
√

a ∈ V (a)min.

Proof. By (14.2), q +
√

a is not Υ-radical. By (14.3), q +
√

a ∈ V (a)min. ¤
Recall from [Tr]:(4.5) the tubular ideal O(a) attached to an ideal a of a ring A with normal
spectrum: O(a) is the intersection of all prime ideals p of A with the property 1 6∈ a + p;
we have O(a) ⊆ a and the set V (O(a)) of prime ideals of Spec A containing O(a) is the
set O(V (a)) of all q ∈ Spec A specializing to some p ∈ V (a). All this is explained at the
beginning of section 4 in [Tr].

(14.6) Corollary. Let a be an ideal of a super real closed ring A. If b is an ideal of A
with O(a) ⊆ b ⊆ a such that

√
a is finitely generated as a radical ideal over b then the map

V (b) −→ V (a); q 7→ q +
√

a

maps minimal elements of V (b) onto minimal elements of V (a).

Proof. Let q ∈ V (b)min. If q ∈ V (a), then q +
√

a = q and as b ⊆ a, q is already minimal
in V (a). So assume q ∈ V (b)min \ V (a). Since O(a) ⊆ b we have q ∈ O(V (a)) \ V (a).
By assumption

√
a =

√
b + (f1, ..., fn) for some f1, ..., fn ∈ C(X), hence q +

√
a = q +√

b + (f1, ..., fn) = q +
√

b +
√

(f1, ..., fn) = q +
√

b + (f1, ..., fn), since b ⊆ q. Thus we can
apply (14.5) and get q +

√
a ∈ V (a)min. ¤

In contrast to (14.6), the map V (a) −→ V ( Υ
√

a), p 7→ Υ
√

p does not map minimal elements of
V (a) to minimal elements of V ( Υ

√
a); even if a is a principal ideal and X is compact. Here

an example:

Example. Let I := [−1, 1] ⊆ IR, let f ∈ C(I) be the function f(x) = x ∨ 0 and let
a := f ·C(I). Let h ∈ C(I) be defined by h(x) = 0 if x ≤ 0 and h(x) = (log x

e )−1 if x > 0.
Then x·h(x) = f(x)·h(x) ∈ a but no power of x and no power of h(x) is divisible by f in
C(I).

This shows that xmod
√

a is a zero divisor of C(I)/
√

a, thus there is a prime ideal p of
C(I) minimal over a, containing x. It follows that

Υ
√

p = z
√

p = {g ∈ C(I) | g(0) = 0},
which is not minimal over z

√
a: take q ∈ Spec C(I), z-radical such that the prime filter f of

closed subsets of I corresponding to q contains [−1, 0], avoids {0} and specializes to 0. Then
z
√

a ⊆ q $ z
√

p.
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