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In this article we consider representations of SL2 which are interpretable in
�nite Morley rank theories, meaning that inside a universe of �nite Morley rank
we shall study the following de�nable objects: a group G isomorphic to SL2,
an abelian group V , and an action of G on V ; V is thus a de�nable G-module
on which G acts de�nably. Our goal will be to identify V with a standard G-
module, under an assumption on its Morley rank. (A word on this notion of
rank will be said shortly, after we have stated the results.)

It will be convenient to work with a faithful representation, possibly replacing
SL2 by the quotient PSL2, and we shall write G ' (P)SL2 to cover both cases.

Theorem. In a universe of �nite Morley rank, consider the following de�nable
objects: a �eld K, a group G ' (P)SL2(K), an abelian group V , and a faithful
action of G on V for which V is G-minimal. Assume rkV ≤ 3 rk K. Then V
bears a structure of K-vector space such that:

• either V ' K2 is the natural module for G ' SL2(K), or

• V ' K3 is the irreducible 3-dimensional representation of G ' PSL2(K)
with char K 6= 2.

On the way we shall establish the following interesting results.

Proposition 2.3. In a universe of �nite Morley rank, consider the following
de�nable objects: a �eld K, a group G ' (P)SL2(K), an abelian group V , and
a non-trivial action of G on V . Then for v generic in V , C◦G(v) is semi-simple
or unipotent (possibly trivial).

Proposition 2.5. In a universe of �nite Morley rank, consider the following
de�nable objects: a �eld K of characteristic 0, a group G ' (P)SL2(K), an
abelian group V , and a faithful action of G on V for which V is G-minimal.
Assume that for v generic in V , C◦G(v) is a non-trivial unipotent subgroup. Then
V is a natural module for G. In particular G ' SL2(K).

All statements above involve the Morley rank of a structure; the reader
should bear in mind that it is an abstract analog of the Zariski dimension,
which can be axiomatized by some natural properties [2]. The Morley rank
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is however not related a priori to any geometry or topology, being a purely
model-theoretic notion. Yet in general if a �eld K has Morley rank k and V is
an algebraic variety of (Zariski-)dimension d over K, then its Morley rank is dk.
The rank hypothesis in the Theorem would thus amount, if the con�guration
were known to be algebraic, to assuming that dimV ≤ dimG; but of course
the possibility for a �eld to have a �nite Morley rank k > 1 makes algebraic
geometry less general than our frame.

The latter is a ranked universe in the sense of [2]. Indeed, the semi-direct
product V oG is a ranked group in the sense of Borovik and Poizat [7, Corollaire
2.14 and Théorème 2.15]. In a word, we shall not go too deep into purely model-
theoretic arguments but will merely use the natural, intuitive properties, which
can be taken as the de�nition of the Morley rank.

Let us now say a word about the proof of the Theorem. As we have men-
tioned, there is no geometry a priori on V oG, and our e�orts will be devoted to
retrieving a suitable vector space structure on V which arises from the action of
G. Model-theoretically speaking, the main tool is Zilber's so-called Field Theo-
rem [7, Théorème 3.7], which enables one to �nd an (algebraically closed) �eld
inside a solvable, non-nilpotent, in�nite group of �nite Morley rank. A major
di�culty is that there is no immediate reason why the action of an algebraic
torus of G should induce such a structure on all of V . And even if a good struc-
ture exists, this does not mean that G itself is linear on V . The 2-dimensional
case relies on a theorem by Timmesfeld (Fact 1.1 below); as for dimension 3,
we rather manually extend the �eld action and some miraculous computations
will, in the end, prove linearity of G.

Now that we have said what the present paper is, let us say what it is not:
it does not relate directly to the classi�cation project for simple groups of �nite
Morley rank.

1 Preparatory Remarks

We shall use throughout a characterization of the natural module which is due
to Timmesfeld.

Fact 1.1 ([9, Theorem 3.4]). Let K be a �eld and let G ' (P)SL2(K). Let V be
a faithful G-module. Suppose the following:

(i). CV (G) = 0

(ii). [U,U, V ] = 1, where U is a maximal unipotent subgroup of G.

Let 0 6= v ∈ CV (U) and W = 〈vG〉. Then there exists a �eld action of K on W
such that W is the natural G-module. In particular G ' SL2(K).

We shall use the non-standard notation (+) to denote quasi-direct sum, i.e.
the sum of two submodules (of a �xed module) which have a �nite, possibly
non-trivial, intersection.
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1.1 On Malcev's Theorem

Fact 1.2 ([7, Théorème 3.18]). Let G be a connected, solvable group of �nite
Morley rank acting de�nably and faithfully on a de�nable, abelian group A. If
a de�nable subgroup B ≤ A is G- or G′-minimal, then B is centralized by G′.

Lemma 1.3. In a universe of �nite Morley rank, consider the following de�n-
bale objects: a reductive algebraic group G, a nilpotent group V , and an action
of G on V . Let U be a unipotent subgroup of G. Then V o U is nilpotent.

Proof . We may assume that U is a maximal unipotent subgroup. In this case,
and by reductivity of G, U is the commutator subgroup of the Borel subgroup
B = NG(U) [1, p. 65]. Now consider H = V o B and write F ◦(H) = V o K.
Clearly K ≤ F ◦(B), and H/F ◦(H) ' B/K is abelian by [2, Theorem 9.21], so
U = B′ ≤ K.

Corollary 1.4. In a universe of �nite Morley rank, consider the following de-
�nable objects: a �eld K, a quasi-simple algebraic group G over K, an abelian
group V , and a non-trivial action of G for which V is G-minimal. Then V has
the same characteristic as K.

Proof . Let U be a maximal unipotent subgroup of G. By Lemma 1.3, V o U
is nilpotent. If p = 0 and V is torsion or if p 6= 0 and pV = V , then Burdges'
structure theorem for nilpotent groups [3, Theorem 2.31] yields [V,U ] = 0. As
conjugates of U generate G, the action is trivial, a contradiction.

1.2 Algebraicity in characteristic 0

We specialize [6] to our context.

Fact 1.5 (special case of [6, Theorem 4]). In a universe of �nite Morley rank,
consider the following de�nable objects: an abelian, torsion-free group A, an
in�nite group S, and a faithful action of S on A for which A is S-minimal.
Then there is a subgroup A1 ≤ A and a �eld K such that A1 ' K+ de�nably,
and S embeds into GLn(K) for some n.

Lemma 1.6. In a universe of �nite Morley rank, consider the following de�n-
able objects: a �eld K, a simple algebraic group G over K, a torsion-free abelian
group V , and a faithful action of G on V for which V is G-minimal. Then
V oG is algebraic. Moreover, any de�nable subgroup of V has rank a multiple
of rk K.

Proof . The assumptions imply that G is interpretable in K as a pure �eld.
By Fact 1.5, there is a �eld structure L such that V ' Ln+ and G ↪→ GLn(L)
de�nably. L has of course characteristic 0. By a result of Macpherson and Pillay
(see [8, Theorem 3]), G is Zariski-closed in GLn(L) ; so far G and V o G are
algebraic groups over L. In particular G as a pure group interprets L, so K as
a pure �eld interprets L. It follows that K ' L by [7, Théorème 4.15].
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Now consider a de�nable subgroup V1 of V . Then the setwise stabilizer of
V1 in K is a de�nable, non-trivial subgroup of K, whence equal to K by [7,
Corollaire 3.3]. Hence V1 is a vector space on K, which proves that its rank is
a multiple of rk K.

As a consequence, one can drastically simplify certain identi�cation results in
characteristic 0. For example, the following simpli�cation of part of [5] results.

Theorem 1.7 ([5, Theorem A in char. 0]). Let G be a connected, non-solvable
group of �nite Morley rank acting de�nably and faithfully on a torsion-free con-
nected abelian group V of Morley rank 2. Then there is an algebraically closed
�eld K of Morley rank 1 and characteristic 0 such that V ' K2

+, and G is
isomorphic to GL2(K) or SL2(K) in its natural action.

Proof . V is clearly G-minimal. By Fact 1.5, there is an interpretable �eld
structure K such that G ↪→ GLn(K) with V ' Kn. Clearly the dimension must
be 2, making the rank of the �eld 1. So there is a �eld K of rank 1 such that
V ' K2

+ and G ↪→ GL2(K). But de�nable subgroups of GL2(K), especially over
a �eld of rank 1, are known: [8, Theorem 5] together with connectedness and
non-solvability of G forces either G ' GL(V ) or G ' SL(V ).

1.3 A Theorem of Frank Wagner

Fact 1.8 ([10, Corollary 9]). Let K be a �eld of �nite Morley rank of charac-
teristic p > 0. Then K× has no de�nable torsion-free section.

A good torus is a de�nable, abelian, divisible group with no torsion-free
de�nable section; the latter condition being equivalent to: every de�nable sub-
group is the de�nable hull of its torsion subgroup. Wagner's Theorem states
that in �nite Morley rank, the multiplicative group of a �eld of characteristic p
is a good torus.

Lemma 1.9. In a universe of �nite Morley rank, consider the following de�n-
able objects: two in�nite, abelian groups K and H, and a faithful action of K
on H for which H is K-minimal. Suppose that H has exponent p and that K
contains a non-trivial q-torus for each q 6= p. Then rkH = rkK.

Proof . By Zilber's Field Theorem, there is a �eld structure L such that K ↪→
L× and H ' L+. In particular, char L = p. Now L×/K is torsion-free, so by
Wagner's Theorem, K cannot be proper in L×. Hence rkK = rk L = rkH.

Lemma 1.10. In a universe of �nite Morley rank, consider the following de-
�nable objects: a �eld K of characteristic p, a connected subgroup Θ of K×, an
abelian group V , and an action of Θ on V . Then there is θ ∈ Tor Θ such that
CV (Θ) = CV (θ) and [V,Θ] = [V, θ].

Proof . By Wagner's Theorem, K× is a good torus, hence Θ = d(Tor Θ).
By the descending chain condition on centralizers, CV (Θ) = CV (Tor Θ) =
CV (θ1, . . . , θn) for torsion elements, and we take a generator θ0 of the �nite
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cyclic group 〈θ1, . . . , θn〉: one has CV (Θ) = CV (θ0), and this holds true of any
root of θ0.

Now the group [V,Tor Θ] is de�nable, so Σ = {t ∈ Θ : [V, t] ≤ [V,Tor Θ]}
is a de�nable subgroup of Θ containing Tor Θ. Again, as Θ = d(Tor Θ), it
follows Σ = Θ, that is [V,Θ] = [V,Tor Θ]. By the ascending chain condition on
the lattice of connected groups [V, t] (t ∈ Tor Θ), there is θ ∈ Tor Θ such that
[V, θ] = [V,Tor Θ] = [V,Θ]. We may assume that θ is a root of θ0, and we are
done.

1.4 Cohomological computations

Fact 1.11. Let A be a connected, abelian group of �nite Morley rank of bounded
exponent and α a de�nable automorphism of �nite order coprime to the exponent
of A. Then A = CA(α)⊕ [A,α]. Moreover, if A0 < A is a de�nable, connected,
α-invariant subgroup, then [A,α] ∩A0 = [A0, α].

Proof . Let adα and Trα be the adjoint and trace maps, that is

adα(x) = xα − x and Trα(x) = x+ · · ·+ xα
n−1

where n is the order of α. It is easily seen, as A has no n-torsion, that
ker adα ∩ ker Trα = 0. In particular, rkA ≥ rk (ker adα) + rk (ker Trα). More-
over, im adα ≤ ker Trα and im Trα ≤ ker adα. It follows therefore that rkA ≥
rk (ker adα) + rk (ker Trα) ≥ rk (ker adα) + rk (im adα) = rkA, so im adα =
ker Trα. Hence A = ker adα + ker Trα = ker adα⊕ im adα = CA(α)⊕ [A,α].

Let a0 ∈ A0; then a0 ∈ adα(A0) i� Trα(a0) = 0 i� a0 ∈ adα(A).

Corollary 1.12. Let A be a connected elementary abelian p-group of �nite
Morley rank and T a p⊥ good torus acting de�nably on A. Then A = CA(T )⊕
[A, T ]. Let A0 < A be a de�nable, connected, T -invariant subgroup. Then
CA(T ) covers CA/A0(T ). Moreover, CT (A) = CT (A0, A/A0).

Proof . Since T is a good torus we may work as in Lemma 1.10 to �nd a torsion
element t ∈ T such that CA(T ) = CA(t) and [A, T ] = [A, t]. We apply Fact 1.11
and deduce that A = CT (A)⊕ [A, T ].

If x ∈ A maps to an element in CA/A0(t), then denoting the canonical
projection by π one has π adt(x) = adt π(x) = 0. Hence adt(x) ∈ A0 and by
Fact 1.11 there is x0 ∈ A0 such that adt(x) = adt(x0), whence x ∈ x0 + ker adt,
and ker adt = CA(t).

Now let Θ = CT (A0, A/A0); as T is a good torus, Θ is the de�nable hull of its
torsion subgroup. Let t ∈ Tor Θ. Then as above CA(t) covers CA/A0(t) = A/A0;
it follows that A = CA(t) +A0 ≤ CA(t). Hence t ∈ CT (A) and Θ = d(Tor Θ) ≤
CT (A).

1.5 Automorphisms of semi-direct products

Lemma 1.13. In a universe of �nite Morley rank, let A, T be de�nable, abelian,
in�nite groups such that A is T -minimal and the action is faithful. Let K be a
de�nable group normalizing A and T . Then K centralizes T .
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Proof . We let K act on EndA by:

sϕ(a) := (s(aϕ
−1))ϕ

But by assumption, K normalizes the image of T in EndA, which additively
generates an algebraically closed �eld (this is the proof of Zilber's �eld theorem).
In particular, as there are no de�nable groups of automorphisms of a �eld of
�nite Morley rank [2, Theorem 8.3], K acts trivially on T .

2 Actions of (P)SL2

The present section is devoted to general actions of (P)SL2 in the �nite Morley
rank category, with no assumption on the rank itself. Proposition 2.3 is our
main result. The following notations will be adopted in ��2 and 3.

Notation 2.1. Let G ' (P)SL2. Fix a Borel subgroup B of G and let U = B′

be its unipotent subgroup. Let T be an algebraic torus such that B = U o T .
Let i be the involution in T , and ζ ∈ N(T ) a 2-element inverting T (the order
of ζ depends on the isomorphism type of G).

Let us start with a classical observation.

Lemma 2.2. A de�nable, connected subgroup of (P)SL2 is semi-simple, unipo-
tent, or contains a maximal unipotent subgroup of (P)SL2.

Proof . Let K be a de�nable, connected subgroup. We may assume that K is
proper; as K is then solvable (see for instance [8, Théorème 4]), up to conjugacy
K ≤ B. It follows that K = U1 o T1 with obvious notations. If U1, T1 > 1 then
T1 additively generates K, so U1 must be stable under K×, and U1 = U .

2.1 Actions of (P)SL2 and centralizers

Proposition 2.3. In a universe of �nite Morley rank, consider the following
de�nable objects: a �eld K, a group G ' (P)SL2(K), an abelian group V , and
a non-trivial action of G on V . Then for v generic in V , C◦G(v) is semi-simple
or unipotent (possibly trivial).

Proof . Let V be as in the statement; we �rst show that we may assume
CV (G) = 0. Assume the result holds when CV (G) = 0 and let V as in the
statement. Let V0 = CV (G) < V . Since G is perfect, one has CV/V0(G) = 0,
and the action of G on V/V0 is non-trivial. By assumption, the result holds
for V/V0. Now let v ∈ V be generic. Then v̄ ∈ V/V0 is generic too, and in
particular C◦G(v̄) is either semi-simple or unipotent. As C◦G(v) ≤ C◦G(v̄), we are
done.

So from now on we suppose CV (G) = 0. In Notation 2.1 we had �xed a
maximal unipotent subgroup U ≤ G; B = N(U) its normalizer; T an algebraic
torus such that B = U o T ; and a 2-element ζ inverting T .
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Let v ∈ V be generic. C◦G(v) is proper in (P)SL2, hence solvable [8, Théorème
4]; up to conjugacy, C◦G(v) ≤ B. Assume that C◦G(v) is neither unipotent nor
semi-simple. Then by Lemma 2.2, C◦G(v) contains U .

So up to conjugacy, C◦G(v) = UoTv for some non-trivial Tv ≤ T . The family
{C◦G(v)/U : v ∈ V : U ≤ C◦G(v) ≤ B} of subgroups of T is uniformly de�nable;
as T ' K× is a good torus, the family is �nite [4, Rigidity II]. It follows that
there is a common T0 ≤ T such that generically, C◦G(v) is conjugate to U o T0.

Now let V1 = CV (U). Clearly V1 is in�nite, taking a B-minimal subgroup of
V and applying Malcev's Theorem (Fact 1.2). As any two distinct conjugates
of U generate G and CV (G) = 0, V1 must be disjoint from V g1 for g 6∈ B. It
follows that NG(V1) = B and that V1 is disjoint from its distinct conjugates.
One therefore has

rkV G1 = rkV1 + rkG− rkB = rkV1 + rk K.

Notice that by assumption, the generic element of V is centralized by a
conjugate of U o T0. Thus V

G
1 is generic in V . But furthermore, for v generic

in V1, C
◦
G(v) is a conjugate of U o T0 containing U ; conjugacy is therefore

obtained by an element of N(U) = B. As B′ = U , U oT0 is normal in B; hence
C◦G(v) = U o T0. This means that T0 centralizes a generic subset X of V1; as
X +X = V1 it follows that V1 = CV (U o T0).

Let W = V1 ⊕ V ζ1 and W̌ = W \ (V1 ∪ V ζ1 ). The generic element of W
is in W̌ . Let v ∈ W̌ . Clearly T0 ≤ C◦G(v). Moreover, if C◦G(v) is not semi-
simple, then it must meet a unipotent subgroup which can only be either U
or Uζ as 1 6= T0 ≤ C◦G(v). In that case, C◦G(v) contains either U or Uζ by
Lemma 2.2, against the de�nition of W̌ . This means that for v ∈ W̌ , one has
T0 ≤ C◦G(v) ≤ T . In particular, W̌G is not generic in V .

It follows that W < V . As V G1 is generic in V , W cannot be G-invariant.
Therefore T ·〈ζ〉 ≤ NG(W ) < G, and equality follows from maximality of T ·〈ζ〉.
As T · 〈ζ〉 also normalizes V1 ∪ V ζ1 , one sees that NG(W̌ ) = T · 〈ζ〉.

Let w ∈ W̌ . Assume that w ∈ W̌ g for some g ∈ G. Then C◦G(v) is a non-
trivial subgroup of T , so CG(C◦G(v)) = T = T g, and g ∈ N(T ) = T ·〈ζ〉 = N(W̌ ).
This implies that

rk W̌G = rk W̌ + rkG− rkT = 2 rkV1 + 2 rk K = 2 rkV G1 .

But V G1 is already generic in V which is in�nite: this is a contradiction.

Corollary 2.4. In a universe of �nite Morley rank, consider the following de-
�nable objects: a �eld K, a group G ' (P)SL2(K), an abelian group V , and a
non-trivial action of G on V . Then rkV ≥ 2 rk K.

2.2 The characteristic 0 case

We continue in the vein of Proposition 2.3.
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Proposition 2.5. In a universe of �nite Morley rank, consider the following
de�nable objects: a �eld K of characteristic 0, a group G ' (P)SL2(K), an
abelian group V , and a faithful action of G on V for which V is G-minimal.
Assume that for v generic in V , C◦G(v) is a non-trivial unipotent subgroup. Then
V is a natural module for G. In particular G ' SL2(K).

Proof . Since V is torsion-free and G-minimal, CV (G) = 0. Let Ḡ = G/CG(V );
Ḡ is still isomorphic to (P)SL2(K) and now faithful on V . We apply Lemma
1.6 and retrieve a K-vector space structure on V : in particular every de�nable
subgroup has rank a multiple of rk K.

Let v ∈ V be generic; as there are no non-trivial, proper, de�nable subgroups
of K+ [7, Corollaire 3.3], C◦G(v) is a conjugate of a maximal unipotent subgroup.

Let V1 = CV (U) < V ; as any two distinct conjugates of U generate G, V1

is disjoint from V g1 for g 6∈ B. Thus NG(V1) = B and V1 meets its distinct
conjugates trivially. By our assumption, V G1 is generic in V . So

rkV = rkV G1 = rkV1 + rkG− rkNG(V1) = rkV1 + rk K.

In particular rkV/V1 = rk K. Now V1 has rank a multiple of rk K, so rkV1 ≥
rk K. It follows that V1 ⊕ V ζ1 = V , and V/V1 ' V ζ1 ' K+ has no proper
non-trivial de�nable subgroups.

Thus B acts on V/V1 which is B-minimal, and by Malcev's Theorem (Fact
1.2) B′ = U centralizes V/V1. So [V,U, U ] = 1 and we may apply Timmesfeld's
identi�cation result, Fact 1.1. It follows that V is the natural module for Ḡ '
SL2(K), and this forces G 6' PSL2(K) but G ' SL2(K) and G = Ḡ.

Unfortunately, nothing similar seems to be possible in characteristic p.

2.3 Four-groups of PSL2

We �nish this section with an easy but useful relation on ranks when the char-
acteristic is not 2. Given a de�nable, involutive automorphism j of an abelian
group W of �nite Morley rank with no involutions, one has W = W+j ⊕W−j
with obvious notations [2, Exercise 14 p.73].

Lemma 2.6. In a universe of �nite Morley rank, consider the following de�n-
able objects: a �eld K, a group G ' PSL2(K), an abelian group V of character-
istic not 2, and a non-trivial action of G on V . Then

rkV = rk
(
V +i+ζ

)
+

3
2

rk
(
V −i

)
Proof . Write V = V +i⊕V −i , then V +i = V +i+ζ⊕V +i−ζ and V −i = V −i+ζ⊕
V −i−ζ . Let a = rkV +i+ζ and b = rkV +i−ζ . Clearly, b = rkV −i+ζ = rkV −i−ζ .
It follows rkV −i = 2b and rkV = a+ 3b.

This lemma will yield a crucial estimate of ranks in Corollary 3.15.
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3 Proof of the Theorem

We now attack our main result.

Theorem. In a universe of �nite Morley rank, consider the following de�nable
objects: a �eld K, a group G ' (P)SL2(K), an abelian group V , and a faithful
action of G on V for which V is G-minimal. Assume rkV ≤ 3 rk K. Then V
bears a structure of K-vector space such that:

• either V ' K2 is the natural module for G ' SL2(K), or

• V ' K3 is the irreducible 3-dimensional representation of G ' PSL2(K)
with char K 6= 2.

Notation 3.1. In a universe of �nite Morley rank, consider the following de-
�nable objects: a �eld K, a group G ' (P)SL2(K), an abelian group V , and a
non-trivial action of G on V for which V is G-minimal. Assume rkV ≤ 3 rk K.

One should also bear in mind Notation 2.1 which introduces the usual ele-
ments and subgroups of (P)SL2.

Notation 3.2. Let k = rk K and write rkV = 2k + ν.

Notice that 0 ≤ ν ≤ k by Corollary 2.4 and our assumption that rkV ≤ rkG.
Moreover, if ν = 0, then by [5, Theorem B] (which is a consequence, in �nite
Morley rank, of Timmesfeld's identi�cation result, Fact 1.1), we are done. So
we suppose ν > 0 throughout. Our goal is to show that the characteristic is not
2, ν = k, and G ' PSL2 acts on V ' K3 in the usual irreducible way.

If V has characteristic 0, then by Lemma 1.6, V o G or V o G/Z(G) is
algebraic; dimK V is 2 or 3, and as irreducible algebraic representations of (P)SL2

are well-known, the analysis already ends. From now on, we suppose char K to
be a prime number p. The proof will involve studying various submodules of V ,
de�ning an action piecewise, and eventually proving its linearity. On our way
we shall prove p 6= 2, though a more direct attack could be possible.

Lemma 3.3. We may suppose that CV (G) = 0.

Proof . Suppose our Theorem holds for modules with a trivial right-kernel.
Notice that by G-minimality, W = CV (G) is �nite. It follows that there is no
right kernel for G on the G-minimal module V̄ = V/W ; so the result holds for
the action of G on V̄ . In particular, as we have assumed rkV > 2k, we �nd
that char K 6= 2 and G ' PSL2(K), so that 〈i, ζ〉 is a four-group. We also know
that ζ inverts a set of rank 2k in V̄ .

It follows that ζ inverts a set of rank ≥ 2k in V . Hence rkV −ζ ≥ 2k, and
Lemma 2.6 implies that V +i+ζ is �nite. As it is clearly connected, we deduce
that W ≤ V +i+ζ = 0.

Bear in mind on the contrary that when char K = 2, SL2(K) acts on sl2(K)
by conjugacy with an in�nite right-kernel. Characteristic 2 will be eliminated
in Lemma 3.13 below.
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3.1 T -invariant sections

Our �ner study of submodules starts here. A word on terminology: if K is
a group acting on an abelian group V , we shall call any de�nable, connected,
K-invariant subgroup a K-submodule.

In this subsection only, we work with abstract T -modules (of �nite Morley
rank) which need not relate to our current representation V .

De�nition 3.4. Call a T -module X degenerate if C◦T (X) 6= 1.

We now consider corkCoT (X) = rk(T/CoT (X)).

Lemma 3.5.

(i). Let X be a T -module. Then corkC◦T (X) ≤ rkX.

If X is degenerate, then corkC◦T (X) < rkX.

(ii). Let X be a T · 〈ζ〉-module. Then corkC◦T (X) ≤ rkX
2 .

If X is degenerate, then corkC◦T (X) < rkX
2 .

Proof . Let Θ = C◦T (X).

(i). Let 0 = X0 < X1 < · · · < Xn = X be a maximal series of T -modules, and
Θi = C◦T (Xi/Xi−1). As Θ = (∩iΘi)◦, one has cork Θ ≤

∑
i cork Θi. So

we may assume that X itself is T -minimal.

By Zilber's Field Theorem, there is a �eld structure L such that T/Θ
embeds into L× and X ' L+; the �rst claim follows. If in addition X
is degenerate, that is if we know Θ 6= 1, then by Wagner's Theorem Θ
must contain torsion; as Θ is connected it follows that T/Θ 6' L×, and
the embedding is proper, whence the second claim.

(ii). Considering a maximal series of T · 〈ζ〉-modules, we may now assume that
X is T · 〈ζ〉-minimal.

Let Y ≤ X be a T -minimal T -submodule. If Y < X, then Y ∩ Y ζ is
�nite, and X = Y (+)Y ζ . Moreover C◦T (Y ) = Θ. Applying (i) we �nd
cork Θ ≤ rkY = rkX

2 , the inequality being strict if X is degenerate.

We now suppose that Y = X, that is X is T -minimal. But now Lemma
1.13 forces the action of ζ to be trivial on T/Θ, whence Θ = T , and the
claim is obvious.

3.2 Maximin

Proposition 3.6. The largest degenerate T -submodule of V exists; it has rank
≤ ν.

Proof .

Step 1. There is a non-trivial degenerate T -submodule of V .
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Proof: Suppose not. Let V1 ≤ V2 ≤ V be B-submodules, with V1 and V2/V1

B-minimal. Notice that by Malcev's Theorem (Fact 1.2), both V1 and V2/V1

are even T -minimal. Notice further that V2 < V , as otherwise the action is
quadratic, and Fact 1.1 yields a contradiction.

If rkV1 6= k then by Lemma 1.9 T1 = C◦T (V1) must be in�nite; taking
C◦V (T1) ≥ V1 we are done. So we may assume rkV1 = k.

Suppose rkV2/V1 6= k. As V2/V1 is T -minimal, the group T2 = C◦T (V2/V1) is
non-trivial by Lemma 1.9. Let t2 ∈ TorT2 be given by Lemma 1.10 (with respect
to the action on V ); V2 = CV2(t2)⊕[V2, t2]. Now CV2(T2) = CV2(t2) covers V2/V1

by Corollary 1.12, so CV2(T2) is non-trivial; in particular C◦V (T2) 6= 1: we are
done.

So suppose rkV2/V1 = k, that is rkV2 = 2k, and let W2 = (V2 ∩ V ζ2 )◦.
Clearly rkW2 ≥ 2k− ν > 0. If (V1 ∩W2)◦ 6= 0, then by T -minimality of V1, one
has V1 ≤W2. By T -minimality of V1 and V2/V1, one �nds that W2 is either V1

or V2, a contradiction as neither is ζ-invariant.
Therefore (V1 ∩ W2)◦ = 0, and in particular V2 = V1(+)W2; whence W2

is T -minimal, and ζ-invariant. As ζ inverts T , Lemma 1.13 then forces T to
centralize W2: we are done. ♦

Step 2. Any degenerate T -submodule of V has rank ≤ ν.

Proof: Let X be degenerate and Θ = C◦T (X) 6= 1. We �rst claim that for x
generic in X, C◦G(x) is semi-simple. Otherwise, as C◦G(x) contains Θ ≤ T , it
contains either U or Uζ ; we may assume that for x generic in X, U centralizes x.
Thus U centralizes X. As the latter is ζ-invariant, it follows that G = 〈U,Uζ〉
centralizes X, a contradiction.

Hence, the centralizer in G of the generic element of X is semi-simple.
Let x ∈ X be generic, and suppose that there is g ∈ G such that x ∈ Xg.
Then C◦G(x) ≥ 〈Θ,Θg〉 which is semi-simple. Then C◦G(〈Θ,Θg〉) is an algebraic
torus, which can be only C◦G(Θ) = T , and only T g for a similar reason. Hence
g ∈ NG(T ) = T · 〈ζ〉 = NG(X). So X is generically disjoint from its distinct
conjugates; it follows that

rkXG = 2k + rkX ≤ rkV = 2k + ν

which proves the claim. ♦

Step 3. The sum of two degenerate T -submodules is degenerate.

Proof: Let X1, X2 be degenerate T -submodules, and Θi = C◦T (Xi) 6= 1. Con-

sidering X̂i = C◦V (Θi) ≥ Xi, we may assume that the Xi are T · 〈ζ〉-modules.
By Lemma 3.5 (ii) corkT Θi <

rkXi
2 , so using Step 2 rk Θi > k − ν

2 ≥
k
2 .

It follows that Θ12 = (Θ1 ∩ Θ2)◦ is non-trivial. Now X12 = C◦V (Θ12) contains
X1 +X2. ♦

This concludes the proof of Proposition 3.6.
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Notation 3.7. Let X be the largest degenerate T -submodule of V , and let
Θ = C◦T (X). Let θ0 ∈ Tor Θ be given by Lemma 1.10 (for the action on V ), so
that X = CV (θ0) and [V,Θ] = [V, θ0].

Lemma 3.8. U does not centralize X.

Proof . Assume it does. Then since X is ζ-invariant, so does Uζ . It follows
that 〈U,Uζ〉 = G centralizes X 6= 0, a contradiction.

We shall eventually prove that T = Θ centralizesX (Proposition 3.14 below).
But let us �rst introduce some useful objects.

3.3 Minimax and a commutator subgroup

Notation 3.9. Let M = [V,Θ] = [V, θ0] (see Notation 3.7).

One has V = M ⊕X by Corollary 1.12.

Lemma 3.10. M has rank 2k. Moreover, non-trivial proper T -submodules of
M are T -minimal and have rank k.

Proof . As V = CV (θ0) ⊕ M and X = CV (θ0), we know corkM ≤ ν by
Proposition 3.6, so rkM ≥ 2k. Let V1 ≤ M be a T -minimal T -submodule. If
rkV1 6= k then by Lemma 1.9, C◦T (V1) is in�nite, and it follows from Proposition
3.6 that V1 ≤ X by de�nition of X, a contradiction to X ∩M = 0. Hence V1

has rank k.
Now let V1 < V2 ≤ M be a T -submodule such that V2/V1 is T -minimal. If

rkV2/V1 6= k, then by Lemma 1.9 again, T2 = C◦T (V2/V1) is in�nite. CV2(T2)
covers V2/V1, but by Proposition 3.6 it lies in X. Since X ∩M = 0, we have a
contradiction.

So rkV2 = 2k. If V2 < M , then there is V3 ≤ M such that V3/V2 is T -
minimal. But M < V , so rkV3/V2 < k, and we argue as before to deduce that
V3 ≤ V2 +X, whence V3 = V2, a contradiction. HenceM = V2 has rank 2k. It is
now clear that any non-trivial proper T -submodule ofM is actually T -minimal,
and therefore has rank k.

Notation 3.11. Let Y = [X,U ].

In the representation of PSL2 in its Lie algebra, this should capture the set
of upper-triangular matrices.

Lemma 3.12. Y is a subgroup of M of rank k. It is B-minimal and CT (Y ) ≤
Z(G). Moreover, M = Y ⊕ Y ζ ; U centralizes Y , (X + Y )/Y , and V/(X + Y ).

Proof . Let u ∈ U , x ∈ X, and θ ∈ Θ. We denote by · the action of T on U
(isomorphic to the action of K× on K+). One has

[[x, u], θ]] = [x, u]θ − [x, u]
= [x, θ · u]− [x, u]
= [x, (θ − 1) · u]
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So [x, (θ − 1) · u] ∈ [V, θ] ≤ M . But (Θ − 1) · U = U , ,so [x, U ] ≤ M and
Y = [X,U ] ≤M . We claim that Y is neither 0 nor M . By Lemma 3.12, Y > 0,
and Y is clearly de�nable, connected, and T -invariant. If Y = M , then Y is
〈U, ζ〉 = G-invariant, which contradicts G-minimality of V . So 0 < Y < M .

By Lemma 3.10, Y is T -minimal and has rank k. Now by construction, U
normalizes Y ; so does T , hence Y is B-invariant. In particular, Y is B-minimal.
By Lemma 1.3 [Y,U ] < Y , so [Y,U ] = 0, that is U centralizes Y . If Y were
ζ-invariant, we would have that G = 〈U,Uζ〉 centralizes Y , a contradiction.
By T -minimality and rank estimates, it follows that M = Y + Y ζ ; if there
is a non-trivial intersection then T must centralize this intersection, against
Y ∩X ≤M ∩X = 0. So M = Y ⊕ Y ζ .

We now consider CT (Y ). Suppose that there exists t ∈ CT (Y ) which is
not central in G. Let M̌ = M \ (Y ∪ Y ζ); t centralizes M and M̌ . Notice
that NG(M̌) = T · 〈ζ〉. Now let g 6∈ NG(M̌). If there is m ∈ M̌ ∩ M̌g, then
CG(m) contains t and tg, so it can't be semi-simple; it must therefore contain
a maximal unipotent subgroup, which can only be U or Uζ . So one has for
instance U ≤ CG(m), which proves m ∈ CM (U) = Y by Lemma 3.10; this
violates m 6∈ Y and the other case is similar. So distinct conjugates of M̌ are
disjoint, which blows up the rank of V . Hence CT (Y ) ≤ Z(G).

It remains to show that U centralizes V/(X + Y ). As X + Y is B-invariant,
V/(X +Y ) is a B-module. Now V/(X +Y ) 'M/Y as a T -module, so V/(X +
Y ) is T -minimal, whence B-minimal. Therefore U centralizes V/(X + Y ) by
Malcev's Theorem, Fact 1.2.

By Zilber's Field Theorem, there is a �eld structure L1 such that Y ' (L1)+

and T/CT (Y ) ↪→ L×1 . But CT (Y ) is �nite, so T/CT (Y ) ' K×; by Wagner's
Theorem it follows that T/CT (Y ) ' L×1 . Hence Y is a K-vector space.

We eventually get rid of the characteristic 2 case.

Lemma 3.13. p 6= 2.

Proof . Suppose p = 2. We show �rst that [V,U, U ] = 0.
Fix u ∈ U#. Then since Θ additively generates K, we have CX(u) =

CX(u,Θ) = CX(U) = 0. Since Y ≤ CV (U) we �nd C(X+Y )(u) = Y + CX(u) =
C(X+Y )(U). Now [V, u] ≤ X + Y by Lemma 3.12; also, [V, u] ≤ CV (u) since
p = 2. So [V, u] ≤ CX+Y (u) ≤ CV (U). Hence [V,U, U ] = 0.

Since CV (G) = 0 (Lemma 3.3) and CG(V ) = 1, Fact 1.1 forces V to contain
an isomorphic copy W of the natural representation. Using indecomposability,
W must clearly be de�nable; as it is G-invariant, it follows V = W has rank 2k,
a contradiction.

From now on the characteristic is an odd prime p. This will play a crucial
role in the rank computation of Corollary 3.15. But we shall now make a �rst
incursion into linear structures.

3.4 Finer study of X

As promised, we prove the following.
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Proposition 3.14. Θ = T centralizes X.

Proof . If [T,X] ≤ CX(U), then since [T,X] is ζ-invariant one even has [T,X] ≤
CX(U,Uζ) ≤ CV (G) = 0: we are done.

So we assume that X̄ = ([T,X] +CX(U))/CX(U) is not 0 and shall prove a
contradiction.

Notation 1.

• Let W be a T -minimal T -subgroup of X̄. (Notice that T does not cen-
tralize W , since Corollary 1.12 shows that CX̄(T ) = 0.)

• Let L be the de�nable �eld structure such thatW ' L+ and T/CT (W ) ↪→
L×. We use ∗ to denote multiplication in L.

There is such a structure indeed, as we have observed that T does not cen-
tralize W . We shall embed L into K de�nably. This will eventually force
rk L = rk K, which will be very close to a conclusion. Let us work on construct-
ing such a de�nable �eld embedding.

Fix u0 ∈ U#, w0 ∈ W#. Recall that W is made of classes modulo CX(U),
so [w0, u0] denotes a well-de�ned element of Y . Moreover, this element is non-
trivial, as otherwise 〈Θ · u0〉 = U centralizes w0, and w0 = 0 in W . So [w0, u0]
is a well-de�ned, non-trivial element of Y ' K+. We introduce the following
operation.

Notation 2. Fix u0 ∈ U# and w0 ∈ W#. For w′ ∈ W# there is a unique
k ∈ K× such that

[w′, u0] = k · [w0, u0]

Step 3. k depends on w0 and w′, but not on u0.

Proof: Since T ' K×, there is t ∈ T such that k · [w0, u0] = [w0, u0]t. Let
u′ be any element of U#. As Θ additively generates K, there are elements
θ1, . . . , θn ∈ Θ such that u′ = θ1 · u0 + · · · + θn · u0. Since Θ centralizes W , it
follows that:

[w′, u′] =
∑
i[w
′, θi · u0] =

∑
i[w
′, u0]θi

=
∑
i(k · [w0, u0])θi =

∑
i[w0, u0]tθi

=
∑
i[w0, u0]θit = (

∑
i[w0, u0]θi)t

= k ·
∑
i[w0, u0]θi = k · [w0,

∑
i θi · u0] = k · [w0, u

′]

which proves the claim. ♦

Notation 4. For ` ∈ L, let f(`) ∈ K be de�ned as the unique k such that:

[` ∗ w0, u0] = k · [w0, u0]

Step 5. f is a de�nable �eld embedding.
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Proof: f is clearly additive. We now show that it is multiplicative. Let `1, `2 ∈
L; let k1, k2 be their images through f . First assume that `1 and `2 are in the
image of T/CT (W ): there exist elements t1, t2 ∈ T which map to `1, `2. Then
bearing in mind that f does not depend on the base point u0 (Step 3), one has:

f(`1 ∗ `2) · [w0, u0] = [(`1 ∗ `2) ∗ w0, u0] = [wt1t20 , u0]

= [wt10 , u
t−1
2

0 ]t2 = [`1 ∗ w0, u
t−1
2

0 ]t2

= (k1 · [w0, u
t−1
2

0 ])t2 = [w0, u
t−1
2

0 ]t1t2

= [w0, u
t−1
2

0 ]t2t1 = k1 · ([w0, u
t−1
2

0 ])t2
= k1 · [wt20 , u0] = k1 · [`2 ∗ w0, u0]
= k1 · k2 · [w0, u0] = (f(`1) · f(`2)) · [w0, u0]

It follows that f(`1∗`2) = f(`1)·f(`2). By additivity, f is actually multiplicative
on the set additively generated by the image of T in L, that is on all of L. ♦

Now we have a de�nable �eld embedding from L to K. As there are no
extensions of in�nite �elds in a universe of �nite Morley rank, this forces

rk L = rk K = rkY = k ≥ ν ≥ rkX ≥ rkW = rk L

In particular ν = k, and W is a quotient of X by a �nite subgroup; so X is
T -minimal. As it is ζ-invariant and ζ inverts T , Lemma 1.13 implies Θ = T .

This is a contradiction, and in particular T does centralize X. All our
construction collapses: the �eld structure L vanishes.

Proposition 3.14 is now proved. Remember that we have lost the �eld stuc-
ture L on which the argument relied.

3.5 Consequences

Before moving to the identi�cation argument we draw important consequences
of Proposition 3.14.

Corollary 3.15. G ' PSL2 and ζ inverts X; ν = k is the rank of X; CV (U) =
Y is disjoint from X.

Proof . By Proposition 3.14 T centralizes X, so the involution i of T cannot
invert V ; we may suppose G ' PSL2. As G ' PSL2(K), there is no central
element; by Lemma 3.12, T is faithful on Y . In particular, i inverts Y and Y ζ ,
so it inverts M = Y ⊕ Y ζ . It follows that rkV −i ≥ 2k, and by Lemma 2.6, one
�nds ν = k. Moreover V +i+ζ = 0 and this means that ζ inverts X. Also, since
V = M⊕X (see Notation 3.9) and rkM = 2k (Lemma 3.10), one has rkX = k.

We now let Ŷ = CV (U); if Y < Ŷ , let Y ≤ Z ≤ Ŷ be such that Z/Y is
B-minimal. As Ŷ is disjoint from Ŷ ζ , it has rank at most 3k

2 , so rkZ/Y < k. By
Lemma 1.9, CT (Z/Y ) 6= 1; Z contains a non-trivial degenerate module, that is
CX(U) 6= 0. As ζ inverts X, CX(U) is also centralized by Uζ while CV (G) = 0.
Hence Ŷ = Y and X ∩ Y = 0.
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This is indeed the case in the three-dimensional representation of PSL2. We
now work towards understanding the scalar action on X.

Corollary 3.16. Let x ∈ X, t ∈ T , u ∈ U#. Then there is a unique x′ ∈ X
such that [x′, u] = [x, u]t = [x, t · u]; x′ depends on x and t, but not on u.

Proof . Fix u1 ∈ U# and consider the de�nable morphism from X to Y which
maps x to [x, u1]. This is injective, as the kernel lies in CX(u1) = CX(T, u1) ≤
CX(U) = 0. By equality of ranks, the map is a bijection. Now suppose another
u2 ∈ U# is given, and we have elements x′1, x

′
2 such that [x′i, ui] = [x, ui]t. Then

there is τ ∈ T such that u2 = uτ1 , and it follows that:

[x′2, u2] = [x, u2]t = [x, uτ1 ]t = [x, u1]τt

= [x, u1]tτ = [x′1, u1]τ = [x′1, u
τ
1 ] = [x′1, u2]

whence x′1 = x′2, as claimed.

3.6 Identi�cation

Let us serve some refreshments.

• ζ has order 2 (Corollary 3.15)

• V = Y ⊕X ⊕ Y ζ (Notation 3.9 and Lemma 3.12).

• Y = [X,U ] is B-minimal (Lemma 3.12)

• X = CV (T ) is inverted by ζ (Corollary 3.15)

• X and Y have rank k.

We de�ne a K-scalar action on each component:

Notation 3.17.

• On Y , k · y is given by the action of T .

• On Y ζ , we let k · yζ = (k · y)ζ .

• On X, we let k · x be the unique x′ ∈ X such that [x′, u] = k · [x, u]
(Corollary 3.16; this does not depend on the choice of u).

We shall check that G acts linearly. We do it piecewise; notice that when we
claim that U acts linearly onX, we mean that the operation induced by elements
of U from X to V is linear, without claiming anything about invariance under
the action.

Lemma 3.18. T · 〈ζ〉 acts linearly on V . U acts linearly on Y ⊕X.
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Proof . By construction, T is linear on Y and Y ζ . It is linear on X, as it acts
trivially! By construction, ζ is linear on Y ⊕Y ζ . As it inverts X, it is also linear
on X. So T · 〈ζ〉 is linear on V .

As U acts trivially on Y , it is linear on Y . It remains to see that U is linear
on X. Let u ∈ U , x ∈ X, and k ∈ K. By de�nition of the action on X, one has
[k · x, u] = k · [x, u], and therefore:

k · xu − k · x = k · [x, u] = [k · x, u] = (k · x)u − k · x

Linearity follows.

It remains to prove that U is linear on Y ζ . As T is, and since it acts
transitively on U#, it su�ces to exhibit one non-trivial element of U which is
linear on Y ζ .

Notation 3.19 (Bryant Park element). Let w = ζ (it is an involution, after
all). Let u ∈ U be such that (wu) has order 3.

Such an element exists (this may be viewed as a special case of the Steinberg
relations). We shall prove that this particular u is linear on Y ζ .

Lemma 3.20. For any y ∈ Y , there is a unique x ∈ X such that ywu =
y + x+ yw.

Proof . A priori, one has
ywu = y1 + x+ yw2

for elements y1, y2 ∈ Y and x ∈ X. But U centralizes Y , (X + Y )/Y , and
V/(X + Y ) by Lemma 3.12. So y2 = y. We push further, using the fact that w
inverts X (Corollary 3.15).

y(wu)2 = ywu1 + xwu + ywwu

= ywu1 − xu + y

and
y = y(wu)3 = ywuwu1 − xuwu + ywu

whence applying u−1,
y = ywuw1 − xuw + yw

Now Uw centralizes Y w, X+Y w/Y w, and V/(X+Y w) (Lemma 3.12 again),
so [uw, y1] ∈ X + Y w. It follows that y1 is the projection on Y of ywuw1 . On the
other hand, xu ∈ X + Y , so xuw ∈ X + Y w. Taking projections on Y modulo
X + Y w, one has y1 = y.

Lemma 3.21. Let y ∈ Y and x ∈ X be as in Lemma 3.20. Then [x, u] = 2y.

Proof . By de�nition,
ywu = y + x+ yw
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Let us iterate:
y(wu)2 = ywu + xwu + ywwu

= (y + x+ yw)− xu + y
= 2y + x− xu + yw

and
y(wu)3 = 2ywu + xwu − xuwu + ywwu

= 2(y + x+ yw)− xu − xuwu + y
= 3y + 2x− xu − xuwu + 2yw

As wu has order three, one has:

2y + 2x− xu − xuwu + 2yw = 0

Now u centralizes (Y +X)/Y , so there is y1 ∈ Y such that xu = x+ y1. Let
x1 be associated to y1 by Lemma 3.20: one has ywu1 = y1 + x1 + yw1 . Hence

xuwu = xwu + ywu1

= −xu + (y1 + x1 + yw1 )
= −x− y1 + y1 + x1 + yw1
= x1 − x+ yw1

It follows that

2y + 2x− (x+ y1)− (x1 − x+ yw1 ) + 2yw = 0,

and projecting onto Y modulo X + Y w,

y1 = 2y

so that [x, u] = y1 = 2y.

Notation 3.22. For y ∈ Y , let x(y) be the element x given by Lemma 3.20.

Lemma 3.23. The function x(y) is K-linear.

Proof . Let k ∈ K. Then

[x(k · y), u] = 2(k · y) = k · (2y) = k · [x(y), u] = [k · x(y), u]

And we are done.

Corollary 3.24. u is linear on Y w.

Proof . Let y ∈ Y and k ∈ K; let y2 = k · y, and x2 = x(y2). Then

(k · yw)u = ywu2 = y2 + x2 + yw2 = k · y + x2 + k · yw

On the other hand,

k · ywu = k · (y + x+ yw) = k · y + k · x+ k · yw

As x is K-linear, both expressions are equal: u is linear on Y w.
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It follows that G = 〈T, ζ, u〉 is linear on V . We may now �nish the proof.
For clarity let us denote by K′ the isomorphic copy of K which is de�nable in V .
We have a de�nable embedding ι of G ' PSL2(K′) into GL3(K′). The algebraic
torus T of G maps to an algebraic torus of GL3(K′); hence ι(T ) is Zariski-closed
in GL3(K′). Now ι(G) = 〈ι(T g) : g ∈ G〉; it follows that ι(G) is Zariski-closed
in GL3(K′). So G, which is de�nably isomorphic to ι(G), is algebraic over K′.
This concludes the identi�cation together with the proof of our Theorem.
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