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Abstract. In the analysis of the structure of totally categorical
first order theories, the second author showed that certain combi-
natorial counting functions play an important role. Those func-
tions are invariants of the structures and are always polynomials
in one or many variables, depending on the number of independent
dimensions of the theory in question.

The first author introduced the notion of graph polynomials
definable in Monadic Second Order Logic, and showed that the
Tutte polynomial and its generalization, the matching polynomial,
the cover polynomial and the various interlace polynomials fall into
this category. This definition can be extended to allow definability
in full second order, or even higher order Logic.

The purpose of this paper is to show that many graph polynomi-
als and combinatorial counting functions of graph theory do occur
as combinatorial counting functions of totally categorical theory.
We also give a characterization of polynomials definable in Second
Order Logic.

1. Introduction

1.1. Graph invariants and graph polynomials. A graph invariant
is a function from the class of (finite) graphs G into some domain D
such that ismorphic graphs gave the same picture. Usually such invari-
ants are meant to be uniformly defined in some formalism. If D is the
two-element boolean algebra we speak of graph properties. Examples
are the properties of being connected, planar, Eulerian, Hamiltonian,
etc. If D consists of the natural numbers, we speak of numeric graph in-
variants. Examples are the number of connected components, the size
of the largest clique or independent set, the diameter, the chromatic
number, etc. But D could also be a polynomial ring Z[X̄] over Z with a
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set of indeterminates X̄. Here examples are the charatcteristic polyno-
mial, the chromatic polynomial, the Tutte polynomial. There are many
more graph invariants discussed in the literature, which are polynomi-
als in Z[X̄], but there are hardly any papers discussing classes of graph
polynomials as an object of study in its generality. An outline of such
a study was presented in [Mak06]. In [Mak04] the first author has
introduced the MSOL-definable and the SOL-definable graph poly-
nomials, the class of graph polynomials where the range of summation
is definable in (monadic) second order logic. He has verified that all the
examples of graph polynomials discussed in the literature are actually
SOL-polynomials over some expansions (by adding order relations) of
the graph, cf. also [Mak06]. In some cases this is straight forward, but
in some cases it follows from intricate theorems. This definition can
be extended in two ways: by allowing some additional combinatorial
functions as monomials, and by allowing higher order logic formulas.
For n-th order logic formulas HOLn we call the corresponding poly-
nomials extended HOLn-polynomials. For higher order logic formulas
of HOL =

⋃

n HOLn we call the corresponding polynomials extended
HOL-polynomials. It is easy to define (artificial) HOL-polynomials
which are provably not SOL-polynomials.

The purpose of this paper is to present two related unified frame-
works for defining graph invariants, and more generally, invariants of fi-
nite first order τ -structures for arbitrary vocabularies (similarity types),
which are all polynomials. Both frameworks are model-theoretic. The
first framework, which we call counting functions of generalised color-
ings, uses finite model theory. k-vertex-colorings of a graph G = (V,E)
with colors from a set {0, . . . , k−1} = [k] are functions from f : V → [k]
such that no two vertices connected by an edge have the same value. A
simple case of generalised colorings are the φ-colorings, where φ(F ) is a
first order formula over graphs with an additional r-ary function symbol
F , and we allow all functions f which are interpretations F satisfying
φ(F ). To define a φ-coloring, the formula has to be subject to certain
semantic restrictions such as invariance under permutation of the col-
ors, the existence of a bound on the colors used, and independence of
the colors not used. More complicated cases arise by expanding the
graph, allowing several color sets, and replacing functions by relations.
The associated counting function χφ(k) counts the number φ-colorings
as a function of k.

The second framework which we call model theoretic invariants, or
short MT-invariants, uses ω-categorical ω-stable structures. The to-
tally categorical structures are a special example. In the analysis of the
structure of models of totally categorical theories, the second author
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showed that certain combinatorial counting functions play an impor-
tant role, cf. [Zil93]. This was later extended to ω-categorical ω-stable
theories by G. Cherlin, L. Harrington and A. Lachlan [CHL80]. Those
functions are invariants of the structure, which we call model theoretic
invariants, or short MT-invariants. From the structure theory of ω-
categorical, ω-stable structures we have, cf. [Zil93, Proposition 5.2]
and [CH03, Theorem 6]:

Theorem A (Zilber). Every MT-invariant is a polynomial in one or
many variables, depending on the number of independent dimensions
of the structure in question.

For the sake of brevity, we call polynomials, which do occur as com-
binatorial counting functions in such structures MT-polynomials.

We note that, for the purposes of this paper, we need a simplified
version of the general theorem. This version has a direct combinatorial
proof. In fact this proof is equivalent to the direct proof of Corollary
C below, which is given in section 2. and was suggested to us by A.
Blass after having been shown the general theorem1.

1.2. Main results. Our main results here are:

Theorem B. Every counting function of a generalised coloring is a
MT-invariant.

Using Theorem A we get:

Corollary C. Every counting function of a generalised coloring is a
polynomial graph invariant, hence a MT-polynomial.

To see that both our frameworks are very general we show next:

Theorem D. Every extended HOLn-polynomial over some τ -structure
A is a counting function of a generalised coloring over some expansion
of A. In particular every extended SOL-polynomial of graphs is a
counting function of a generalised coloring definable in SOL.

Actually, a converse is also true:

Theorem E. Every counting function of a generalised coloring of graphs
definable in SOL is an extended SOL-polynomial of graphs.

It seems at first sight that there are more MT-invariants than count-
ing functions of generalised colorings. However, it is conceavable that
every MT-invariant is an HOL-definable graph polynomial.

1We wish to thank A. Blass for allowing us to use and further elaborate his
suggestion.



POLYNOMIAL INVARIANTS 3

1.3. Outline of the paper. We assume the reader is familiar with
the basics of graph theory as, say, presented in [Die96, Bol99]. We
also assume the reader is familiar the basics of finite and infinite model
theory as, say, presented in [EFT94, EF95, Hod93, Rot95].

Section 2 is a prelude to our general discussion. In it we discuss the
chromatic polynomial and explain how it fits into the various frame-
works.

In Section 3 we introduce our notion of counting functions of gener-
alised colorings definable in HOL. We state and give a direct proof of
a generalization of Corollary C.

In Section 4 we give precise definition of SOL-definable and HOL-
definable polynomials prove both Theorem D and Theorem E.

In Section 5 we finally we show how all this fits into the framework
of totally categorical structures (for polynomials in one variable) and
of ω-categorical ω-stable structures (in the case of several variables),
and we prove Theorem B.

In Section 6 we draw conclusions and discuss some open problems.

Acknowledgements. The first author would like to thank I. Averbouch, A.

Blass, B. Courcelle, B. Godlin, E. Hrushovski, S. Shelah and M. Ziegler

for valuable discussions and suggestions. We would like to thank A. Blass

for allowing us to incorporate the simple proof of Theorem 3.7, which he

suggested.

2. Prelude: The chromatic polynomial

2.1. Four themes. Before we introduce our general definitions, we
discuss the oldest graph polynomial studied in the literature, the clas-
sical chromatic polynomial χG(k). It has a very rich literature. For an
excellent and exhaustive monograph, cf. [DKT05].

We denote by G the set of graph of the formG = ([n], E). A k-vertex-
coloring of G is a function f : [n] → [k] such that whenever u, v ∈ E
then f(u) 6= f(v). χG(k) denotes the number of k-vertex-colorings of
G. χG(k) defines, for each graph, a function

χG(λ) : G → N

which turns out to be a polynomial in λ.
We isolate four themes:

(i) A recursive definition of χG(k) (using an order on the vertices
or edges).

(ii) A uniform static definition of χG(k) over the graph using a
second order logic formalism.
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(iii) We associate with each k ∈ N a two-sorted structure Gk =
〈G, [k]〉 and interpret χG(k) as counting the number of expan-
sions Gk, F satisfying some first order formula φ(F ).

(iv) We can also replace the family of structures Gk = 〈G, [k]〉 by
a single infinite structure M(G) which is totally categorical,
with a strongly minimal set X, and interpret χG(k) as the

number of elements f satisfying some first order formula φ̂(f)
in the algebraic closure in M(G) of Y ⊂ X where | Y |= k.

In [CGM0x] the relationship between recursive and static definitions
is studied. There, a framework is provided which allows to show that
every recursive definition of a graph polynomial also allows a static
definition. The converse is open but seems not to be true. Here we
are interested in the relationship between static definition, counting
expansions, and the size of definable sets in M(G).

2.2. Uniform family. We note that χG(λ) really denotes a family of
polynomials indexed by graphs from G. This family is furthermore
uniformly defined based on some of the properties of the graph G.
Below, we are interested in various formalisms in which such uniform
definitions can be given.

2.3. Recursive definition. The first proof that χG(λ) is a polynomial
used the observation that χG(λ) has a recursive definition using the
order of the edges, which can be taken as the order induced by the
lexical ordering on [n]2. However, the object defined does not depend
on the particular order of the edges. For details, cf. [Big93, Bol99].
The essence of the proof is as follows:

For e = (v1, v2), we put G − e = (V,E ′) with E ′ = E − {e}, and
G/e = (V ′, E ′) V ′ = V −{v2} and E ′ = (E ∩ (V ′)2)∪ {(v1, v); (v2, v) ∈
E}. The operation passing from G to G−e is called edge removal, and
the operation passing from G to G/e is called edge contraction.

Lemma 2.1. Let e, f be two edges of G. Then we have

(i) (G− e) − f = (G− f) − e.
(ii) (G/e) − f = (G− f)/e.
(iii) (G− e)/f = (G/f) − e.
(iv) (G/e)/f = (G/f)/e.

Let En = ([n], ∅). We have

(i) χEn
(λ) = λn.

(ii) For any edge e ∈ E we have

χG(λ) = χG−e(λ) − χG/e(λ).
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Let E = (e0, e1, . . . , em) be the enumeration of the edges in this lexico-
graphic order. Using the order on the edges, this allows us to compute
χG(λ). It also turns out, using Lemma 2.1, that the result is indepen-
dent of the ordering of the edges.

2.4. Static descriptions. There are other proofs that χG(λ) is a poly-
nomial2.

Proof. We first observe that any coloring uses at most n of the λ colors.
For any m ≤ n, let c(m) be the number of colorings, with a fixed set of
m colors, which are vertex colorings and use all m of the colors. Then,
given λ colors, the number of vertex colorings that use exactly m of the
λ colors is the product of c(m) and the binomial coefficient

(

λ
m

)

. So

χG(λ) =
∑

m≤n

(

λ

m

)

c(m)

The right side here is a polynomial in λ, because each of the binomial
coefficients is. We also use that for λ ≤ m we have

(

λ
m

)

= 0.
If both the set of colors and the set of vertices are initial segments

of the natural numbers with their order, we can also rewrite this in the
following way:

χG(λ) =
∑

A:init(A,V )

∑

f :ontocol(f,A)

(

λ

card(A)

)

(chrom-1)

where init(A, V ) says thatA is an initial segment of V , and ontocol(f, A)
says that f is a vertex coloring using all the colors of A. �

Equation chrom-1 is an example of a static definition of the chromatic
polynomial.

In [DKT05, Theorem 1.4.1] another static description of χG(λ) is
given: Let a(G,m) be the number of partitions of V intom independent
sets, and let

(λ)m = λ · (λ− 1) · . . . · (λ−m+ 1)

Then

χG(λ) =
∑

m

a(G,m) · (λ)m

This again be written as

χG(λ) =
∑

P :indpart(P,AP ,V )

(λcard(AP ))(chrom-2)

2This one was pointed out to us by A. Blass, who kindly allowed us to reproduce
it here.



6 J.A. MAKOWSKY AND B. ZILBER

where indpart(P,AP , V ) says that P is an equivalence relation on V
and AP consists of the first elements (with respect to the order on
V = [n]) of each equivalence class.

A third static description for χG(λ) is given in [DKT05, Theorem
2.2.1]. It can be obtained from a two-variable polynomial ZG(λ, V )
defined by

ZG(λ, V ) =
∑

S:S⊆E





∏

v:fcomp(v,S)

λ ·
∏

e:e∈S

V



 =
∑

S:S⊆E

(

λk(S) ·
∏

e:e∈S

V

)

where fcomp(v, S) is the property ”v is the first vertex in the order of
V of some connected component of the spanning subgraph < S : V >
on V induced by S”, and k(S) is the number of connected components
of < S : V >. Now we have

χG(λ) = ZG(λ,−1)(chrom-3)

The three static descriptions of the chromatic polynomial chrom-1,
chrom-2, chrom-3 have several properties in common:

(i) They satisfy the same recursive definition.
(ii) They are of the form

∑

k Ak(G)Pk(λ) where Pk(λ) is a polyno-
mial in λ with integer coefficients of degree k.

(iii) The coefficients Ak(G) are positive and have a combinatorial
interpretation.

(iv) The coefficients can be alternatively obtained by collecting the
terms Pk(λ) of a summation over certain relations definable in
second order logic over the graph with an order on the vertices
and interpreting k as the cardinality of such a relation.

(v) Although the order on the vertices is used in the static de-
scription of the polynomial, the polynomial is invariant under
permutations of the ordering.

There are also signifcant differences.

(i) In chrom-1 it is important that the set of colors and the set of
vertices are initial segments of the natural numbers with their
natural order. The summation involves one unary relation and
one unary function.

(ii) In chrom-2 The summation involves a binary relation on the
vertices which is not a subset of the edge relation, but of its
complement. The order relation is only needed to identify
equivalence classes.

(iii) In chrom-3 we actually use a two-variable polynomial and then
substitute for one variable −1. The summation involves a bi-
nary relation on vertices which is a subset of the edge relation.
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It can be also viewed as a unary relation on the set of edges.
The order relation is only needed to identify connected com-
ponents.

2.5. Counting expansions. A k-vertex-coloring of G is a function
f : [n] → [k] such that whenever u, v ∈ E then f(u) 6= f(v). Let F be
a unary function symbol and let φ(F,E) be the formula which says that
F is a vertex-coloring for the edge relation E. Then χG(k) = χφ(G, k)
is the number of functions in 〈[n], [k], E, F 〉 which satisfy φ(F,E). We
note that

(i) a coloring is invariant under permutations of the colors,
(ii) the number of colors is bounded by the size of V , and
(iii) the property of being a coloring is independent of the colors

not used.

This is readily generalised to other formulas ψ(F,E) satisfying similar
properties, and will be the starting point for our notion of generalised
coloring.

2.6. Totally categorical structure. Here we assume the reader is
familiar with basic model theory as described in [Hod93, Rot95]. We
now define an infinite structure M(G) in the following way. For G =
(V,E) the universe M of M(G) consists of three disjoint sets V,X and
XV with V = [n] and X = N. We assume we have unary predicates
PV , PX identifying these sets. The additional relations are E ⊆ V 2 and
R ⊆ V × XV × X. E is the edge relation of G and (v, f, x) ∈ R iff
f(v) = x.

We note:

(i) Let TG be the complete first order theory of M(G). Two mod-
els M1,M2 of TG are isomorphic iff PX(M1) and PX(M2) have
the same cardinality, hence TG is totally categorical. PX de-
fines a strongly minimal set. The algebraic closure of PX is the
whole model.

(ii) Let φ̂(f) be the first order formula

∀u, v ((E(u, v) ∧ S(u, f, x) ∧ S(v, f, y)) → x 6= y)

In models of TG the formula φ̂(f) says that f is a vertex-
coloring of G with colors in PX .

(iii) For Y ⊂ X in M(G), denote by acl(Y ) the algebraic closure
of Y in M(G). Let

count(φ̂(f), Y ) = {f ∈ cl(Y ) : M(G) |= φ̂(f)}
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It is easy to check that for any Y ⊆ X with | Y |= k, we have

χG(k) = count(φ̂(f), Y ).
(iv) Using Theorem A, this gives another proof that χG(k) is a

polynomial.

3. Generalised chromatic polynomial

3.1. Generalised colorings. Let M be a τ -structure with universe
M , and denote by Mk the two-sorted structure 〈M, [k]〉 for the vocab-
ulary τ1. We denote relation symbols by bold-face letters, and their
interpretation by the corresponding roman-face letter.

Definition 3.1 (Coloring property). Let τR = τ1 ∪ {R}, where is R is
a two-sorted relation symbol of arity r = s+t. A class of τR- structures
P is a coloring property if

(i) P is closed under τR-isomorphisms,
(ii) Let M be fixed. Then Mk is a substructure of Mn for each

n ≥ k. Let R0 be a fixed relation on Mk. If 〈Mk, R0〉 ∈ P
and n ≥ k then also 〈Mn, R0〉 ∈ P.

(iii) Let R ⊆ Ms × [k]t be a fixed relation on Mk. For π is a
permutation of [k], We define

Rπ = {(m̄, π(ā)) ∈M×[k]t : (m̄, ā) ∈ R}.

Then 〈Mk, R〉 ∈ P iff 〈Mk, Rπ〉 ∈ P.

We refer to R and its interpretations R as coloring predicates.

Remark 3.2. It does not matter whether we define coloring properties
for fixed M or not, as the union of a family of coloring properties over
the same vocabulary is again a coloring property.

Definition 3.3 (Bounded coloring properties). .

(i) A coloring property is bounded, if for every M there is a num-
ber NM such that for all k ∈ N the set of colors

{x ∈ [k] : ∃ȳ ∈MmR(ȳ, x)}

has size at most NM .
(ii) A coloring property is range bounded, if its range is bounded

in the following sense: There is a number d ∈ N such that for
every mathcalM and ȳ ∈ Mm the set {x ∈ [k] : R(ȳ, x)} has
at most d elements.

Clearly, if a coloring property is range bounded, it is also bounded.

Definition 3.4 (Coloring formula). A first order (or second order)
formula φ(R) is a coloring formula, if the class of its models, which
are of the form of the form 〈M, [k], R〉, is a coloring property.
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We will discuss coloring formulas definable in second order logic SOL

in more detail in Subsection 3.7.

Definition 3.5 (Generalised colorings).
Let P be a bounded coloring property. A relation RM ⊂ Mm × [k] is a
generalised k − P-coloring if 〈Mk, R〉 ∈ P.
We denote by χP(M, k) the number of generalised k−P-coloring R on
M. If P is definable by some formula φ(R) we also write χφ(R)(M, k).

Example 3.6. Let F be a unary function symbol which serves as the
coloring predicate. A vertex coloring of a graph G = (V,E) is a map
F : V → [k] for some k,

(i) A vertex coloring F is proper, if it satisfies the coloring formula

∀u, v(E(u, v) → F(u) 6= F(v)).

Clearly, this does define a coloring property.
(ii) If we require that a vertex coloring F uses all the colors, then

this is not a coloring property. It violates (ii) of Definition 3.1.
(iii) A vertex coloring is pseudo-complete, if it satisfies the formula

∀x, y∃u, v(F(u) = x ∧ F(v) = y.

For the same reason as above this is not a coloring formula.
(iv) A vertex coloring is complete, if it is both proper and pseudo-

complete. Complete colorings are studied in the context of the
achromatic number of a graph G which is the largest number k
such that G has a complete coloring with k colors. The achro-
matic number of G and the number of complete colorings is a
function of G but not of k. In other words, complete color-
ings are not colorings in our sense. The achromatic number
was introduced in [HHR67]. For a survey of recent work, cf.
[HM97].

Theorem 3.7. Let P be a bounded coloring property. For every M
the number χP(M, k) is a polynomial in k of the form

d·|M |m
∑

j=0

cφ(R)(M, j)

(

k

j

)

where cφ(R)(M, j) is the number of generalised k − φ-colorings R with
a fixed set of j colors.

Proof. We first observe that any generalised coloring R uses at most
NM of the k colors, if it is bounded. Furthermore, NM = d· | M |m,
if it is range bounded. For any j ≤ N , let cP(M, j) be the number
of colorings, with a fixed set of j colors, which are generalised vertex
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colorings and use all j of the colors. We use the properties of the
coloring property. So any permutation of the set of colors used is also
a coloring. Therefore, given k colors, the number of vertex colorings
that use exactly j of the k colors is the product of cP(M, j) and the
binomial coefficient

(

k
j

)

. So

χP(M, k) =
∑

j≤N

cP(M, j)

(

k

j

)

The right side here is a polynomial in k, because each of the binomial
coefficients is. We also use that for k ≤ j we have

(

k
j

)

= 0. �

In the light of this theorem we call χP(M, k) a generalised chromatic
polynomial.

Remark 3.8. The restriction to coloring properties in Theorem 3.7 is
essential. Let χcomplete(G, k) be the number of complete colorings of a
graph G − (V,E) with k colors. Clearly, this is not a polynomial in k

is for k ≥
(

|E|
2

)

it always vanishes, so it should be constant 0.

3.2. Properties of counting polynomials.

Definition 3.9 (Counting polynomials).

(i) Newton polynomials are of the form

p(λ) =
∑

j≤N

bj

(

λ

j

)

(ii) We call a polynomial p(λ) ∈ Z[λ] a counting polynomial if p(k)
is a non-negative integer for non-negative integers k.

Clearly, if p(λ) is a counting polynomial, p(λ) tends to infinity with λ,
unless it is constant. Polynomials of the form p(λ) =

∑

j≤N ajλ
j, or, as

they are called in [GKP94], Newton polynoials, with all the coefficients
aj, respectively bj non-negative integers, are counting polynomials. The
polynomials p(λ) obtained in Theorem 3.7 are all counting polynomials.
In fact they are Newton polynomials with non-negative coefficients.

There are counting polynomials which have negative coefficents:

p(λ) = (λ− 2)2 = λ2 − 4λ+ 4 =

(

λ

2

)

− 3

(

λ

1

)

+ 2

(

λ

0

)

The characteristic polynomial of a graphG with adjacency matrixAG is
defined by PG(λ) = det(λ·1−AG) and is not a counting polynomial. To
see this we note that, for a graph of n vertices and PG(λ) =

∑n
k=0 ckλ

k,
we have cn−1 = 0, −cn−2 is the number of edges, and −cn−3 is twice
the number of triangles of G, hence cn−2 ≤ 0 and cn−3 ≤ 0, cf. [Big93,



POLYNOMIAL INVARIANTS 11

Proposition 2.3.]. Hence, for G = K3 we get PK3
(λ) = λ2−3λ+1 which

gives P (1) = −1. However, PG(λ) can be written as the difference
of two counting polynomials P+

G (λ) − P−
G (λ), and we put P̄G(λ, µ) =

P+
G (λ) + µP−

G (λ). We shall see that in the sequel that P̄G(λ, µ) is a
two variable generalized chromatic polynomial, and, hence, PG(λ) =
P̄G(λ,−1) is a substitution instance of P̄G(λ, µ).

3.3. Generalised multi-colorings. To construct also graph polyno-
mials in several variables, we extend the definition as follows.

Let M be a τ -structure with universe M , and denote by Mk1,...,kα
the

(1+α)-sorted structure 〈M, [k1], . . . [kα]〉 for the vocabulary τα. We put
k̄α = (k1, . . . , kα). The notions of a multi-coloring property P, bounded
and range bounded multi-coloring properties are defined exactly like for
the coloring properties.

Definition 3.10 (Generalised multi-colorings).
Let P be a bounded multi-coloring property for structures Mk1,...,kα

. A
relation

R0 ⊂Mm × ([k1]
m1 ⊔ . . . ⊔ [kα]

mα)

is a generalised k̄α −P-multi-coloring if 〈Mk1,...,kα
, R0〉 ∈ P.

We denote by χP(M, k1, . . . , kα) the number of generalised k−P-multi-
coloring R on M. If P is definable by some formula φ(R) we also write
χφ(R)(M, k1, . . . , kα).

Theorem 3.11. Let P be a bounded multi-coloring property with bound
N . In the case of range bounded multi-colorings N = d· | M |m. For
every M the number χP(M, k1, . . . , kα) is a polynomial in k1, . . . , kα
of the form

N
∑

j=0

cφ(R)(M, j̄α)
∏

1≤β≤α

(

kβ
jβ

)

where cP(M, j̄α) is the number of generalised k̄α − φ-colorings R with
fixed sets of jβ colors respectively.

Proof. Similar to the one variable case. �

We shall call multi-coloring properties and multi-coloring simply also
coloring properties and colorings, if the situation is clear from the con-
text.

3.4. Several simultaneous colorings. Let M be a τ -structure and
Mk as before. Assume we have a formula φ(F1, . . . ,Fs) with s func-
tion variables for generalised colorings which specifies the functions
simultaeously. If we fix the interpreation of the first s − 1 function
variables and denote these by F1, . . . , FM−1 we have a new structure
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N = 〈Mk, F1, . . . , Fs−1〉 in which we count just one generalised coloring
for each interpretation F1, . . . , Fs−1. The general counting is obtained
by summing over all interpretations. Hence, as the sum of polynomials
is a polynomial, this again gives us a polynomial. The same argu-
ment works, if we allow relations on the structure M, which do not
involve the sort [k] in Mk, and provided the range of these relations is
bounded in the sense of Definition 3.3. We call polynomials so obtained
also generalised chromatic polynomials.

3.5. Closure properties. The following will be useful.

Proposition 3.12 (Sums and products). The sum and product of two
generalised chromatic polynomials χφ(F)(G, λ) and χψ(F)(G, λ) is again
a generalised chromatic polynomial.

Proof. For the sum we take χθ1(G, λ) with

θ1(F) = ((φ(F) ∧ ¬ψ(F)) ∨ (ψ(F) ∧ ¬φ(F)) ∨ (φ(F) ∧ ψ(F))) .

For the product we take χθ2(G, λ) where we use two distinct function
symbols F and F′ and θ2(F,F

′) = (φ(F) ∧ ψ(F′)). �

3.6. Examples. We now show how many graph polynomials can be
viewed as generalised chromatic polynomials.
Combinatorial polynomials. The following combinatorial polyno-
mials can be thought of as generalised chromatic polynomials:

(i) For the polynomial λn we take all maps [n] → [k] for λ = k.
So λn = χtrue(f) where true(f) is ∀v(f(v) = f(v). It is a first
order definable bounded coloring property.

(ii) Similarly, for λ(n) = λ·(λ−1)·. . .·(λ−n+1) we take all injective
maps, which is easily expressed by a first order formula. which
defines a bounded coloring property.

(iii) Finally, for
(

λ
n

)

we take the ranges of injective maps. This is
a bounded coloring property of a second order formula φ(P)
which says that P ⊆ [k] is the range of an injective map f :
[n] → [k].

Connected components. We denote by k(G) the number of con-
nected components of G. The polynomial λk(G) can be written as
χφconnected

(G, λ) with φconnected(f) the formula

((u, v) ∈ E → f(u) = f(v)).
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Hypergraph colorings and mixed hypergraph colorings. A hy-
pergraph G consists of a set of vertices V (G) and a family E(V ) of
subsets of V , called the hyperedges. To make this into a first order
structure we have two sorts of elements, the elements of V and of E,
together with the membership relation, which satisfies extensionality.
A mixed hypergraph G has two kinds of hyperedges, D(G) and E(G).
Mixed hypergraph colorings come in several flavours. For a recent ex-
haustive survey, cf. [Vol02]. We discuss here two cases:

(i) A weak mixed hypergraph coloring with k colors is a mapping
f : V → [k] such that

∀u, v ∈ d ∈ D(G) → f(u) = f(v)

and

∀e ∈ E(G)∃u, v ∈ e ∈ E(G) → f(u) 6= f(v).

(ii) A strong mixed hypergraph coloring with k colors is a mapping
f : V → [k] such that

∀u, v ∈ d ∈ D(G) → f(u) = f(v)

and

∀e ∈ E(G)∀u, v ∈ e ∈ E(G) → f(u) 6= f(v).

We denote by χweak(G, k) and χstrong(G, k) respectively the number of
weak (strong) mixed hypergraph colorings with at most k colors.

Proposition 3.13 (V.L. Voloshin). χweak(G, k) and χstrong(G, k) are
polynomials in k.

Clearly, this is a corollary to our Theorem 3.7.

Matching polynomial. Let G = (V,E) be a graph. A subset M ⊆
E is a matching of no two edges in E have a common vertex. The
matching polynomial of G is given by

g(G, λ) =
∑

j

µ(G, j)λj

where µ(G, j) is the number of of matchings of size j.
We look at the structure Gk and at pairs (M,F ) with M ⊂ E and

F : E → [k] such that M is a matching and the domain of F is M ,
which can be expressed by a formula match(M,F ). We have

χmatch(M,F )(G, k) =
∑

j

µ(G, j)kj = g(G, k)

There are two close relatives to the matching polynomial, cf. [God93].
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(i) The acyclic polynomial

m(G, k) =
∑

j

(−1)jµ(G, j)kn−2j = kng(G,−k−2)

and
(ii) the rook polynomial r(G, k), which defined for bipartite graphs

only. We have

r(G, k) =
∑

j

µ(G, j)kn−j = kng(G,−x−1).

The rook polynomial is a substitution instance of g(G, k), and the
acyclic polynomial is a product of kn with a substitution instance of
g(G, k).

Tutte polynomial. We use the Tutte polynomial in the following
form:

Z(G, q, v) =
∑

A⊆E

qk(A)v|A|

where conn(A) is the number of connected components of the spanning
subgraph (V,A). This form of the Tutte polynomial is discussed in
[Sok05]. For this purpose we look at the 4-sorted structure

Gk,l = 〈V, [k], [l], ℘(E), E〉

and at the triples (A,F1, F2) with A ∈ ℘(E), F1 : V × ℘(E) → [k] and
F2 : A → [l] such that for (u, v) ∈ A → F1(A, u) = F1(A, v). This is
expressed in the formula tutte(A,F1, F2). Now we have

χtutte(A,F1,F2)(G, k, l) =
∑

A⊆E

kconn(A)l|A|

which is the evaluation of Z(G, q, v) for q = k, v = l.

3.7. Definability in Higher Order Logic. In our definition of gen-
eralised chromatic polynomials we have often requested that the gen-
eralised coloring be specified by a formula of first order logic FOL(τ).
This is not necessary. One example we have seen was the combinatorial
function

(

k
n

)

. We now introduce more formally higher order logics. The
formulas of SOL(τ) are defined like the ones of FOL, with the addition
that we allow countably many variables for n-ary relation symbols Un,α
for α ∈ N, for each n ∈ N, and quantification over these. Monadic sec-
ond order logic MSOL(τ) is the restriction of SOL(τ) to unary relation
variables and quantification over these. We can also introduce higher
order logic HOLn(τ). FOL(τ) = HOL1(τ). SOL(τ) = HOL2(τ).
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In HOL3(τ) we have additionally variables for relations over relations.
We do not need the details here.

Definition 3.14. A generalised chromatic polynomial is definable in
SOL(τ), respectively in MSOL(τ) or HOLn(τ), if it is of the form
χφ(M, λ̄), where φ ∈ SOL, respectively in MSOL(τ) or HOLn(τ),
and defines a bounded coloring property.

Here is a generalization of Theorem 3.11.

Theorem 3.15. Every counting function of a generalised HOLn-definable
coloring is a polynomial, which we call also generalised chromatic poly-
nomial.

Also Proposition 3.12 remains true with the same proof.

Proposition 3.16 (Sums and products). The sum and product of two
generalised SOL(τ)-definable chromatic polynomials χφ(f)(G, λ) and
χψ(f)(G, λ) is again a generalised SOL(τ)-definable chromatic polyno-
mial.

Remark 3.17. If we allow second order quantification over the sorts
[k1], . . . , [kα] the Theorem 3.15 is false. We could define a coloring
which is a proper vertex-colorin with k colors, if k is even, and a col-
oring of the connected components with k colors, if k is odd. Clearly
this is not a polynomial.

As our structures M are finite, the issue of higher order logic can be
circumvented, by adding the appropriate power sets to corresponding
expansions of M. However, the class of generalised SOL-definable
chromatic polynomials will be of special interest.

3.8. Is there a syntactic equivalent for coloring properties? We
have introduced coloring properties via a semantic definition. It is nat-
ural to ask whether there are syntactic conditions which are equivalent
to it. More precisely,

Question 1. Is there a syntactically defined class of FOL-formulas
COLOR such that for any φ(R) ∈ FOL(τ1 ∪ {R}) the formula φ(R)
defines a coloring property if and only if φ(R) is logically equivalent,
or logically equivalent over finite structures, to a formula ψ(R) ∈
COLOR? The same question can be asked for formulas of SOL or
even higher order logic HOL.

There are obvious syntactic restrictions which imply that φ(R) de-
fines a coloring property. One of them is, for FOL, that φ(R) does
not contain any variables of the sort [k]. However, this seems to be too
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restrictive. We leave the question of finding an appropriate character-
ization as an open problem.

4. SOL-definable graph polynomials

4.1. SOL(τ)-polynomials. We are now ready to introduce the HOL-
definable polynomials. For a a more detailed discussion, cf. [CGM0x].
Let R be a commutative semi-ring, which contains the semi-ring of
the integers N. For our discussion R = N or R = Z suffices, but
the definitions generalize. Our polynomials have a fixed finite set of
variables (indeterminates, if we distinguish them from the variables of
HOL), X.

Definition 4.1 (SOL-monomials). Let M be a τ -structure. We first
define the SOL-definable M-monomials. inductively.

(i) Elements of N are SOL-definable M-monomials.
(ii) Elements of X are SOL-definable M-monomials.
(iii) Finite products of monomials are SOL-definable M-monomials.
(iv) Let φ(ā) be a τ ∪ {ā}-formula in SOL, where ā = (a1, . . . , am)

is a finite sequence constant symbols not in τ . Let t be a M-
monomial. Then

∏

ā:〈M,ā〉|=φ(ā)

t

is a SOL-definable M-monomial.

The polynomial t may depend on relation or function symbols occuring
in φ.

We note that the degree of a M-monomial is polynomially bounded
by the cardinality of M.

Definition 4.2 (SOL-polynomials). The M-polynomials definable in
SOL are defined inductively:

(i) M-monomials are SOL-definable M-polynomials.
(ii) Let φ(ā) be a τ ∪ {ā}-formula in SOL where ā = (a1, . . . , am)

is a finite sequence of constant symbols not in τ . Let t be a
M-polynomial. Then

∑

ā:〈M,ā〉|=φ(ā)

t

is a SOL-definable M-polynomial.
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(iii) Let φ(R̄) be a τ∪{R̄}-formula in SOL where R̄ = (R1, . . . , Rm)
is a finite sequence of relation symbols not in τ . Let t be a M-
polynomial definable in SOL. Then

∑

R̄:〈M,R̄〉|=φ(R̄)

t

is a SOL-definable M-polynomial.

The polynomial t may depend on relation or function symbols occuring
in φ.

An M-polynomial pM(X) is an expression with parameter M. The
family of polynomials, which we obtain from this expression by letting
M vary over all τ -structures, is called, by abuse of terminology, a
SOL(τ)-polynomial.

In [Mak], cf. also [CGM0x], the following is shown:

Proposition 4.3. The sum and product of two SOL(τ)-polynomials is
again a SOL(τ)-polynomial.

4.2. Proof of Theorem D. We first prove the theorem for SOL.

Theorem 4.4. Every SOL(τ)-polynomial over some τ -structure A is
a counting function of a generalised coloring definable in SOL(τ) in a
suitable expansion of A.

Proof. We proceed by induction and use extensively Propositions 3.12,
3.16 and 4.3.

(i) For n ∈ N we use the structure with n elements 〈[n]〉 and
count the number of ways we can interpret a constant (0-ary
function) on [n].

(ii) For a specific indeterminate X ∈ X we again use the structure
with n elements 〈[n]〉 and count the number of functions f :
[n] → [k] which map all elements of [n] onto a single element
of [k].

(iii) Let φ(ā) be a τ ∪ {ā}-formula in SOL, where ā = (a1, . . . , am)
is a finite sequence constant symbols not in τ . Let t(Ā) be
a 〈M, ā〉-monomial which, by induction hypothesis, is of the
form χθ(ā,Fā)(〈M, ā〉,X), with θ(ā, Fā) ∈ SOL(τ ⊔ {ā, Fā}). F
is a function reperesenting a generalised coloring. For several
functions or bounded relations, the argument is the same.

We have to show that
∏

ā:〈M,ā〉|=φ(ā)

t
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is a SOL-definable M-monomial. But this follows from Propo-
sition 3.16 and the fact, that we can assure that all the symbols
ā and Fā are distinct.

(iv) Finally, we have to deal with the sums. With the same notation
as before, we keep the function symbols Fā = F the same. For

∑

ā:〈M,ā〉|=φ(ā)

t

we count the functions for different ā’s.
In contrast to this, for

∑

R̄:〈M,R̄〉|=φ(R̄) t we count the func-
tions for different interpretations of R.

�

The proof of Theorem D is similar.

4.3. Extended SOL(τ)-polynomials. We have seen in Section 3 that
the combinatorial functions λn, λ(n) and

(

λ
n

)

can be viewed as gener-
alised chromatic polynomials of the empty graph with n verties. Are
they also SOL(τ)-polynomials for τ the empty vocabulary?

For λn this is the case. For λ(n) it is the case, if τ contains a binary
relation symbol which is interpreted as the natural linear ordering of
[n]. For

(

λ
n

)

it is not clear, how to represent it as an SOL(τ)-polynomial
at all, although it is a generalised chromatic polynomial definable in
SOL.

Motivated by this we define the extended SOL-polynomials.

Definition 4.5 (Extended SOL-polynomials).

(i) For every φ(v̄) ∈ SOL(τ) we define the cardinality of the set
defined by φ:

cardM,v̄(φ(v̄)) =| {ā ∈Mm : 〈M, ā〉 |= φ(ā)}. |

(ii) The extended SOL(τ)-polynomials are defined inductively by
allowing in the Definition 4.1(ii) as monomials additionally:
For every φ(v̄) ∈ SOL(τ) and for every X ∈ X, the polynomi-
als

XcardM,v̄(φ(v̄), X(cardM,v̄(φ(v̄)),

(

X

cardM,v̄(φ(v̄)

)

are SOL-definable M-monomials.
(iii) Similarly, we define also extended MSOL-polynomials.

Now we have:
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Theorem 4.6. Every extended SOL(τ)-polynomial over τ -structures
A is a counting function of a generalised coloring definable in SOL(τ)
in a suitable expansion of A.

Proof. We can literally repeat the proof of Theorem 4.4 with the mod-
ified definition. �

4.4. Proof of Theorem E. Now we can prove the converse of Theo-
rem 4.6.

Theorem E. Every counting function of a generalised coloring of graphs
definable in SOL is an extended SOL-polynomial of graphs.

Proof. From Theorem 3.7 we know that for every M the number of
elements given by χφ(R)(M, k) is a polynomial in k of the form

d·|M |m
∑

j=0

cφ(R)(M, j)

(

k

j

)

where cφ(R)(M, j) is the number of generalised k − φ-colorings R with
a fixed set of j colors. Furthermore the total number of colors used is
bounded by N = d· | M |m. Using a relation variable of arity at most
d ·m (which is far too large), we interpret the set of colors used inside
M by the set Md·m. Now the set generalised colorings with exactly the
colors used from A ⊂ Md·m is SOL-definable within M by a formula
φ(A,F ). We use a relation symbol RA(v̄) whose interpretation is A.
So the extended SOL-polynomial is

∑

A,F :φ(RA,F )

(

λ

cardM,v̄RA(v̄)

)

�

4.5. MSOL(τ)-polynomials. In [Mak, Mak06] it is noted that most
graph polynomials are actually MSOL-polynomials.

Clearly, every (extended) MSOL-polynomial is a generalised chro-
matic polynomial. Our proof of Theorems D and E do not reveal
the exact relationship between MSOL-polynomials and generalised
MSOL-definable chromatic polynomials.

We end this section with two questions, which remained unresolved.

Question 2. What is the exact relationship between SOL(τ)-polynomials
and extended SOL(τ)-polynomials?

Question 3. What is the exact relationship between MSOL-polynomials
and generalised MSOL-definable chromatic polynomials?
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5. Enter categoricity

In this section we present an even more general approach to graph
polynomials, using advanced model thoery, in particular the theory of
categorical structures. We would like to remind the reader that in this
section we require some background in model theory, which goes be-
yong what was needed in the previous sections. A good background
reference is [Hod93]. A bit more elementary and still providing neces-
sary background on categoricity is the monograph [Rot95].

We first describe a general method of attaching uniformly to the
members G of a family of finite structures G an infinite structure M(G).
In the simplest case, the structure M(G) = M(G,D) depends on an
infinite set D = N. The structure M(G,N) encodes the family of struc-
tures 〈G, [k]〉 = Gk introduced in Section 3. The definable functions
f : G → N in M(G,N) correspond to generalised colorings where N is
an infinite set of colors. This approach is extended to definable sets in
M(G,N). Correspondingly, if instead of N we use α-many copies of N

we get generalised multi-colorings. The novelty here is, that we allow
D to carry more structure, giving rise to a richer class of generalised
colorings.

5.1. Background on categoricity. We quote from [Hod93, Rot95].
We assume that all vocabularies are countable or finite. A theory
T ⊆ FOL(τ) a consistent (satisfiable) set of first order sentences over
the vocabulary τ . A complete theory T ⊆ FOL(τ) is a maximally con-
sistent set of first order sentences. For a τ -structure M we denote by
Th(M) the set of FOL(τ)-sentences true in M.

Definition 5.1 (Background). Let T ⊆ FOL(τ) be a theory.

(i) T is complete, if it it is maximally consistent.
(ii) T has the finite model property, if each finite subset of T has

a finite model.
(iii) Let κ be a cardinal (initial ordinal). T is κ if T has an infinite

model and any two models of cardinality κ isomorphic.
(iv) If T is κ-categorical for some infinite κ, and has no finite mod-

els, then T is complete (Vaught’s Test).
(v) If T is κ-categorical for some uncountable κ, then T is κ′-

categorical for all uncountable κ′ (Morley’s Theorem).
(vi) Hence there are two cases which can occur independently in

all combinations: T is (or is not) ω-categorical, or T is (or is
not) ω1-categorical. A complete theory which is categorical in
all infinite powers is called totally categorical.
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(vii) An element a ∈ M is algebraic over C ⊂ M if there is τ -
formula φ(x, c̄) with one free variable x and parameters c̄ from
C, such that

{a ∈M : M |= φ(a, c̄)}

is finite.
(viii) In a structure M we define an algebraic closure of a set C ⊆

M , denoted by acl(C), as the set of elements in M which are
algebraic over C.

For the more complex notions related to the structure theory of to-
tally categorical theories, such as C-definable sets, minimal and strongly
minimal sets rank, dimension, ω-stability, etc., we refer the reader to
the standard texts, e.g. [Rot95, Hod93]. These notions are not used
in our technical proofs, but they are mentioned in theorems needed in
the proofs. The rank of a subset a ⊆ MS of structure is denoted by
rk (S).

5.2. The Functor. Let G be a class of finite structures of a finite
language τ0. Let D1, . . . , Dk be countable infinite structures of finite
languages τ1, . . . , τk, correspondingly.

For every G ∈ G we construct the structure M(G,D1, . . . , Dk) of
sorts G,D1, . . . , Dk and F and the language τ = τ0 ∪ τ1 · · · ∪ τk and
extra function symbol

Φ : G× F → D1 × . . .×Dk.

The only condition on Φ is

∀f, f ′ ∈ F ([∀g ∈ G Φ(g, f) = Φ(g, f ′)] → f = f ′).

We write f(g) instead of Φ(g, f) and so identify elements f ∈ F with
functions G → D1 × · · · × Dk. In other words we have the canonical
identification

Φ⋆ : F ↔ (D1 × · · · ×Dk)
G,

and fixing an enumeration of G we may identify the right-hand-side
with the cartesian power

(D1 × · · · ×Dk)
|G|.

Remark 5.2. By the virtue of the construction, given D1, . . . , Dk, the
isomorphism type of M(G,D1, . . . , Dk) depends only on G. Obviously,
G can be recovered from M(G,D1, . . . , Dk). So, M(G,D1, . . . , Dk) can
be seen as the complete invariant of G. In particular, every definable
subset S of F is an invariant of G.
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Proposition 5.3. M(G,D1, . . . , Dk) is definable using parameters in
the disjoint union D1 ∪ · · · ∪Dk.

Proof. Obviously M(G,D1, . . . , Dk) is definable in the disjoint union
of G,D1, . . . , Dk. But as G is finite, one can interprete this sort using
|G| constants. �

Corollary 5.4.

(i) Assume that the theory of each Di is ω-categorical. Then the
theory Th[M(G,D1, . . . , Dk)] is ω-categorical.

(ii) Assume that the theory of each Di is strongly minimal. Then
the theory Th[M(G,D1, . . . , Dk)] is ω-stable with k indepen-
dent dimensions. If k = 1 then the theory is categorical in
uncountable cardinals.

Theorem 5.5 (B. Zilber). Any theory satisfying (i) and (ii) has the
finite model property. Moreover any countable model M can be repre-
sented as

M =

∞
⋃

i=1

Mi,

i.e., as a union of an increasing chain of finite substructures (logically)
approximating M .

Proof. This follows from Theorem 7 of [CH03], where also more details
may be found. �

Remark 5.6. The finite model property takes a very simple form for a
s.m. structure D. Namely, D has the finite model property if and only
if acl (X) is finite for any finite X ⊆ D.

5.3. Counting functions for definable sets. A very important con-
sequence of the finite model property is the possibility to introduce a
stronger counting function on definable sets.

We prove here the existence of the counting polynomials in a spe-
cial case, for the theory Th[M(G,D1, . . . , Dk)]. This is a precise and
detailed version of Theorem A. The more general case of ω-categorical
ω-stable theories can be found in [CH03, Proposition 5.2.2.]. The more
special case of theories categorical in all infinite cardinals has been
proven in [Zil84a, Zil84b] and can be found [Zil93]. The proof under
the special asumptions needed in this paper is really elementary and
does not require any model-theoretic terminology if one assumes the
Di’s to be just sets. It really is a slight generalization of the proof given
for Theorem 3.7.
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Theorem 5.7. Let M = M(G,D1, . . . , Dk). Assume the finite model
property holds in the strongly minimal structures D1, . . .Dk. Then for
every finite C ⊆ M and any C-definable set S ⊆ M ℓ there is a poly-
nomial pS ∈ Q[x] and a number nS such that for every finite X ⊆ M
with C ⊆ X,

(i) letting |Di ∩ acl (X)| = xi ≥ nS, we have

|S ∩ aclX| = pS(x1, . . . , xk);

(ii) rk (S) = deg(pS), the degree of the polynomial;
(iii) if g(S)=T for some automorphism g of M then pS = pT and

nS = nT .

Furthermore, if C = ∅ we can take nS = 0.

Proof. We construct the polynomial for a given S by induction on
rk (S).

W.l.o.g. we may assume that S is an atom over C, that is defined
by a principal type over C.

Let f = 〈f1, . . . , fℓ〉 ∈ S. Recall that each fi is determined by the
values of fi(g) ∈ D1 × · · · × Dk, for g ∈ G. Denote fim(g) the mth
co-ordinate of fi(g), an element of Dm.

Suppose fim(g) ∈ acl (C) for all i ≤ ℓ, m ≤ k and g ∈ G. Then
f ∈ acl (C). Since S is an atom, S ⊆ acl (C) and hence

|S ∩ acl (X)| = |S ∩ acl (C)|

is a constant, independent of X. So, we are done in this case.
We may now assume that f11(g0) /∈ acl (C). So, we have the partition

S =
⋃

a∈D1\acl (C)

Sa, Sa = {f ∈ S : f11(g0) = a}.

Since D1 \ acl (C) is an atom over C (use the strong minimality of
D1) and, of course G ⊆ acl (∅), the subgroup of the automorphism
group of M fixing C acts transitively on D1 \ acl (C). Hence all the
fibers Sa are conjugated by automorphisms over C and have the same
Morley rank. The latter implies by the addition formula for ranks that

rk (Sa) = rk (S) − 1.

So, we may apply the induction hypothesis. By (iii) we get that

pSa
= p0, for all a ∈ D1 \ acl (C),

for some polynomial p0. By (ii) deg(p0) = rk (Sa) = rk (S) − 1.
Let c0 = |acl (C)|. So,

|(D1 \ acl (C)) ∩ acl (X)| = (x1 − c0).
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We further calculate

S∩acl (X) =
⋃

a∈(D1\acl (C))∩acl (X)

Sa∩acl (X) = (x1 − c0) ·p0(x1, . . . , xk).

�

5.4. Generalised chromatic polynomials revisited. In the light
of Theorem 5.7 let us look first at the generalised colorings of Section
3.

We discuss it for the class S(τ) of finite purely relational τ -structures.
We denote by SOLn(τ) the set of SOL(τ)-formulas, where all second
order variables are arity at most n. Let φ(R̄, F ) ∈ SOLn(τ) define
generalised coloring where R̄ are relation parameters, and F denotes
the coloring function. So the generalised chromatic polynomial on a
τ -structure A is defined as

χφ(R̄,F )(A, k) =| {(r̄, f) : 〈A, r̄, f, [k]〉 |= φ(r̄, f)} |

We first expand A such that quantification over relations becomes
quantification over elements. So for each ℓ ≤ n we add the set ℘(Aℓ

with the corresponding membership relation ∈ℓ. We define the τ ⋆-
structure

A⋆ = 〈A, ℘(Aℓ ∈ℓ, ℓ ≤ n〉

and apply our functor M(A⋆,N) to it with D1 = N. Let the τ ♯ be the
vocabulary of M(A⋆,N).

Now the formula φ(R̄, F ) ∈ SOLn(τ) has a straighforward trans-
lation φ♯(c̄R̄, dF ) ∈ FOL(τ ♯), where the function symbol F becomes
a variable dF , de relation symbols R̄ become variables c̄R̄ of the ap-
propriate sorts. Furthermore, it has no additional parameters, hence
C = ∅.

Let X ⊆ N be finite. Due to Theorem 5.7(iii), w.l.o.g., C = [k] for
some k ∈ N. Let A⋆

k be the substructure of M(A⋆,N) with universe
acl([k]) and Fk ⊆ F be its part of the sort F . We now easily verify
that

(i) A⋆
k contains all of A⋆.

(ii) Fk consists exactly of all functions f with range Rg(f) ⊆ [k].
(iii) For S = {(c̄, d) ∈M(A⋆,N) : M(A⋆,N) |= φ♯(c̄, d)}

we have that | S ∩ acl (k) |= pS(k) is a polynomial for every
k ≥ nS = 0.

(iv) χφ(R̄,F )(A, k) =| {(c̄, d) ∈ A⋆
k : M(A⋆,N) |= φ♯(c̄, d)} |= pS(k)

This proves Theorem B for the case of genralised chromatic polynomials
in one variable.
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5.5. Proof of Theorem B. To prove Theorem B in its full generality
proceed as before. We obeserve the following points:

• For multi-colorings we use several copies of N as strongly min-
imal sets.

• If the generalised colorings are relations r ⊂ Gα×Nβ the proof
still works, providedM(G,N, . . . ,N) is ω-stable. This is, where
we use in our definition of generalised multi-coloring, that for
each x̄ ∈ Gα the set rā = {b̄ ∈ Nβ : r(ā, b̄)} is bounded by
fixed finite number d. Without this restriction ω-categoricity
is violated.

• For HOLm-definable generalised colorings we use the appro-
priate expansions.

5.6. The full generality. The general theorem allows for more com-
plicated stronly miniml structures to be used for D1. A simple example
would consist of a countable set of disjoint copies of a fixed finite struc-
ture such a finite field GF (pq). The colors then would be pairs (n, a)
where n ∈ N and a ∈ GF (pq). We could request that a graph coloring
f of a graph G = (V,E) satisfies, say,

[((u, v) ∈ E ∧ f(u) = (nu, au) ∧ f(v) = (nv, av)) →

(nu 6= nv ∧ au + av = 0)]

It seems possible that such colorings may be useful in modelling wiring
conditions when labeled graphs model network devices.

6. Conclusions and open problems

Starting with the classical chromatic polynomial we have introduced
generalised multi-colorings. We have shown that the corresponding
counting functions are always polynomials, which we called generalised
chromatic polynomials.

We have then shown that the class of generalised chromatic polyno-
mials is very rich and covers virtually all examples of graph polynomials
which have been studied in the literature. To make this precise, we used
the notion of SOL-definable graph polynomials introduced in [Mak04],
und extended it two-fold: allowing higher order logic, and by allowing
polynomials with combinatorial counting functions as monomials.

Finally we have shown that the phenomenon that the counting func-
tions of generalised HOL-definable colorings are polynomials has a
purely model theoretic counterpart in the counting functions for de-
finable sets in ω-categorical, ω-stable theories, and that all generalised
extended chromatic polynomials definable in HOL can brought into
this framework.
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Indeed, the main contribution of this paper is that through model
theory one sees a most general picture, in which graph polynomials are
just part of it. One has, more generally, polynomial invariants of arbi-
trary finite structures and one associates with a general ω-categorical
ω-stable structure the most general polynomial invariants. This com-
plements one further combinatorial aspect in the structure theory of
ω-categorical ω-stable structures. It also proved useful in the classifi-
cation of finite homogeneous combinatorial geometries, [CH03].
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